| 1 |
chuckv |
1678 |
#!/usr/bin/env python |
| 2 |
|
|
"""Heat Flux Correlation function |
| 3 |
|
|
|
| 4 |
|
|
Computes the correlation function of the heat flux vector |
| 5 |
|
|
that has been stored in a stat file. These can be used to compute |
| 6 |
|
|
the thermal conductivity. |
| 7 |
|
|
|
| 8 |
|
|
Usage: stat2thcond |
| 9 |
|
|
|
| 10 |
|
|
Options: |
| 11 |
|
|
-h, --help show this help |
| 12 |
|
|
-f, --stat-file=... use specified stat file |
| 13 |
|
|
-o, --output-file=... use specified output (.pcorr) file |
| 14 |
|
|
-g, --green-kubo use Green-Kubo formulae (noisy!) |
| 15 |
|
|
-e, --einstein use Einstein relation (based on Hess 2002 paper) |
| 16 |
|
|
|
| 17 |
|
|
The Green-Kubo formulae option will compute: V*<(S(t)*(S(0)>/kT^2, |
| 18 |
|
|
which may be integrated to give a slowly-converging value for the viscosity. |
| 19 |
|
|
|
| 20 |
|
|
The Einstein relation option will compute: V*<(\int_0^t S(t')dt')^2>/2kT^2, |
| 21 |
|
|
which will grow approximately linearly in time. The long-time slope of this |
| 22 |
|
|
function will be the viscosity. |
| 23 |
|
|
|
| 24 |
|
|
Example: |
| 25 |
|
|
stat2thcond -f ring5.stat -e -o ring5.pcorr |
| 26 |
|
|
|
| 27 |
|
|
""" |
| 28 |
|
|
|
| 29 |
|
|
__author__ = "Gianluca Puliti (gpuliti@nd.edu) and Dan Gezelter (gezelter@nd.edu)" |
| 30 |
|
|
__version__ = "$Revision: 1667 $" |
| 31 |
|
|
__date__ = "$Date: 2012-02-23 11:25:26 -0400 (Thu, 23 February 2012) $" |
| 32 |
|
|
|
| 33 |
|
|
__copyright__ = "Copyright (c) 2007 by the University of Notre Dame" |
| 34 |
|
|
__license__ = "OpenMD" |
| 35 |
|
|
|
| 36 |
|
|
import sys |
| 37 |
|
|
import getopt |
| 38 |
|
|
import string |
| 39 |
|
|
import math |
| 40 |
|
|
|
| 41 |
|
|
def usage(): |
| 42 |
|
|
print __doc__ |
| 43 |
|
|
|
| 44 |
|
|
def readStatFile(statFileName): |
| 45 |
|
|
|
| 46 |
|
|
global time |
| 47 |
|
|
global temperature |
| 48 |
|
|
global pressure |
| 49 |
|
|
global volume |
| 50 |
|
|
global Sx |
| 51 |
|
|
global Sy |
| 52 |
|
|
global Sz |
| 53 |
|
|
time = [] |
| 54 |
|
|
temperature = [] |
| 55 |
|
|
pressure = [] |
| 56 |
|
|
volume = [] |
| 57 |
|
|
Sx = [] |
| 58 |
|
|
Sy = [] |
| 59 |
|
|
Sz = [] |
| 60 |
|
|
|
| 61 |
|
|
statFile = open(statFileName, 'r') |
| 62 |
|
|
line = statFile.readline() |
| 63 |
|
|
|
| 64 |
|
|
print "reading File" |
| 65 |
|
|
pressSum = 0.0 |
| 66 |
|
|
volSum = 0.0 |
| 67 |
|
|
tempSum = 0.0 |
| 68 |
|
|
line = statFile.readline() |
| 69 |
|
|
while 1: |
| 70 |
|
|
L = line.split() |
| 71 |
|
|
time.append(float(L[0])) |
| 72 |
|
|
temperature.append(float(L[4])) |
| 73 |
|
|
# |
| 74 |
|
|
# OpenMD prints out pressure in units of atm. |
| 75 |
|
|
# |
| 76 |
|
|
pressure.append(float(L[5])) |
| 77 |
|
|
volume.append(float(L[6])) |
| 78 |
|
|
# |
| 79 |
|
|
# OpenMD prints out heatflux in units of kcal / (mol s Ang^2). |
| 80 |
|
|
# |
| 81 |
|
|
Sx.append(float(L[8])) |
| 82 |
|
|
Sy.append(float(L[9])) |
| 83 |
|
|
Sz.append(float(L[10])) |
| 84 |
|
|
|
| 85 |
|
|
line = statFile.readline() |
| 86 |
|
|
if not line: break |
| 87 |
|
|
|
| 88 |
|
|
statFile.close() |
| 89 |
|
|
|
| 90 |
|
|
def computeAverages(): |
| 91 |
|
|
|
| 92 |
|
|
global tempAve |
| 93 |
|
|
global pressAve |
| 94 |
|
|
global volAve |
| 95 |
|
|
global pvAve |
| 96 |
|
|
|
| 97 |
|
|
print "computing Averages" |
| 98 |
|
|
|
| 99 |
|
|
tempSum = 0.0 |
| 100 |
|
|
pressSum = 0.0 |
| 101 |
|
|
volSum = 0.0 |
| 102 |
|
|
pvSum = 0.0 |
| 103 |
|
|
|
| 104 |
|
|
temp2Sum = 0.0 |
| 105 |
|
|
press2Sum = 0.0 |
| 106 |
|
|
vol2Sum = 0.0 |
| 107 |
|
|
pv2Sum = 0.0 |
| 108 |
|
|
|
| 109 |
|
|
# converts amu*fs^-2*Ang^-1 -> atm |
| 110 |
|
|
pressureConvert = 1.63882576e8 |
| 111 |
|
|
|
| 112 |
|
|
for i in range(len(time)): |
| 113 |
|
|
tempSum = tempSum + temperature[i] |
| 114 |
|
|
pressSum = pressSum + pressure[i] |
| 115 |
|
|
volSum = volSum + volume[i] |
| 116 |
|
|
# in units of amu Ang^2 fs^-1 |
| 117 |
|
|
pvTerm = pressure[i]*volume[i] / pressureConvert |
| 118 |
|
|
pvSum = pvSum + pvTerm |
| 119 |
|
|
temp2Sum = temp2Sum + math.pow(temperature[i],2) |
| 120 |
|
|
press2Sum = press2Sum + math.pow(pressure[i],2) |
| 121 |
|
|
vol2Sum = vol2Sum + math.pow(volume[i],2) |
| 122 |
|
|
pv2Sum = pv2Sum + math.pow(pvTerm,2) |
| 123 |
|
|
|
| 124 |
|
|
tempAve = tempSum / float(len(time)) |
| 125 |
|
|
pressAve = pressSum / float(len(time)) |
| 126 |
|
|
volAve = volSum / float(len(time)) |
| 127 |
|
|
pvAve = pvSum / float(len(time)) |
| 128 |
|
|
|
| 129 |
|
|
tempSdev = math.sqrt(temp2Sum / float(len(time)) - math.pow(tempAve,2)) |
| 130 |
|
|
pressSdev = math.sqrt(press2Sum / float(len(time)) - math.pow(pressAve,2)) |
| 131 |
|
|
if (vol2Sum / float(len(time)) < math.pow(volAve,2)): |
| 132 |
|
|
volSdev = 0.0 |
| 133 |
|
|
else: |
| 134 |
|
|
volSdev = math.sqrt(vol2Sum / float(len(time)) - math.pow(volAve,2)) |
| 135 |
|
|
pvSdev = math.sqrt(pv2Sum / float(len(time)) - math.pow(pvAve,2)) |
| 136 |
|
|
|
| 137 |
|
|
print " Average pressure = %f +/- %f (atm)" % (pressAve, pressSdev) |
| 138 |
|
|
print " Average volume = %f +/- %f (Angst^3)" % (volAve, volSdev) |
| 139 |
|
|
print "Average temperature = %f +/- %f (K)" % (tempAve, tempSdev) |
| 140 |
|
|
print " Average PV product = %f +/- %f (amu Angst^2 fs^-1)" % (pvAve, pvSdev) |
| 141 |
|
|
|
| 142 |
|
|
def computeCorrelations(outputFileName): |
| 143 |
|
|
|
| 144 |
|
|
# converts amu*fs^-2*Ang^-1 -> atm |
| 145 |
|
|
pressureConvert = 1.63882576e8 |
| 146 |
|
|
|
| 147 |
|
|
# converts Ang^-3 * kcal/mol * Ang / fs to m^-3 * J/mol * m /s (= W / mol m^2) |
| 148 |
|
|
heatfluxConvert = 4.187e38 |
| 149 |
|
|
|
| 150 |
|
|
# converts fs to s |
| 151 |
|
|
dtConvert = 1e-15 |
| 152 |
|
|
|
| 153 |
|
|
# Boltzmann's constant amu*Ang^2*fs^-2/K |
| 154 |
|
|
# kB = 8.31451e-7 |
| 155 |
|
|
|
| 156 |
|
|
# Boltzmann's constant kcal/K |
| 157 |
|
|
kB = 3.29762e-27 |
| 158 |
|
|
|
| 159 |
|
|
# converts (amu/fs^3)^2*fs^2 --> kcal^2/angstrom^4 ----> FOR HESS-EINSTEIN |
| 160 |
|
|
intSSdtdtConvert = 1.57288e-41 |
| 161 |
|
|
|
| 162 |
|
|
# converts (amu/fs^3)^2*fs --> kcal^2/(fs *angstrom^4) ----> FOR GREEN-KUBO |
| 163 |
|
|
intSSdtConvert = 1.57288e-41 |
| 164 |
|
|
|
| 165 |
|
|
# preV = thcondConvert * volAve / (kB * tempAve * tempAve) |
| 166 |
|
|
|
| 167 |
|
|
# Without unit conversions as follows it should be in Ang^3 / (kcal K) |
| 168 |
|
|
preV = volAve / (kB * tempAve * tempAve) |
| 169 |
|
|
|
| 170 |
|
|
if doGreenKubo: |
| 171 |
|
|
gkXcorr = [] |
| 172 |
|
|
gkYcorr = [] |
| 173 |
|
|
gkZcorr = [] |
| 174 |
|
|
print "computing Green-Kubo-style Correlation Function" |
| 175 |
|
|
# i corresponds to dt |
| 176 |
|
|
for i in range(len(time)): |
| 177 |
|
|
# j is the starting time for the correlation |
| 178 |
|
|
pp = 0.0 |
| 179 |
|
|
|
| 180 |
|
|
ggX = 0.0 |
| 181 |
|
|
ggY = 0.0 |
| 182 |
|
|
ggZ = 0.0 |
| 183 |
|
|
for j in range( len(time) - i ): |
| 184 |
|
|
|
| 185 |
|
|
ggX = ggX + Sx[j+i]*Sx[j] |
| 186 |
|
|
ggY = ggY + Sy[j+i]*Sy[j] |
| 187 |
|
|
ggZ = ggZ + Sz[j+i]*Sz[j] |
| 188 |
|
|
|
| 189 |
|
|
gkXcorr.append(ggX / float(len(time)-i)) |
| 190 |
|
|
gkYcorr.append(ggY / float(len(time)-i)) |
| 191 |
|
|
gkZcorr.append(ggZ / float(len(time)-i)) |
| 192 |
|
|
|
| 193 |
|
|
if doEinstein: |
| 194 |
|
|
print "computing Einstein-style Correlation Function" |
| 195 |
|
|
|
| 196 |
|
|
# Precompute sum variables to aid integration. |
| 197 |
|
|
# The integral from t0 -> t0 + t can be easily obtained |
| 198 |
|
|
# from the precomputed sum variables: sum[t0+t] - sum[t0-1] |
| 199 |
|
|
#for i in range(1, len(time)): |
| 200 |
|
|
xSum = [] |
| 201 |
|
|
xSum.append(Sx[0]) |
| 202 |
|
|
ySum = [] |
| 203 |
|
|
ySum.append(Sy[0]) |
| 204 |
|
|
zSum = [] |
| 205 |
|
|
zSum.append(Sz[0]) |
| 206 |
|
|
for i in range(1, len(time)): |
| 207 |
|
|
xSum.append(xSum[i-1] + Sx[i]) |
| 208 |
|
|
ySum.append(ySum[i-1] + Sy[i]) |
| 209 |
|
|
zSum.append(zSum[i-1] + Sz[i]) |
| 210 |
|
|
|
| 211 |
|
|
dt = time[1] - time[0] |
| 212 |
|
|
|
| 213 |
|
|
eXcorr = [] |
| 214 |
|
|
eYcorr = [] |
| 215 |
|
|
eZcorr = [] |
| 216 |
|
|
|
| 217 |
|
|
# i corresponds to the total duration of the integral |
| 218 |
|
|
for i in range(len(time)): |
| 219 |
|
|
|
| 220 |
|
|
xIntSum = 0.0 |
| 221 |
|
|
yIntSum = 0.0 |
| 222 |
|
|
zIntSum = 0.0 |
| 223 |
|
|
# j corresponds to the starting point of the integral |
| 224 |
|
|
for j in range(len(time) - i): |
| 225 |
|
|
if (j == 0): |
| 226 |
|
|
|
| 227 |
|
|
xInt = dt*xSum[j+i] |
| 228 |
|
|
yInt = dt*ySum[j+i] |
| 229 |
|
|
zInt = dt*zSum[j+i] |
| 230 |
|
|
else: |
| 231 |
|
|
xInt = dt*(xSum[j+i] - xSum[j-1]) |
| 232 |
|
|
yInt = dt*(ySum[j+i] - ySum[j-1]) |
| 233 |
|
|
zInt = dt*(zSum[j+i] - zSum[j-1]) |
| 234 |
|
|
|
| 235 |
|
|
xIntSum = xIntSum + xInt*xInt |
| 236 |
|
|
yIntSum = yIntSum + yInt*yInt |
| 237 |
|
|
zIntSum = zIntSum + zInt*zInt |
| 238 |
|
|
|
| 239 |
|
|
eXcorr.append(xIntSum / float(len(time)-i)) |
| 240 |
|
|
eYcorr.append(yIntSum / float(len(time)-i)) |
| 241 |
|
|
eZcorr.append(zIntSum / float(len(time)-i)) |
| 242 |
|
|
|
| 243 |
|
|
|
| 244 |
|
|
outputFile = open(outputFileName, 'w') |
| 245 |
|
|
for i in range(len(time)): |
| 246 |
|
|
if doGreenKubo: |
| 247 |
|
|
outputFile.write("%f\t%13e\n" % (time[i], preV * intSSdtConvert * (gkXcorr[i]+gkYcorr[i]+gkZcorr[i])/3)) |
| 248 |
|
|
|
| 249 |
|
|
if doEinstein: |
| 250 |
|
|
# outputFile.write("%f\t%13e\n" % (time[i], 0.5 * preV * heatfluxConvert * heatfluxConvert * dtConvert * dtConvert * (eXcorr[i] + eYcorr[i] + eZcorr[i]))) |
| 251 |
|
|
outputFile.write("%f\t%13e\n" % (time[i], 0.5 * preV * intSSdtdtConvert * (eXcorr[i] + eYcorr[i] + eZcorr[i])/3)) |
| 252 |
|
|
# Ang^3 / (kcal K) * kcal^2/angstrom^4 |
| 253 |
|
|
outputFile.close() |
| 254 |
|
|
|
| 255 |
|
|
def main(argv): |
| 256 |
|
|
global doGreenKubo |
| 257 |
|
|
global doEinstein |
| 258 |
|
|
global haveStatFileName |
| 259 |
|
|
global haveOutputFileName |
| 260 |
|
|
|
| 261 |
|
|
haveStatFileName = False |
| 262 |
|
|
haveOutputFileName = False |
| 263 |
|
|
doGreenKubo = False |
| 264 |
|
|
doEinstein = False |
| 265 |
|
|
|
| 266 |
|
|
try: |
| 267 |
|
|
opts, args = getopt.getopt(argv, "hgesf:o:", ["help", "einstein", "stat-file=", "output-file="]) |
| 268 |
|
|
except getopt.GetoptError: |
| 269 |
|
|
usage() |
| 270 |
|
|
sys.exit(2) |
| 271 |
|
|
for opt, arg in opts: |
| 272 |
|
|
if opt in ("-h", "--help"): |
| 273 |
|
|
usage() |
| 274 |
|
|
sys.exit() |
| 275 |
|
|
elif opt in ("-g", "--green-kubo"): |
| 276 |
|
|
doGreenKubo = True |
| 277 |
|
|
elif opt in ("-e", "--einstein"): |
| 278 |
|
|
doEinstein = True |
| 279 |
|
|
elif opt in ("-f", "--stat-file"): |
| 280 |
|
|
statFileName = arg |
| 281 |
|
|
haveStatFileName = True |
| 282 |
|
|
elif opt in ("-o", "--output-file"): |
| 283 |
|
|
outputFileName = arg |
| 284 |
|
|
haveOutputFileName = True |
| 285 |
|
|
if (not haveStatFileName): |
| 286 |
|
|
usage() |
| 287 |
|
|
print "No stat file was specified" |
| 288 |
|
|
sys.exit() |
| 289 |
|
|
if (not haveOutputFileName): |
| 290 |
|
|
usage() |
| 291 |
|
|
print "No output file was specified" |
| 292 |
|
|
sys.exit() |
| 293 |
|
|
|
| 294 |
|
|
readStatFile(statFileName); |
| 295 |
|
|
computeAverages(); |
| 296 |
|
|
computeCorrelations(outputFileName); |
| 297 |
|
|
|
| 298 |
|
|
if __name__ == "__main__": |
| 299 |
|
|
if len(sys.argv) == 1: |
| 300 |
|
|
usage() |
| 301 |
|
|
sys.exit() |
| 302 |
|
|
main(sys.argv[1:]) |