--- trunk/src/math/ChebyshevPolynomials.cpp 2005/01/12 22:41:40 246 +++ trunk/src/math/ChebyshevPolynomials.cpp 2010/05/10 17:28:26 1442 @@ -1,4 +1,4 @@ - /* +/* * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. * * The University of Notre Dame grants you ("Licensee") a @@ -6,19 +6,10 @@ * redistribute this software in source and binary code form, provided * that the following conditions are met: * - * 1. Acknowledgement of the program authors must be made in any - * publication of scientific results based in part on use of the - * program. An acceptable form of acknowledgement is citation of - * the article in which the program was described (Matthew - * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher - * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented - * Parallel Simulation Engine for Molecular Dynamics," - * J. Comput. Chem. 26, pp. 252-271 (2005)) - * - * 2. Redistributions of source code must retain the above copyright + * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - * 3. Redistributions in binary form must reproduce the above copyright + * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. @@ -37,18 +28,27 @@ * arising out of the use of or inability to use software, even if the * University of Notre Dame has been advised of the possibility of * such damages. + * + * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your + * research, please cite the appropriate papers when you publish your + * work. Good starting points are: + * + * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). + * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). + * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). + * [4] Vardeman & Gezelter, in progress (2009). */ #include "math/ChebyshevPolynomials.hpp" -namespace oopse { -ChebyshevPolynomials::ChebyshevPolynomials(int maxPower) : maxPower_(maxPower){ +namespace OpenMD { + ChebyshevPolynomials::ChebyshevPolynomials(int maxPower) : maxPower_(maxPower){ assert(maxPower >= 0); GeneratePolynomials(maxPower_); -} + } -ChebyshevPolynomials::GeneratePolynomials(int maxPower) { + void ChebyshevPolynomials::GeneratePolynomials(int maxPower) { GenerateFirstTwoTerms(); @@ -58,15 +58,15 @@ ChebyshevPolynomials::GeneratePolynomials(int maxPower //recursive generate the high order term of Chebyshev Polynomials //Cn+1(x) = Cn(x) * 2x - Cn-1(x) for (int i = 2; i <= maxPower; ++i) { - DoublePolynomial cn; + DoublePolynomial cn; - cn = polyList_[i-1] * twoX - polyList_[i-2]; - polyList_.push_back(cn); + cn = polyList_[i-1] * twoX - polyList_[i-2]; + polyList_.push_back(cn); } -} + } - -ChebyshevT::GenerateFirstTwoTerms() { +/* + void ChebyshevT::GenerateFirstTwoTerms() { DoublePolynomial t0; t0.setCoefficient(0, 1.0); polyList_.push_back(t0); @@ -74,9 +74,9 @@ ChebyshevT::GenerateFirstTwoTerms() { DoublePolynomial t1; t1.setCoefficient(1, 1.0); polyList_.push_back(t1); -} + } -ChebyshevU::GenerateFirstTwoTerms() { + void ChebyshevU::GenerateFirstTwoTerms() { DoublePolynomial u0; u0.setCoefficient(0, 1.0); polyList_.push_back(u0); @@ -84,6 +84,7 @@ ChebyshevU::GenerateFirstTwoTerms() { DoublePolynomial u1; u1.setCoefficient(1, 2.0); polyList_.push_back(u1); -} + } +*/ -} //end namespace oopse +} //end namespace OpenMD