ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/heatflux/src/UseTheForce/doForces.F90
Revision: 1682
Committed: Tue Feb 28 23:11:22 2012 UTC (13 years, 6 months ago) by chuckv
File size: 70148 byte(s)
Log Message:
Debugging heat flux calculation for rigid bodies.

File Contents

# Content
1 !!
2 !! Copyright (c) 2005, 2009 The University of Notre Dame. All Rights Reserved.
3 !!
4 !! The University of Notre Dame grants you ("Licensee") a
5 !! non-exclusive, royalty free, license to use, modify and
6 !! redistribute this software in source and binary code form, provided
7 !! that the following conditions are met:
8 !!
9 !! 1. Redistributions of source code must retain the above copyright
10 !! notice, this list of conditions and the following disclaimer.
11 !!
12 !! 2. Redistributions in binary form must reproduce the above copyright
13 !! notice, this list of conditions and the following disclaimer in the
14 !! documentation and/or other materials provided with the
15 !! distribution.
16 !!
17 !! This software is provided "AS IS," without a warranty of any
18 !! kind. All express or implied conditions, representations and
19 !! warranties, including any implied warranty of merchantability,
20 !! fitness for a particular purpose or non-infringement, are hereby
21 !! excluded. The University of Notre Dame and its licensors shall not
22 !! be liable for any damages suffered by licensee as a result of
23 !! using, modifying or distributing the software or its
24 !! derivatives. In no event will the University of Notre Dame or its
25 !! licensors be liable for any lost revenue, profit or data, or for
26 !! direct, indirect, special, consequential, incidental or punitive
27 !! damages, however caused and regardless of the theory of liability,
28 !! arising out of the use of or inability to use software, even if the
29 !! University of Notre Dame has been advised of the possibility of
30 !! such damages.
31 !!
32 !! SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 !! research, please cite the appropriate papers when you publish your
34 !! work. Good starting points are:
35 !!
36 !! [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 !! [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 !! [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 !! [4] Vardeman & Gezelter, in progress (2009).
40 !!
41
42 !! doForces.F90
43 !! module doForces
44 !! Calculates Long Range forces.
45
46 !! @author Charles F. Vardeman II
47 !! @author Matthew Meineke
48 !! @version $Id$, $Date$, $Name: not supported by cvs2svn $, $Revision$
49
50
51 module doForces
52 use force_globals
53 use fForceOptions
54 use simulation
55 use definitions
56 use atype_module
57 use switcheroo
58 use neighborLists
59 use lj
60 use sticky
61 use electrostatic_module
62 use gayberne
63 use shapes
64 use vector_class
65 use eam
66 use MetalNonMetal
67 use suttonchen
68 use status
69 #ifdef IS_MPI
70 use mpiSimulation
71 #endif
72
73 implicit none
74 PRIVATE
75
76 #define __FORTRAN90
77 #include "UseTheForce/fCutoffPolicy.h"
78 #include "UseTheForce/DarkSide/fInteractionMap.h"
79 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
80
81 INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82 INTEGER, PARAMETER:: PAIR_LOOP = 2
83
84 logical, save :: haveNeighborList = .false.
85 logical, save :: haveSIMvariables = .false.
86 logical, save :: haveSaneForceField = .false.
87 logical, save :: haveInteractionHash = .false.
88 logical, save :: haveGtypeCutoffMap = .false.
89 logical, save :: haveDefaultCutoffs = .false.
90 logical, save :: haveSkinThickness = .false.
91 logical, save :: haveElectrostaticSummationMethod = .false.
92 logical, save :: haveCutoffPolicy = .false.
93 logical, save :: VisitCutoffsAfterComputing = .false.
94 logical, save :: do_box_dipole = .false.
95
96 logical, save :: FF_uses_DirectionalAtoms
97 logical, save :: FF_uses_Dipoles
98 logical, save :: FF_uses_GayBerne
99 logical, save :: FF_uses_EAM
100 logical, save :: FF_uses_SC
101 logical, save :: FF_uses_MNM
102
103
104 logical, save :: SIM_uses_DirectionalAtoms
105 logical, save :: SIM_uses_EAM
106 logical, save :: SIM_uses_SC
107 logical, save :: SIM_uses_MNM
108 logical, save :: SIM_requires_postpair_calc
109 logical, save :: SIM_requires_prepair_calc
110 logical, save :: SIM_uses_PBC
111 logical, save :: SIM_uses_AtomicVirial
112
113 integer, save :: electrostaticSummationMethod
114 integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
115
116 real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
117 real(kind=dp), save :: skinThickness
118 logical, save :: defaultDoShiftPot
119 logical, save :: defaultDoShiftFrc
120
121 public :: init_FF
122 public :: setCutoffs
123 public :: cWasLame
124 public :: setElectrostaticMethod
125 public :: setBoxDipole
126 public :: getBoxDipole
127 public :: setCutoffPolicy
128 public :: setSkinThickness
129 public :: do_force_loop
130
131 #ifdef PROFILE
132 public :: getforcetime
133 real, save :: forceTime = 0
134 real :: forceTimeInitial, forceTimeFinal
135 integer :: nLoops
136 #endif
137
138 !! Variables for cutoff mapping and interaction mapping
139 ! Bit hash to determine pair-pair interactions.
140 integer, dimension(:,:), allocatable :: InteractionHash
141 real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
142 real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
143 real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
144
145 integer, dimension(:), allocatable, target :: groupToGtypeRow
146 integer, dimension(:), pointer :: groupToGtypeCol => null()
147
148 real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
149 real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
150 type ::gtypeCutoffs
151 real(kind=dp) :: rcut
152 real(kind=dp) :: rcutsq
153 real(kind=dp) :: rlistsq
154 end type gtypeCutoffs
155 type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
156
157 real(kind=dp), dimension(3) :: boxDipole
158
159 contains
160
161 subroutine createInteractionHash()
162 integer :: nAtypes
163 integer :: i
164 integer :: j
165 integer :: iHash
166 !! Test Types
167 logical :: i_is_LJ
168 logical :: i_is_Elect
169 logical :: i_is_Sticky
170 logical :: i_is_StickyP
171 logical :: i_is_GB
172 logical :: i_is_EAM
173 logical :: i_is_Shape
174 logical :: i_is_SC
175 logical :: j_is_LJ
176 logical :: j_is_Elect
177 logical :: j_is_Sticky
178 logical :: j_is_StickyP
179 logical :: j_is_GB
180 logical :: j_is_EAM
181 logical :: j_is_Shape
182 logical :: j_is_SC
183 real(kind=dp) :: myRcut
184
185 if (.not. associated(atypes)) then
186 call handleError("doForces", "atypes was not present before call of createInteractionHash!")
187 return
188 endif
189
190 nAtypes = getSize(atypes)
191
192 if (nAtypes == 0) then
193 call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
194 return
195 end if
196
197 if (.not. allocated(InteractionHash)) then
198 allocate(InteractionHash(nAtypes,nAtypes))
199 else
200 deallocate(InteractionHash)
201 allocate(InteractionHash(nAtypes,nAtypes))
202 endif
203
204 if (.not. allocated(atypeMaxCutoff)) then
205 allocate(atypeMaxCutoff(nAtypes))
206 else
207 deallocate(atypeMaxCutoff)
208 allocate(atypeMaxCutoff(nAtypes))
209 endif
210
211 do i = 1, nAtypes
212 call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
213 call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
214 call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
215 call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
216 call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
217 call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
218 call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
219 call getElementProperty(atypes, i, "is_SC", i_is_SC)
220
221 do j = i, nAtypes
222
223 iHash = 0
224 myRcut = 0.0_dp
225
226 call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
227 call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
228 call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
229 call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
230 call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
231 call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
232 call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
233 call getElementProperty(atypes, j, "is_SC", j_is_SC)
234
235 if (i_is_LJ .and. j_is_LJ) then
236 iHash = ior(iHash, LJ_PAIR)
237 endif
238
239 if (i_is_Elect .and. j_is_Elect) then
240 iHash = ior(iHash, ELECTROSTATIC_PAIR)
241 endif
242
243 if (i_is_Sticky .and. j_is_Sticky) then
244 iHash = ior(iHash, STICKY_PAIR)
245 endif
246
247 if (i_is_StickyP .and. j_is_StickyP) then
248 iHash = ior(iHash, STICKYPOWER_PAIR)
249 endif
250
251 if (i_is_EAM .and. j_is_EAM) then
252 iHash = ior(iHash, EAM_PAIR)
253 endif
254
255 if (i_is_SC .and. j_is_SC) then
256 iHash = ior(iHash, SC_PAIR)
257 endif
258
259 if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
260 if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
261 if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
262
263 if ((i_is_EAM.or.i_is_SC).and.(.not.(j_is_EAM.or.j_is_SC))) iHash = ior(iHash, MNM_PAIR)
264 if ((j_is_EAM.or.j_is_SC).and.(.not.(i_is_EAM.or.i_is_SC))) iHash = ior(iHash, MNM_PAIR)
265
266 if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
267 if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
268 if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
269
270
271 InteractionHash(i,j) = iHash
272 InteractionHash(j,i) = iHash
273
274 end do
275
276 end do
277
278 haveInteractionHash = .true.
279 end subroutine createInteractionHash
280
281 subroutine createGtypeCutoffMap()
282
283 logical :: i_is_LJ
284 logical :: i_is_Elect
285 logical :: i_is_Sticky
286 logical :: i_is_StickyP
287 logical :: i_is_GB
288 logical :: i_is_EAM
289 logical :: i_is_Shape
290 logical :: i_is_SC
291 logical :: GtypeFound
292
293 integer :: myStatus, nAtypes, i, j, istart, iend, jstart, jend
294 integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
295 integer :: nGroupsInRow
296 integer :: nGroupsInCol
297 integer :: nGroupTypesRow,nGroupTypesCol
298 real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
299 real(kind=dp) :: biggestAtypeCutoff
300
301 if (.not. haveInteractionHash) then
302 call createInteractionHash()
303 endif
304 #ifdef IS_MPI
305 nGroupsInRow = getNgroupsInRow(plan_group_row)
306 nGroupsInCol = getNgroupsInCol(plan_group_col)
307 #endif
308 nAtypes = getSize(atypes)
309 ! Set all of the initial cutoffs to zero.
310 atypeMaxCutoff = 0.0_dp
311 biggestAtypeCutoff = 0.0_dp
312 do i = 1, nAtypes
313 if (SimHasAtype(i)) then
314 call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
315 call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
316 call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
317 call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
318 call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
319 call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
320 call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
321 call getElementProperty(atypes, i, "is_SC", i_is_SC)
322
323 if (haveDefaultCutoffs) then
324 atypeMaxCutoff(i) = defaultRcut
325 else
326 if (i_is_LJ) then
327 thisRcut = getSigma(i) * 2.5_dp
328 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329 endif
330 if (i_is_Elect) then
331 thisRcut = defaultRcut
332 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333 endif
334 if (i_is_Sticky) then
335 thisRcut = getStickyCut(i)
336 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337 endif
338 if (i_is_StickyP) then
339 thisRcut = getStickyPowerCut(i)
340 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
341 endif
342 if (i_is_GB) then
343 thisRcut = getGayBerneCut(i)
344 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
345 endif
346 if (i_is_EAM) then
347 thisRcut = getEAMCut(i)
348 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
349 endif
350 if (i_is_Shape) then
351 thisRcut = getShapeCut(i)
352 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
353 endif
354 if (i_is_SC) then
355 thisRcut = getSCCut(i)
356 if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
357 endif
358 endif
359
360 if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
361 biggestAtypeCutoff = atypeMaxCutoff(i)
362 endif
363
364 endif
365 enddo
366
367 istart = 1
368 jstart = 1
369 #ifdef IS_MPI
370 iend = nGroupsInRow
371 jend = nGroupsInCol
372 #else
373 iend = nGroups
374 jend = nGroups
375 #endif
376
377 !! allocate the groupToGtype and gtypeMaxCutoff here.
378 if(.not.allocated(groupToGtypeRow)) then
379 ! allocate(groupToGtype(iend))
380 allocate(groupToGtypeRow(iend))
381 else
382 deallocate(groupToGtypeRow)
383 allocate(groupToGtypeRow(iend))
384 endif
385 if(.not.allocated(groupMaxCutoffRow)) then
386 allocate(groupMaxCutoffRow(iend))
387 else
388 deallocate(groupMaxCutoffRow)
389 allocate(groupMaxCutoffRow(iend))
390 end if
391
392 if(.not.allocated(gtypeMaxCutoffRow)) then
393 allocate(gtypeMaxCutoffRow(iend))
394 else
395 deallocate(gtypeMaxCutoffRow)
396 allocate(gtypeMaxCutoffRow(iend))
397 endif
398
399
400 #ifdef IS_MPI
401 ! We only allocate new storage if we are in MPI because Ncol /= Nrow
402 if(.not.associated(groupToGtypeCol)) then
403 allocate(groupToGtypeCol(jend))
404 else
405 deallocate(groupToGtypeCol)
406 allocate(groupToGtypeCol(jend))
407 end if
408
409 if(.not.associated(groupMaxCutoffCol)) then
410 allocate(groupMaxCutoffCol(jend))
411 else
412 deallocate(groupMaxCutoffCol)
413 allocate(groupMaxCutoffCol(jend))
414 end if
415 if(.not.associated(gtypeMaxCutoffCol)) then
416 allocate(gtypeMaxCutoffCol(jend))
417 else
418 deallocate(gtypeMaxCutoffCol)
419 allocate(gtypeMaxCutoffCol(jend))
420 end if
421
422 groupMaxCutoffCol = 0.0_dp
423 gtypeMaxCutoffCol = 0.0_dp
424
425 #endif
426 groupMaxCutoffRow = 0.0_dp
427 gtypeMaxCutoffRow = 0.0_dp
428
429
430 !! first we do a single loop over the cutoff groups to find the
431 !! largest cutoff for any atypes present in this group. We also
432 !! create gtypes at this point.
433
434 tol = 1.0e-6_dp
435 nGroupTypesRow = 0
436 nGroupTypesCol = 0
437 do i = istart, iend
438 n_in_i = groupStartRow(i+1) - groupStartRow(i)
439 groupMaxCutoffRow(i) = 0.0_dp
440 do ia = groupStartRow(i), groupStartRow(i+1)-1
441 atom1 = groupListRow(ia)
442 #ifdef IS_MPI
443 me_i = atid_row(atom1)
444 #else
445 me_i = atid(atom1)
446 #endif
447 if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
448 groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
449 endif
450 enddo
451 if (nGroupTypesRow.eq.0) then
452 nGroupTypesRow = nGroupTypesRow + 1
453 gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
454 groupToGtypeRow(i) = nGroupTypesRow
455 else
456 GtypeFound = .false.
457 do g = 1, nGroupTypesRow
458 if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
459 groupToGtypeRow(i) = g
460 GtypeFound = .true.
461 endif
462 enddo
463 if (.not.GtypeFound) then
464 nGroupTypesRow = nGroupTypesRow + 1
465 gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
466 groupToGtypeRow(i) = nGroupTypesRow
467 endif
468 endif
469 enddo
470
471 #ifdef IS_MPI
472 do j = jstart, jend
473 n_in_j = groupStartCol(j+1) - groupStartCol(j)
474 groupMaxCutoffCol(j) = 0.0_dp
475 do ja = groupStartCol(j), groupStartCol(j+1)-1
476 atom1 = groupListCol(ja)
477
478 me_j = atid_col(atom1)
479
480 if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
481 groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
482 endif
483 enddo
484
485 if (nGroupTypesCol.eq.0) then
486 nGroupTypesCol = nGroupTypesCol + 1
487 gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
488 groupToGtypeCol(j) = nGroupTypesCol
489 else
490 GtypeFound = .false.
491 do g = 1, nGroupTypesCol
492 if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
493 groupToGtypeCol(j) = g
494 GtypeFound = .true.
495 endif
496 enddo
497 if (.not.GtypeFound) then
498 nGroupTypesCol = nGroupTypesCol + 1
499 gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
500 groupToGtypeCol(j) = nGroupTypesCol
501 endif
502 endif
503 enddo
504
505 #else
506 ! Set pointers to information we just found
507 nGroupTypesCol = nGroupTypesRow
508 groupToGtypeCol => groupToGtypeRow
509 gtypeMaxCutoffCol => gtypeMaxCutoffRow
510 groupMaxCutoffCol => groupMaxCutoffRow
511 #endif
512
513 !! allocate the gtypeCutoffMap here.
514 allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
515 !! then we do a double loop over all the group TYPES to find the cutoff
516 !! map between groups of two types
517 tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
518
519 do i = 1, nGroupTypesRow
520 do j = 1, nGroupTypesCol
521
522 select case(cutoffPolicy)
523 case(TRADITIONAL_CUTOFF_POLICY)
524 thisRcut = tradRcut
525 case(MIX_CUTOFF_POLICY)
526 thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
527 case(MAX_CUTOFF_POLICY)
528 thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
529 case default
530 call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
531 return
532 end select
533 gtypeCutoffMap(i,j)%rcut = thisRcut
534
535 if (thisRcut.gt.largestRcut) largestRcut = thisRcut
536
537 gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
538
539 if (.not.haveSkinThickness) then
540 skinThickness = 1.0_dp
541 endif
542
543 gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
544
545 ! sanity check
546
547 if (haveDefaultCutoffs) then
548 if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
549 call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
550 endif
551 endif
552 enddo
553 enddo
554
555 if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
556 if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
557 if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
558 #ifdef IS_MPI
559 if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
560 if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
561 #endif
562 groupMaxCutoffCol => null()
563 gtypeMaxCutoffCol => null()
564
565 haveGtypeCutoffMap = .true.
566 end subroutine createGtypeCutoffMap
567
568 subroutine setCutoffs(defRcut, defRsw, defSP, defSF)
569
570 real(kind=dp),intent(in) :: defRcut, defRsw
571 integer, intent(in) :: defSP, defSF
572 character(len = statusMsgSize) :: errMsg
573 integer :: localError
574
575 defaultRcut = defRcut
576 defaultRsw = defRsw
577
578 if (defSP .ne. 0) then
579 defaultDoShiftPot = .true.
580 else
581 defaultDoShiftPot = .false.
582 endif
583 if (defSF .ne. 0) then
584 defaultDoShiftFrc = .true.
585 else
586 defaultDoShiftFrc = .false.
587 endif
588
589 if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
590 if (defaultDoShiftFrc) then
591 write(errMsg, *) &
592 'cutoffRadius and switchingRadius are set to the', newline &
593 // tab, 'same value. OpenMD will use shifted force', newline &
594 // tab, 'potentials instead of switching functions.'
595
596 call handleInfo("setCutoffs", errMsg)
597 else
598 write(errMsg, *) &
599 'cutoffRadius and switchingRadius are set to the', newline &
600 // tab, 'same value. OpenMD will use shifted', newline &
601 // tab, 'potentials instead of switching functions.'
602
603 call handleInfo("setCutoffs", errMsg)
604
605 defaultDoShiftPot = .true.
606 endif
607
608 endif
609
610 localError = 0
611 call setLJDefaultCutoff( defaultRcut, defaultDoShiftPot, &
612 defaultDoShiftFrc )
613 call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
614 call setCutoffEAM( defaultRcut )
615 call setCutoffSC( defaultRcut )
616 call setMnMDefaultCutoff( defaultRcut, defaultDoShiftPot, &
617 defaultDoShiftFrc )
618 call set_switch(defaultRsw, defaultRcut)
619 call setHmatDangerousRcutValue(defaultRcut)
620
621 haveDefaultCutoffs = .true.
622 haveGtypeCutoffMap = .false.
623
624 end subroutine setCutoffs
625
626 subroutine cWasLame()
627
628 VisitCutoffsAfterComputing = .true.
629 return
630
631 end subroutine cWasLame
632
633 subroutine setCutoffPolicy(cutPolicy)
634
635 integer, intent(in) :: cutPolicy
636
637 cutoffPolicy = cutPolicy
638 haveCutoffPolicy = .true.
639 haveGtypeCutoffMap = .false.
640
641 end subroutine setCutoffPolicy
642
643 subroutine setBoxDipole()
644
645 do_box_dipole = .true.
646
647 end subroutine setBoxDipole
648
649 subroutine getBoxDipole( box_dipole )
650
651 real(kind=dp), intent(inout), dimension(3) :: box_dipole
652
653 box_dipole = boxDipole
654
655 end subroutine getBoxDipole
656
657 subroutine setElectrostaticMethod( thisESM )
658
659 integer, intent(in) :: thisESM
660
661 electrostaticSummationMethod = thisESM
662 haveElectrostaticSummationMethod = .true.
663
664 end subroutine setElectrostaticMethod
665
666 subroutine setSkinThickness( thisSkin )
667
668 real(kind=dp), intent(in) :: thisSkin
669
670 skinThickness = thisSkin
671 haveSkinThickness = .true.
672 haveGtypeCutoffMap = .false.
673
674 end subroutine setSkinThickness
675
676 subroutine setSimVariables()
677 SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
678 SIM_uses_EAM = SimUsesEAM()
679 SIM_requires_postpair_calc = SimRequiresPostpairCalc()
680 SIM_requires_prepair_calc = SimRequiresPrepairCalc()
681 SIM_uses_PBC = SimUsesPBC()
682 SIM_uses_SC = SimUsesSC()
683 SIM_uses_AtomicVirial = SimUsesAtomicVirial()
684
685 haveSIMvariables = .true.
686
687 return
688 end subroutine setSimVariables
689
690 subroutine doReadyCheck(error)
691 integer, intent(out) :: error
692 integer :: myStatus
693
694 error = 0
695
696 if (.not. haveInteractionHash) then
697 call createInteractionHash()
698 endif
699
700 if (.not. haveGtypeCutoffMap) then
701 call createGtypeCutoffMap()
702 endif
703
704 if (VisitCutoffsAfterComputing) then
705 call set_switch(largestRcut, largestRcut)
706 call setHmatDangerousRcutValue(largestRcut)
707 call setCutoffEAM(largestRcut)
708 call setCutoffSC(largestRcut)
709 VisitCutoffsAfterComputing = .false.
710 endif
711
712 if (.not. haveSIMvariables) then
713 call setSimVariables()
714 endif
715
716 if (.not. haveNeighborList) then
717 write(default_error, *) 'neighbor list has not been initialized in doForces!'
718 error = -1
719 return
720 end if
721
722 if (.not. haveSaneForceField) then
723 write(default_error, *) 'Force Field is not sane in doForces!'
724 error = -1
725 return
726 end if
727
728 #ifdef IS_MPI
729 if (.not. isMPISimSet()) then
730 write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
731 error = -1
732 return
733 endif
734 #endif
735 return
736 end subroutine doReadyCheck
737
738
739 subroutine init_FF(thisStat)
740
741 integer, intent(out) :: thisStat
742 integer :: my_status, nMatches
743 integer, pointer :: MatchList(:) => null()
744
745 !! assume things are copacetic, unless they aren't
746 thisStat = 0
747
748 !! init_FF is called *after* all of the atom types have been
749 !! defined in atype_module using the new_atype subroutine.
750 !!
751 !! this will scan through the known atypes and figure out what
752 !! interactions are used by the force field.
753
754 FF_uses_DirectionalAtoms = .false.
755 FF_uses_Dipoles = .false.
756 FF_uses_GayBerne = .false.
757 FF_uses_EAM = .false.
758 FF_uses_SC = .false.
759
760 call getMatchingElementList(atypes, "is_Directional", .true., &
761 nMatches, MatchList)
762 if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
763
764 call getMatchingElementList(atypes, "is_Dipole", .true., &
765 nMatches, MatchList)
766 if (nMatches .gt. 0) FF_uses_Dipoles = .true.
767
768 call getMatchingElementList(atypes, "is_GayBerne", .true., &
769 nMatches, MatchList)
770 if (nMatches .gt. 0) FF_uses_GayBerne = .true.
771
772 call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
773 if (nMatches .gt. 0) FF_uses_EAM = .true.
774
775 call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
776 if (nMatches .gt. 0) FF_uses_SC = .true.
777
778
779 haveSaneForceField = .true.
780
781
782 if (.not. haveNeighborList) then
783 !! Create neighbor lists
784 call expandNeighborList(nLocal, my_status)
785 if (my_Status /= 0) then
786 write(default_error,*) "SimSetup: ExpandNeighborList returned error."
787 thisStat = -1
788 return
789 endif
790 haveNeighborList = .true.
791 endif
792
793 end subroutine init_FF
794
795
796 !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
797 !------------------------------------------------------------->
798 subroutine do_force_loop(q,vel, q_group, v_group, A, eFrame, f, t, tau, S, pot, particle_pot, &
799 error)
800 !! Position array provided by C, dimensioned by getNlocal
801 real ( kind = dp ), dimension(3, nLocal) :: q
802 real ( kind = dp ), dimension(3, nlocal) :: vel
803 !! molecular center-of-mass position array
804 real ( kind = dp ), dimension(3, nGroups) :: q_group
805 !! molecular center-of-mass velocity array
806 real ( kind = dp ), dimension(3, nGroups) :: v_group
807 !! Rotation Matrix for each long range particle in simulation.
808 real( kind = dp), dimension(9, nLocal) :: A
809 !! Unit vectors for dipoles (lab frame)
810 real( kind = dp ), dimension(9,nLocal) :: eFrame
811 !! Force array provided by C, dimensioned by getNlocal
812 real ( kind = dp ), dimension(3,nLocal) :: f
813 !! Torsion array provided by C, dimensioned by getNlocal
814 real( kind = dp ), dimension(3,nLocal) :: t
815
816 !! Stress Tensor
817 real( kind = dp), dimension(9) :: tau
818 !! Heat Flux component S
819 real(kind=dp), dimension(3) :: S
820 real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
821 real( kind = dp ), dimension(nLocal) :: particle_pot
822
823 logical :: in_switching_region
824 #ifdef IS_MPI
825 real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
826 integer :: nAtomsInRow
827 integer :: nAtomsInCol
828 integer :: nprocs
829 integer :: nGroupsInRow
830 integer :: nGroupsInCol
831 #endif
832 integer :: natoms
833 logical :: update_nlist
834 integer :: i, j, jstart, jend, jnab
835 integer :: istart, iend
836 integer :: ia, jb, atom1, atom2
837 integer :: nlist
838 real( kind = DP ) :: ratmsq, rgrpsq, rgrp, rag, vpair, vij
839 real( kind = DP ) :: sw, dswdr, swderiv, mf
840 real( kind = DP ) :: rVal
841 real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij, fg, dag, vel_j
842 real(kind=dp),dimension(3) :: S_local,vel_grp_j
843 real(kind=dp) :: rfpot, mu_i
844 real(kind=dp):: rCut
845 integer :: me_i, me_j, n_in_i, n_in_j, iG, j1
846 logical :: is_dp_i
847 integer :: neighborListSize
848 integer :: listerror, error
849 integer :: localError
850 integer :: propPack_i, propPack_j
851 integer :: loopStart, loopEnd, loop
852 integer :: iHash, jHash
853 integer :: i1, topoDist
854
855 !! the variables for the box dipole moment
856 #ifdef IS_MPI
857 integer :: pChgCount_local
858 integer :: nChgCount_local
859 real(kind=dp) :: pChg_local
860 real(kind=dp) :: nChg_local
861 real(kind=dp), dimension(3) :: pChgPos_local
862 real(kind=dp), dimension(3) :: nChgPos_local
863 real(kind=dp), dimension(3) :: dipVec_local
864 #endif
865 integer :: pChgCount
866 integer :: nChgCount
867 real(kind=dp) :: pChg
868 real(kind=dp) :: nChg
869 real(kind=dp) :: chg_value
870 real(kind=dp), dimension(3) :: pChgPos
871 real(kind=dp), dimension(3) :: nChgPos
872 real(kind=dp), dimension(3) :: dipVec
873 real(kind=dp), dimension(3) :: chgVec
874 real(kind=dp) :: skch
875
876 !! initialize a dummy group velocity variable
877 vel_j = 0.0_dp
878 vel_grp_j = 0.0_dp
879 S_local = 0.0_dp
880
881 !! initialize box dipole variables
882 if (do_box_dipole) then
883 #ifdef IS_MPI
884 pChg_local = 0.0_dp
885 nChg_local = 0.0_dp
886 pChgCount_local = 0
887 nChgCount_local = 0
888 do i=1, 3
889 pChgPos_local = 0.0_dp
890 nChgPos_local = 0.0_dp
891 dipVec_local = 0.0_dp
892 enddo
893 #endif
894 pChg = 0.0_dp
895 nChg = 0.0_dp
896 pChgCount = 0
897 nChgCount = 0
898 chg_value = 0.0_dp
899
900 do i=1, 3
901 pChgPos(i) = 0.0_dp
902 nChgPos(i) = 0.0_dp
903 dipVec(i) = 0.0_dp
904 chgVec(i) = 0.0_dp
905 boxDipole(i) = 0.0_dp
906 enddo
907 endif
908
909 !! initialize local variables
910 S_local = 0.0_dp
911
912 #ifdef IS_MPI
913 pot_local = 0.0_dp
914 nAtomsInRow = getNatomsInRow(plan_atom_row)
915 nAtomsInCol = getNatomsInCol(plan_atom_col)
916 nGroupsInRow = getNgroupsInRow(plan_group_row)
917 nGroupsInCol = getNgroupsInCol(plan_group_col)
918 #else
919 natoms = nlocal
920 #endif
921
922 call doReadyCheck(localError)
923 if ( localError .ne. 0 ) then
924 call handleError("do_force_loop", "Not Initialized")
925 error = -1
926 return
927 end if
928 call zero_work_arrays()
929
930 ! Gather all information needed by all force loops
931
932 #ifdef IS_MPI
933
934 call gather(q, q_Row, plan_atom_row_3d)
935 call gather(q, q_Col, plan_atom_col_3d)
936
937
938
939 call gather(vel, vel_Col, plan_atom_col_3d)
940
941 call gather(q_group, q_group_Row, plan_group_row_3d)
942 call gather(q_group, q_group_Col, plan_group_col_3d)
943 !! Support for heat flux velocity center-of-mass
944 call gather(v_group, v_group_Col, plan_group_col_3d)
945
946 if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
947 call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
948 call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
949
950 call gather(A, A_Row, plan_atom_row_rotation)
951 call gather(A, A_Col, plan_atom_col_rotation)
952 endif
953
954 #endif
955
956 !! Begin force loop timing:
957 #ifdef PROFILE
958 call cpu_time(forceTimeInitial)
959 nloops = nloops + 1
960 #endif
961
962 loopEnd = PAIR_LOOP
963 if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
964 loopStart = PREPAIR_LOOP
965 else
966 loopStart = PAIR_LOOP
967 endif
968
969 do loop = loopStart, loopEnd
970
971 ! See if we need to update neighbor lists
972 ! (but only on the first time through):
973 if (loop .eq. loopStart) then
974 #ifdef IS_MPI
975 call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
976 update_nlist)
977 #else
978 call checkNeighborList(nGroups, q_group, skinThickness, &
979 update_nlist)
980 #endif
981 endif
982
983 if (update_nlist) then
984 !! save current configuration and construct neighbor list
985 #ifdef IS_MPI
986 call saveNeighborList(nGroupsInRow, q_group_row)
987 #else
988 call saveNeighborList(nGroups, q_group)
989 #endif
990 neighborListSize = size(list)
991 nlist = 0
992 endif
993
994 istart = 1
995 #ifdef IS_MPI
996 iend = nGroupsInRow
997 #else
998 iend = nGroups - 1
999 #endif
1000 outer: do i = istart, iend
1001
1002 if (update_nlist) point(i) = nlist + 1
1003
1004 n_in_i = groupStartRow(i+1) - groupStartRow(i)
1005
1006 if (update_nlist) then
1007 #ifdef IS_MPI
1008 jstart = 1
1009 jend = nGroupsInCol
1010 #else
1011 jstart = i+1
1012 jend = nGroups
1013 #endif
1014 else
1015 jstart = point(i)
1016 jend = point(i+1) - 1
1017 ! make sure group i has neighbors
1018 if (jstart .gt. jend) cycle outer
1019 endif
1020
1021 do jnab = jstart, jend
1022 if (update_nlist) then
1023 j = jnab
1024 else
1025 j = list(jnab)
1026 endif
1027
1028 #ifdef IS_MPI
1029 me_j = atid_col(j)
1030 call get_interatomic_vector(q_group_Row(:,i), &
1031 q_group_Col(:,j), d_grp, rgrpsq)
1032 #else
1033 me_j = atid(j)
1034 call get_interatomic_vector(q_group(:,i), &
1035 q_group(:,j), d_grp, rgrpsq)
1036 #endif
1037
1038 if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
1039 if (update_nlist) then
1040 nlist = nlist + 1
1041
1042 if (nlist > neighborListSize) then
1043 #ifdef IS_MPI
1044 call expandNeighborList(nGroupsInRow, listerror)
1045 #else
1046 call expandNeighborList(nGroups, listerror)
1047 #endif
1048 if (listerror /= 0) then
1049 error = -1
1050 write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
1051 return
1052 end if
1053 neighborListSize = size(list)
1054 endif
1055
1056 list(nlist) = j
1057 endif
1058
1059 if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
1060
1061 rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
1062 if (loop .eq. PAIR_LOOP) then
1063 vij = 0.0_dp
1064 fij(1) = 0.0_dp
1065 fij(2) = 0.0_dp
1066 fij(3) = 0.0_dp
1067 endif
1068
1069 call get_switch(rgrpsq, sw, dswdr,rgrp, in_switching_region)
1070
1071 n_in_j = groupStartCol(j+1) - groupStartCol(j)
1072
1073 do ia = groupStartRow(i), groupStartRow(i+1)-1
1074
1075 atom1 = groupListRow(ia)
1076
1077 inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
1078
1079 atom2 = groupListCol(jb)
1080
1081 if (skipThisPair(atom1, atom2)) cycle inner
1082
1083 if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1084 d_atm(1) = d_grp(1)
1085 d_atm(2) = d_grp(2)
1086 d_atm(3) = d_grp(3)
1087 ratmsq = rgrpsq
1088 else
1089 #ifdef IS_MPI
1090 call get_interatomic_vector(q_Row(:,atom1), &
1091 q_Col(:,atom2), d_atm, ratmsq)
1092 #else
1093 call get_interatomic_vector(q(:,atom1), &
1094 q(:,atom2), d_atm, ratmsq)
1095 #endif
1096 endif
1097
1098 topoDist = getTopoDistance(atom1, atom2)
1099
1100
1101 if (loop .eq. PREPAIR_LOOP) then
1102 #ifdef IS_MPI
1103 call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1104 rgrpsq, d_grp, rCut, &
1105 eFrame, A, f, t, pot_local)
1106 #else
1107 call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1108 rgrpsq, d_grp, rCut, &
1109 eFrame, A, f, t, pot)
1110 #endif
1111 else
1112 #ifdef IS_MPI
1113 call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1114 eFrame, A, f, t, pot_local, particle_pot, vpair, &
1115 fpair, d_grp, rgrp, rCut, topoDist)
1116 vel_j = vel_Col(:,atom2)
1117 ! particle_pot will be accumulated from row & column
1118 ! arrays later
1119 #else
1120 call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1121 eFrame, A, f, t, pot, particle_pot, vpair, &
1122 fpair, d_grp, rgrp, rCut, topoDist)
1123 vel_j = vel(:,atom2)
1124 #endif
1125
1126 vij = vij + vpair
1127 fij(1) = fij(1) + fpair(1)
1128 fij(2) = fij(2) + fpair(2)
1129 fij(3) = fij(3) + fpair(3)
1130 !good
1131 !write(*,*) "Calling ST with vel_j #1: ", vel_j
1132 call add_stress_tensor(d_atm, fpair, tau, vel_j, S_local)
1133 !!call add_heat_flux(d_atm, fpair,vel_j,S_local)
1134 endif
1135 enddo inner
1136 enddo
1137
1138 if (loop .eq. PAIR_LOOP) then
1139 if (in_switching_region) then
1140 swderiv = vij*dswdr/rgrp
1141 fg = swderiv*d_grp
1142 fij(1) = fij(1) + fg(1)
1143 fij(2) = fij(2) + fg(2)
1144 fij(3) = fij(3) + fg(3)
1145
1146 if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1147 ! call add_stress_tensor(d_atm, fg, tau)
1148 call add_stress_tensor(d_atm, fg, tau, vel_j, S_local)
1149 endif
1150
1151 do ia=groupStartRow(i), groupStartRow(i+1)-1
1152 atom1=groupListRow(ia)
1153 mf = mfactRow(atom1)
1154 ! fg is the force on atom ia due to cutoff group's
1155 ! presence in switching region
1156 fg = swderiv*d_grp*mf
1157 #ifdef IS_MPI
1158 f_Row(1,atom1) = f_Row(1,atom1) + fg(1)
1159 f_Row(2,atom1) = f_Row(2,atom1) + fg(2)
1160 f_Row(3,atom1) = f_Row(3,atom1) + fg(3)
1161 #else
1162 f(1,atom1) = f(1,atom1) + fg(1)
1163 f(2,atom1) = f(2,atom1) + fg(2)
1164 f(3,atom1) = f(3,atom1) + fg(3)
1165 #endif
1166 if (n_in_i .gt. 1) then
1167 if (SIM_uses_AtomicVirial) then
1168 ! find the distance between the atom
1169 ! and the center of the cutoff group:
1170 #ifdef IS_MPI
1171 call get_interatomic_vector(q_Row(:,atom1), &
1172 q_group_Row(:,i), dag, rag)
1173 #else
1174 call get_interatomic_vector(q(:,atom1), &
1175 q_group(:,i), dag, rag)
1176 #endif
1177 write(*,*) "vel group j #2: ", vel_grp_j
1178 call add_stress_tensor(dag, fg, tau, vel_grp_j, S_local)
1179 !
1180 !call add_stress_tensor(dag,fg,tau)
1181
1182 endif
1183 endif
1184 enddo
1185
1186 do jb=groupStartCol(j), groupStartCol(j+1)-1
1187 atom2=groupListCol(jb)
1188 mf = mfactCol(atom2)
1189 ! fg is the force on atom jb due to cutoff group's
1190 ! presence in switching region
1191 fg = -swderiv*d_grp*mf
1192 #ifdef IS_MPI
1193 f_Col(1,atom2) = f_Col(1,atom2) + fg(1)
1194 f_Col(2,atom2) = f_Col(2,atom2) + fg(2)
1195 f_Col(3,atom2) = f_Col(3,atom2) + fg(3)
1196 #else
1197 f(1,atom2) = f(1,atom2) + fg(1)
1198 f(2,atom2) = f(2,atom2) + fg(2)
1199 f(3,atom2) = f(3,atom2) + fg(3)
1200 #endif
1201 if (n_in_j .gt. 1) then
1202 if (SIM_uses_AtomicVirial) then
1203 ! find the distance between the atom
1204 ! and the center of the cutoff group:
1205 #ifdef IS_MPI
1206 call get_interatomic_vector(q_Col(:,atom2), &
1207 q_group_Col(:,j), dag, rag)
1208 vel_grp_j = v_group_Col(:,atom2)
1209 #else
1210 call get_interatomic_vector(q(:,atom2), &
1211 q_group(:,j), dag, rag)
1212 vel_grp_j = v_group(:,atom2)
1213 #endif
1214 ! call add_stress_tensor(dag,fg,tau)
1215 write(*,*) "vel group j #1: ", vel_grp_j
1216 call add_stress_tensor(dag, fg, tau, vel_grp_j, S_local)
1217 ! call add_heat_flux(d_atm, fpair,vel_j,S_local)
1218 endif
1219 endif
1220 enddo
1221 endif
1222 !if (.not.SIM_uses_AtomicVirial) then
1223 ! call add_stress_tensor(d_grp, fij, tau)
1224 !endif
1225 endif
1226 endif
1227 endif
1228 enddo
1229
1230 enddo outer
1231
1232 if (update_nlist) then
1233 #ifdef IS_MPI
1234 point(nGroupsInRow + 1) = nlist + 1
1235 #else
1236 point(nGroups) = nlist + 1
1237 #endif
1238 if (loop .eq. PREPAIR_LOOP) then
1239 ! we just did the neighbor list update on the first
1240 ! pass, so we don't need to do it
1241 ! again on the second pass
1242 update_nlist = .false.
1243 endif
1244 endif
1245
1246 if (loop .eq. PREPAIR_LOOP) then
1247 #ifdef IS_MPI
1248 call do_preforce(nlocal, pot_local, particle_pot)
1249 #else
1250 call do_preforce(nlocal, pot, particle_pot)
1251 #endif
1252 endif
1253
1254 enddo
1255
1256 !! Do timing
1257 #ifdef PROFILE
1258 call cpu_time(forceTimeFinal)
1259 forceTime = forceTime + forceTimeFinal - forceTimeInitial
1260 #endif
1261
1262 #ifdef IS_MPI
1263 !!distribute forces
1264
1265 f_temp = 0.0_dp
1266 call scatter(f_Row,f_temp,plan_atom_row_3d)
1267 do i = 1,nlocal
1268 f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1269 end do
1270
1271 f_temp = 0.0_dp
1272 call scatter(f_Col,f_temp,plan_atom_col_3d)
1273 do i = 1,nlocal
1274 f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1275 end do
1276
1277 if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1278 t_temp = 0.0_dp
1279 call scatter(t_Row,t_temp,plan_atom_row_3d)
1280 do i = 1,nlocal
1281 t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1282 end do
1283 t_temp = 0.0_dp
1284 call scatter(t_Col,t_temp,plan_atom_col_3d)
1285
1286 do i = 1,nlocal
1287 t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1288 end do
1289 endif
1290
1291 ! scatter/gather pot_row into the members of my column
1292 do i = 1,LR_POT_TYPES
1293 call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1294 end do
1295 ! scatter/gather pot_local into all other procs
1296 ! add resultant to get total pot
1297 do i = 1, nlocal
1298 pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1299 + pot_Temp(1:LR_POT_TYPES,i)
1300 enddo
1301
1302 ! factor of two is because the total potential terms are divided by 2 in parallel
1303 ! due to row/ column scatter
1304 do i = 1,LR_POT_TYPES
1305 particle_pot(1:nlocal) = particle_pot(1:nlocal) + 2.0 * pot_Temp(i,1:nlocal)
1306 enddo
1307
1308
1309 pot_Temp = 0.0_DP
1310
1311 do i = 1,LR_POT_TYPES
1312 call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1313 end do
1314
1315 do i = 1, nlocal
1316 pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1317 + pot_Temp(1:LR_POT_TYPES,i)
1318 enddo
1319
1320 ! factor of two is because the total potential terms are divided by 2 in parallel
1321 ! due to row/ column scatter
1322 do i = 1,LR_POT_TYPES
1323 particle_pot(1:nlocal) = particle_pot(1:nlocal) + 2.0 * pot_Temp(i,1:nlocal)
1324 enddo
1325
1326 ppot_Temp = 0.0_DP
1327
1328 call scatter(ppot_Row(:), ppot_Temp(:), plan_atom_row)
1329 do i = 1, nlocal
1330 particle_pot(i) = particle_pot(i) + ppot_Temp(i)
1331 enddo
1332
1333 ppot_Temp = 0.0_DP
1334
1335 call scatter(ppot_Col(:), ppot_Temp(:), plan_atom_col)
1336 do i = 1, nlocal
1337 particle_pot(i) = particle_pot(i) + ppot_Temp(i)
1338 enddo
1339
1340 !! In parallel we need to accumulate S for the entire system
1341
1342 call mpi_allreduce(S, S_local, 3, mpi_double_precision, mpi_sum, &
1343 plan_atom_col%myPlanComm, mpi_err)
1344 #else
1345 S = S_Local
1346 #endif
1347
1348
1349
1350 if (SIM_requires_postpair_calc) then
1351 do i = 1, nlocal
1352
1353 ! we loop only over the local atoms, so we don't need row and column
1354 ! lookups for the types
1355
1356 me_i = atid(i)
1357
1358 ! is the atom electrostatic? See if it would have an
1359 ! electrostatic interaction with itself
1360 iHash = InteractionHash(me_i,me_i)
1361
1362 if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1363
1364 ! loop over the excludes to accumulate charge in the
1365 ! cutoff sphere that we've left out of the normal pair loop
1366 skch = 0.0_dp
1367
1368 do i1 = 1, nSkipsForLocalAtom(i)
1369 j = skipsForLocalAtom(i, i1)
1370 me_j = atid(j)
1371 jHash = InteractionHash(me_i,me_j)
1372 if ( iand(jHash, ELECTROSTATIC_PAIR).ne.0 ) then
1373 skch = skch + getCharge(me_j)
1374 endif
1375 enddo
1376
1377 #ifdef IS_MPI
1378 call self_self(i, eFrame, skch, pot_local(ELECTROSTATIC_POT), t)
1379 #else
1380 call self_self(i, eFrame, skch, pot(ELECTROSTATIC_POT), t)
1381 #endif
1382 endif
1383
1384
1385 if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1386
1387 ! loop over the excludes to accumulate RF stuff we've
1388 ! left out of the normal pair loop
1389
1390 do i1 = 1, nSkipsForLocalAtom(i)
1391 j = skipsForLocalAtom(i, i1)
1392
1393 ! prevent overcounting of the skips
1394 if (i.lt.j) then
1395 call get_interatomic_vector(q(:,i), q(:,j), d_atm, ratmsq)
1396 rVal = sqrt(ratmsq)
1397 call get_switch(ratmsq, sw, dswdr, rVal,in_switching_region)
1398 #ifdef IS_MPI
1399 call rf_self_excludes(i, j, sw, 1.0_dp, eFrame, d_atm, rVal, &
1400 vpair, pot_local(ELECTROSTATIC_POT), f, t)
1401 #else
1402 call rf_self_excludes(i, j, sw, 1.0_dp, eFrame, d_atm, rVal, &
1403 vpair, pot(ELECTROSTATIC_POT), f, t)
1404 #endif
1405 endif
1406 enddo
1407 endif
1408
1409 if (do_box_dipole) then
1410 #ifdef IS_MPI
1411 call accumulate_box_dipole(i, eFrame, q(:,i), pChg_local, &
1412 nChg_local, pChgPos_local, nChgPos_local, dipVec_local, &
1413 pChgCount_local, nChgCount_local)
1414 #else
1415 call accumulate_box_dipole(i, eFrame, q(:,i), pChg, nChg, &
1416 pChgPos, nChgPos, dipVec, pChgCount, nChgCount)
1417 #endif
1418 endif
1419 enddo
1420 endif
1421
1422 #ifdef IS_MPI
1423 #ifdef SINGLE_PRECISION
1424 call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_real,mpi_sum, &
1425 mpi_comm_world,mpi_err)
1426 #else
1427 call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision, &
1428 mpi_sum, mpi_comm_world,mpi_err)
1429 #endif
1430
1431 if (do_box_dipole) then
1432
1433 #ifdef SINGLE_PRECISION
1434 call mpi_allreduce(pChg_local, pChg, 1, mpi_real, mpi_sum, &
1435 mpi_comm_world, mpi_err)
1436 call mpi_allreduce(nChg_local, nChg, 1, mpi_real, mpi_sum, &
1437 mpi_comm_world, mpi_err)
1438 call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer, mpi_sum,&
1439 mpi_comm_world, mpi_err)
1440 call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer, mpi_sum,&
1441 mpi_comm_world, mpi_err)
1442 call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_real, mpi_sum, &
1443 mpi_comm_world, mpi_err)
1444 call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_real, mpi_sum, &
1445 mpi_comm_world, mpi_err)
1446 call mpi_allreduce(dipVec_local, dipVec, 3, mpi_real, mpi_sum, &
1447 mpi_comm_world, mpi_err)
1448 #else
1449 call mpi_allreduce(pChg_local, pChg, 1, mpi_double_precision, mpi_sum, &
1450 mpi_comm_world, mpi_err)
1451 call mpi_allreduce(nChg_local, nChg, 1, mpi_double_precision, mpi_sum, &
1452 mpi_comm_world, mpi_err)
1453 call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer,&
1454 mpi_sum, mpi_comm_world, mpi_err)
1455 call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer,&
1456 mpi_sum, mpi_comm_world, mpi_err)
1457 call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_double_precision, &
1458 mpi_sum, mpi_comm_world, mpi_err)
1459 call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_double_precision, &
1460 mpi_sum, mpi_comm_world, mpi_err)
1461 call mpi_allreduce(dipVec_local, dipVec, 3, mpi_double_precision, &
1462 mpi_sum, mpi_comm_world, mpi_err)
1463 #endif
1464
1465 endif
1466
1467 #endif
1468
1469 if (do_box_dipole) then
1470 ! first load the accumulated dipole moment (if dipoles were present)
1471 boxDipole(1) = dipVec(1)
1472 boxDipole(2) = dipVec(2)
1473 boxDipole(3) = dipVec(3)
1474
1475 ! now include the dipole moment due to charges
1476 ! use the lesser of the positive and negative charge totals
1477 if (nChg .le. pChg) then
1478 chg_value = nChg
1479 else
1480 chg_value = pChg
1481 endif
1482
1483 ! find the average positions
1484 if (pChgCount .gt. 0 .and. nChgCount .gt. 0) then
1485 pChgPos = pChgPos / pChgCount
1486 nChgPos = nChgPos / nChgCount
1487 endif
1488
1489 ! dipole is from the negative to the positive (physics notation)
1490 chgVec(1) = pChgPos(1) - nChgPos(1)
1491 chgVec(2) = pChgPos(2) - nChgPos(2)
1492 chgVec(3) = pChgPos(3) - nChgPos(3)
1493
1494 boxDipole(1) = boxDipole(1) + chgVec(1) * chg_value
1495 boxDipole(2) = boxDipole(2) + chgVec(2) * chg_value
1496 boxDipole(3) = boxDipole(3) + chgVec(3) * chg_value
1497
1498 endif
1499
1500 end subroutine do_force_loop
1501
1502 subroutine do_pair(i, j, rijsq, d, sw, &
1503 eFrame, A, f, t, pot, particle_pot, vpair, &
1504 fpair, d_grp, r_grp, rCut, topoDist)
1505
1506 real( kind = dp ) :: vpair, sw
1507 real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1508 real( kind = dp ), dimension(nLocal) :: particle_pot
1509 real( kind = dp ), dimension(3) :: fpair
1510 real( kind = dp ), dimension(nLocal) :: mfact
1511 real( kind = dp ), dimension(9,nLocal) :: eFrame
1512 real( kind = dp ), dimension(9,nLocal) :: A
1513 real( kind = dp ), dimension(3,nLocal) :: f
1514 real( kind = dp ), dimension(3,nLocal) :: t
1515
1516 integer, intent(in) :: i, j
1517 real ( kind = dp ), intent(inout) :: rijsq
1518 real ( kind = dp ), intent(inout) :: r_grp
1519 real ( kind = dp ), intent(inout) :: d(3)
1520 real ( kind = dp ), intent(inout) :: d_grp(3)
1521 real ( kind = dp ), intent(inout) :: rCut
1522 integer, intent(inout) :: topoDist
1523 real ( kind = dp ) :: r, pair_pot, vdwMult, electroMult
1524 real ( kind = dp ) :: a_k, b_k, c_k, d_k, dx
1525
1526 real( kind = dp), dimension(3) :: f1, t1, t2
1527 real( kind = dp), dimension(9) :: A1, A2, eF1, eF2
1528 real( kind = dp) :: dfrhodrho_i, dfrhodrho_j
1529 real( kind = dp) :: rho_i, rho_j
1530 real( kind = dp) :: fshift_i, fshift_j
1531 real( kind = dp) :: p_vdw, p_elect, p_hb, p_met
1532 integer :: atid_i, atid_j, id1, id2, idx
1533 integer :: k
1534
1535 integer :: iHash
1536
1537 r = sqrt(rijsq)
1538
1539 vpair = 0.0_dp
1540 fpair(1:3) = 0.0_dp
1541
1542 p_vdw = 0.0
1543 p_elect = 0.0
1544 p_hb = 0.0
1545 p_met = 0.0
1546
1547 f1(1:3) = 0.0
1548
1549 #ifdef IS_MPI
1550 atid_i = atid_row(i)
1551 atid_j = atid_col(j)
1552 #else
1553 atid_i = atid(i)
1554 atid_j = atid(j)
1555 #endif
1556
1557 iHash = InteractionHash(atid_i, atid_j)
1558
1559 vdwMult = vdwScale(topoDist)
1560 electroMult = electrostaticScale(topoDist)
1561
1562 if ( iand(iHash, LJ_PAIR).ne.0 ) then
1563 call do_lj_pair(atid_i, atid_j, d, r, rijsq, rcut, sw, vdwMult, vpair, fpair, &
1564 p_vdw, f1)
1565 endif
1566
1567 if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1568 #ifdef IS_MPI
1569 call doElectrostaticPair(atid_i, atid_j, d, r, rijsq, rcut, sw, electroMult, &
1570 vpair, fpair, p_elect, eFrame_Row(:,i), eFrame_Col(:,j), &
1571 f1, t_Row(:,i), t_Col(:,j))
1572 #else
1573 call doElectrostaticPair(atid_i, atid_j, d, r, rijsq, rcut, sw, electroMult, &
1574 vpair, fpair, p_elect, eFrame(:,i), eFrame(:,j), f1, t(:,i), t(:,j))
1575 #endif
1576 endif
1577
1578 if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1579 #ifdef IS_MPI
1580 call do_sticky_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1581 p_hb, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1582 #else
1583 call do_sticky_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1584 p_hb, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1585 #endif
1586 endif
1587
1588 if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1589 #ifdef IS_MPI
1590 call do_sticky_power_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1591 p_hb, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1592 #else
1593 call do_sticky_power_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1594 p_hb, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1595 #endif
1596 endif
1597
1598 if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1599 #ifdef IS_MPI
1600 call do_gb_pair(atid_i, atid_j, d, r, rijsq, sw, vdwMult, vpair, fpair, &
1601 p_vdw, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1602 #else
1603 call do_gb_pair(atid_i, atid_j, d, r, rijsq, sw, vdwMult, vpair, fpair, &
1604 p_vdw, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1605 #endif
1606 endif
1607
1608 if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1609 #ifdef IS_MPI
1610 call do_gb_pair(atid_i, atid_j, d, r, rijsq, sw, vdwMult, vpair, fpair, &
1611 p_vdw, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1612 #else
1613 call do_gb_pair(atid_i, atid_j, d, r, rijsq, sw, vdwMult, vpair, fpair, &
1614 p_vdw, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1615 #endif
1616 endif
1617
1618 if ( iand(iHash, SHAPE_PAIR).ne.0 ) then
1619 #ifdef IS_MPI
1620 call do_shape_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1621 p_vdw, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1622 #else
1623 call do_shape_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1624 p_vdw, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1625 #endif
1626 endif
1627
1628 if ( iand(iHash, SHAPE_LJ).ne.0 ) then
1629 #ifdef IS_MPI
1630 call do_shape_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1631 p_vdw, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1632 #else
1633 call do_shape_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1634 p_vdw, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1635 #endif
1636 endif
1637
1638 if ( iand(iHash, EAM_PAIR).ne.0 ) then
1639 #ifdef IS_MPI
1640 call do_eam_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, &
1641 fpair, p_met, f1, rho_row(i), rho_col(j), dfrhodrho_row(i), dfrhodrho_col(j), &
1642 fshift_i, fshift_j)
1643 #else
1644 call do_eam_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, &
1645 fpair, p_met, f1, rho(i), rho(j), dfrhodrho(i), dfrhodrho(j), fshift_i, fshift_j)
1646 #endif
1647 endif
1648
1649 if ( iand(iHash, SC_PAIR).ne.0 ) then
1650 #ifdef IS_MPI
1651 call do_SC_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, &
1652 fpair, p_met, f1, rho_row(i), rho_col(j), dfrhodrho_row(i), dfrhodrho_col(j), &
1653 fshift_i, fshift_j)
1654 #else
1655 call do_SC_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, &
1656 fpair, p_met, f1, rho(i), rho(j), dfrhodrho(i), dfrhodrho(j), fshift_i, fshift_j)
1657 #endif
1658 endif
1659
1660 if ( iand(iHash, MNM_PAIR).ne.0 ) then
1661 #ifdef IS_MPI
1662 call do_mnm_pair(atid_i, atid_j, d, r, rijsq, rcut, sw, vdwMult, vpair, fpair, &
1663 p_vdw, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1664 #else
1665 call do_mnm_pair(atid_i, atid_j, d, r, rijsq, rcut, sw, vdwMult, vpair, fpair, &
1666 p_vdw, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1667 #endif
1668 endif
1669
1670
1671 #ifdef IS_MPI
1672 id1 = AtomRowToGlobal(i)
1673 id2 = AtomColToGlobal(j)
1674
1675 pot_row(VDW_POT,i) = pot_row(VDW_POT,i) + 0.5*p_vdw
1676 pot_col(VDW_POT,j) = pot_col(VDW_POT,j) + 0.5*p_vdw
1677 pot_row(ELECTROSTATIC_POT,i) = pot_row(ELECTROSTATIC_POT,i) + 0.5*p_elect
1678 pot_col(ELECTROSTATIC_POT,j) = pot_col(ELECTROSTATIC_POT,j) + 0.5*p_elect
1679 pot_row(HB_POT,i) = pot_row(HB_POT,i) + 0.5*p_hb
1680 pot_col(HB_POT,j) = pot_col(HB_POT,j) + 0.5*p_hb
1681 pot_Row(METALLIC_POT,i) = pot_Row(METALLIC_POT,i) + 0.5*p_met
1682 pot_Col(METALLIC_POT,j) = pot_Col(METALLIC_POT,j) + 0.5*p_met
1683
1684 do idx = 1, 3
1685 f_Row(idx,i) = f_Row(idx,i) + f1(idx)
1686 f_Col(idx,j) = f_Col(idx,j) - f1(idx)
1687 enddo
1688 ! particle_pot is the difference between the full potential
1689 ! and the full potential without the presence of a particular
1690 ! particle (atom1).
1691 !
1692 ! This reduces the density at other particle locations, so
1693 ! we need to recompute the density at atom2 assuming atom1
1694 ! didn't contribute. This then requires recomputing the
1695 ! density functional for atom2 as well.
1696 !
1697 ! Most of the particle_pot heavy lifting comes from the
1698 ! pair interaction, and will be handled by vpair. Parallel version.
1699
1700 if ( (iand(iHash, EAM_PAIR).ne.0) .or. (iand(iHash, SC_PAIR).ne.0) ) then
1701 ppot_row(i) = ppot_row(i) - frho_row(j) + fshift_j
1702 ppot_col(j) = ppot_col(j) - frho_col(i) + fshift_i
1703 end if
1704
1705 #else
1706 id1 = i
1707 id2 = j
1708
1709 pot(VDW_POT) = pot(VDW_POT) + p_vdw
1710 pot(ELECTROSTATIC_POT) = pot(ELECTROSTATIC_POT) + p_elect
1711 pot(HB_POT) = pot(HB_POT) + p_hb
1712 pot(METALLIC_POT) = pot(METALLIC_POT) + p_met
1713
1714 ! only done for single processor. In Parallel, the particle_pot
1715 ! is constructed from the row and column potentials.
1716
1717 particle_pot(i) = particle_pot(i) + vpair*sw
1718 particle_pot(j) = particle_pot(j) + vpair*sw
1719
1720 do idx = 1, 3
1721 f(idx,i) = f(idx,i) + f1(idx)
1722 f(idx,j) = f(idx,j) - f1(idx)
1723 enddo
1724 ! particle_pot is the difference between the full potential
1725 ! and the full potential without the presence of a particular
1726 ! particle (atom1).
1727 !
1728 ! This reduces the density at other particle locations, so
1729 ! we need to recompute the density at atom2 assuming atom1
1730 ! didn't contribute. This then requires recomputing the
1731 ! density functional for atom2 as well.
1732 !
1733 ! Most of the particle_pot heavy lifting comes from the
1734 ! pair interaction, and will be handled by vpair. NonParallel version.
1735
1736 if ( (iand(iHash, EAM_PAIR).ne.0) .or. (iand(iHash, SC_PAIR).ne.0) ) then
1737 particle_pot(i) = particle_pot(i) - frho(j) + fshift_j
1738 particle_pot(j) = particle_pot(j) - frho(i) + fshift_i
1739 end if
1740
1741
1742 #endif
1743
1744 if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1745
1746 fpair(1) = fpair(1) + f1(1)
1747 fpair(2) = fpair(2) + f1(2)
1748 fpair(3) = fpair(3) + f1(3)
1749
1750 endif
1751
1752
1753 end subroutine do_pair
1754
1755 subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1756 eFrame, A, f, t, pot)
1757
1758 real( kind = dp ) :: sw
1759 real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1760 real( kind = dp ), dimension(9,nLocal) :: eFrame
1761 real (kind=dp), dimension(9,nLocal) :: A
1762 real (kind=dp), dimension(3,nLocal) :: f
1763 real (kind=dp), dimension(3,nLocal) :: t
1764
1765 integer, intent(in) :: i, j
1766 real ( kind = dp ), intent(inout) :: rijsq, rcijsq, rCut
1767 real ( kind = dp ) :: r, rc
1768 real ( kind = dp ), intent(inout) :: d(3), dc(3)
1769 real ( kind = dp ) :: rho_i_at_j, rho_j_at_i
1770 integer :: atid_i, atid_j, iHash
1771
1772 r = sqrt(rijsq)
1773
1774 #ifdef IS_MPI
1775 atid_i = atid_row(i)
1776 atid_j = atid_col(j)
1777 #else
1778 atid_i = atid(i)
1779 atid_j = atid(j)
1780 #endif
1781 rho_i_at_j = 0.0_dp
1782 rho_j_at_i = 0.0_dp
1783
1784 iHash = InteractionHash(atid_i, atid_j)
1785
1786 if ( iand(iHash, EAM_PAIR).ne.0 ) then
1787 call calc_EAM_prepair_rho(atid_i, atid_j, d, r, rijsq, rho_i_at_j, rho_j_at_i)
1788 endif
1789
1790 if ( iand(iHash, SC_PAIR).ne.0 ) then
1791 call calc_SC_prepair_rho(atid_i, atid_j, d, r, rijsq, rho_i_at_j, rho_j_at_i)
1792 endif
1793
1794 if ( iand(iHash, EAM_PAIR).ne.0 .or. iand(iHash, SC_PAIR).ne.0 ) then
1795 #ifdef IS_MPI
1796 rho_col(j) = rho_col(j) + rho_i_at_j
1797 rho_row(i) = rho_row(i) + rho_j_at_i
1798 #else
1799 rho(j) = rho(j) + rho_i_at_j
1800 rho(i) = rho(i) + rho_j_at_i
1801 #endif
1802 endif
1803
1804 end subroutine do_prepair
1805
1806
1807 subroutine do_preforce(nlocal, pot, particle_pot)
1808 integer :: nlocal
1809 real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1810 real( kind = dp ),dimension(nlocal) :: particle_pot
1811 integer :: sc_err = 0
1812
1813 #ifdef IS_MPI
1814 if ((FF_uses_EAM .and. SIM_uses_EAM) .or. (FF_uses_SC .and. SIM_uses_SC)) then
1815 call scatter(rho_row,rho,plan_atom_row,sc_err)
1816 if (sc_err /= 0 ) then
1817 call handleError("do_preforce()", "Error scattering rho_row into rho")
1818 endif
1819 call scatter(rho_col,rho_tmp,plan_atom_col,sc_err)
1820 if (sc_err /= 0 ) then
1821 call handleError("do_preforce()", "Error scattering rho_col into rho")
1822 endif
1823 rho(1:nlocal) = rho(1:nlocal) + rho_tmp(1:nlocal)
1824 end if
1825 #endif
1826
1827
1828
1829 if (FF_uses_EAM .and. SIM_uses_EAM) then
1830 call calc_EAM_preforce_Frho(nlocal, pot(METALLIC_POT), particle_pot)
1831 endif
1832 if (FF_uses_SC .and. SIM_uses_SC) then
1833 call calc_SC_preforce_Frho(nlocal, pot(METALLIC_POT), particle_pot)
1834 endif
1835
1836 #ifdef IS_MPI
1837 if ((FF_uses_EAM .and. SIM_uses_EAM) .or. (FF_uses_SC .and. SIM_uses_SC)) then
1838 !! communicate f(rho) and derivatives back into row and column arrays
1839 call gather(frho,frho_row,plan_atom_row, sc_err)
1840 if (sc_err /= 0) then
1841 call handleError("do_preforce()","MPI gather frho_row failure")
1842 endif
1843 call gather(dfrhodrho,dfrhodrho_row,plan_atom_row, sc_err)
1844 if (sc_err /= 0) then
1845 call handleError("do_preforce()","MPI gather dfrhodrho_row failure")
1846 endif
1847 call gather(frho,frho_col,plan_atom_col, sc_err)
1848 if (sc_err /= 0) then
1849 call handleError("do_preforce()","MPI gather frho_col failure")
1850 endif
1851 call gather(dfrhodrho,dfrhodrho_col,plan_atom_col, sc_err)
1852 if (sc_err /= 0) then
1853 call handleError("do_preforce()","MPI gather dfrhodrho_col failure")
1854 endif
1855 end if
1856 #endif
1857
1858 end subroutine do_preforce
1859
1860
1861 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1862
1863 real (kind = dp), dimension(3) :: q_i
1864 real (kind = dp), dimension(3) :: q_j
1865 real ( kind = dp ), intent(out) :: r_sq
1866 real( kind = dp ) :: d(3), scaled(3)
1867 real(kind=dp)::t
1868 integer i
1869
1870 d(1) = q_j(1) - q_i(1)
1871 d(2) = q_j(2) - q_i(2)
1872 d(3) = q_j(3) - q_i(3)
1873
1874 ! Wrap back into periodic box if necessary
1875 if ( SIM_uses_PBC ) then
1876
1877 if( .not.boxIsOrthorhombic ) then
1878 ! calc the scaled coordinates.
1879 ! unwrap the matmul and do things explicitly
1880 ! scaled = matmul(HmatInv, d)
1881
1882 scaled(1) = HmatInv(1,1)*d(1) + HmatInv(1,2)*d(2) + HmatInv(1,3)*d(3)
1883 scaled(2) = HmatInv(2,1)*d(1) + HmatInv(2,2)*d(2) + HmatInv(2,3)*d(3)
1884 scaled(3) = HmatInv(3,1)*d(1) + HmatInv(3,2)*d(2) + HmatInv(3,3)*d(3)
1885
1886 ! wrap the scaled coordinates (but don't use anint for speed)
1887
1888 t = scaled(1)
1889 if (t .gt. 0.0) then
1890 scaled(1) = t - floor(t + 0.5)
1891 else
1892 scaled(1) = t - ceiling(t - 0.5)
1893 endif
1894
1895 t = scaled(2)
1896 if (t .gt. 0.0) then
1897 scaled(2) = t - floor(t + 0.5)
1898 else
1899 scaled(2) = t - ceiling(t - 0.5)
1900 endif
1901
1902 t = scaled(3)
1903 if (t .gt. 0.0) then
1904 scaled(3) = t - floor(t + 0.5)
1905 else
1906 scaled(3) = t - ceiling(t - 0.5)
1907 endif
1908
1909 ! calc the wrapped real coordinates from the wrapped scaled
1910 ! coordinates
1911 ! d = matmul(Hmat,scaled)
1912 d(1)= Hmat(1,1)*scaled(1) + Hmat(1,2)*scaled(2) + Hmat(1,3)*scaled(3)
1913 d(2)= Hmat(2,1)*scaled(1) + Hmat(2,2)*scaled(2) + Hmat(2,3)*scaled(3)
1914 d(3)= Hmat(3,1)*scaled(1) + Hmat(3,2)*scaled(2) + Hmat(3,3)*scaled(3)
1915
1916 else
1917 ! calc the scaled coordinates
1918 scaled(1) = d(1) * HmatInv(1,1)
1919 scaled(2) = d(2) * HmatInv(2,2)
1920 scaled(3) = d(3) * HmatInv(3,3)
1921
1922 ! wrap the scaled coordinates
1923
1924 t = scaled(1)
1925 if (t .gt. 0.0) then
1926 scaled(1) = t - floor(t + 0.5)
1927 else
1928 scaled(1) = t - ceiling(t - 0.5)
1929 endif
1930
1931 t = scaled(2)
1932 if (t .gt. 0.0) then
1933 scaled(2) = t - floor(t + 0.5)
1934 else
1935 scaled(2) = t - ceiling(t - 0.5)
1936 endif
1937
1938 t = scaled(3)
1939 if (t .gt. 0.0) then
1940 scaled(3) = t - floor(t + 0.5)
1941 else
1942 scaled(3) = t - ceiling(t - 0.5)
1943 endif
1944
1945 ! calc the wrapped real coordinates from the wrapped scaled
1946 ! coordinates
1947
1948 d(1) = scaled(1)*Hmat(1,1)
1949 d(2) = scaled(2)*Hmat(2,2)
1950 d(3) = scaled(3)*Hmat(3,3)
1951
1952 endif
1953
1954 endif
1955
1956 r_sq = d(1)*d(1) + d(2)*d(2) + d(3)*d(3)
1957
1958 end subroutine get_interatomic_vector
1959
1960 subroutine zero_work_arrays()
1961
1962 #ifdef IS_MPI
1963
1964 q_Row = 0.0_dp
1965 q_Col = 0.0_dp
1966
1967 q_group_Row = 0.0_dp
1968 q_group_Col = 0.0_dp
1969
1970 eFrame_Row = 0.0_dp
1971 eFrame_Col = 0.0_dp
1972
1973 A_Row = 0.0_dp
1974 A_Col = 0.0_dp
1975
1976 f_Row = 0.0_dp
1977 f_Col = 0.0_dp
1978 f_Temp = 0.0_dp
1979
1980 t_Row = 0.0_dp
1981 t_Col = 0.0_dp
1982 t_Temp = 0.0_dp
1983
1984 pot_Row = 0.0_dp
1985 pot_Col = 0.0_dp
1986 pot_Temp = 0.0_dp
1987 ppot_Temp = 0.0_dp
1988
1989 frho_row = 0.0_dp
1990 frho_col = 0.0_dp
1991 rho_row = 0.0_dp
1992 rho_col = 0.0_dp
1993 rho_tmp = 0.0_dp
1994 dfrhodrho_row = 0.0_dp
1995 dfrhodrho_col = 0.0_dp
1996
1997 #endif
1998 rho = 0.0_dp
1999 frho = 0.0_dp
2000 dfrhodrho = 0.0_dp
2001
2002 end subroutine zero_work_arrays
2003
2004 function skipThisPair(atom1, atom2) result(skip_it)
2005 integer, intent(in) :: atom1
2006 integer, intent(in), optional :: atom2
2007 logical :: skip_it
2008 integer :: unique_id_1, unique_id_2
2009 integer :: me_i,me_j
2010 integer :: i
2011
2012 skip_it = .false.
2013
2014 !! there are a number of reasons to skip a pair or a particle
2015 !! mostly we do this to exclude atoms who are involved in short
2016 !! range interactions (bonds, bends, torsions), but we also need
2017 !! to exclude some overcounted interactions that result from
2018 !! the parallel decomposition
2019
2020 #ifdef IS_MPI
2021 !! in MPI, we have to look up the unique IDs for each atom
2022 unique_id_1 = AtomRowToGlobal(atom1)
2023 unique_id_2 = AtomColToGlobal(atom2)
2024 !! this situation should only arise in MPI simulations
2025 if (unique_id_1 == unique_id_2) then
2026 skip_it = .true.
2027 return
2028 end if
2029
2030 !! this prevents us from doing the pair on multiple processors
2031 if (unique_id_1 < unique_id_2) then
2032 if (mod(unique_id_1 + unique_id_2,2) == 0) then
2033 skip_it = .true.
2034 return
2035 endif
2036 else
2037 if (mod(unique_id_1 + unique_id_2,2) == 1) then
2038 skip_it = .true.
2039 return
2040 endif
2041 endif
2042 #else
2043 !! in the normal loop, the atom numbers are unique
2044 unique_id_1 = atom1
2045 unique_id_2 = atom2
2046 #endif
2047
2048 #ifdef IS_MPI
2049 do i = 1, nSkipsForRowAtom(atom1)
2050 if (skipsForRowAtom(atom1, i) .eq. unique_id_2) then
2051 skip_it = .true.
2052 return
2053 endif
2054 end do
2055 #else
2056 do i = 1, nSkipsForLocalAtom(atom1)
2057 if (skipsForLocalAtom(atom1, i) .eq. unique_id_2) then
2058 skip_it = .true.
2059 return
2060 endif
2061 end do
2062 #endif
2063
2064 return
2065 end function skipThisPair
2066
2067 function getTopoDistance(atom1, atom2) result(topoDist)
2068 integer, intent(in) :: atom1
2069 integer, intent(in) :: atom2
2070 integer :: topoDist
2071 integer :: unique_id_2
2072 integer :: i
2073
2074 #ifdef IS_MPI
2075 unique_id_2 = AtomColToGlobal(atom2)
2076 #else
2077 unique_id_2 = atom2
2078 #endif
2079
2080 ! zero is default for unconnected (i.e. normal) pair interactions
2081
2082 topoDist = 0
2083
2084 do i = 1, nTopoPairsForAtom(atom1)
2085 if (toposForAtom(atom1, i) .eq. unique_id_2) then
2086 topoDist = topoDistance(atom1, i)
2087 return
2088 endif
2089 end do
2090
2091 return
2092 end function getTopoDistance
2093
2094 function FF_UsesDirectionalAtoms() result(doesit)
2095 logical :: doesit
2096 doesit = FF_uses_DirectionalAtoms
2097 end function FF_UsesDirectionalAtoms
2098
2099 function FF_RequiresPrepairCalc() result(doesit)
2100 logical :: doesit
2101 doesit = FF_uses_EAM .or. FF_uses_SC
2102 end function FF_RequiresPrepairCalc
2103
2104 #ifdef PROFILE
2105 function getforcetime() result(totalforcetime)
2106 real(kind=dp) :: totalforcetime
2107 totalforcetime = forcetime
2108 end function getforcetime
2109 #endif
2110
2111 !! This cleans componets of force arrays belonging only to fortran
2112
2113 subroutine add_stress_tensor(dpair, fpair, tau, v_j, J_v)
2114
2115 real( kind = dp ), dimension(3), intent(in) :: dpair, fpair, v_j
2116 real( kind = dp ), dimension(9), intent(inout) :: tau
2117
2118 real( kind = dp ), dimension(3), intent(inout) :: J_v
2119 ! because the d vector is the rj - ri vector, and
2120 ! because fx, fy, fz are the force on atom i, we need a
2121 ! negative sign here:
2122
2123 tau(1) = tau(1) - dpair(1) * fpair(1)
2124 tau(2) = tau(2) - dpair(1) * fpair(2)
2125 tau(3) = tau(3) - dpair(1) * fpair(3)
2126 tau(4) = tau(4) - dpair(2) * fpair(1)
2127 tau(5) = tau(5) - dpair(2) * fpair(2)
2128 tau(6) = tau(6) - dpair(2) * fpair(3)
2129 tau(7) = tau(7) - dpair(3) * fpair(1)
2130 tau(8) = tau(8) - dpair(3) * fpair(2)
2131 tau(9) = tau(9) - dpair(3) * fpair(3)
2132
2133
2134 ! write(*,*) v_j(1),v_j(2),v_j(3)
2135 J_v(1) = J_v(1) + dpair(1)*(fpair(1)*v_j(1) + fpair(2)*v_j(2) + fpair(3)*v_j(3))
2136 J_v(2) = J_v(2) + dpair(2)*(fpair(1)*v_j(1) + fpair(2)*v_j(2) + fpair(3)*v_j(3))
2137 J_v(3) = J_v(3) + dpair(3)*(fpair(1)*v_j(1) + fpair(2)*v_j(2) + fpair(3)*v_j(3))
2138 ! J_v(1) = J_v(1) + tau(1)*v_j(1) + tau(4)*v_j(2) + tau(7)*v_j(3)
2139 ! J_v(2) = J_v(2) + tau(2)*v_j(1) + tau(5)*v_j(2) + tau(8)*v_j(3)
2140 ! J_v(3) = J_v(3) + tau(3)*v_j(1) + tau(6)*v_j(2) + tau(9)*v_j(3)
2141
2142
2143
2144 end subroutine add_stress_tensor
2145
2146 !! Calculates the \sum r_ji*(f_ji *DOT* vj) component of the heat flux S
2147 subroutine add_heat_flux(dpair, fpair, v_j, S)
2148 real(kind=dp), dimension(3), intent(in) :: dpair,fpair, v_j
2149 real(kind=dp), dimension(3), intent(inout) :: S
2150 S(1) = S(1) + dpair(1) * (fpair(1)*v_j(1) + fpair(2)*v_j(2) + fpair(3)*v_j(3))
2151 S(2) = S(2) + dpair(2) * (fpair(1)*v_j(1) + fpair(2)*v_j(2) + fpair(3)*v_j(3))
2152 S(3) = S(3) + dpair(3) * (fpair(1)*v_j(1) + fpair(2)*v_j(2) + fpair(3)*v_j(3))
2153 !!S(1) = S(1) + fpair(1)*v_j(1)*dpair(1)
2154 !!S(2) = S(2) + fpair(2)*v_j(2)*dpair(2)
2155 !!S(3) = S(3) + fpair(3)*v_j(3)*dpair(3)
2156
2157
2158 end subroutine add_heat_flux
2159 end module doForces

Properties

Name Value
svn:keywords Author Id Revision Date