1 |
gezelter |
1918 |
#! /usr/bin/env python |
2 |
|
|
|
3 |
|
|
from __future__ import division,print_function |
4 |
|
|
|
5 |
|
|
__doc__ = """Luttinger and Tisza Field values |
6 |
|
|
|
7 |
|
|
Computes the sums for the field values (and also the energy constants |
8 |
|
|
for the low energy lattices) from the paper by Luttinger and Tisza |
9 |
|
|
paper: |
10 |
|
|
|
11 |
|
|
J. M. Luttinger and L. Tisza, "Theory of Dipole Interaction in |
12 |
|
|
Crystals," Phys. Rev. 70, 954-964 (1946) doi: 10.1103/PhysRev.70.954 |
13 |
|
|
|
14 |
|
|
Also note the errata: Phys. Rev. 72 257 (1947) doi: 10.1103/PhysRev.72.257 |
15 |
|
|
|
16 |
|
|
This script can obtain a much higher degree of accuracy than the |
17 |
|
|
original paper (simply by going to many more terms). Using the option |
18 |
|
|
-c 350 appears to converge the energy constants to approximately 1 |
19 |
|
|
part in 10^9 (but takes a long time). |
20 |
|
|
|
21 |
|
|
Usage: fieldValues |
22 |
|
|
|
23 |
|
|
Options: |
24 |
|
|
|
25 |
|
|
-h, --help show this help |
26 |
|
|
-c use the specified cutoff in inverse space |
27 |
|
|
|
28 |
|
|
Example: |
29 |
|
|
fieldValues -c 100 |
30 |
|
|
""" |
31 |
|
|
|
32 |
|
|
__author__ = "Dan Gezelter (gezelter@nd.edu) and Kathie Newman (newman@nd.edu)" |
33 |
|
|
__version__ = "$Rev: 1917 $" |
34 |
|
|
__date__ = "$LastChangedDate: 2013-07-31 08:58:35 -0400 (Wed, 31 Jul 2013) $" |
35 |
|
|
__copyright__ = "Copyright (c) 2013 by the University of Notre Dame" |
36 |
|
|
__license__ = "OpenMD" |
37 |
|
|
|
38 |
|
|
import sys |
39 |
|
|
import getopt |
40 |
|
|
import string |
41 |
|
|
import math as m |
42 |
|
|
|
43 |
|
|
def usage(): |
44 |
|
|
print(__doc__) |
45 |
|
|
|
46 |
|
|
|
47 |
|
|
def doSums(r_c): |
48 |
|
|
|
49 |
|
|
sum1=0 # Sz( 0, 1/2, 1/2) |
50 |
|
|
sum2=0 # Sz(1/2, 0, 0) |
51 |
|
|
sum3=0 # Sz( 0, 1/4, 1/4) |
52 |
|
|
sum4=0 # Sy(1/4, 1/4, 1/4) |
53 |
|
|
sum5=0 # Sy( 0, 1/4, 1/4) |
54 |
|
|
sum6=0 # Sy(1/2, 1/4, 1/4) |
55 |
|
|
|
56 |
|
|
x = -r_c-1 |
57 |
|
|
|
58 |
|
|
while x <= r_c: |
59 |
|
|
x = x + 1 |
60 |
|
|
dx = x |
61 |
|
|
dx2 = 1/2 - x |
62 |
|
|
dx4 = 1/4 - x |
63 |
|
|
|
64 |
|
|
y = -r_c-1 |
65 |
|
|
while y <= r_c: |
66 |
|
|
y = y + 1 |
67 |
|
|
dy = y |
68 |
|
|
dy2 = 1/2 - y |
69 |
|
|
dy4 = 1/4 - y |
70 |
|
|
|
71 |
|
|
z = -r_c-1 |
72 |
|
|
while z <= r_c: |
73 |
|
|
z = z + 1 |
74 |
|
|
dz = z |
75 |
|
|
dz2 = 1/2 - z |
76 |
|
|
dz4 = 1/4 - z |
77 |
|
|
|
78 |
|
|
r = m.sqrt( dx*dx + dy*dy + dz*dz) |
79 |
|
|
r1 =m.sqrt( dx*dx + dy2*dy2 + dz2*dz2) |
80 |
|
|
r2 =m.sqrt( dx2*dx2 + dy*dy + dz*dz) |
81 |
|
|
r3 =m.sqrt( dx*dx + dy4*dy4 + dz4*dz4) |
82 |
|
|
r4 =m.sqrt( dx4*dx4 + dy4*dy4 + dz4*dz4) |
83 |
|
|
r5 =r3 |
84 |
|
|
r6 =m.sqrt( dx2*dx2 + dy4*dy4 + dz4*dz4) |
85 |
|
|
|
86 |
|
|
if r <= r_c: |
87 |
|
|
r15 = pow(r1,5) |
88 |
|
|
r25 = pow(r2,5) |
89 |
|
|
r35 = pow(r3,5) |
90 |
|
|
r45 = pow(r4,5) |
91 |
|
|
r55 = pow(r5,5) |
92 |
|
|
r65 = pow(r6,5) |
93 |
|
|
|
94 |
|
|
term1 = (2 * dz2 * dz2 - dx*dx - dy2*dy2)/r15 |
95 |
|
|
term2 = (2 * dz*dz - dx2*dx2 - dy*dy)/r25 |
96 |
|
|
term3 = (2 * dz4*dz4 - dx*dx - dy4*dy4)/r35 |
97 |
|
|
term4 = 3 * dy4 * dz4 / r45 |
98 |
|
|
term5 = 3 * dy4 * dz4 / r55 |
99 |
|
|
term6 = 3 * dy4 * dz4 / r65 |
100 |
|
|
|
101 |
|
|
sum1 += term1 |
102 |
|
|
sum2 += term2 |
103 |
|
|
sum3 += term3 |
104 |
|
|
sum4 += term4 |
105 |
|
|
sum5 += term5 |
106 |
|
|
sum6 += term6 |
107 |
|
|
|
108 |
|
|
f2 = -(sum1 - sum2) / 2 |
109 |
|
|
f3 = -(sum1 - sum2) / 4 |
110 |
|
|
f4 = -(sum1 - sum2) / 4 |
111 |
|
|
f5 = -(sum1 + sum2) / 2 |
112 |
|
|
f6 = (sum1 + sum2) / 4 |
113 |
|
|
f7 = (sum1 + sum2) / 4 |
114 |
|
|
g = sum4 |
115 |
|
|
h1 = sum1 |
116 |
|
|
h2 = sum3 - sum1 |
117 |
|
|
h3 = (sum5+sum6)/2 |
118 |
|
|
h4 = (sum5-sum6)/2 |
119 |
|
|
|
120 |
|
|
print ("Raw Sums:") |
121 |
|
|
print ("Sz( 0, 1/2, 1/2) = ", sum1) |
122 |
|
|
print ("Sz(1/2, 0, 0) = ", sum2) |
123 |
|
|
print ("Sz( 0, 1/4, 1/4) = ", sum3) |
124 |
|
|
print ("Sy(1/4, 1/4, 1/4) = ", sum4) |
125 |
|
|
print ("Sy( 0, 1/4, 1/4) = ", sum5) |
126 |
|
|
print ("Sy(1/2, 1/4, 1/4) = ", sum6) |
127 |
|
|
print ("") |
128 |
|
|
print ("Field Values:") |
129 |
|
|
print ("f2 = ", f2) |
130 |
|
|
print ("f3 = ", f3) |
131 |
|
|
print ("f4 = ", f4) |
132 |
|
|
print ("f5 = ", f5) |
133 |
|
|
print ("f6 = ", f6) |
134 |
|
|
print ("f7 = ", f7) |
135 |
|
|
print (" g = ", g) |
136 |
|
|
print ("h1 = ", h1) |
137 |
|
|
print ("h2 = ", h2) |
138 |
|
|
print ("h3 = ", h3) |
139 |
|
|
print ("h4 = ", h4) |
140 |
|
|
print ("") |
141 |
|
|
print ("Energy Constants for selected lattices:") |
142 |
|
|
print ("A_sc_001 :", -f5 / 2 ) |
143 |
|
|
print ("A_bcc_001 :", 0 ) |
144 |
|
|
print ("A_bcc_111 :", -g / 6 ) |
145 |
|
|
print ("A_bcc_min :", -(g+f6) / 4) |
146 |
|
|
print ("A_fcc_001 :", h1 / 2) |
147 |
|
|
print ("A_fcc_011 :", -h1 / 4) |
148 |
|
|
print ("B_sc_001 :", -f5 / 2) |
149 |
|
|
print ("B_bcc_001 :", -f5 / 4) |
150 |
|
|
print ("B_bcc_111 :", -g / 6 ) |
151 |
|
|
print ("B_fcc_001 :", -h1 / 4) |
152 |
|
|
print ("B_fcc_011 :", -h4 / 8) |
153 |
|
|
|
154 |
|
|
|
155 |
|
|
def main(argv): |
156 |
|
|
|
157 |
|
|
r_c = 100 |
158 |
|
|
try: |
159 |
|
|
opts, args = getopt.getopt(argv, "hc:", ["help","r_c="]) |
160 |
|
|
except getopt.GetoptError: |
161 |
|
|
usage() |
162 |
|
|
sys.exit(2) |
163 |
|
|
for opt, arg in opts: |
164 |
|
|
if opt in ("-h", "--help"): |
165 |
|
|
usage() |
166 |
|
|
sys.exit() |
167 |
|
|
elif opt in ("-c", "--r_c"): |
168 |
|
|
r_c = int(arg) |
169 |
|
|
|
170 |
|
|
doSums(r_c) |
171 |
|
|
|
172 |
|
|
if __name__ == "__main__": |
173 |
|
|
if len(sys.argv) == 1: |
174 |
|
|
usage() |
175 |
|
|
sys.exit() |
176 |
|
|
main(sys.argv[1:]) |
177 |
|
|
|