ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/heatflux/src/brains/ForceManager.cpp
Revision: 1671
Committed: Mon Jan 30 21:31:09 2012 UTC (13 years, 5 months ago) by chuckv
File size: 12432 byte(s)
Log Message:
Adding support for atomic heat flux. Is broken w/ group based cuttoffs.
Units need to be corrected and their may be a sign error in Jv.

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35 chuckv 1671 *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 246 */
41 chuckv 1671
42 gezelter 507 /**
43     * @file ForceManager.cpp
44     * @author tlin
45     * @date 11/09/2004
46     * @time 10:39am
47     * @version 1.0
48     */
49 gezelter 246
50     #include "brains/ForceManager.hpp"
51     #include "primitives/Molecule.hpp"
52     #include "UseTheForce/doForces_interface.h"
53 gezelter 1390 #define __OPENMD_C
54 chuckv 664 #include "UseTheForce/DarkSide/fInteractionMap.h"
55 gezelter 246 #include "utils/simError.h"
56 xsun 1215 #include "primitives/Bond.hpp"
57 tim 749 #include "primitives/Bend.hpp"
58 cli2 1275 #include "primitives/Torsion.hpp"
59     #include "primitives/Inversion.hpp"
60 gezelter 1390 namespace OpenMD {
61 gezelter 246
62 gezelter 1464 void ForceManager::calcForces() {
63 chuckv 1671
64 gezelter 246 if (!info_->isFortranInitialized()) {
65 gezelter 507 info_->update();
66 gezelter 246 }
67 chuckv 1671
68 gezelter 246 preCalculation();
69 chuckv 1671
70 gezelter 246 calcShortRangeInteraction();
71    
72 gezelter 1464 calcLongRangeInteraction();
73 gezelter 246
74 gezelter 1464 postCalculation();
75 chuckv 1671
76 gezelter 507 }
77 chuckv 1671
78 gezelter 507 void ForceManager::preCalculation() {
79 gezelter 246 SimInfo::MoleculeIterator mi;
80     Molecule* mol;
81     Molecule::AtomIterator ai;
82     Atom* atom;
83     Molecule::RigidBodyIterator rbIter;
84     RigidBody* rb;
85 chuckv 1671
86 gezelter 246 // forces are zeroed here, before any are accumulated.
87     // NOTE: do not rezero the forces in Fortran.
88 chuckv 1671
89     for (mol = info_->beginMolecule(mi); mol != NULL;
90 gezelter 1126 mol = info_->nextMolecule(mi)) {
91 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
92 chuckv 1671 atom->zeroForcesAndTorques();
93 gezelter 507 }
94 chuckv 1671
95 gezelter 507 //change the positions of atoms which belong to the rigidbodies
96 chuckv 1671 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
97 gezelter 1126 rb = mol->nextRigidBody(rbIter)) {
98 chuckv 1671 rb->zeroForcesAndTorques();
99     }
100    
101 gezelter 246 }
102 chuckv 1671
103 gezelter 1126 // Zero out the stress tensor
104     tau *= 0.0;
105 chuckv 1671
106 gezelter 507 }
107 chuckv 1671
108 gezelter 507 void ForceManager::calcShortRangeInteraction() {
109 gezelter 246 Molecule* mol;
110     RigidBody* rb;
111     Bond* bond;
112     Bend* bend;
113     Torsion* torsion;
114 cli2 1275 Inversion* inversion;
115 gezelter 246 SimInfo::MoleculeIterator mi;
116     Molecule::RigidBodyIterator rbIter;
117     Molecule::BondIterator bondIter;;
118     Molecule::BendIterator bendIter;
119     Molecule::TorsionIterator torsionIter;
120 cli2 1275 Molecule::InversionIterator inversionIter;
121 tim 963 RealType bondPotential = 0.0;
122     RealType bendPotential = 0.0;
123     RealType torsionPotential = 0.0;
124 cli2 1275 RealType inversionPotential = 0.0;
125 gezelter 246
126 chuckv 1671 //calculate short range interactions
127     for (mol = info_->beginMolecule(mi); mol != NULL;
128 gezelter 1126 mol = info_->nextMolecule(mi)) {
129 gezelter 246
130 gezelter 507 //change the positions of atoms which belong to the rigidbodies
131 chuckv 1671 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
132 gezelter 1126 rb = mol->nextRigidBody(rbIter)) {
133     rb->updateAtoms();
134 gezelter 507 }
135 gezelter 246
136 chuckv 1671 for (bond = mol->beginBond(bondIter); bond != NULL;
137 gezelter 1126 bond = mol->nextBond(bondIter)) {
138 tim 749 bond->calcForce();
139     bondPotential += bond->getPotential();
140 gezelter 507 }
141 gezelter 246
142 chuckv 1671 for (bend = mol->beginBend(bendIter); bend != NULL;
143 gezelter 1126 bend = mol->nextBend(bendIter)) {
144 chuckv 1671
145 gezelter 1126 RealType angle;
146     bend->calcForce(angle);
147 chuckv 1671 RealType currBendPot = bend->getPotential();
148    
149 gezelter 1126 bendPotential += bend->getPotential();
150     std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
151     if (i == bendDataSets.end()) {
152     BendDataSet dataSet;
153     dataSet.prev.angle = dataSet.curr.angle = angle;
154     dataSet.prev.potential = dataSet.curr.potential = currBendPot;
155     dataSet.deltaV = 0.0;
156     bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
157     }else {
158     i->second.prev.angle = i->second.curr.angle;
159     i->second.prev.potential = i->second.curr.potential;
160     i->second.curr.angle = angle;
161     i->second.curr.potential = currBendPot;
162 chuckv 1671 i->second.deltaV = fabs(i->second.curr.potential -
163 gezelter 1126 i->second.prev.potential);
164     }
165 gezelter 507 }
166 chuckv 1671
167     for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
168 gezelter 1126 torsion = mol->nextTorsion(torsionIter)) {
169 tim 963 RealType angle;
170 gezelter 1126 torsion->calcForce(angle);
171 tim 963 RealType currTorsionPot = torsion->getPotential();
172 gezelter 1126 torsionPotential += torsion->getPotential();
173     std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
174     if (i == torsionDataSets.end()) {
175     TorsionDataSet dataSet;
176     dataSet.prev.angle = dataSet.curr.angle = angle;
177     dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
178     dataSet.deltaV = 0.0;
179     torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
180     }else {
181     i->second.prev.angle = i->second.curr.angle;
182     i->second.prev.potential = i->second.curr.potential;
183     i->second.curr.angle = angle;
184     i->second.curr.potential = currTorsionPot;
185 chuckv 1671 i->second.deltaV = fabs(i->second.curr.potential -
186 gezelter 1126 i->second.prev.potential);
187 chuckv 1671 }
188     }
189 cli2 1275
190 chuckv 1671 for (inversion = mol->beginInversion(inversionIter);
191     inversion != NULL;
192 cli2 1275 inversion = mol->nextInversion(inversionIter)) {
193     RealType angle;
194     inversion->calcForce(angle);
195     RealType currInversionPot = inversion->getPotential();
196     inversionPotential += inversion->getPotential();
197     std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
198     if (i == inversionDataSets.end()) {
199     InversionDataSet dataSet;
200     dataSet.prev.angle = dataSet.curr.angle = angle;
201     dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
202     dataSet.deltaV = 0.0;
203     inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
204     }else {
205     i->second.prev.angle = i->second.curr.angle;
206     i->second.prev.potential = i->second.curr.potential;
207     i->second.curr.angle = angle;
208     i->second.curr.potential = currInversionPot;
209 chuckv 1671 i->second.deltaV = fabs(i->second.curr.potential -
210 cli2 1275 i->second.prev.potential);
211 chuckv 1671 }
212     }
213 gezelter 246 }
214 chuckv 1671
215     RealType shortRangePotential = bondPotential + bendPotential +
216     torsionPotential + inversionPotential;
217 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
218     curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
219 tim 665 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
220     curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
221     curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
222 cli2 1275 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
223 chuckv 1671
224 gezelter 507 }
225 chuckv 1671
226 gezelter 1464 void ForceManager::calcLongRangeInteraction() {
227 gezelter 246 Snapshot* curSnapshot;
228     DataStorage* config;
229 tim 963 RealType* frc;
230     RealType* pos;
231 chuckv 1671 RealType* vel;
232 tim 963 RealType* trq;
233     RealType* A;
234     RealType* electroFrame;
235     RealType* rc;
236 chuckv 1245 RealType* particlePot;
237 chuckv 1671
238 gezelter 246 //get current snapshot from SimInfo
239     curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
240 chuckv 1671
241 gezelter 246 //get array pointers
242     config = &(curSnapshot->atomData);
243     frc = config->getArrayPointer(DataStorage::dslForce);
244     pos = config->getArrayPointer(DataStorage::dslPosition);
245 chuckv 1671 vel = config->getArrayPointer(DataStorage::dslVelocity);
246 gezelter 246 trq = config->getArrayPointer(DataStorage::dslTorque);
247     A = config->getArrayPointer(DataStorage::dslAmat);
248     electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
249 chuckv 1245 particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
250 gezelter 246
251     //calculate the center of mass of cutoff group
252     SimInfo::MoleculeIterator mi;
253     Molecule* mol;
254     Molecule::CutoffGroupIterator ci;
255     CutoffGroup* cg;
256     Vector3d com;
257     std::vector<Vector3d> rcGroup;
258 chuckv 1671
259 gezelter 246 if(info_->getNCutoffGroups() > 0){
260 chuckv 1671
261     for (mol = info_->beginMolecule(mi); mol != NULL;
262 gezelter 1126 mol = info_->nextMolecule(mi)) {
263 chuckv 1671 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
264 gezelter 1126 cg = mol->nextCutoffGroup(ci)) {
265 chuckv 1671 cg->getCOM(com);
266     rcGroup.push_back(com);
267 gezelter 246 }
268 gezelter 507 }// end for (mol)
269 chuckv 1671
270 gezelter 507 rc = rcGroup[0].getArrayPointer();
271 gezelter 246 } else {
272 chuckv 1671 // center of mass of the group is the same as position of the atom
273 gezelter 1126 // if cutoff group does not exist
274 gezelter 507 rc = pos;
275 gezelter 246 }
276 chuckv 1671
277 gezelter 246 //initialize data before passing to fortran
278 tim 963 RealType longRangePotential[LR_POT_TYPES];
279     RealType lrPot = 0.0;
280 chrisfen 998 Vector3d totalDipole;
281 chuckv 1671
282    
283    
284 gezelter 246 int isError = 0;
285    
286 chuckv 664 for (int i=0; i<LR_POT_TYPES;i++){
287     longRangePotential[i]=0.0; //Initialize array
288     }
289 chuckv 1671
290 xsun 1215 doForceLoop(pos,
291 chuckv 1671 vel,
292 xsun 1215 rc,
293     A,
294     electroFrame,
295     frc,
296     trq,
297 chuckv 1671 tau.getArrayPointer(),
298     Jv_.getArrayPointer(),
299     longRangePotential,
300 chuckv 1245 particlePot,
301 xsun 1215 &isError );
302 chuckv 1671
303 gezelter 246 if( isError ){
304 gezelter 507 sprintf( painCave.errMsg,
305 chuckv 1671 "Error returned from the fortran force calculation.\n" );
306 gezelter 507 painCave.isFatal = 1;
307     simError();
308 gezelter 246 }
309 chuckv 664 for (int i=0; i<LR_POT_TYPES;i++){
310     lrPot += longRangePotential[i]; //Quick hack
311     }
312 chuckv 1671
313 chrisfen 998 // grab the simulation box dipole moment if specified
314     if (info_->getCalcBoxDipole()){
315     getAccumulatedBoxDipole(totalDipole.getArrayPointer());
316 chuckv 1671
317 chrisfen 998 curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0);
318     curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1);
319     curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2);
320     }
321 chuckv 1671
322     //store the tau and long range potential
323 chuckv 664 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
324 chrisfen 691 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
325 tim 681 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
326 gezelter 507 }
327 gezelter 246
328 chuckv 1671
329 gezelter 1464 void ForceManager::postCalculation() {
330 gezelter 246 SimInfo::MoleculeIterator mi;
331     Molecule* mol;
332     Molecule::RigidBodyIterator rbIter;
333     RigidBody* rb;
334 gezelter 1126 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
335 chuckv 1671
336 gezelter 246 // collect the atomic forces onto rigid bodies
337 chuckv 1671
338     for (mol = info_->beginMolecule(mi); mol != NULL;
339 gezelter 1126 mol = info_->nextMolecule(mi)) {
340 chuckv 1671 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
341     rb = mol->nextRigidBody(rbIter)) {
342 gezelter 1464 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
343     tau += rbTau;
344 gezelter 507 }
345 gezelter 1126 }
346 chuckv 1671
347 gezelter 1126 #ifdef IS_MPI
348 gezelter 1464 Mat3x3d tmpTau(tau);
349 chuckv 1671 MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
350 gezelter 1464 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
351 gezelter 1126 #endif
352 gezelter 1464 curSnapshot->statData.setTau(tau);
353 chuckv 1671
354     curSnapshot->statData.setJv(Jv_);
355 gezelter 507 }
356 gezelter 246
357 gezelter 1390 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date