1 |
#! /usr/bin/env python |
2 |
|
3 |
"""Dipolar Lattice Builder |
4 |
|
5 |
Creates cubic lattices of dipoles to test the dipole-dipole |
6 |
interaction code. |
7 |
|
8 |
Usage: buildDipolarArray |
9 |
|
10 |
Options: |
11 |
-h, --help show this help |
12 |
-x, --array-type-X use one of the basic "X" arrays |
13 |
-y, --array-type-Y use one of the basic "Y" arrays |
14 |
-z, --array-type-Z use one of the basic "Z" arrays |
15 |
-a, --array-type-A use array type "A" (default) |
16 |
-b, --array-type-B use array type "B" |
17 |
-l, --lattice=... use the specified lattice ( SC, FCC, or BCC ) |
18 |
-d, --direction=... use dipole orientation (001, 111, or 011) |
19 |
-c, --constant=... use the specified lattice constant |
20 |
-n use the specified number of unit cells |
21 |
-o, --output-file=... use specified output (.xyz) file |
22 |
|
23 |
Type "A" arrays have nearest neighbor strings of antiparallel dipoles. |
24 |
|
25 |
Type "B" arrays have nearest neighbor strings of antiparallel dipoles |
26 |
if the dipoles are contained in a plane perpendicular to the dipole |
27 |
direction that passes through the dipole. |
28 |
|
29 |
Example: |
30 |
buildDipolarArray -a -l fcc -d 001 -c 5 -n 3 -o A_fcc_001.xyz |
31 |
|
32 |
""" |
33 |
|
34 |
__author__ = "Dan Gezelter (gezelter@nd.edu)" |
35 |
__version__ = "$Revision: 1639 $" |
36 |
__date__ = "$Date: 2011-09-24 16:18:07 -0400 (Sat, 24 Sep 2011) $" |
37 |
|
38 |
__copyright__ = "Copyright (c) 2013 by the University of Notre Dame" |
39 |
__license__ = "OpenMD" |
40 |
|
41 |
import sys |
42 |
import getopt |
43 |
import string |
44 |
import math |
45 |
import numpy |
46 |
|
47 |
def usage(): |
48 |
print __doc__ |
49 |
|
50 |
|
51 |
|
52 |
def createLattice(latticeType, latticeNumber, latticeConstant, dipoleDirection, arrayType, outputFileName): |
53 |
# The following section creates 24 basic arrays from Luttinger and |
54 |
# Tisza: |
55 |
|
56 |
# The six unit vectors are: 3 spatial and 3 to describe the |
57 |
# orientation of the dipole. |
58 |
|
59 |
e1 = numpy.array([1.0,0.0,0.0]) |
60 |
e2 = numpy.array([0.0,1.0,0.0]) |
61 |
e3 = numpy.array([0.0,0.0,1.0]) |
62 |
|
63 |
# Parameters describing the 8 basic arrays: |
64 |
cell = numpy.array([[0,0,0],[0,0,1],[1,0,0],[0,1,0], |
65 |
[1,1,0],[0,1,1],[1,0,1],[1,1,1]]) |
66 |
# order in which the basic arrays are constructed in the l loops below: |
67 |
corners = numpy.array([[0,0,0],[0,0,1],[0,1,0],[0,1,1], |
68 |
[1,0,0],[1,0,1],[1,1,0],[1,1,1]]) |
69 |
|
70 |
X = numpy.zeros(192).reshape((8,8,3)) |
71 |
Y = numpy.zeros(192).reshape((8,8,3)) |
72 |
Z = numpy.zeros(192).reshape((8,8,3)) |
73 |
|
74 |
# create the 24 basic arrays using Eq. 12 in Luttinger & Tisza: |
75 |
for i in range(8): |
76 |
which = 0 |
77 |
for l1 in range(2): |
78 |
for l2 in range(2): |
79 |
for l3 in range(2): |
80 |
lvals = numpy.array([l1,l2,l3]) |
81 |
value = math.pow(-1, numpy.dot(cell[i], lvals)) |
82 |
X[i][which] = value * e1 |
83 |
Y[i][which] = value * e2 |
84 |
Z[i][which] = value * e3 |
85 |
which = which+1 |
86 |
|
87 |
|
88 |
lp_array = numpy.zeros(0).reshape((0,3)) |
89 |
for i in range(8): |
90 |
lp_array = numpy.vstack((lp_array, corners[i])) |
91 |
|
92 |
bc_array = numpy.zeros(0).reshape((0,3)) |
93 |
for i in range(8): |
94 |
bc_array = numpy.vstack((bc_array, corners[i] + [0.5,0.5,0.5])) |
95 |
|
96 |
xy_array = numpy.zeros(0).reshape((0,3)) |
97 |
for i in range(8): |
98 |
xy_array = numpy.vstack((xy_array, corners[i] + [0.5,0.5,0.0])) |
99 |
|
100 |
xz_array = numpy.zeros(0).reshape((0,3)) |
101 |
for i in range(8): |
102 |
xz_array = numpy.vstack((xz_array, corners[i] + [0.5,0.0,0.5])) |
103 |
|
104 |
yz_array = numpy.zeros(0).reshape((0,3)) |
105 |
for i in range(8): |
106 |
yz_array = numpy.vstack((yz_array, corners[i] + [0.0,0.5,0.5])) |
107 |
|
108 |
known_case = False |
109 |
basic_array = numpy.zeros(0).reshape((0,3,3)) |
110 |
|
111 |
lp_part = numpy.zeros(0).reshape((0,3,3)) |
112 |
bc_part = numpy.zeros(0).reshape((0,3,3)) |
113 |
xy_part = numpy.zeros(0).reshape((0,3,3)) |
114 |
xz_part = numpy.zeros(0).reshape((0,3,3)) |
115 |
yz_part = numpy.zeros(0).reshape((0,3,3)) |
116 |
|
117 |
if (arrayType == 'X'): |
118 |
if (int(latticeType)): |
119 |
which = int(latticeType) - 1 |
120 |
basic_array = numpy.append(lp_array, X[which], axis=1) |
121 |
known_case = True |
122 |
if (arrayType == 'Y'): |
123 |
if (int(latticeType)): |
124 |
which = int(latticeType) - 1 |
125 |
basic_array = numpy.append(lp_array, Y[which], axis=1) |
126 |
known_case = True |
127 |
if (arrayType == 'Z'): |
128 |
if (int(latticeType)): |
129 |
which = int(latticeType) - 1 |
130 |
basic_array = numpy.append(lp_array, Z[which], axis=1) |
131 |
known_case = True |
132 |
if (arrayType == 'A'): |
133 |
if (latticeType.lower() == 'sc'): |
134 |
basic_array = numpy.append(lp_array, Z[4], axis=1) |
135 |
known_case = True |
136 |
if (latticeType.lower() == 'bcc'): |
137 |
if (dipoleDirection.lower() == '001'): |
138 |
lp_part = numpy.append(lp_array, Z[0], axis=1) |
139 |
bc_part = numpy.append(bc_array, -Z[0], axis=1) |
140 |
basic_array = numpy.append(lp_part, bc_part, axis=0) |
141 |
known_case = True |
142 |
if (dipoleDirection.lower() == '111'): |
143 |
lp_part = numpy.append(lp_array, Z[4]+X[6]+Y[5], axis=1) |
144 |
bc_part = numpy.append(bc_array, Z[4]+X[6]+Y[5], axis=1) |
145 |
basic_array = numpy.append(lp_part, bc_part, axis=0) |
146 |
known_case = True |
147 |
if (latticeType.lower() == 'fcc'): |
148 |
if (dipoleDirection.lower() == '001'): |
149 |
lp_part = numpy.append(lp_array, Z[0], axis=1) |
150 |
xy_part = numpy.append(xy_array, Z[0], axis=1) |
151 |
xz_part = numpy.append(xz_array, -Z[0], axis=1) |
152 |
yz_part = numpy.append(yz_array, -Z[0], axis=1) |
153 |
|
154 |
basic_array = numpy.append(lp_part, xy_part, axis=0) |
155 |
basic_array = numpy.append(basic_array, xz_part, axis=0) |
156 |
basic_array = numpy.append(basic_array, yz_part, axis=0) |
157 |
|
158 |
known_case = True |
159 |
if (dipoleDirection.lower() == '011'): |
160 |
lp_part = numpy.append(lp_array, Z[0]+Y[0], axis=1) |
161 |
xy_part = numpy.append(xy_array, -Z[0]-Y[0], axis=1) |
162 |
xz_part = numpy.append(xz_array, -Z[0]-Y[0], axis=1) |
163 |
yz_part = numpy.append(yz_array, Z[0]+Y[0], axis=1) |
164 |
|
165 |
basic_array = numpy.append(lp_part, xy_part, axis=0) |
166 |
basic_array = numpy.append(basic_array, xz_part, axis=0) |
167 |
basic_array = numpy.append(basic_array, yz_part, axis=0) |
168 |
|
169 |
known_case = True |
170 |
else: |
171 |
if (latticeType.lower() == 'sc'): |
172 |
basic_array = numpy.append(lp_array, Z[4], axis=1) |
173 |
known_case = True |
174 |
if (latticeType.lower() == 'bcc'): |
175 |
if (dipoleDirection.lower() == '001'): |
176 |
lp_part = numpy.append(lp_array, Z[4], axis=1) |
177 |
bc_part = numpy.append(bc_array, -Z[4], axis=1) |
178 |
basic_array = numpy.append(lp_part, bc_part, axis=0) |
179 |
known_case = True |
180 |
if (dipoleDirection.lower() == '111'): |
181 |
lp_part = numpy.append(lp_array, Z[4]+X[6]+Y[5], axis=1) |
182 |
bc_part = numpy.append(bc_array, Z[4]+X[6]+Y[5], axis=1) |
183 |
basic_array = numpy.append(lp_part, bc_part, axis=0) |
184 |
known_case = True |
185 |
if (latticeType.lower() == 'fcc'): |
186 |
if (dipoleDirection.lower() == '001'): |
187 |
lp_part = numpy.append(lp_array, Z[0], axis=1) |
188 |
xy_part = numpy.append(xy_array, -Z[0], axis=1) |
189 |
xz_part = numpy.append(xz_array, -Z[0], axis=1) |
190 |
yz_part = numpy.append(yz_array, Z[0], axis=1) |
191 |
|
192 |
basic_array = numpy.append(lp_part, xy_part, axis=0) |
193 |
basic_array = numpy.append(basic_array, xz_part, axis=0) |
194 |
basic_array = numpy.append(basic_array, yz_part, axis=0) |
195 |
|
196 |
known_case = True |
197 |
if (dipoleDirection.lower() == '011'): |
198 |
lp_part = numpy.append(lp_array, Z[7]+Y[7], axis=1) |
199 |
xy_part = numpy.append(xy_array, Z[7]+Y[7], axis=1) |
200 |
xz_part = numpy.append(xz_array, -Z[7]-Y[7], axis=1) |
201 |
yz_part = numpy.append(yz_array, Z[7]+Y[7], axis=1) |
202 |
|
203 |
basic_array = numpy.append(lp_part, xy_part, axis=0) |
204 |
basic_array = numpy.append(basic_array, xz_part, axis=0) |
205 |
basic_array = numpy.append(basic_array, yz_part, axis=0) |
206 |
|
207 |
known_case = True |
208 |
|
209 |
if (not known_case): |
210 |
print "unhandled combination of lattice and dipole direction" |
211 |
print __doc__ |
212 |
|
213 |
bravais_lattice = numpy.zeros(0).reshape((0,6)) |
214 |
for i in range(latticeNumber): |
215 |
for j in range(latticeNumber): |
216 |
for k in range(latticeNumber): |
217 |
for l in range(len(basic_array)): |
218 |
lat_vec = numpy.array([[2*i, 2*j, 2*k, 0.0, 0.0, 0.0]]) |
219 |
bravais_lattice = numpy.append(bravais_lattice, lat_vec + basic_array[l], axis=0) |
220 |
|
221 |
outputFile = open(outputFileName, 'w') |
222 |
|
223 |
outputFile.write('<OpenMD version=2>\n') |
224 |
outputFile.write(' <MetaData>\n') |
225 |
outputFile.write(' molecule{\n') |
226 |
outputFile.write(' name = \"D\";\n') |
227 |
outputFile.write(' \n') |
228 |
outputFile.write(' atom[0]{\n') |
229 |
outputFile.write(' type = \"D\";\n') |
230 |
outputFile.write(' position(0.0, 0.0, 0.0);\n') |
231 |
outputFile.write(' orientation(0.0, 0.0, 0.0);\n') |
232 |
outputFile.write(' }\n') |
233 |
outputFile.write(' }\n') |
234 |
outputFile.write(' component{\n') |
235 |
outputFile.write(' type = \"D\";\n') |
236 |
outputFile.write(' nMol = '+ repr(len(bravais_lattice)) + ';\n') |
237 |
outputFile.write(' }\n') |
238 |
|
239 |
outputFile.write(' ensemble = NVE;\n') |
240 |
outputFile.write(' forceField = \"Multipole\";\n') |
241 |
|
242 |
outputFile.write(' cutoffMethod = \"shifted_force\";\n') |
243 |
outputFile.write(' electrostaticScreeningMethod = \"damped\";\n') |
244 |
|
245 |
outputFile.write(' cutoffRadius = 9.0;\n') |
246 |
outputFile.write(' dampingAlpha = 0.18;\n') |
247 |
outputFile.write(' statFileFormat = \"TIME|TOTAL_ENERGY|POTENTIAL_ENERGY|KINETIC_ENERGY|TEMPERATURE|PRESSURE|VOLUME|CONSERVED_QUANTITY|ELECTROSTATIC_POTENTIAL\";\n') |
248 |
outputFile.write(' dt = 1.0;\n') |
249 |
outputFile.write(' runTime = 1.0;\n') |
250 |
outputFile.write(' sampleTime = 1.0;\n') |
251 |
outputFile.write(' statusTime = 1.0;\n') |
252 |
outputFile.write(' </MetaData>\n') |
253 |
outputFile.write(' <Snapshot>\n') |
254 |
outputFile.write(' <FrameData>\n'); |
255 |
outputFile.write(" Time: %.10g\n" % (0.0)) |
256 |
|
257 |
Hxx = 2.0 * latticeConstant * latticeNumber |
258 |
Hyy = 2.0 * latticeConstant * latticeNumber |
259 |
Hzz = 2.0 * latticeConstant * latticeNumber |
260 |
|
261 |
outputFile.write(' Hmat: {{%d, 0, 0}, {0, %d, 0}, {0, 0, %d}}\n' % (Hxx, Hyy, Hzz)) |
262 |
outputFile.write(' </FrameData>\n') |
263 |
outputFile.write(' <StuntDoubles>\n') |
264 |
sdFormat = 'pvqj' |
265 |
index = 0 |
266 |
|
267 |
for i in range(len(bravais_lattice)): |
268 |
xcart = latticeConstant*(bravais_lattice[i][0]) |
269 |
ycart = latticeConstant*(bravais_lattice[i][1]) |
270 |
zcart = latticeConstant*(bravais_lattice[i][2]) |
271 |
dx = bravais_lattice[i][3] |
272 |
dy = bravais_lattice[i][4] |
273 |
dz = bravais_lattice[i][5] |
274 |
|
275 |
dlen = math.sqrt(dx*dx + dy*dy + dz*dz) |
276 |
ctheta = dz / dlen |
277 |
theta = math.acos(ctheta) |
278 |
stheta = math.sqrt(1.0 - ctheta*ctheta) |
279 |
psi = 0.0 |
280 |
phi = math.atan2(-dy/dlen, dx/dlen) |
281 |
|
282 |
q = [0.0,0.0,0.0,0.0] |
283 |
q[0] = math.cos(theta/2)*math.cos((phi+psi)/2) |
284 |
q[1] = math.sin(theta/2)*math.cos((phi-psi)/2) |
285 |
q[2] = math.sin(theta/2)*math.sin((phi-psi)/2) |
286 |
q[3] = math.cos(theta/2)*math.sin((phi+psi)/2) |
287 |
|
288 |
qlen = math.sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]) |
289 |
q[0] = q[0]/qlen |
290 |
q[1] = q[1]/qlen |
291 |
q[2] = q[2]/qlen |
292 |
q[3] = q[3]/qlen |
293 |
|
294 |
outputFile.write("%10d %7s %g %g %1g %g %g %g %13e %13e %13e %13e %g %g %g\n" % (index, sdFormat, xcart, ycart, zcart, 0.0, 0.0, 0.0, q[0], q[1], q[2], q[3], 0.0, 0.0, 0.0)) |
295 |
index = index+1 |
296 |
|
297 |
outputFile.write(" </StuntDoubles>\n") |
298 |
outputFile.write(" </Snapshot>\n") |
299 |
outputFile.write("</OpenMD>\n") |
300 |
outputFile.close() |
301 |
|
302 |
outputFile.close() |
303 |
|
304 |
def main(argv): |
305 |
|
306 |
arrayType = "A" |
307 |
haveOutputFileName = False |
308 |
latticeType = "fcc" |
309 |
dipoleDirection = "001" |
310 |
latticeNumber = 3 |
311 |
latticeConstant = 4 |
312 |
try: |
313 |
opts, args = getopt.getopt(argv, "hxyzabl:d:c:n:o:", ["help","array-type-X", "array-type-Y", "array-type-Z", "array-type-A", "array-type-B", "lattice=" "direction=", "constant=", "output-file="]) |
314 |
except getopt.GetoptError: |
315 |
usage() |
316 |
sys.exit(2) |
317 |
for opt, arg in opts: |
318 |
if opt in ("-h", "--help"): |
319 |
usage() |
320 |
sys.exit() |
321 |
elif opt in ("-x", "--array-type-X"): |
322 |
arrayType = "X" |
323 |
elif opt in ("-y", "--array-type-Y"): |
324 |
arrayType = "Y" |
325 |
elif opt in ("-z", "--array-type-Z"): |
326 |
arrayType = "Z" |
327 |
elif opt in ("-b", "--array-type-B"): |
328 |
arrayType = "B" |
329 |
elif opt in ("-l", "--lattice"): |
330 |
latticeType = arg |
331 |
elif opt in ("-d", "--direction"): |
332 |
dipoleDirection = arg |
333 |
elif opt in ("-c", "--constant"): |
334 |
latticeConstant = float(arg) |
335 |
elif opt in ("-n"): |
336 |
latticeNumber = int(arg) |
337 |
elif opt in ("-o", "--output-file"): |
338 |
outputFileName = arg |
339 |
haveOutputFileName = True |
340 |
if (not haveOutputFileName): |
341 |
usage() |
342 |
print "No output file was specified" |
343 |
sys.exit() |
344 |
|
345 |
createLattice(latticeType, latticeNumber, latticeConstant, dipoleDirection, arrayType, outputFileName); |
346 |
|
347 |
if __name__ == "__main__": |
348 |
if len(sys.argv) == 1: |
349 |
usage() |
350 |
sys.exit() |
351 |
main(sys.argv[1:]) |