ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/heatflux/src/brains/Thermo.cpp
Revision: 1672
Committed: Mon Jan 30 21:47:39 2012 UTC (13 years, 5 months ago) by chuckv
File size: 18071 byte(s)
Log Message:
Update for energy units conversion.

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35 chuckv 1666 *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 246 */
41 chuckv 1666
42 gezelter 2 #include <math.h>
43     #include <iostream>
44    
45     #ifdef IS_MPI
46     #include <mpi.h>
47     #endif //is_mpi
48    
49 tim 3 #include "brains/Thermo.hpp"
50 gezelter 246 #include "primitives/Molecule.hpp"
51 tim 3 #include "utils/simError.h"
52 gezelter 1390 #include "utils/PhysicalConstants.hpp"
53 gezelter 2
54 gezelter 1390 namespace OpenMD {
55 gezelter 2
56 tim 963 RealType Thermo::getKinetic() {
57 gezelter 246 SimInfo::MoleculeIterator miter;
58     std::vector<StuntDouble*>::iterator iiter;
59     Molecule* mol;
60 chuckv 1666 StuntDouble* integrableObject;
61 gezelter 246 Vector3d vel;
62     Vector3d angMom;
63     Mat3x3d I;
64     int i;
65     int j;
66     int k;
67 chrisfen 998 RealType mass;
68 tim 963 RealType kinetic = 0.0;
69     RealType kinetic_global = 0.0;
70 chuckv 1666
71 gezelter 246 for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
72 chuckv 1666 for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
73     integrableObject = mol->nextIntegrableObject(iiter)) {
74 gezelter 2
75 chuckv 1666 mass = integrableObject->getMass();
76     vel = integrableObject->getVel();
77    
78     kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
79    
80     if (integrableObject->isDirectional()) {
81     angMom = integrableObject->getJ();
82     I = integrableObject->getI();
83    
84     if (integrableObject->isLinear()) {
85     i = integrableObject->linearAxis();
86     j = (i + 1) % 3;
87     k = (i + 2) % 3;
88     kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
89     } else {
90     kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
91     + angMom[2]*angMom[2]/I(2, 2);
92     }
93     }
94    
95 gezelter 507 }
96 gezelter 246 }
97 chuckv 1666
98 gezelter 246 #ifdef IS_MPI
99 gezelter 2
100 tim 963 MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
101 gezelter 246 MPI_COMM_WORLD);
102     kinetic = kinetic_global;
103 gezelter 2
104 gezelter 246 #endif //is_mpi
105 gezelter 2
106 gezelter 1390 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
107 gezelter 2
108 gezelter 246 return kinetic;
109 gezelter 507 }
110 gezelter 2
111 tim 963 RealType Thermo::getPotential() {
112     RealType potential = 0.0;
113 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
114 tim 963 RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
115 gezelter 2
116 gezelter 246 // Get total potential for entire system from MPI.
117 gezelter 2
118 gezelter 246 #ifdef IS_MPI
119 gezelter 2
120 tim 963 MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
121 gezelter 246 MPI_COMM_WORLD);
122 tim 833 potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
123 gezelter 2
124 gezelter 246 #else
125 gezelter 2
126 tim 833 potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
127 gezelter 2
128     #endif // is_mpi
129    
130 gezelter 246 return potential;
131 gezelter 507 }
132 gezelter 2
133 tim 963 RealType Thermo::getTotalE() {
134     RealType total;
135 gezelter 2
136 gezelter 246 total = this->getKinetic() + this->getPotential();
137     return total;
138 gezelter 507 }
139 gezelter 2
140 tim 963 RealType Thermo::getTemperature() {
141 chuckv 1666
142 gezelter 1390 RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
143 gezelter 246 return temperature;
144 gezelter 507 }
145 gezelter 2
146 chuckv 1666 RealType Thermo::getVolume() {
147 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
148     return curSnapshot->getVolume();
149 gezelter 507 }
150 gezelter 2
151 tim 963 RealType Thermo::getPressure() {
152 gezelter 2
153 gezelter 246 // Relies on the calculation of the full molecular pressure tensor
154 gezelter 2
155    
156 gezelter 246 Mat3x3d tensor;
157 tim 963 RealType pressure;
158 gezelter 2
159 gezelter 246 tensor = getPressureTensor();
160 gezelter 2
161 gezelter 1390 pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
162 gezelter 2
163 gezelter 246 return pressure;
164 gezelter 507 }
165 gezelter 2
166 tim 963 RealType Thermo::getPressure(int direction) {
167 tim 538
168     // Relies on the calculation of the full molecular pressure tensor
169    
170 chuckv 1666
171 tim 538 Mat3x3d tensor;
172 tim 963 RealType pressure;
173 tim 538
174     tensor = getPressureTensor();
175    
176 gezelter 1390 pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
177 tim 538
178     return pressure;
179     }
180    
181 gezelter 507 Mat3x3d Thermo::getPressureTensor() {
182 gezelter 246 // returns pressure tensor in units amu*fs^-2*Ang^-1
183     // routine derived via viral theorem description in:
184     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
185     Mat3x3d pressureTensor;
186     Mat3x3d p_local(0.0);
187     Mat3x3d p_global(0.0);
188 gezelter 2
189 gezelter 246 SimInfo::MoleculeIterator i;
190     std::vector<StuntDouble*>::iterator j;
191     Molecule* mol;
192 chuckv 1666 StuntDouble* integrableObject;
193 gezelter 246 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
194 chuckv 1666 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
195     integrableObject = mol->nextIntegrableObject(j)) {
196 gezelter 2
197 chuckv 1666 RealType mass = integrableObject->getMass();
198     Vector3d vcom = integrableObject->getVel();
199     p_local += mass * outProduct(vcom, vcom);
200 gezelter 507 }
201 gezelter 246 }
202 chuckv 1666
203 gezelter 2 #ifdef IS_MPI
204 tim 963 MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
205 gezelter 2 #else
206 gezelter 246 p_global = p_local;
207 gezelter 2 #endif // is_mpi
208    
209 tim 963 RealType volume = this->getVolume();
210 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
211     Mat3x3d tau = curSnapshot->statData.getTau();
212 gezelter 1126
213 gezelter 1390 pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume;
214 chuckv 1666
215 gezelter 246 return pressureTensor;
216 gezelter 507 }
217 gezelter 2
218 chrisfen 998
219 gezelter 507 void Thermo::saveStat(){
220 gezelter 246 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
221     Stats& stat = currSnapshot->statData;
222 chuckv 1666
223 gezelter 246 stat[Stats::KINETIC_ENERGY] = getKinetic();
224     stat[Stats::POTENTIAL_ENERGY] = getPotential();
225     stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ;
226     stat[Stats::TEMPERATURE] = getTemperature();
227     stat[Stats::PRESSURE] = getPressure();
228 chuckv 1666 stat[Stats::VOLUME] = getVolume();
229 gezelter 2
230 tim 541 Mat3x3d tensor =getPressureTensor();
231 chuckv 1666 stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);
232     stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);
233     stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);
234     stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);
235     stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);
236     stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);
237     stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);
238     stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);
239     stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);
240 chuckv 1638 Vector3d GKappa_t = getThermalHelfand();
241     stat[Stats::THERMAL_HELFANDMOMENT_X] = GKappa_t.x();
242     stat[Stats::THERMAL_HELFANDMOMENT_Y] = GKappa_t.y();
243     stat[Stats::THERMAL_HELFANDMOMENT_Z] = GKappa_t.z();
244 chuckv 1671 Vector3d HeatFlux_J = getHeatFlux();
245     stat[Stats::HEATFLUX_X] = HeatFlux_J.x();
246     stat[Stats::HEATFLUX_Y] = HeatFlux_J.y();
247     stat[Stats::HEATFLUX_Z] = HeatFlux_J.z();
248 tim 541
249 chuckv 1671
250 gezelter 1291 Globals* simParams = info_->getSimParams();
251    
252 chuckv 1666 if (simParams->haveTaggedAtomPair() &&
253 gezelter 1291 simParams->havePrintTaggedPairDistance()) {
254     if ( simParams->getPrintTaggedPairDistance()) {
255 chuckv 1666
256 gezelter 1291 std::pair<int, int> tap = simParams->getTaggedAtomPair();
257     Vector3d pos1, pos2, rab;
258    
259 chuckv 1666 #ifdef IS_MPI
260 gezelter 1313 std::cerr << "tap = " << tap.first << " " << tap.second << std::endl;
261 gezelter 1291
262 chuckv 1666 int mol1 = info_->getGlobalMolMembership(tap.first);
263     int mol2 = info_->getGlobalMolMembership(tap.second);
264 gezelter 1313 std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
265    
266 gezelter 1291 int proc1 = info_->getMolToProc(mol1);
267     int proc2 = info_->getMolToProc(mol2);
268    
269 gezelter 1313 std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
270    
271 chuckv 1666 RealType data[3];
272 gezelter 1291 if (proc1 == worldRank) {
273     StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
274 gezelter 1313 std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
275 gezelter 1291 pos1 = sd1->getPos();
276     data[0] = pos1.x();
277     data[1] = pos1.y();
278 chuckv 1666 data[2] = pos1.z();
279 gezelter 1291 MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
280     } else {
281     MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
282     pos1 = Vector3d(data);
283     }
284 chuckv 1292
285    
286 gezelter 1291 if (proc2 == worldRank) {
287     StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
288 gezelter 1313 std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
289 gezelter 1291 pos2 = sd2->getPos();
290     data[0] = pos2.x();
291     data[1] = pos2.y();
292 chuckv 1666 data[2] = pos2.z();
293 gezelter 1291 MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
294     } else {
295     MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
296     pos2 = Vector3d(data);
297     }
298     #else
299     StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
300     StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
301     pos1 = at1->getPos();
302     pos2 = at2->getPos();
303 chuckv 1666 #endif
304 gezelter 1291 rab = pos2 - pos1;
305     currSnapshot->wrapVector(rab);
306     stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length();
307     }
308     }
309 chuckv 1666
310 gezelter 246 /**@todo need refactorying*/
311     //Conserved Quantity is set by integrator and time is set by setTime
312 chuckv 1666
313 gezelter 507 }
314 gezelter 2
315 jmichalk 1604
316    
317     Vector3d Thermo::getBoxDipole() {
318     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
319     SimInfo::MoleculeIterator miter;
320     std::vector<Atom*>::iterator aiter;
321     Molecule* mol;
322     Atom* atom;
323     RealType charge;
324     RealType moment(0.0);
325     Vector3d ri(0.0);
326     Vector3d dipoleVector(0.0);
327     Vector3d nPos(0.0);
328     Vector3d pPos(0.0);
329     RealType nChg(0.0);
330     RealType pChg(0.0);
331     int nCount = 0;
332     int pCount = 0;
333    
334     RealType chargeToC = 1.60217733e-19;
335     RealType angstromToM = 1.0e-10; RealType debyeToCm = 3.33564095198e-30;
336    
337     for (mol = info_->beginMolecule(miter); mol != NULL;
338     mol = info_->nextMolecule(miter)) {
339    
340     for (atom = mol->beginAtom(aiter); atom != NULL;
341     atom = mol->nextAtom(aiter)) {
342    
343     if (atom->isCharge() ) {
344     charge = 0.0;
345     GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
346     if (data != NULL) {
347    
348     charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
349     charge *= chargeToC;
350    
351     ri = atom->getPos();
352     currSnapshot->wrapVector(ri);
353     ri *= angstromToM;
354    
355     if (charge < 0.0) {
356     nPos += ri;
357     nChg -= charge;
358     nCount++;
359     } else if (charge > 0.0) {
360     pPos += ri;
361     pChg += charge;
362     pCount++;
363     }
364     }
365     }
366    
367     if (atom->isDipole() ) {
368     Vector3d u_i = atom->getElectroFrame().getColumn(2);
369     GenericData* data = dynamic_cast<DirectionalAtomType*>(atom->getAtomType())->getPropertyByName("Dipole");
370     if (data != NULL) {
371     moment = (dynamic_cast<DoubleGenericData*>(data))->getData();
372    
373     moment *= debyeToCm;
374     dipoleVector += u_i * moment;
375     }
376     }
377     }
378     }
379    
380    
381     #ifdef IS_MPI
382     RealType pChg_global, nChg_global;
383     int pCount_global, nCount_global;
384     Vector3d pPos_global, nPos_global, dipVec_global;
385    
386     MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
387     MPI_COMM_WORLD);
388     pChg = pChg_global;
389     MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
390     MPI_COMM_WORLD);
391     nChg = nChg_global;
392     MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
393     MPI_COMM_WORLD);
394     pCount = pCount_global;
395     MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
396     MPI_COMM_WORLD);
397     nCount = nCount_global;
398     MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
399     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
400     pPos = pPos_global;
401     MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
402     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
403     nPos = nPos_global;
404     MPI_Allreduce(dipoleVector.getArrayPointer(),
405     dipVec_global.getArrayPointer(), 3,
406     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
407     dipoleVector = dipVec_global;
408     #endif //is_mpi
409    
410     // first load the accumulated dipole moment (if dipoles were present)
411     Vector3d boxDipole = dipoleVector;
412     // now include the dipole moment due to charges
413     // use the lesser of the positive and negative charge totals
414     RealType chg_value = nChg <= pChg ? nChg : pChg;
415    
416     // find the average positions
417     if (pCount > 0 && nCount > 0 ) {
418     pPos /= pCount;
419     nPos /= nCount;
420     }
421    
422     // dipole is from the negative to the positive (physics notation)
423     boxDipole += (pPos - nPos) * chg_value;
424    
425     return boxDipole;
426     }
427    
428 chuckv 1638 Vector3d Thermo::getThermalHelfand() {
429     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
430     SimInfo::MoleculeIterator miter;
431     std::vector<Atom*>::iterator aiter;
432     Molecule* mol;
433     Atom* atom;
434     RealType mass;
435     Vector3d velocity;
436     Vector3d x_a;
437     RealType kinetic;
438     RealType potential;
439     RealType eatom;
440     RealType AvgE_a_ = 0;
441     Vector3d GKappa_t = V3Zero;
442     Vector3d ThermalHelfandMoment;
443 chuckv 1666
444 chuckv 1638 for (mol = info_->beginMolecule(miter); mol != NULL;
445     mol = info_->nextMolecule(miter)) {
446 jmichalk 1604
447 chuckv 1638 for (atom = mol->beginAtom(aiter); atom != NULL;
448     atom = mol->nextAtom(aiter)) {
449    
450     mass = atom->getMass();
451     velocity = atom->getVel();
452 chuckv 1666 kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] +
453 chuckv 1638 velocity[2]*velocity[2]) / PhysicalConstants::energyConvert;
454     potential = atom->getParticlePot();
455     eatom += (kinetic + potential)/2.0;
456     }
457     }
458    
459     int natoms = info_->getNGlobalAtoms();
460     #ifdef IS_MPI
461 chuckv 1666
462 chuckv 1638 MPI_Allreduce(&eatom, &AvgE_a_, 1, MPI_REALTYPE, MPI_SUM,
463     MPI_COMM_WORLD);
464 chuckv 1666 #else
465 chuckv 1638 AvgE_a_ = eatom;
466     #endif
467     AvgE_a_ = AvgE_a_/RealType(natoms);
468 chuckv 1666
469 chuckv 1638 for (mol = info_->beginMolecule(miter); mol != NULL;
470     mol = info_->nextMolecule(miter)) {
471 chuckv 1666
472 chuckv 1638 for (atom = mol->beginAtom(aiter); atom != NULL;
473     atom = mol->nextAtom(aiter)) {
474 chuckv 1666
475 chuckv 1638 /* We think that x_a is relative to the total box and should be a wrapped coordinate */
476     x_a = atom->getPos();
477     currSnapshot->wrapVector(x_a);
478     potential = atom->getParticlePot();
479 chuckv 1666 velocity = atom->getVel();
480     kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] +
481     velocity[2]*velocity[2]) / PhysicalConstants::energyConvert;
482 chuckv 1667 eatom += (kinetic + potential)/2.0;
483 chuckv 1666 GKappa_t += x_a*(eatom-AvgE_a_);
484 chuckv 1638 }
485     }
486     #ifdef IS_MPI
487     MPI_Allreduce(GKappa_t.getArrayPointer(), ThermalHelfandMoment.getArrayPointer(), 3,
488     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
489 chuckv 1666 #else
490 chuckv 1638 ThermalHelfandMoment = GKappa_t;
491 chuckv 1666 #endif
492 chuckv 1638 return ThermalHelfandMoment;
493 chuckv 1666
494 chuckv 1638 }
495    
496 chuckv 1671 // Returns the Heat Flux Vector S for the system
497     Vector3d Thermo::getHeatFlux(){
498     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
499     SimInfo::MoleculeIterator miter;
500     std::vector<Atom*>::iterator aiter;
501     Molecule* mol;
502     Atom* atom;
503     RealType mass;
504     Vector3d velocity;
505     Vector3d x_a;
506     RealType kinetic;
507     RealType potential;
508     RealType eatom;
509     RealType AvgE_a_ = 0;
510     // Conductive portion of the heat flux
511     Vector3d heatFlux_Jc = V3Zero;
512     Vector3d heatFlux_J;
513     Vector3d heatFlux_J_local = V3Zero;
514 chuckv 1638
515 chuckv 1671 /* Calculate conductive portion of the heat flux */
516     for (mol = info_->beginMolecule(miter); mol != NULL;
517     mol = info_->nextMolecule(miter)) {
518 chuckv 1638
519 chuckv 1671 for (atom = mol->beginAtom(aiter); atom != NULL;
520     atom = mol->nextAtom(aiter)) {
521    
522     mass = atom->getMass();
523     velocity = atom->getVel();
524     kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] +
525 chuckv 1672 velocity[2]*velocity[2]);
526     potential = atom->getParticlePot() * PhysicalConstants::energyConvert;
527     // The potential may not be a 1/2 factor
528 chuckv 1671 eatom += (kinetic + potential)/2.0;
529     heatFlux_Jc[0] += eatom*velocity[0];
530     heatFlux_Jc[1] += eatom*velocity[1];
531     heatFlux_Jc[2] += eatom*velocity[2];
532     }
533     }
534 chuckv 1672 Vector3d heatFlux_Jv = currSnapshot->statData.getJv() * PhysicalConstants::energyConvert;
535 chuckv 1671
536 chuckv 1672 heatFlux_J_local = heatFlux_Jv/2.0 + heatFlux_Jc;
537     // Correct for the fact the flux is 1/V (Jc + Jv)
538     heatFlux_J_local = heatFlux_J_local/getVolume();
539 chuckv 1671
540    
541     #ifdef IS_MPI
542     MPI_Allreduce(heatFlux_J_local.getArrayPointer(), heatFlux_J.getArrayPointer(), 3,
543     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
544     #else
545     heatFlux_J = heatFlux_J_local;
546     #endif
547    
548     return heatFlux_J;
549    
550    
551     }
552    
553    
554    
555    
556 gezelter 1390 } //end namespace OpenMD

Properties

Name Value
svn:keywords Author Id Revision Date