1 |
#! /usr/bin/env python |
2 |
|
3 |
"""Quadrupolar Lattice Builder |
4 |
|
5 |
Creates cubic lattices of quadrupoles to test the |
6 |
quadrupole-quadrupole interaction code. |
7 |
|
8 |
Usage: buildQuadrupolarArray |
9 |
|
10 |
Options: |
11 |
-h, --help show this help |
12 |
-x, --array-type-X use one of the basic "X" arrays |
13 |
-y, --array-type-Y use one of the basic "Y" arrays |
14 |
-z, --array-type-Z use one of the basic "Z" arrays |
15 |
-l, --lattice=... use the specified lattice ( SC, FCC, or BCC ) |
16 |
-c, --constant=... use the specified lattice constant |
17 |
-n use the specified number of unit cells |
18 |
-o, --output-file=... use specified output (.xyz) file |
19 |
|
20 |
Type "A" arrays have nearest neighbor strings of antiparallel dipoles. |
21 |
|
22 |
Type "B" arrays have nearest neighbor strings of antiparallel dipoles |
23 |
if the dipoles are contained in a plane perpendicular to the dipole |
24 |
direction that passes through the dipole. |
25 |
|
26 |
Example: |
27 |
buildQuadrupolarArray -l fcc -c 5 -n 3 -o FCC.md |
28 |
|
29 |
""" |
30 |
|
31 |
__author__ = "Dan Gezelter (gezelter@nd.edu)" |
32 |
__version__ = "$Rev: 1914 $" |
33 |
__date__ = "$LastChangedDate: 2013-07-29 11:34:04 -0400 (Mon, 29 Jul 2013) $" |
34 |
|
35 |
__copyright__ = "Copyright (c) 2013 by the University of Notre Dame" |
36 |
__license__ = "OpenMD" |
37 |
|
38 |
import sys |
39 |
import getopt |
40 |
import string |
41 |
import math |
42 |
import numpy |
43 |
|
44 |
def usage(): |
45 |
print __doc__ |
46 |
|
47 |
def createLattice(latticeType, latticeNumber, latticeConstant, arrayType, outputFileName): |
48 |
# The following section creates 24 basic arrays from Luttinger and |
49 |
# Tisza: |
50 |
|
51 |
# The six unit vectors are: 3 spatial and 3 to describe the |
52 |
# orientation of the dipole. |
53 |
|
54 |
e1 = numpy.array([1.0,0.0,0.0]) |
55 |
e2 = numpy.array([0.0,1.0,0.0]) |
56 |
e3 = numpy.array([0.0,0.0,1.0]) |
57 |
|
58 |
# Parameters describing the 8 basic arrays: |
59 |
cell = numpy.array([[0,0,0],[0,0,1],[1,0,0],[0,1,0], |
60 |
[1,1,0],[0,1,1],[1,0,1],[1,1,1]]) |
61 |
# order in which the basic arrays are constructed in the l loops below: |
62 |
corners = numpy.array([[0,0,0],[0,0,1],[0,1,0],[0,1,1], |
63 |
[1,0,0],[1,0,1],[1,1,0],[1,1,1]]) |
64 |
|
65 |
X = numpy.zeros(192).reshape((8,8,3)) |
66 |
Y = numpy.zeros(192).reshape((8,8,3)) |
67 |
Z = numpy.zeros(192).reshape((8,8,3)) |
68 |
|
69 |
# create the 24 basic arrays using Eq. 12 in Luttinger & Tisza: |
70 |
for i in range(8): |
71 |
which = 0 |
72 |
for l1 in range(2): |
73 |
for l2 in range(2): |
74 |
for l3 in range(2): |
75 |
lvals = numpy.array([l1,l2,l3]) |
76 |
value = math.pow(-1, numpy.dot(cell[i], lvals)) |
77 |
X[i][which] = value * e1 |
78 |
Y[i][which] = value * e2 |
79 |
Z[i][which] = value * e3 |
80 |
which = which+1 |
81 |
|
82 |
|
83 |
lp_array = numpy.zeros(0).reshape((0,3)) |
84 |
for i in range(8): |
85 |
lp_array = numpy.vstack((lp_array, corners[i])) |
86 |
|
87 |
bc_array = numpy.zeros(0).reshape((0,3)) |
88 |
for i in range(8): |
89 |
bc_array = numpy.vstack((bc_array, corners[i] + [0.5,0.5,0.5])) |
90 |
|
91 |
xy_array = numpy.zeros(0).reshape((0,3)) |
92 |
for i in range(8): |
93 |
xy_array = numpy.vstack((xy_array, corners[i] + [0.5,0.5,0.0])) |
94 |
|
95 |
xz_array = numpy.zeros(0).reshape((0,3)) |
96 |
for i in range(8): |
97 |
xz_array = numpy.vstack((xz_array, corners[i] + [0.5,0.0,0.5])) |
98 |
|
99 |
yz_array = numpy.zeros(0).reshape((0,3)) |
100 |
for i in range(8): |
101 |
yz_array = numpy.vstack((yz_array, corners[i] + [0.0,0.5,0.5])) |
102 |
|
103 |
known_case = False |
104 |
basic_array = numpy.zeros(0).reshape((0,3,3)) |
105 |
|
106 |
lp_part = numpy.zeros(0).reshape((0,3,3)) |
107 |
bc_part = numpy.zeros(0).reshape((0,3,3)) |
108 |
xy_part = numpy.zeros(0).reshape((0,3,3)) |
109 |
xz_part = numpy.zeros(0).reshape((0,3,3)) |
110 |
yz_part = numpy.zeros(0).reshape((0,3,3)) |
111 |
|
112 |
if (arrayType == 'X'): |
113 |
if (int(latticeType)): |
114 |
which = int(latticeType) - 1 |
115 |
basic_array = numpy.append(lp_array, X[which], axis=1) |
116 |
known_case = True |
117 |
if (arrayType == 'Y'): |
118 |
if (int(latticeType)): |
119 |
which = int(latticeType) - 1 |
120 |
basic_array = numpy.append(lp_array, Y[which], axis=1) |
121 |
known_case = True |
122 |
if (arrayType == 'Z'): |
123 |
if (int(latticeType)): |
124 |
which = int(latticeType) - 1 |
125 |
basic_array = numpy.append(lp_array, Z[which], axis=1) |
126 |
known_case = True |
127 |
if (latticeType.lower() == 'sc'): |
128 |
lp_part = numpy.append(lp_array, X[0]+Y[0]+Z[0], axis=1) |
129 |
basic_array = lp_part |
130 |
known_case = True |
131 |
if (latticeType.lower() == 'bcc'): |
132 |
lp_part = numpy.append(lp_array, X[0]+Y[0], axis=1) |
133 |
bc_part = numpy.append(bc_array, X[0]-Y[0], axis=1) |
134 |
basic_array = numpy.append(lp_part, bc_part, axis=0) |
135 |
known_case = True |
136 |
if (latticeType.lower() == 'fcc'): |
137 |
lp_part = numpy.append(lp_array, X[0]+Y[0]+Z[0], axis=1) |
138 |
xy_part = numpy.append(xy_array, X[0]-Y[0]-Z[0], axis=1) |
139 |
xz_part = numpy.append(xz_array, -X[0]-Y[0]+Z[0], axis=1) |
140 |
yz_part = numpy.append(yz_array, -X[0]+Y[0]-Z[0], axis=1) |
141 |
basic_array = numpy.append(lp_part, xy_part, axis=0) |
142 |
basic_array = numpy.append(basic_array, xz_part, axis=0) |
143 |
basic_array = numpy.append(basic_array, yz_part, axis=0) |
144 |
|
145 |
known_case = True |
146 |
|
147 |
|
148 |
if (not known_case): |
149 |
print "unhandled combination of lattice and dipole direction" |
150 |
print __doc__ |
151 |
|
152 |
bravais_lattice = numpy.zeros(0).reshape((0,6)) |
153 |
for i in range(latticeNumber): |
154 |
for j in range(latticeNumber): |
155 |
for k in range(latticeNumber): |
156 |
for l in range(len(basic_array)): |
157 |
lat_vec = numpy.array([[2*i, 2*j, 2*k, 0.0, 0.0, 0.0]]) |
158 |
bravais_lattice = numpy.append(bravais_lattice, lat_vec + basic_array[l], axis=0) |
159 |
|
160 |
outputFile = open(outputFileName, 'w') |
161 |
|
162 |
outputFile.write('<OpenMD version=2>\n') |
163 |
outputFile.write(' <MetaData>\n') |
164 |
outputFile.write(' molecule{\n') |
165 |
outputFile.write(' name = \"Q\";\n') |
166 |
outputFile.write(' \n') |
167 |
outputFile.write(' atom[0]{\n') |
168 |
outputFile.write(' type = \"Q\";\n') |
169 |
outputFile.write(' position(0.0, 0.0, 0.0);\n') |
170 |
outputFile.write(' orientation(0.0, 0.0, 0.0);\n') |
171 |
outputFile.write(' }\n') |
172 |
outputFile.write(' }\n') |
173 |
outputFile.write(' component{\n') |
174 |
outputFile.write(' type = \"Q\";\n') |
175 |
outputFile.write(' nMol = '+ repr(len(bravais_lattice)) + ';\n') |
176 |
outputFile.write(' }\n') |
177 |
|
178 |
outputFile.write(' ensemble = NVE;\n') |
179 |
outputFile.write(' forceField = \"Multipole\";\n') |
180 |
|
181 |
outputFile.write(' cutoffMethod = \"shifted_force\";\n') |
182 |
outputFile.write(' electrostaticScreeningMethod = \"damped\";\n') |
183 |
|
184 |
outputFile.write(' cutoffRadius = 9.0;\n') |
185 |
outputFile.write(' dampingAlpha = 0.18;\n') |
186 |
outputFile.write(' statFileFormat = \"TIME|TOTAL_ENERGY|POTENTIAL_ENERGY|KINETIC_ENERGY|TEMPERATURE|PRESSURE|VOLUME|CONSERVED_QUANTITY|ELECTROSTATIC_POTENTIAL\";\n') |
187 |
outputFile.write(' dt = 1.0;\n') |
188 |
outputFile.write(' runTime = 1.0;\n') |
189 |
outputFile.write(' sampleTime = 1.0;\n') |
190 |
outputFile.write(' statusTime = 1.0;\n') |
191 |
outputFile.write(' </MetaData>\n') |
192 |
outputFile.write(' <Snapshot>\n') |
193 |
outputFile.write(' <FrameData>\n'); |
194 |
outputFile.write(" Time: %.10g\n" % (0.0)) |
195 |
|
196 |
Hxx = 2.0 * latticeConstant * latticeNumber |
197 |
Hyy = 2.0 * latticeConstant * latticeNumber |
198 |
Hzz = 2.0 * latticeConstant * latticeNumber |
199 |
|
200 |
outputFile.write(' Hmat: {{%d, 0, 0}, {0, %d, 0}, {0, 0, %d}}\n' % (Hxx, Hyy, Hzz)) |
201 |
outputFile.write(' </FrameData>\n') |
202 |
outputFile.write(' <StuntDoubles>\n') |
203 |
sdFormat = 'pvqj' |
204 |
index = 0 |
205 |
|
206 |
for i in range(len(bravais_lattice)): |
207 |
xcart = latticeConstant*(bravais_lattice[i][0]) |
208 |
ycart = latticeConstant*(bravais_lattice[i][1]) |
209 |
zcart = latticeConstant*(bravais_lattice[i][2]) |
210 |
dx = bravais_lattice[i][3] |
211 |
dy = bravais_lattice[i][4] |
212 |
dz = bravais_lattice[i][5] |
213 |
|
214 |
dlen = math.sqrt(dx*dx + dy*dy + dz*dz) |
215 |
ctheta = dz / dlen |
216 |
theta = math.acos(ctheta) |
217 |
stheta = math.sqrt(1.0 - ctheta*ctheta) |
218 |
psi = 0.0 |
219 |
phi = math.atan2(dx/dlen, -dy/dlen) |
220 |
|
221 |
q = [0.0,0.0,0.0,0.0] |
222 |
q[0] = math.cos(theta/2)*math.cos((phi+psi)/2) |
223 |
q[1] = math.sin(theta/2)*math.cos((phi-psi)/2) |
224 |
q[2] = math.sin(theta/2)*math.sin((phi-psi)/2) |
225 |
q[3] = math.cos(theta/2)*math.sin((phi+psi)/2) |
226 |
|
227 |
qlen = math.sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]) |
228 |
q[0] = q[0]/qlen |
229 |
q[1] = q[1]/qlen |
230 |
q[2] = q[2]/qlen |
231 |
q[3] = q[3]/qlen |
232 |
|
233 |
outputFile.write("%10d %7s %g %g %1g %g %g %g %13e %13e %13e %13e %g %g %g\n" % (index, sdFormat, xcart, ycart, zcart, 0.0, 0.0, 0.0, q[0], q[1], q[2], q[3], 0.0, 0.0, 0.0)) |
234 |
index = index+1 |
235 |
|
236 |
outputFile.write(" </StuntDoubles>\n") |
237 |
outputFile.write(" </Snapshot>\n") |
238 |
outputFile.write("</OpenMD>\n") |
239 |
outputFile.close() |
240 |
|
241 |
outputFile.close() |
242 |
|
243 |
def main(argv): |
244 |
|
245 |
arrayType = "A" |
246 |
haveOutputFileName = False |
247 |
latticeType = "fcc" |
248 |
latticeNumber = 3 |
249 |
latticeConstant = 4 |
250 |
try: |
251 |
opts, args = getopt.getopt(argv, "hxyzl:c:n:o:", ["help","array-type-X", "array-type-Y", "array-type-Z", "lattice=", "constant=", "output-file="]) |
252 |
except getopt.GetoptError: |
253 |
usage() |
254 |
sys.exit(2) |
255 |
for opt, arg in opts: |
256 |
if opt in ("-h", "--help"): |
257 |
usage() |
258 |
sys.exit() |
259 |
elif opt in ("-x", "--array-type-X"): |
260 |
arrayType = "X" |
261 |
elif opt in ("-y", "--array-type-Y"): |
262 |
arrayType = "Y" |
263 |
elif opt in ("-z", "--array-type-Z"): |
264 |
arrayType = "Z" |
265 |
elif opt in ("-l", "--lattice"): |
266 |
latticeType = arg |
267 |
elif opt in ("-c", "--constant"): |
268 |
latticeConstant = float(arg) |
269 |
elif opt in ("-n"): |
270 |
latticeNumber = int(arg) |
271 |
elif opt in ("-o", "--output-file"): |
272 |
outputFileName = arg |
273 |
haveOutputFileName = True |
274 |
if (not haveOutputFileName): |
275 |
usage() |
276 |
print "No output file was specified" |
277 |
sys.exit() |
278 |
|
279 |
createLattice(latticeType, latticeNumber, latticeConstant, arrayType, outputFileName); |
280 |
|
281 |
if __name__ == "__main__": |
282 |
if len(sys.argv) == 1: |
283 |
usage() |
284 |
sys.exit() |
285 |
main(sys.argv[1:]) |