1 |
#! /usr/bin/env python |
2 |
|
3 |
"""Dipolar Lattice Builder |
4 |
|
5 |
Creates cubic lattices of dipoles to test the dipole-dipole |
6 |
interaction code. |
7 |
|
8 |
Usage: buildDipolarArray |
9 |
|
10 |
Options: |
11 |
-h, --help show this help |
12 |
-x, --array-type-X use one of the basic "X" arrays |
13 |
-y, --array-type-Y use one of the basic "Y" arrays |
14 |
-z, --array-type-Z use one of the basic "Z" arrays |
15 |
-a, --array-type-A use array type "A" (default) |
16 |
-b, --array-type-B use array type "B" |
17 |
-l, --lattice=... use the specified lattice ( SC, FCC, or BCC ) |
18 |
-d, --direction=... use dipole orientation (001, 111, or 011) |
19 |
-c, --constant=... use the specified lattice constant |
20 |
-n use the specified number of unit cells |
21 |
-o, --output-file=... use specified output (.xyz) file |
22 |
|
23 |
Type "A" arrays have nearest neighbor strings of antiparallel dipoles. |
24 |
|
25 |
Type "B" arrays have nearest neighbor strings of antiparallel dipoles |
26 |
if the dipoles are contained in a plane perpendicular to the dipole |
27 |
direction that passes through the dipole. |
28 |
|
29 |
Example: |
30 |
buildDipolarArray -a -l fcc -d 001 -c 5 -n 3 -o A_fcc_001.xyz |
31 |
|
32 |
""" |
33 |
|
34 |
__author__ = "Dan Gezelter (gezelter@nd.edu)" |
35 |
__version__ = "$Rev$" |
36 |
__date__ = "$LastChangedDate$" |
37 |
|
38 |
__copyright__ = "Copyright (c) 2013 by the University of Notre Dame" |
39 |
__license__ = "OpenMD" |
40 |
|
41 |
import sys |
42 |
import getopt |
43 |
import string |
44 |
import math |
45 |
import numpy |
46 |
|
47 |
def usage(): |
48 |
print __doc__ |
49 |
|
50 |
|
51 |
|
52 |
def createLattice(latticeType, latticeNumber, latticeConstant, dipoleDirection, arrayType, outputFileName): |
53 |
# The following section creates 24 basic arrays from Luttinger and |
54 |
# Tisza: |
55 |
|
56 |
# The six unit vectors are: 3 spatial and 3 to describe the |
57 |
# orientation of the dipole. |
58 |
|
59 |
e1 = numpy.array([1.0,0.0,0.0]) |
60 |
e2 = numpy.array([0.0,1.0,0.0]) |
61 |
e3 = numpy.array([0.0,0.0,1.0]) |
62 |
|
63 |
# Parameters describing the 8 basic arrays: |
64 |
cell = numpy.array([[0,0,0],[0,0,1],[1,0,0],[0,1,0], |
65 |
[1,1,0],[0,1,1],[1,0,1],[1,1,1]]) |
66 |
# order in which the basic arrays are constructed in the l loops below: |
67 |
corners = numpy.array([[0,0,0],[0,0,1],[0,1,0],[0,1,1], |
68 |
[1,0,0],[1,0,1],[1,1,0],[1,1,1]]) |
69 |
|
70 |
X = numpy.zeros(192).reshape((8,8,3)) |
71 |
Y = numpy.zeros(192).reshape((8,8,3)) |
72 |
Z = numpy.zeros(192).reshape((8,8,3)) |
73 |
|
74 |
# create the 24 basic arrays using Eq. 12 in Luttinger & Tisza: |
75 |
for i in range(8): |
76 |
which = 0 |
77 |
for l1 in range(2): |
78 |
for l2 in range(2): |
79 |
for l3 in range(2): |
80 |
lvals = numpy.array([l1,l2,l3]) |
81 |
value = math.pow(-1, numpy.dot(cell[i], lvals)) |
82 |
X[i][which] = value * e1 |
83 |
Y[i][which] = value * e2 |
84 |
Z[i][which] = value * e3 |
85 |
which = which+1 |
86 |
|
87 |
|
88 |
lp_array = numpy.zeros(0).reshape((0,3)) |
89 |
for i in range(8): |
90 |
lp_array = numpy.vstack((lp_array, corners[i])) |
91 |
|
92 |
bc_array = numpy.zeros(0).reshape((0,3)) |
93 |
for i in range(8): |
94 |
bc_array = numpy.vstack((bc_array, corners[i] + [0.5,0.5,0.5])) |
95 |
|
96 |
xy_array = numpy.zeros(0).reshape((0,3)) |
97 |
for i in range(8): |
98 |
xy_array = numpy.vstack((xy_array, corners[i] + [0.5,0.5,0.0])) |
99 |
|
100 |
xz_array = numpy.zeros(0).reshape((0,3)) |
101 |
for i in range(8): |
102 |
xz_array = numpy.vstack((xz_array, corners[i] + [0.5,0.0,0.5])) |
103 |
|
104 |
yz_array = numpy.zeros(0).reshape((0,3)) |
105 |
for i in range(8): |
106 |
yz_array = numpy.vstack((yz_array, corners[i] + [0.0,0.5,0.5])) |
107 |
|
108 |
known_case = False |
109 |
basic_array = numpy.zeros(0).reshape((0,3,3)) |
110 |
|
111 |
lp_part = numpy.zeros(0).reshape((0,3,3)) |
112 |
bc_part = numpy.zeros(0).reshape((0,3,3)) |
113 |
xy_part = numpy.zeros(0).reshape((0,3,3)) |
114 |
xz_part = numpy.zeros(0).reshape((0,3,3)) |
115 |
yz_part = numpy.zeros(0).reshape((0,3,3)) |
116 |
|
117 |
if (arrayType == 'X'): |
118 |
if (int(latticeType)): |
119 |
which = int(latticeType) - 1 |
120 |
basic_array = numpy.append(lp_array, X[which], axis=1) |
121 |
known_case = True |
122 |
if (arrayType == 'Y'): |
123 |
if (int(latticeType)): |
124 |
which = int(latticeType) - 1 |
125 |
basic_array = numpy.append(lp_array, Y[which], axis=1) |
126 |
known_case = True |
127 |
if (arrayType == 'Z'): |
128 |
if (int(latticeType)): |
129 |
which = int(latticeType) - 1 |
130 |
basic_array = numpy.append(lp_array, Z[which], axis=1) |
131 |
known_case = True |
132 |
if (arrayType == 'A'): |
133 |
if (latticeType.lower() == 'sc'): |
134 |
basic_array = numpy.append(lp_array, Z[4], axis=1) |
135 |
known_case = True |
136 |
if (latticeType.lower() == 'bcc'): |
137 |
if (dipoleDirection.lower() == '001'): |
138 |
lp_part = numpy.append(lp_array, Z[0], axis=1) |
139 |
bc_part = numpy.append(bc_array, -Z[0], axis=1) |
140 |
basic_array = numpy.append(lp_part, bc_part, axis=0) |
141 |
known_case = True |
142 |
if (dipoleDirection.lower() == '111'): |
143 |
lp_part = numpy.append(lp_array, Z[4]+X[6]+Y[5], axis=1) |
144 |
bc_part = numpy.append(bc_array, Z[4]+X[6]+Y[5], axis=1) |
145 |
basic_array = numpy.append(lp_part, bc_part, axis=0) |
146 |
known_case = True |
147 |
if (dipoleDirection.lower() == 'min'): |
148 |
lp_part = numpy.append(lp_array, X[6]+Y[4]+Z[5], axis=1) |
149 |
bc_part = numpy.append(bc_array, X[4]+Y[5]+Z[6], axis=1) |
150 |
basic_array = numpy.append(lp_part, bc_part, axis=0) |
151 |
known_case = True |
152 |
if (latticeType.lower() == 'fcc'): |
153 |
if (dipoleDirection.lower() == '001'): |
154 |
lp_part = numpy.append(lp_array, Z[0], axis=1) |
155 |
xy_part = numpy.append(xy_array, Z[0], axis=1) |
156 |
xz_part = numpy.append(xz_array, -Z[0], axis=1) |
157 |
yz_part = numpy.append(yz_array, -Z[0], axis=1) |
158 |
|
159 |
basic_array = numpy.append(lp_part, xy_part, axis=0) |
160 |
basic_array = numpy.append(basic_array, xz_part, axis=0) |
161 |
basic_array = numpy.append(basic_array, yz_part, axis=0) |
162 |
|
163 |
known_case = True |
164 |
if (dipoleDirection.lower() == '011'): |
165 |
lp_part = numpy.append(lp_array, Z[0]+Y[0], axis=1) |
166 |
xy_part = numpy.append(xy_array, -Z[0]-Y[0], axis=1) |
167 |
xz_part = numpy.append(xz_array, -Z[0]-Y[0], axis=1) |
168 |
yz_part = numpy.append(yz_array, Z[0]+Y[0], axis=1) |
169 |
|
170 |
basic_array = numpy.append(lp_part, xy_part, axis=0) |
171 |
basic_array = numpy.append(basic_array, xz_part, axis=0) |
172 |
basic_array = numpy.append(basic_array, yz_part, axis=0) |
173 |
|
174 |
known_case = True |
175 |
else: |
176 |
if (latticeType.lower() == 'sc'): |
177 |
basic_array = numpy.append(lp_array, Z[4], axis=1) |
178 |
known_case = True |
179 |
if (latticeType.lower() == 'bcc'): |
180 |
if (dipoleDirection.lower() == '001'): |
181 |
lp_part = numpy.append(lp_array, Z[4], axis=1) |
182 |
bc_part = numpy.append(bc_array, -Z[4], axis=1) |
183 |
basic_array = numpy.append(lp_part, bc_part, axis=0) |
184 |
known_case = True |
185 |
if (dipoleDirection.lower() == '111'): |
186 |
lp_part = numpy.append(lp_array, Z[4]+X[6]+Y[5], axis=1) |
187 |
bc_part = numpy.append(bc_array, Z[4]+X[6]+Y[5], axis=1) |
188 |
basic_array = numpy.append(lp_part, bc_part, axis=0) |
189 |
known_case = True |
190 |
if (latticeType.lower() == 'fcc'): |
191 |
if (dipoleDirection.lower() == '001'): |
192 |
lp_part = numpy.append(lp_array, Z[0], axis=1) |
193 |
xy_part = numpy.append(xy_array, -Z[0], axis=1) |
194 |
xz_part = numpy.append(xz_array, -Z[0], axis=1) |
195 |
yz_part = numpy.append(yz_array, Z[0], axis=1) |
196 |
|
197 |
basic_array = numpy.append(lp_part, xy_part, axis=0) |
198 |
basic_array = numpy.append(basic_array, xz_part, axis=0) |
199 |
basic_array = numpy.append(basic_array, yz_part, axis=0) |
200 |
|
201 |
known_case = True |
202 |
if (dipoleDirection.lower() == '011'): |
203 |
lp_part = numpy.append(lp_array, Z[7]+Y[7], axis=1) |
204 |
xy_part = numpy.append(xy_array, Z[7]+Y[7], axis=1) |
205 |
xz_part = numpy.append(xz_array, -Z[7]-Y[7], axis=1) |
206 |
yz_part = numpy.append(yz_array, Z[7]+Y[7], axis=1) |
207 |
|
208 |
basic_array = numpy.append(lp_part, xy_part, axis=0) |
209 |
basic_array = numpy.append(basic_array, xz_part, axis=0) |
210 |
basic_array = numpy.append(basic_array, yz_part, axis=0) |
211 |
|
212 |
known_case = True |
213 |
|
214 |
if (not known_case): |
215 |
print "unhandled combination of lattice and dipole direction" |
216 |
print __doc__ |
217 |
|
218 |
bravais_lattice = numpy.zeros(0).reshape((0,6)) |
219 |
for i in range(latticeNumber): |
220 |
for j in range(latticeNumber): |
221 |
for k in range(latticeNumber): |
222 |
for l in range(len(basic_array)): |
223 |
lat_vec = numpy.array([[2*i, 2*j, 2*k, 0.0, 0.0, 0.0]]) |
224 |
bravais_lattice = numpy.append(bravais_lattice, lat_vec + basic_array[l], axis=0) |
225 |
|
226 |
outputFile = open(outputFileName, 'w') |
227 |
|
228 |
outputFile.write('<OpenMD version=2>\n') |
229 |
outputFile.write(' <MetaData>\n') |
230 |
outputFile.write(' molecule{\n') |
231 |
outputFile.write(' name = \"D\";\n') |
232 |
outputFile.write(' \n') |
233 |
outputFile.write(' atom[0]{\n') |
234 |
outputFile.write(' type = \"D\";\n') |
235 |
outputFile.write(' position(0.0, 0.0, 0.0);\n') |
236 |
outputFile.write(' orientation(0.0, 0.0, 0.0);\n') |
237 |
outputFile.write(' }\n') |
238 |
outputFile.write(' }\n') |
239 |
outputFile.write(' component{\n') |
240 |
outputFile.write(' type = \"D\";\n') |
241 |
outputFile.write(' nMol = '+ repr(len(bravais_lattice)) + ';\n') |
242 |
outputFile.write(' }\n') |
243 |
|
244 |
outputFile.write(' ensemble = NVE;\n') |
245 |
outputFile.write(' forceField = \"Multipole\";\n') |
246 |
|
247 |
outputFile.write(' cutoffMethod = \"shifted_force\";\n') |
248 |
outputFile.write(' electrostaticScreeningMethod = \"damped\";\n') |
249 |
|
250 |
outputFile.write(' cutoffRadius = 9.0;\n') |
251 |
outputFile.write(' dampingAlpha = 0.18;\n') |
252 |
outputFile.write(' statFileFormat = \"TIME|TOTAL_ENERGY|POTENTIAL_ENERGY|KINETIC_ENERGY|TEMPERATURE|PRESSURE|VOLUME|CONSERVED_QUANTITY|ELECTROSTATIC_POTENTIAL\";\n') |
253 |
outputFile.write(' dt = 1.0;\n') |
254 |
outputFile.write(' runTime = 1.0;\n') |
255 |
outputFile.write(' sampleTime = 1.0;\n') |
256 |
outputFile.write(' statusTime = 1.0;\n') |
257 |
outputFile.write(' </MetaData>\n') |
258 |
outputFile.write(' <Snapshot>\n') |
259 |
outputFile.write(' <FrameData>\n'); |
260 |
outputFile.write(" Time: %.10g\n" % (0.0)) |
261 |
|
262 |
Hxx = 2.0 * latticeConstant * latticeNumber |
263 |
Hyy = 2.0 * latticeConstant * latticeNumber |
264 |
Hzz = 2.0 * latticeConstant * latticeNumber |
265 |
|
266 |
outputFile.write(' Hmat: {{%d, 0, 0}, {0, %d, 0}, {0, 0, %d}}\n' % (Hxx, Hyy, Hzz)) |
267 |
outputFile.write(' </FrameData>\n') |
268 |
outputFile.write(' <StuntDoubles>\n') |
269 |
sdFormat = 'pvqj' |
270 |
index = 0 |
271 |
|
272 |
for i in range(len(bravais_lattice)): |
273 |
xcart = latticeConstant*(bravais_lattice[i][0]) |
274 |
ycart = latticeConstant*(bravais_lattice[i][1]) |
275 |
zcart = latticeConstant*(bravais_lattice[i][2]) |
276 |
dx = bravais_lattice[i][3] |
277 |
dy = bravais_lattice[i][4] |
278 |
dz = bravais_lattice[i][5] |
279 |
|
280 |
dlen = math.sqrt(dx*dx + dy*dy + dz*dz) |
281 |
ctheta = dz / dlen |
282 |
theta = math.acos(ctheta) |
283 |
stheta = math.sqrt(1.0 - ctheta*ctheta) |
284 |
psi = 0.0 |
285 |
phi = math.atan2(dx/dlen, -dy/dlen) |
286 |
|
287 |
q = [0.0,0.0,0.0,0.0] |
288 |
q[0] = math.cos(theta/2)*math.cos((phi+psi)/2) |
289 |
q[1] = math.sin(theta/2)*math.cos((phi-psi)/2) |
290 |
q[2] = math.sin(theta/2)*math.sin((phi-psi)/2) |
291 |
q[3] = math.cos(theta/2)*math.sin((phi+psi)/2) |
292 |
|
293 |
qlen = math.sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]) |
294 |
q[0] = q[0]/qlen |
295 |
q[1] = q[1]/qlen |
296 |
q[2] = q[2]/qlen |
297 |
q[3] = q[3]/qlen |
298 |
|
299 |
outputFile.write("%10d %7s %g %g %1g %g %g %g %13e %13e %13e %13e %g %g %g\n" % (index, sdFormat, xcart, ycart, zcart, 0.0, 0.0, 0.0, q[0], q[1], q[2], q[3], 0.0, 0.0, 0.0)) |
300 |
index = index+1 |
301 |
|
302 |
outputFile.write(" </StuntDoubles>\n") |
303 |
outputFile.write(" </Snapshot>\n") |
304 |
outputFile.write("</OpenMD>\n") |
305 |
outputFile.close() |
306 |
|
307 |
outputFile.close() |
308 |
|
309 |
def main(argv): |
310 |
|
311 |
arrayType = "A" |
312 |
haveOutputFileName = False |
313 |
latticeType = "fcc" |
314 |
dipoleDirection = "001" |
315 |
latticeNumber = 3 |
316 |
latticeConstant = 4 |
317 |
try: |
318 |
opts, args = getopt.getopt(argv, "hxyzabl:d:c:n:o:", ["help","array-type-X", "array-type-Y", "array-type-Z", "array-type-A", "array-type-B", "lattice=" "direction=", "constant=", "output-file="]) |
319 |
except getopt.GetoptError: |
320 |
usage() |
321 |
sys.exit(2) |
322 |
for opt, arg in opts: |
323 |
if opt in ("-h", "--help"): |
324 |
usage() |
325 |
sys.exit() |
326 |
elif opt in ("-x", "--array-type-X"): |
327 |
arrayType = "X" |
328 |
elif opt in ("-y", "--array-type-Y"): |
329 |
arrayType = "Y" |
330 |
elif opt in ("-z", "--array-type-Z"): |
331 |
arrayType = "Z" |
332 |
elif opt in ("-b", "--array-type-B"): |
333 |
arrayType = "B" |
334 |
elif opt in ("-l", "--lattice"): |
335 |
latticeType = arg |
336 |
elif opt in ("-d", "--direction"): |
337 |
dipoleDirection = arg |
338 |
elif opt in ("-c", "--constant"): |
339 |
latticeConstant = float(arg) |
340 |
elif opt in ("-n"): |
341 |
latticeNumber = int(arg) |
342 |
elif opt in ("-o", "--output-file"): |
343 |
outputFileName = arg |
344 |
haveOutputFileName = True |
345 |
if (not haveOutputFileName): |
346 |
usage() |
347 |
print "No output file was specified" |
348 |
sys.exit() |
349 |
|
350 |
createLattice(latticeType, latticeNumber, latticeConstant, dipoleDirection, arrayType, outputFileName); |
351 |
|
352 |
if __name__ == "__main__": |
353 |
if len(sys.argv) == 1: |
354 |
usage() |
355 |
sys.exit() |
356 |
main(sys.argv[1:]) |