ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/heatflux/src/UseTheForce/doForces.F90
Revision: 1682
Committed: Tue Feb 28 23:11:22 2012 UTC (13 years, 5 months ago) by chuckv
File size: 70148 byte(s)
Log Message:
Debugging heat flux calculation for rigid bodies.

File Contents

# User Rev Content
1 gezelter 246 !!
2 chuckv 1388 !! Copyright (c) 2005, 2009 The University of Notre Dame. All Rights Reserved.
3 gezelter 246 !!
4     !! The University of Notre Dame grants you ("Licensee") a
5     !! non-exclusive, royalty free, license to use, modify and
6     !! redistribute this software in source and binary code form, provided
7     !! that the following conditions are met:
8     !!
9 gezelter 1390 !! 1. Redistributions of source code must retain the above copyright
10 gezelter 246 !! notice, this list of conditions and the following disclaimer.
11     !!
12 gezelter 1390 !! 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 !! notice, this list of conditions and the following disclaimer in the
14     !! documentation and/or other materials provided with the
15     !! distribution.
16     !!
17     !! This software is provided "AS IS," without a warranty of any
18     !! kind. All express or implied conditions, representations and
19     !! warranties, including any implied warranty of merchantability,
20     !! fitness for a particular purpose or non-infringement, are hereby
21     !! excluded. The University of Notre Dame and its licensors shall not
22     !! be liable for any damages suffered by licensee as a result of
23     !! using, modifying or distributing the software or its
24     !! derivatives. In no event will the University of Notre Dame or its
25     !! licensors be liable for any lost revenue, profit or data, or for
26     !! direct, indirect, special, consequential, incidental or punitive
27     !! damages, however caused and regardless of the theory of liability,
28     !! arising out of the use of or inability to use software, even if the
29     !! University of Notre Dame has been advised of the possibility of
30     !! such damages.
31     !!
32 gezelter 1390 !! SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     !! research, please cite the appropriate papers when you publish your
34     !! work. Good starting points are:
35 chuckv 1671 !!
36     !! [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     !! [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     !! [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1390 !! [4] Vardeman & Gezelter, in progress (2009).
40     !!
41 gezelter 246
42 gezelter 117 !! doForces.F90
43     !! module doForces
44     !! Calculates Long Range forces.
45    
46     !! @author Charles F. Vardeman II
47     !! @author Matthew Meineke
48 gezelter 1442 !! @version $Id$, $Date$, $Name: not supported by cvs2svn $, $Revision$
49 gezelter 117
50 gezelter 246
51 gezelter 117 module doForces
52     use force_globals
53 gezelter 1286 use fForceOptions
54 gezelter 117 use simulation
55     use definitions
56     use atype_module
57     use switcheroo
58 chuckv 1671 use neighborLists
59 gezelter 117 use lj
60 gezelter 246 use sticky
61 gezelter 401 use electrostatic_module
62 gezelter 676 use gayberne
63 chrisfen 143 use shapes
64 gezelter 117 use vector_class
65     use eam
66 chuckv 1162 use MetalNonMetal
67 chuckv 733 use suttonchen
68 gezelter 117 use status
69     #ifdef IS_MPI
70     use mpiSimulation
71     #endif
72    
73     implicit none
74     PRIVATE
75    
76     #define __FORTRAN90
77 gezelter 574 #include "UseTheForce/fCutoffPolicy.h"
78 gezelter 560 #include "UseTheForce/DarkSide/fInteractionMap.h"
79 chrisfen 611 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
80 gezelter 117
81     INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82     INTEGER, PARAMETER:: PAIR_LOOP = 2
83    
84     logical, save :: haveNeighborList = .false.
85     logical, save :: haveSIMvariables = .false.
86     logical, save :: haveSaneForceField = .false.
87 gezelter 571 logical, save :: haveInteractionHash = .false.
88     logical, save :: haveGtypeCutoffMap = .false.
89 chrisfen 618 logical, save :: haveDefaultCutoffs = .false.
90 gezelter 762 logical, save :: haveSkinThickness = .false.
91     logical, save :: haveElectrostaticSummationMethod = .false.
92     logical, save :: haveCutoffPolicy = .false.
93     logical, save :: VisitCutoffsAfterComputing = .false.
94 chrisfen 998 logical, save :: do_box_dipole = .false.
95 chrisfen 532
96 gezelter 141 logical, save :: FF_uses_DirectionalAtoms
97 gezelter 401 logical, save :: FF_uses_Dipoles
98 gezelter 141 logical, save :: FF_uses_GayBerne
99     logical, save :: FF_uses_EAM
100 chuckv 733 logical, save :: FF_uses_SC
101 chuckv 1162 logical, save :: FF_uses_MNM
102 gezelter 141
103 chuckv 1671
104 gezelter 141 logical, save :: SIM_uses_DirectionalAtoms
105     logical, save :: SIM_uses_EAM
106 chuckv 733 logical, save :: SIM_uses_SC
107 chuckv 1162 logical, save :: SIM_uses_MNM
108 gezelter 117 logical, save :: SIM_requires_postpair_calc
109     logical, save :: SIM_requires_prepair_calc
110     logical, save :: SIM_uses_PBC
111 gezelter 1126 logical, save :: SIM_uses_AtomicVirial
112 gezelter 117
113 chrisfen 607 integer, save :: electrostaticSummationMethod
114 gezelter 762 integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
115 chrisfen 580
116 gezelter 762 real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
117     real(kind=dp), save :: skinThickness
118 chrisfen 1129 logical, save :: defaultDoShiftPot
119     logical, save :: defaultDoShiftFrc
120 gezelter 762
121 gezelter 117 public :: init_FF
122 gezelter 762 public :: setCutoffs
123     public :: cWasLame
124     public :: setElectrostaticMethod
125 chrisfen 998 public :: setBoxDipole
126     public :: getBoxDipole
127 gezelter 762 public :: setCutoffPolicy
128     public :: setSkinThickness
129 gezelter 117 public :: do_force_loop
130    
131     #ifdef PROFILE
132     public :: getforcetime
133     real, save :: forceTime = 0
134     real :: forceTimeInitial, forceTimeFinal
135     integer :: nLoops
136     #endif
137 chuckv 1671
138 gezelter 571 !! Variables for cutoff mapping and interaction mapping
139     ! Bit hash to determine pair-pair interactions.
140     integer, dimension(:,:), allocatable :: InteractionHash
141     real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
142 chuckv 651 real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
143     real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
144    
145     integer, dimension(:), allocatable, target :: groupToGtypeRow
146     integer, dimension(:), pointer :: groupToGtypeCol => null()
147    
148     real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
149     real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
150 gezelter 571 type ::gtypeCutoffs
151 chuckv 1671 real(kind=dp) :: rcut
152     real(kind=dp) :: rcutsq
153 gezelter 571 real(kind=dp) :: rlistsq
154     end type gtypeCutoffs
155     type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
156 gezelter 574
157 chrisfen 998 real(kind=dp), dimension(3) :: boxDipole
158 gezelter 939
159 gezelter 117 contains
160    
161 gezelter 762 subroutine createInteractionHash()
162 chuckv 561 integer :: nAtypes
163     integer :: i
164     integer :: j
165 gezelter 571 integer :: iHash
166 tim 568 !! Test Types
167 chuckv 561 logical :: i_is_LJ
168     logical :: i_is_Elect
169     logical :: i_is_Sticky
170     logical :: i_is_StickyP
171     logical :: i_is_GB
172     logical :: i_is_EAM
173     logical :: i_is_Shape
174 chuckv 733 logical :: i_is_SC
175 chuckv 561 logical :: j_is_LJ
176     logical :: j_is_Elect
177     logical :: j_is_Sticky
178     logical :: j_is_StickyP
179     logical :: j_is_GB
180     logical :: j_is_EAM
181     logical :: j_is_Shape
182 chuckv 733 logical :: j_is_SC
183 gezelter 576 real(kind=dp) :: myRcut
184    
185 chuckv 561 if (.not. associated(atypes)) then
186 gezelter 762 call handleError("doForces", "atypes was not present before call of createInteractionHash!")
187 chuckv 561 return
188     endif
189 chuckv 1671
190 chuckv 561 nAtypes = getSize(atypes)
191 chuckv 1671
192 chuckv 561 if (nAtypes == 0) then
193 gezelter 762 call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
194 chuckv 561 return
195     end if
196 chrisfen 532
197 chuckv 570 if (.not. allocated(InteractionHash)) then
198     allocate(InteractionHash(nAtypes,nAtypes))
199 chuckv 655 else
200     deallocate(InteractionHash)
201     allocate(InteractionHash(nAtypes,nAtypes))
202 chuckv 561 endif
203 gezelter 571
204     if (.not. allocated(atypeMaxCutoff)) then
205     allocate(atypeMaxCutoff(nAtypes))
206 chuckv 655 else
207     deallocate(atypeMaxCutoff)
208     allocate(atypeMaxCutoff(nAtypes))
209 gezelter 571 endif
210 chuckv 1671
211 chuckv 561 do i = 1, nAtypes
212     call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
213     call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
214     call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
215     call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
216     call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
217     call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
218     call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
219 chuckv 733 call getElementProperty(atypes, i, "is_SC", i_is_SC)
220 gezelter 117
221 chuckv 561 do j = i, nAtypes
222 chrisfen 532
223 chuckv 561 iHash = 0
224     myRcut = 0.0_dp
225 gezelter 117
226 chuckv 561 call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
227     call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
228     call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
229     call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
230     call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
231     call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
232     call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
233 chuckv 733 call getElementProperty(atypes, j, "is_SC", j_is_SC)
234 gezelter 117
235 chuckv 561 if (i_is_LJ .and. j_is_LJ) then
236 chuckv 1671 iHash = ior(iHash, LJ_PAIR)
237 gezelter 562 endif
238 chuckv 1671
239 gezelter 562 if (i_is_Elect .and. j_is_Elect) then
240     iHash = ior(iHash, ELECTROSTATIC_PAIR)
241     endif
242 chuckv 1671
243 gezelter 562 if (i_is_Sticky .and. j_is_Sticky) then
244     iHash = ior(iHash, STICKY_PAIR)
245     endif
246 chuckv 561
247 gezelter 562 if (i_is_StickyP .and. j_is_StickyP) then
248     iHash = ior(iHash, STICKYPOWER_PAIR)
249     endif
250 chuckv 561
251 gezelter 562 if (i_is_EAM .and. j_is_EAM) then
252     iHash = ior(iHash, EAM_PAIR)
253 chuckv 561 endif
254    
255 chuckv 733 if (i_is_SC .and. j_is_SC) then
256     iHash = ior(iHash, SC_PAIR)
257     endif
258    
259 chuckv 561 if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
260     if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
261     if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
262 chuckv 1671
263 chuckv 1162 if ((i_is_EAM.or.i_is_SC).and.(.not.(j_is_EAM.or.j_is_SC))) iHash = ior(iHash, MNM_PAIR)
264     if ((j_is_EAM.or.j_is_SC).and.(.not.(i_is_EAM.or.i_is_SC))) iHash = ior(iHash, MNM_PAIR)
265 chuckv 561
266     if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
267     if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
268     if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
269    
270    
271 chuckv 570 InteractionHash(i,j) = iHash
272     InteractionHash(j,i) = iHash
273 chuckv 561
274     end do
275    
276     end do
277 tim 568
278 gezelter 571 haveInteractionHash = .true.
279     end subroutine createInteractionHash
280 chuckv 561
281 gezelter 762 subroutine createGtypeCutoffMap()
282 gezelter 569
283 gezelter 574 logical :: i_is_LJ
284     logical :: i_is_Elect
285     logical :: i_is_Sticky
286     logical :: i_is_StickyP
287     logical :: i_is_GB
288     logical :: i_is_EAM
289     logical :: i_is_Shape
290 chuckv 831 logical :: i_is_SC
291 gezelter 587 logical :: GtypeFound
292 chuckv 561
293 gezelter 576 integer :: myStatus, nAtypes, i, j, istart, iend, jstart, jend
294 chuckv 652 integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
295 chuckv 589 integer :: nGroupsInRow
296 chuckv 651 integer :: nGroupsInCol
297     integer :: nGroupTypesRow,nGroupTypesCol
298 gezelter 762 real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
299 gezelter 576 real(kind=dp) :: biggestAtypeCutoff
300 gezelter 571
301 chuckv 1671 if (.not. haveInteractionHash) then
302     call createInteractionHash()
303 chuckv 567 endif
304 chuckv 589 #ifdef IS_MPI
305     nGroupsInRow = getNgroupsInRow(plan_group_row)
306 chuckv 651 nGroupsInCol = getNgroupsInCol(plan_group_col)
307 chuckv 589 #endif
308 chuckv 563 nAtypes = getSize(atypes)
309 chuckv 599 ! Set all of the initial cutoffs to zero.
310     atypeMaxCutoff = 0.0_dp
311 gezelter 1313 biggestAtypeCutoff = 0.0_dp
312 gezelter 571 do i = 1, nAtypes
313 chuckv 1671 if (SimHasAtype(i)) then
314 gezelter 575 call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
315     call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
316     call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
317     call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
318     call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
319     call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
320     call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
321 chuckv 831 call getElementProperty(atypes, i, "is_SC", i_is_SC)
322 chuckv 1671
323 chrisfen 618 if (haveDefaultCutoffs) then
324     atypeMaxCutoff(i) = defaultRcut
325     else
326 chuckv 1671 if (i_is_LJ) then
327 chrisfen 618 thisRcut = getSigma(i) * 2.5_dp
328     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329     endif
330     if (i_is_Elect) then
331     thisRcut = defaultRcut
332     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333     endif
334     if (i_is_Sticky) then
335     thisRcut = getStickyCut(i)
336     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337     endif
338     if (i_is_StickyP) then
339     thisRcut = getStickyPowerCut(i)
340     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
341     endif
342     if (i_is_GB) then
343     thisRcut = getGayBerneCut(i)
344     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
345     endif
346     if (i_is_EAM) then
347     thisRcut = getEAMCut(i)
348     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
349     endif
350     if (i_is_Shape) then
351     thisRcut = getShapeCut(i)
352     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
353     endif
354 chuckv 831 if (i_is_SC) then
355     thisRcut = getSCCut(i)
356     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
357     endif
358 gezelter 575 endif
359 chuckv 1671
360 gezelter 575 if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
361     biggestAtypeCutoff = atypeMaxCutoff(i)
362     endif
363 chrisfen 618
364 gezelter 574 endif
365 gezelter 575 enddo
366 chuckv 1671
367 gezelter 575 istart = 1
368 chuckv 651 jstart = 1
369 gezelter 575 #ifdef IS_MPI
370     iend = nGroupsInRow
371 chuckv 651 jend = nGroupsInCol
372 gezelter 575 #else
373 chuckv 1671 iend = nGroups
374 chuckv 651 jend = nGroups
375 gezelter 575 #endif
376 chuckv 1671
377 gezelter 581 !! allocate the groupToGtype and gtypeMaxCutoff here.
378 chuckv 651 if(.not.allocated(groupToGtypeRow)) then
379     ! allocate(groupToGtype(iend))
380     allocate(groupToGtypeRow(iend))
381     else
382     deallocate(groupToGtypeRow)
383     allocate(groupToGtypeRow(iend))
384 chuckv 583 endif
385 chuckv 651 if(.not.allocated(groupMaxCutoffRow)) then
386     allocate(groupMaxCutoffRow(iend))
387     else
388     deallocate(groupMaxCutoffRow)
389     allocate(groupMaxCutoffRow(iend))
390     end if
391    
392     if(.not.allocated(gtypeMaxCutoffRow)) then
393     allocate(gtypeMaxCutoffRow(iend))
394     else
395     deallocate(gtypeMaxCutoffRow)
396     allocate(gtypeMaxCutoffRow(iend))
397     endif
398    
399    
400     #ifdef IS_MPI
401     ! We only allocate new storage if we are in MPI because Ncol /= Nrow
402 chuckv 652 if(.not.associated(groupToGtypeCol)) then
403 chuckv 651 allocate(groupToGtypeCol(jend))
404     else
405     deallocate(groupToGtypeCol)
406     allocate(groupToGtypeCol(jend))
407     end if
408    
409 tim 833 if(.not.associated(groupMaxCutoffCol)) then
410     allocate(groupMaxCutoffCol(jend))
411 chuckv 651 else
412 tim 833 deallocate(groupMaxCutoffCol)
413     allocate(groupMaxCutoffCol(jend))
414 chuckv 651 end if
415 chuckv 652 if(.not.associated(gtypeMaxCutoffCol)) then
416 chuckv 651 allocate(gtypeMaxCutoffCol(jend))
417     else
418 chuckv 1671 deallocate(gtypeMaxCutoffCol)
419 chuckv 651 allocate(gtypeMaxCutoffCol(jend))
420     end if
421    
422     groupMaxCutoffCol = 0.0_dp
423     gtypeMaxCutoffCol = 0.0_dp
424    
425     #endif
426     groupMaxCutoffRow = 0.0_dp
427     gtypeMaxCutoffRow = 0.0_dp
428    
429    
430 gezelter 582 !! first we do a single loop over the cutoff groups to find the
431     !! largest cutoff for any atypes present in this group. We also
432     !! create gtypes at this point.
433 chuckv 1671
434 gezelter 960 tol = 1.0e-6_dp
435 chuckv 651 nGroupTypesRow = 0
436 tim 833 nGroupTypesCol = 0
437 chuckv 1671 do i = istart, iend
438 gezelter 575 n_in_i = groupStartRow(i+1) - groupStartRow(i)
439 chuckv 651 groupMaxCutoffRow(i) = 0.0_dp
440 gezelter 581 do ia = groupStartRow(i), groupStartRow(i+1)-1
441     atom1 = groupListRow(ia)
442 gezelter 575 #ifdef IS_MPI
443 gezelter 581 me_i = atid_row(atom1)
444 gezelter 575 #else
445 gezelter 581 me_i = atid(atom1)
446 chuckv 1671 #endif
447     if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
448 chuckv 651 groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
449 chuckv 1671 endif
450 gezelter 581 enddo
451 chuckv 651 if (nGroupTypesRow.eq.0) then
452     nGroupTypesRow = nGroupTypesRow + 1
453     gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
454     groupToGtypeRow(i) = nGroupTypesRow
455 gezelter 581 else
456 gezelter 587 GtypeFound = .false.
457 chuckv 651 do g = 1, nGroupTypesRow
458     if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
459     groupToGtypeRow(i) = g
460 gezelter 587 GtypeFound = .true.
461 gezelter 581 endif
462     enddo
463 chuckv 1671 if (.not.GtypeFound) then
464 chuckv 651 nGroupTypesRow = nGroupTypesRow + 1
465     gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
466     groupToGtypeRow(i) = nGroupTypesRow
467 gezelter 587 endif
468 gezelter 581 endif
469 chuckv 1671 enddo
470 gezelter 587
471 chuckv 651 #ifdef IS_MPI
472 chuckv 1671 do j = jstart, jend
473 chuckv 651 n_in_j = groupStartCol(j+1) - groupStartCol(j)
474     groupMaxCutoffCol(j) = 0.0_dp
475     do ja = groupStartCol(j), groupStartCol(j+1)-1
476     atom1 = groupListCol(ja)
477    
478     me_j = atid_col(atom1)
479    
480 chuckv 1671 if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
481 chuckv 651 groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
482 chuckv 1671 endif
483 chuckv 651 enddo
484    
485     if (nGroupTypesCol.eq.0) then
486     nGroupTypesCol = nGroupTypesCol + 1
487     gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
488     groupToGtypeCol(j) = nGroupTypesCol
489     else
490     GtypeFound = .false.
491     do g = 1, nGroupTypesCol
492     if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
493     groupToGtypeCol(j) = g
494     GtypeFound = .true.
495     endif
496     enddo
497 chuckv 1671 if (.not.GtypeFound) then
498 chuckv 651 nGroupTypesCol = nGroupTypesCol + 1
499     gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
500     groupToGtypeCol(j) = nGroupTypesCol
501     endif
502     endif
503 chuckv 1671 enddo
504 chuckv 651
505     #else
506     ! Set pointers to information we just found
507     nGroupTypesCol = nGroupTypesRow
508     groupToGtypeCol => groupToGtypeRow
509     gtypeMaxCutoffCol => gtypeMaxCutoffRow
510     groupMaxCutoffCol => groupMaxCutoffRow
511     #endif
512    
513 gezelter 581 !! allocate the gtypeCutoffMap here.
514 chuckv 651 allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
515 gezelter 581 !! then we do a double loop over all the group TYPES to find the cutoff
516     !! map between groups of two types
517 chuckv 651 tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
518    
519 chuckv 1671 do i = 1, nGroupTypesRow
520 chuckv 651 do j = 1, nGroupTypesCol
521 chuckv 1671
522 gezelter 581 select case(cutoffPolicy)
523 gezelter 582 case(TRADITIONAL_CUTOFF_POLICY)
524 chuckv 651 thisRcut = tradRcut
525 gezelter 582 case(MIX_CUTOFF_POLICY)
526 chuckv 651 thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
527 gezelter 582 case(MAX_CUTOFF_POLICY)
528 chuckv 651 thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
529 gezelter 582 case default
530     call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
531     return
532     end select
533     gtypeCutoffMap(i,j)%rcut = thisRcut
534 chuckv 1671
535 gezelter 762 if (thisRcut.gt.largestRcut) largestRcut = thisRcut
536    
537 gezelter 582 gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
538 gezelter 585
539 gezelter 762 if (.not.haveSkinThickness) then
540     skinThickness = 1.0_dp
541     endif
542    
543     gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
544    
545 chrisfen 618 ! sanity check
546    
547     if (haveDefaultCutoffs) then
548     if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
549     call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
550     endif
551     endif
552 gezelter 581 enddo
553     enddo
554 gezelter 762
555 chuckv 651 if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
556     if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
557     if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
558     #ifdef IS_MPI
559     if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
560     if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
561     #endif
562     groupMaxCutoffCol => null()
563     gtypeMaxCutoffCol => null()
564 chuckv 1671
565 gezelter 581 haveGtypeCutoffMap = .true.
566 chrisfen 596 end subroutine createGtypeCutoffMap
567 chrisfen 578
568 chrisfen 1129 subroutine setCutoffs(defRcut, defRsw, defSP, defSF)
569 chrisfen 596
570 gezelter 762 real(kind=dp),intent(in) :: defRcut, defRsw
571 gezelter 1386 integer, intent(in) :: defSP, defSF
572 gezelter 762 character(len = statusMsgSize) :: errMsg
573     integer :: localError
574    
575 chrisfen 596 defaultRcut = defRcut
576     defaultRsw = defRsw
577 chuckv 1671
578     if (defSP .ne. 0) then
579 gezelter 1386 defaultDoShiftPot = .true.
580     else
581     defaultDoShiftPot = .false.
582     endif
583 chuckv 1671 if (defSF .ne. 0) then
584 gezelter 1386 defaultDoShiftFrc = .true.
585     else
586     defaultDoShiftFrc = .false.
587     endif
588 chrisfen 1129
589 gezelter 762 if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
590 chrisfen 1129 if (defaultDoShiftFrc) then
591     write(errMsg, *) &
592     'cutoffRadius and switchingRadius are set to the', newline &
593 gezelter 1390 // tab, 'same value. OpenMD will use shifted force', newline &
594 chrisfen 1129 // tab, 'potentials instead of switching functions.'
595 chuckv 1671
596 chrisfen 1129 call handleInfo("setCutoffs", errMsg)
597     else
598     write(errMsg, *) &
599     'cutoffRadius and switchingRadius are set to the', newline &
600 gezelter 1390 // tab, 'same value. OpenMD will use shifted', newline &
601 chrisfen 1129 // tab, 'potentials instead of switching functions.'
602 chuckv 1671
603 chrisfen 1129 call handleInfo("setCutoffs", errMsg)
604 chuckv 1671
605 chrisfen 1129 defaultDoShiftPot = .true.
606     endif
607 chuckv 1671
608 gezelter 762 endif
609 chuckv 1671
610 gezelter 762 localError = 0
611 chrisfen 1129 call setLJDefaultCutoff( defaultRcut, defaultDoShiftPot, &
612     defaultDoShiftFrc )
613 gezelter 813 call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
614 gezelter 938 call setCutoffEAM( defaultRcut )
615     call setCutoffSC( defaultRcut )
616 chuckv 1162 call setMnMDefaultCutoff( defaultRcut, defaultDoShiftPot, &
617     defaultDoShiftFrc )
618 gezelter 939 call set_switch(defaultRsw, defaultRcut)
619 gezelter 889 call setHmatDangerousRcutValue(defaultRcut)
620 chuckv 1671
621 chrisfen 618 haveDefaultCutoffs = .true.
622 gezelter 813 haveGtypeCutoffMap = .false.
623 gezelter 939
624 gezelter 762 end subroutine setCutoffs
625 chrisfen 596
626 gezelter 762 subroutine cWasLame()
627 chuckv 1671
628 gezelter 762 VisitCutoffsAfterComputing = .true.
629     return
630 chuckv 1671
631 gezelter 762 end subroutine cWasLame
632 chuckv 1671
633 chrisfen 596 subroutine setCutoffPolicy(cutPolicy)
634 chuckv 1671
635 chrisfen 596 integer, intent(in) :: cutPolicy
636 chuckv 1671
637 chrisfen 596 cutoffPolicy = cutPolicy
638 gezelter 762 haveCutoffPolicy = .true.
639 gezelter 813 haveGtypeCutoffMap = .false.
640 chuckv 1671
641 gezelter 576 end subroutine setCutoffPolicy
642 chuckv 1671
643 chrisfen 998 subroutine setBoxDipole()
644    
645     do_box_dipole = .true.
646 chuckv 1671
647 chrisfen 998 end subroutine setBoxDipole
648    
649     subroutine getBoxDipole( box_dipole )
650    
651     real(kind=dp), intent(inout), dimension(3) :: box_dipole
652    
653     box_dipole = boxDipole
654    
655     end subroutine getBoxDipole
656    
657 gezelter 762 subroutine setElectrostaticMethod( thisESM )
658    
659     integer, intent(in) :: thisESM
660    
661     electrostaticSummationMethod = thisESM
662     haveElectrostaticSummationMethod = .true.
663 chuckv 1671
664 gezelter 762 end subroutine setElectrostaticMethod
665    
666     subroutine setSkinThickness( thisSkin )
667 chuckv 1671
668 gezelter 762 real(kind=dp), intent(in) :: thisSkin
669 chuckv 1671
670 gezelter 762 skinThickness = thisSkin
671 chuckv 1671 haveSkinThickness = .true.
672 gezelter 813 haveGtypeCutoffMap = .false.
673 chuckv 1671
674 gezelter 762 end subroutine setSkinThickness
675 chuckv 1671
676 gezelter 762 subroutine setSimVariables()
677     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
678     SIM_uses_EAM = SimUsesEAM()
679     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
680     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
681     SIM_uses_PBC = SimUsesPBC()
682 chuckv 841 SIM_uses_SC = SimUsesSC()
683 gezelter 1126 SIM_uses_AtomicVirial = SimUsesAtomicVirial()
684 chrisfen 998
685 gezelter 762 haveSIMvariables = .true.
686 chuckv 1671
687 gezelter 762 return
688     end subroutine setSimVariables
689 gezelter 117
690     subroutine doReadyCheck(error)
691     integer, intent(out) :: error
692     integer :: myStatus
693    
694     error = 0
695 chrisfen 532
696 chuckv 1671 if (.not. haveInteractionHash) then
697     call createInteractionHash()
698 gezelter 117 endif
699    
700 chuckv 1671 if (.not. haveGtypeCutoffMap) then
701     call createGtypeCutoffMap()
702 gezelter 571 endif
703    
704 gezelter 762 if (VisitCutoffsAfterComputing) then
705 chuckv 1671 call set_switch(largestRcut, largestRcut)
706 gezelter 889 call setHmatDangerousRcutValue(largestRcut)
707 gezelter 938 call setCutoffEAM(largestRcut)
708     call setCutoffSC(largestRcut)
709     VisitCutoffsAfterComputing = .false.
710 gezelter 762 endif
711    
712 gezelter 117 if (.not. haveSIMvariables) then
713     call setSimVariables()
714     endif
715    
716     if (.not. haveNeighborList) then
717     write(default_error, *) 'neighbor list has not been initialized in doForces!'
718     error = -1
719     return
720     end if
721 chuckv 1671
722 gezelter 117 if (.not. haveSaneForceField) then
723     write(default_error, *) 'Force Field is not sane in doForces!'
724     error = -1
725     return
726     end if
727 chuckv 1671
728 gezelter 117 #ifdef IS_MPI
729     if (.not. isMPISimSet()) then
730     write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
731     error = -1
732     return
733     endif
734     #endif
735     return
736     end subroutine doReadyCheck
737    
738 chrisfen 532
739 gezelter 762 subroutine init_FF(thisStat)
740 gezelter 117
741 chuckv 1671 integer, intent(out) :: thisStat
742 gezelter 117 integer :: my_status, nMatches
743     integer, pointer :: MatchList(:) => null()
744    
745     !! assume things are copacetic, unless they aren't
746     thisStat = 0
747    
748 chuckv 1671 !! init_FF is called *after* all of the atom types have been
749 gezelter 117 !! defined in atype_module using the new_atype subroutine.
750     !!
751     !! this will scan through the known atypes and figure out what
752 chuckv 1671 !! interactions are used by the force field.
753 chrisfen 532
754 gezelter 141 FF_uses_DirectionalAtoms = .false.
755     FF_uses_Dipoles = .false.
756     FF_uses_GayBerne = .false.
757 gezelter 117 FF_uses_EAM = .false.
758 chuckv 834 FF_uses_SC = .false.
759 chrisfen 532
760 gezelter 141 call getMatchingElementList(atypes, "is_Directional", .true., &
761     nMatches, MatchList)
762     if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
763    
764     call getMatchingElementList(atypes, "is_Dipole", .true., &
765     nMatches, MatchList)
766 gezelter 571 if (nMatches .gt. 0) FF_uses_Dipoles = .true.
767 chuckv 1671
768 gezelter 141 call getMatchingElementList(atypes, "is_GayBerne", .true., &
769     nMatches, MatchList)
770 gezelter 571 if (nMatches .gt. 0) FF_uses_GayBerne = .true.
771 chrisfen 532
772 gezelter 117 call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
773     if (nMatches .gt. 0) FF_uses_EAM = .true.
774 chrisfen 532
775 chuckv 834 call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
776     if (nMatches .gt. 0) FF_uses_SC = .true.
777 gezelter 141
778 chuckv 834
779 gezelter 117 haveSaneForceField = .true.
780 chrisfen 532
781 gezelter 117
782     if (.not. haveNeighborList) then
783     !! Create neighbor lists
784     call expandNeighborList(nLocal, my_status)
785     if (my_Status /= 0) then
786     write(default_error,*) "SimSetup: ExpandNeighborList returned error."
787     thisStat = -1
788     return
789     endif
790     haveNeighborList = .true.
791 chrisfen 532 endif
792    
793 gezelter 117 end subroutine init_FF
794    
795 chrisfen 532
796 gezelter 117 !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
797     !------------------------------------------------------------->
798 chuckv 1682 subroutine do_force_loop(q,vel, q_group, v_group, A, eFrame, f, t, tau, S, pot, particle_pot, &
799 gezelter 1464 error)
800 gezelter 117 !! Position array provided by C, dimensioned by getNlocal
801     real ( kind = dp ), dimension(3, nLocal) :: q
802 chuckv 1671 real ( kind = dp ), dimension(3, nlocal) :: vel
803 gezelter 117 !! molecular center-of-mass position array
804     real ( kind = dp ), dimension(3, nGroups) :: q_group
805 chuckv 1682 !! molecular center-of-mass velocity array
806     real ( kind = dp ), dimension(3, nGroups) :: v_group
807 gezelter 117 !! Rotation Matrix for each long range particle in simulation.
808 chuckv 1671 real( kind = dp), dimension(9, nLocal) :: A
809 gezelter 117 !! Unit vectors for dipoles (lab frame)
810 gezelter 246 real( kind = dp ), dimension(9,nLocal) :: eFrame
811 gezelter 117 !! Force array provided by C, dimensioned by getNlocal
812     real ( kind = dp ), dimension(3,nLocal) :: f
813     !! Torsion array provided by C, dimensioned by getNlocal
814 chuckv 1671 real( kind = dp ), dimension(3,nLocal) :: t
815 gezelter 117
816     !! Stress Tensor
817 chuckv 1671 real( kind = dp), dimension(9) :: tau
818     !! Heat Flux component S
819     real(kind=dp), dimension(3) :: S
820 gezelter 662 real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
821 chuckv 1245 real( kind = dp ), dimension(nLocal) :: particle_pot
822 gezelter 1464
823 gezelter 117 logical :: in_switching_region
824 chuckv 1671 #ifdef IS_MPI
825 gezelter 662 real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
826 gezelter 117 integer :: nAtomsInRow
827     integer :: nAtomsInCol
828     integer :: nprocs
829     integer :: nGroupsInRow
830     integer :: nGroupsInCol
831     #endif
832 chuckv 1671 integer :: natoms
833     logical :: update_nlist
834 gezelter 117 integer :: i, j, jstart, jend, jnab
835     integer :: istart, iend
836     integer :: ia, jb, atom1, atom2
837     integer :: nlist
838 gezelter 1126 real( kind = DP ) :: ratmsq, rgrpsq, rgrp, rag, vpair, vij
839 gezelter 117 real( kind = DP ) :: sw, dswdr, swderiv, mf
840 chrisfen 699 real( kind = DP ) :: rVal
841 chuckv 1671 real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij, fg, dag, vel_j
842     real(kind=dp),dimension(3) :: S_local,vel_grp_j
843 gezelter 1126 real(kind=dp) :: rfpot, mu_i
844 gezelter 762 real(kind=dp):: rCut
845 gezelter 1345 integer :: me_i, me_j, n_in_i, n_in_j, iG, j1
846 gezelter 117 logical :: is_dp_i
847     integer :: neighborListSize
848     integer :: listerror, error
849     integer :: localError
850     integer :: propPack_i, propPack_j
851     integer :: loopStart, loopEnd, loop
852 gezelter 1352 integer :: iHash, jHash
853 gezelter 1286 integer :: i1, topoDist
854 chrisfen 532
855 chuckv 1671 !! the variables for the box dipole moment
856 chrisfen 998 #ifdef IS_MPI
857     integer :: pChgCount_local
858     integer :: nChgCount_local
859     real(kind=dp) :: pChg_local
860     real(kind=dp) :: nChg_local
861     real(kind=dp), dimension(3) :: pChgPos_local
862     real(kind=dp), dimension(3) :: nChgPos_local
863     real(kind=dp), dimension(3) :: dipVec_local
864     #endif
865     integer :: pChgCount
866     integer :: nChgCount
867     real(kind=dp) :: pChg
868     real(kind=dp) :: nChg
869     real(kind=dp) :: chg_value
870     real(kind=dp), dimension(3) :: pChgPos
871     real(kind=dp), dimension(3) :: nChgPos
872 chuckv 1671 real(kind=dp), dimension(3) :: dipVec
873     real(kind=dp), dimension(3) :: chgVec
874 gezelter 1340 real(kind=dp) :: skch
875 chrisfen 998
876 chuckv 1671 !! initialize a dummy group velocity variable
877     vel_j = 0.0_dp
878     vel_grp_j = 0.0_dp
879     S_local = 0.0_dp
880    
881 chrisfen 998 !! initialize box dipole variables
882     if (do_box_dipole) then
883     #ifdef IS_MPI
884     pChg_local = 0.0_dp
885     nChg_local = 0.0_dp
886     pChgCount_local = 0
887     nChgCount_local = 0
888     do i=1, 3
889     pChgPos_local = 0.0_dp
890     nChgPos_local = 0.0_dp
891     dipVec_local = 0.0_dp
892     enddo
893     #endif
894     pChg = 0.0_dp
895     nChg = 0.0_dp
896     pChgCount = 0
897     nChgCount = 0
898     chg_value = 0.0_dp
899 chuckv 1671
900 chrisfen 998 do i=1, 3
901     pChgPos(i) = 0.0_dp
902     nChgPos(i) = 0.0_dp
903     dipVec(i) = 0.0_dp
904     chgVec(i) = 0.0_dp
905     boxDipole(i) = 0.0_dp
906     enddo
907     endif
908    
909 chuckv 1671 !! initialize local variables
910     S_local = 0.0_dp
911 chrisfen 532
912 gezelter 117 #ifdef IS_MPI
913     pot_local = 0.0_dp
914     nAtomsInRow = getNatomsInRow(plan_atom_row)
915     nAtomsInCol = getNatomsInCol(plan_atom_col)
916     nGroupsInRow = getNgroupsInRow(plan_group_row)
917     nGroupsInCol = getNgroupsInCol(plan_group_col)
918     #else
919     natoms = nlocal
920     #endif
921 chrisfen 532
922 gezelter 117 call doReadyCheck(localError)
923     if ( localError .ne. 0 ) then
924     call handleError("do_force_loop", "Not Initialized")
925     error = -1
926     return
927     end if
928     call zero_work_arrays()
929 chrisfen 532
930 chuckv 1680 ! Gather all information needed by all force loops
931 chrisfen 532
932 chuckv 1671 #ifdef IS_MPI
933 chrisfen 532
934 gezelter 117 call gather(q, q_Row, plan_atom_row_3d)
935     call gather(q, q_Col, plan_atom_col_3d)
936    
937 chuckv 1680
938 chuckv 1681
939 chuckv 1671 call gather(vel, vel_Col, plan_atom_col_3d)
940    
941 gezelter 117 call gather(q_group, q_group_Row, plan_group_row_3d)
942     call gather(q_group, q_group_Col, plan_group_col_3d)
943 chuckv 1682 !! Support for heat flux velocity center-of-mass
944     call gather(v_group, v_group_Col, plan_group_col_3d)
945 chrisfen 532
946 gezelter 141 if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
947 gezelter 246 call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
948     call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
949 chrisfen 532
950 gezelter 117 call gather(A, A_Row, plan_atom_row_rotation)
951     call gather(A, A_Col, plan_atom_col_rotation)
952     endif
953 chrisfen 532
954 gezelter 117 #endif
955 chrisfen 532
956 gezelter 117 !! Begin force loop timing:
957     #ifdef PROFILE
958     call cpu_time(forceTimeInitial)
959     nloops = nloops + 1
960     #endif
961 chrisfen 532
962 gezelter 117 loopEnd = PAIR_LOOP
963     if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
964     loopStart = PREPAIR_LOOP
965     else
966     loopStart = PAIR_LOOP
967     endif
968    
969     do loop = loopStart, loopEnd
970    
971     ! See if we need to update neighbor lists
972     ! (but only on the first time through):
973     if (loop .eq. loopStart) then
974     #ifdef IS_MPI
975 gezelter 762 call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
976 chrisfen 532 update_nlist)
977 gezelter 117 #else
978 gezelter 762 call checkNeighborList(nGroups, q_group, skinThickness, &
979 chrisfen 532 update_nlist)
980 gezelter 117 #endif
981     endif
982 chrisfen 532
983 gezelter 117 if (update_nlist) then
984     !! save current configuration and construct neighbor list
985     #ifdef IS_MPI
986     call saveNeighborList(nGroupsInRow, q_group_row)
987     #else
988     call saveNeighborList(nGroups, q_group)
989 chuckv 1671 #endif
990 gezelter 117 neighborListSize = size(list)
991     nlist = 0
992     endif
993 chrisfen 532
994 gezelter 117 istart = 1
995     #ifdef IS_MPI
996     iend = nGroupsInRow
997     #else
998     iend = nGroups - 1
999     #endif
1000     outer: do i = istart, iend
1001    
1002     if (update_nlist) point(i) = nlist + 1
1003 chrisfen 532
1004 gezelter 117 n_in_i = groupStartRow(i+1) - groupStartRow(i)
1005 chrisfen 532
1006 gezelter 117 if (update_nlist) then
1007     #ifdef IS_MPI
1008     jstart = 1
1009     jend = nGroupsInCol
1010     #else
1011     jstart = i+1
1012     jend = nGroups
1013     #endif
1014 chuckv 1671 else
1015 gezelter 117 jstart = point(i)
1016     jend = point(i+1) - 1
1017     ! make sure group i has neighbors
1018     if (jstart .gt. jend) cycle outer
1019     endif
1020 chrisfen 532
1021 gezelter 117 do jnab = jstart, jend
1022     if (update_nlist) then
1023     j = jnab
1024     else
1025     j = list(jnab)
1026     endif
1027    
1028     #ifdef IS_MPI
1029 chuckv 567 me_j = atid_col(j)
1030 gezelter 117 call get_interatomic_vector(q_group_Row(:,i), &
1031     q_group_Col(:,j), d_grp, rgrpsq)
1032     #else
1033 chuckv 567 me_j = atid(j)
1034 gezelter 117 call get_interatomic_vector(q_group(:,i), &
1035     q_group(:,j), d_grp, rgrpsq)
1036 chuckv 1671 #endif
1037 gezelter 117
1038 chuckv 651 if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
1039 gezelter 117 if (update_nlist) then
1040     nlist = nlist + 1
1041 chrisfen 532
1042 gezelter 117 if (nlist > neighborListSize) then
1043 chuckv 1671 #ifdef IS_MPI
1044 gezelter 117 call expandNeighborList(nGroupsInRow, listerror)
1045     #else
1046     call expandNeighborList(nGroups, listerror)
1047     #endif
1048     if (listerror /= 0) then
1049     error = -1
1050     write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
1051     return
1052     end if
1053     neighborListSize = size(list)
1054     endif
1055 chrisfen 532
1056 gezelter 117 list(nlist) = j
1057     endif
1058 chuckv 1671
1059 chrisfen 708 if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
1060 chrisfen 532
1061 gezelter 762 rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
1062 chrisfen 708 if (loop .eq. PAIR_LOOP) then
1063 gezelter 960 vij = 0.0_dp
1064 gezelter 938 fij(1) = 0.0_dp
1065     fij(2) = 0.0_dp
1066     fij(3) = 0.0_dp
1067 chrisfen 708 endif
1068 chuckv 1671
1069 gezelter 939 call get_switch(rgrpsq, sw, dswdr,rgrp, in_switching_region)
1070 chuckv 1671
1071 chrisfen 708 n_in_j = groupStartCol(j+1) - groupStartCol(j)
1072 chuckv 1671
1073 chrisfen 708 do ia = groupStartRow(i), groupStartRow(i+1)-1
1074 chuckv 1671
1075 chrisfen 708 atom1 = groupListRow(ia)
1076 chuckv 1671
1077 chrisfen 708 inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
1078 chuckv 1671
1079 chrisfen 708 atom2 = groupListCol(jb)
1080 chuckv 1671
1081 chrisfen 708 if (skipThisPair(atom1, atom2)) cycle inner
1082 chuckv 1671
1083 chrisfen 708 if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1084 gezelter 938 d_atm(1) = d_grp(1)
1085     d_atm(2) = d_grp(2)
1086     d_atm(3) = d_grp(3)
1087 chrisfen 708 ratmsq = rgrpsq
1088     else
1089 gezelter 117 #ifdef IS_MPI
1090 chrisfen 708 call get_interatomic_vector(q_Row(:,atom1), &
1091 chuckv 1681 q_Col(:,atom2), d_atm, ratmsq)
1092 gezelter 117 #else
1093 chrisfen 708 call get_interatomic_vector(q(:,atom1), &
1094     q(:,atom2), d_atm, ratmsq)
1095 gezelter 117 #endif
1096 chuckv 1671 endif
1097 gezelter 1286
1098     topoDist = getTopoDistance(atom1, atom2)
1099 chuckv 1681
1100    
1101 chrisfen 708 if (loop .eq. PREPAIR_LOOP) then
1102 chuckv 1671 #ifdef IS_MPI
1103 chrisfen 708 call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1104 gezelter 1464 rgrpsq, d_grp, rCut, &
1105 chrisfen 708 eFrame, A, f, t, pot_local)
1106 gezelter 117 #else
1107 chrisfen 708 call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1108 gezelter 1464 rgrpsq, d_grp, rCut, &
1109 chrisfen 708 eFrame, A, f, t, pot)
1110 chuckv 1671 #endif
1111 chrisfen 708 else
1112 chuckv 1671 #ifdef IS_MPI
1113 chrisfen 708 call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1114 gezelter 1464 eFrame, A, f, t, pot_local, particle_pot, vpair, &
1115 gezelter 1286 fpair, d_grp, rgrp, rCut, topoDist)
1116 chuckv 1680 vel_j = vel_Col(:,atom2)
1117 chuckv 1245 ! particle_pot will be accumulated from row & column
1118     ! arrays later
1119 gezelter 117 #else
1120 chrisfen 708 call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1121 gezelter 1464 eFrame, A, f, t, pot, particle_pot, vpair, &
1122 gezelter 1286 fpair, d_grp, rgrp, rCut, topoDist)
1123 chuckv 1680 vel_j = vel(:,atom2)
1124 gezelter 117 #endif
1125 chuckv 1681
1126 chrisfen 708 vij = vij + vpair
1127 gezelter 938 fij(1) = fij(1) + fpair(1)
1128     fij(2) = fij(2) + fpair(2)
1129     fij(3) = fij(3) + fpair(3)
1130 chuckv 1680 !good
1131 chuckv 1682 !write(*,*) "Calling ST with vel_j #1: ", vel_j
1132 chuckv 1671 call add_stress_tensor(d_atm, fpair, tau, vel_j, S_local)
1133     !!call add_heat_flux(d_atm, fpair,vel_j,S_local)
1134 chrisfen 708 endif
1135     enddo inner
1136     enddo
1137 gezelter 117
1138 chrisfen 708 if (loop .eq. PAIR_LOOP) then
1139     if (in_switching_region) then
1140     swderiv = vij*dswdr/rgrp
1141 chrisfen 1131 fg = swderiv*d_grp
1142     fij(1) = fij(1) + fg(1)
1143     fij(2) = fij(2) + fg(2)
1144     fij(3) = fij(3) + fg(3)
1145 chuckv 1671
1146 gezelter 1464 if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1147 chuckv 1671 ! call add_stress_tensor(d_atm, fg, tau)
1148 chuckv 1680 call add_stress_tensor(d_atm, fg, tau, vel_j, S_local)
1149 gezelter 1464 endif
1150 chuckv 1671
1151 chrisfen 708 do ia=groupStartRow(i), groupStartRow(i+1)-1
1152     atom1=groupListRow(ia)
1153     mf = mfactRow(atom1)
1154 gezelter 1126 ! fg is the force on atom ia due to cutoff group's
1155     ! presence in switching region
1156     fg = swderiv*d_grp*mf
1157 gezelter 117 #ifdef IS_MPI
1158 gezelter 1126 f_Row(1,atom1) = f_Row(1,atom1) + fg(1)
1159     f_Row(2,atom1) = f_Row(2,atom1) + fg(2)
1160     f_Row(3,atom1) = f_Row(3,atom1) + fg(3)
1161 gezelter 117 #else
1162 gezelter 1126 f(1,atom1) = f(1,atom1) + fg(1)
1163     f(2,atom1) = f(2,atom1) + fg(2)
1164     f(3,atom1) = f(3,atom1) + fg(3)
1165 gezelter 117 #endif
1166 gezelter 1127 if (n_in_i .gt. 1) then
1167 gezelter 1464 if (SIM_uses_AtomicVirial) then
1168     ! find the distance between the atom
1169     ! and the center of the cutoff group:
1170 gezelter 1126 #ifdef IS_MPI
1171 gezelter 1127 call get_interatomic_vector(q_Row(:,atom1), &
1172 chuckv 1682 q_group_Row(:,i), dag, rag)
1173 gezelter 1126 #else
1174 gezelter 1127 call get_interatomic_vector(q(:,atom1), &
1175     q_group(:,i), dag, rag)
1176 gezelter 1126 #endif
1177 chuckv 1682 write(*,*) "vel group j #2: ", vel_grp_j
1178 chuckv 1671 call add_stress_tensor(dag, fg, tau, vel_grp_j, S_local)
1179     !
1180     !call add_stress_tensor(dag,fg,tau)
1181    
1182 gezelter 1127 endif
1183 gezelter 1126 endif
1184 chrisfen 708 enddo
1185 chuckv 1671
1186 chrisfen 708 do jb=groupStartCol(j), groupStartCol(j+1)-1
1187     atom2=groupListCol(jb)
1188     mf = mfactCol(atom2)
1189 gezelter 1126 ! fg is the force on atom jb due to cutoff group's
1190     ! presence in switching region
1191     fg = -swderiv*d_grp*mf
1192 gezelter 117 #ifdef IS_MPI
1193 gezelter 1126 f_Col(1,atom2) = f_Col(1,atom2) + fg(1)
1194     f_Col(2,atom2) = f_Col(2,atom2) + fg(2)
1195     f_Col(3,atom2) = f_Col(3,atom2) + fg(3)
1196 gezelter 117 #else
1197 gezelter 1126 f(1,atom2) = f(1,atom2) + fg(1)
1198     f(2,atom2) = f(2,atom2) + fg(2)
1199     f(3,atom2) = f(3,atom2) + fg(3)
1200 gezelter 117 #endif
1201 gezelter 1127 if (n_in_j .gt. 1) then
1202 gezelter 1464 if (SIM_uses_AtomicVirial) then
1203     ! find the distance between the atom
1204     ! and the center of the cutoff group:
1205 gezelter 1126 #ifdef IS_MPI
1206 gezelter 1127 call get_interatomic_vector(q_Col(:,atom2), &
1207     q_group_Col(:,j), dag, rag)
1208 chuckv 1682 vel_grp_j = v_group_Col(:,atom2)
1209 gezelter 1126 #else
1210 gezelter 1127 call get_interatomic_vector(q(:,atom2), &
1211     q_group(:,j), dag, rag)
1212 chuckv 1682 vel_grp_j = v_group(:,atom2)
1213 gezelter 1126 #endif
1214 chuckv 1671 ! call add_stress_tensor(dag,fg,tau)
1215 chuckv 1682 write(*,*) "vel group j #1: ", vel_grp_j
1216 chuckv 1671 call add_stress_tensor(dag, fg, tau, vel_grp_j, S_local)
1217     ! call add_heat_flux(d_atm, fpair,vel_j,S_local)
1218 gezelter 1127 endif
1219 gezelter 1464 endif
1220 chrisfen 708 enddo
1221     endif
1222 gezelter 1464 !if (.not.SIM_uses_AtomicVirial) then
1223 chuckv 1671 ! call add_stress_tensor(d_grp, fij, tau)
1224 gezelter 1174 !endif
1225 gezelter 117 endif
1226     endif
1227 chrisfen 708 endif
1228 gezelter 117 enddo
1229 chuckv 1671
1230 gezelter 117 enddo outer
1231 chrisfen 532
1232 gezelter 117 if (update_nlist) then
1233     #ifdef IS_MPI
1234     point(nGroupsInRow + 1) = nlist + 1
1235 chuckv 1671 #else
1236 gezelter 117 point(nGroups) = nlist + 1
1237     #endif
1238     if (loop .eq. PREPAIR_LOOP) then
1239     ! we just did the neighbor list update on the first
1240     ! pass, so we don't need to do it
1241     ! again on the second pass
1242 chuckv 1671 update_nlist = .false.
1243 gezelter 117 endif
1244     endif
1245 chrisfen 532
1246 gezelter 117 if (loop .eq. PREPAIR_LOOP) then
1247 chuckv 1133 #ifdef IS_MPI
1248 gezelter 1285 call do_preforce(nlocal, pot_local, particle_pot)
1249 chuckv 1133 #else
1250 gezelter 1285 call do_preforce(nlocal, pot, particle_pot)
1251 chuckv 1133 #endif
1252 gezelter 117 endif
1253 chrisfen 532
1254 gezelter 117 enddo
1255 chrisfen 532
1256 gezelter 117 !! Do timing
1257     #ifdef PROFILE
1258     call cpu_time(forceTimeFinal)
1259     forceTime = forceTime + forceTimeFinal - forceTimeInitial
1260 chuckv 1671 #endif
1261 chrisfen 532
1262 gezelter 117 #ifdef IS_MPI
1263     !!distribute forces
1264 chrisfen 532
1265 gezelter 117 f_temp = 0.0_dp
1266     call scatter(f_Row,f_temp,plan_atom_row_3d)
1267     do i = 1,nlocal
1268     f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1269     end do
1270 chrisfen 532
1271 gezelter 117 f_temp = 0.0_dp
1272     call scatter(f_Col,f_temp,plan_atom_col_3d)
1273     do i = 1,nlocal
1274     f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1275     end do
1276 chrisfen 532
1277 gezelter 141 if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1278 gezelter 117 t_temp = 0.0_dp
1279     call scatter(t_Row,t_temp,plan_atom_row_3d)
1280     do i = 1,nlocal
1281     t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1282     end do
1283     t_temp = 0.0_dp
1284     call scatter(t_Col,t_temp,plan_atom_col_3d)
1285 chrisfen 532
1286 gezelter 117 do i = 1,nlocal
1287     t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1288     end do
1289     endif
1290 chrisfen 532
1291 gezelter 1464 ! scatter/gather pot_row into the members of my column
1292     do i = 1,LR_POT_TYPES
1293     call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1294     end do
1295     ! scatter/gather pot_local into all other procs
1296     ! add resultant to get total pot
1297     do i = 1, nlocal
1298     pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1299     + pot_Temp(1:LR_POT_TYPES,i)
1300     enddo
1301 chuckv 1671
1302     ! factor of two is because the total potential terms are divided by 2 in parallel
1303 gezelter 1611 ! due to row/ column scatter
1304 gezelter 1464 do i = 1,LR_POT_TYPES
1305 gezelter 1611 particle_pot(1:nlocal) = particle_pot(1:nlocal) + 2.0 * pot_Temp(i,1:nlocal)
1306 gezelter 1464 enddo
1307 gezelter 1610
1308 chuckv 1671
1309     pot_Temp = 0.0_DP
1310    
1311 gezelter 1464 do i = 1,LR_POT_TYPES
1312     call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1313     end do
1314 chuckv 1671
1315 gezelter 1464 do i = 1, nlocal
1316     pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1317     + pot_Temp(1:LR_POT_TYPES,i)
1318     enddo
1319 chuckv 1671
1320     ! factor of two is because the total potential terms are divided by 2 in parallel
1321 gezelter 1611 ! due to row/ column scatter
1322 gezelter 1464 do i = 1,LR_POT_TYPES
1323 gezelter 1611 particle_pot(1:nlocal) = particle_pot(1:nlocal) + 2.0 * pot_Temp(i,1:nlocal)
1324 gezelter 1464 enddo
1325 chuckv 1671
1326 gezelter 1464 ppot_Temp = 0.0_DP
1327 chuckv 1671
1328 gezelter 1464 call scatter(ppot_Row(:), ppot_Temp(:), plan_atom_row)
1329     do i = 1, nlocal
1330     particle_pot(i) = particle_pot(i) + ppot_Temp(i)
1331     enddo
1332 chuckv 1671
1333 gezelter 1464 ppot_Temp = 0.0_DP
1334 chuckv 1671
1335 gezelter 1464 call scatter(ppot_Col(:), ppot_Temp(:), plan_atom_col)
1336     do i = 1, nlocal
1337     particle_pot(i) = particle_pot(i) + ppot_Temp(i)
1338     enddo
1339 chuckv 1671
1340     !! In parallel we need to accumulate S for the entire system
1341    
1342     call mpi_allreduce(S, S_local, 3, mpi_double_precision, mpi_sum, &
1343     plan_atom_col%myPlanComm, mpi_err)
1344     #else
1345     S = S_Local
1346 gezelter 117 #endif
1347 chrisfen 532
1348 chuckv 1671
1349    
1350 chrisfen 691 if (SIM_requires_postpair_calc) then
1351 chuckv 1671 do i = 1, nlocal
1352    
1353 chrisfen 695 ! we loop only over the local atoms, so we don't need row and column
1354     ! lookups for the types
1355 gezelter 1346
1356 chrisfen 691 me_i = atid(i)
1357 gezelter 1486
1358 chuckv 1671 ! is the atom electrostatic? See if it would have an
1359 chrisfen 695 ! electrostatic interaction with itself
1360     iHash = InteractionHash(me_i,me_i)
1361 chrisfen 699
1362 chrisfen 691 if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1363 gezelter 1340
1364     ! loop over the excludes to accumulate charge in the
1365     ! cutoff sphere that we've left out of the normal pair loop
1366     skch = 0.0_dp
1367 chuckv 1671
1368     do i1 = 1, nSkipsForLocalAtom(i)
1369     j = skipsForLocalAtom(i, i1)
1370 gezelter 1340 me_j = atid(j)
1371 gezelter 1352 jHash = InteractionHash(me_i,me_j)
1372     if ( iand(jHash, ELECTROSTATIC_PAIR).ne.0 ) then
1373     skch = skch + getCharge(me_j)
1374     endif
1375 gezelter 1340 enddo
1376 gezelter 1346
1377 gezelter 117 #ifdef IS_MPI
1378 gezelter 1464 call self_self(i, eFrame, skch, pot_local(ELECTROSTATIC_POT), t)
1379 gezelter 117 #else
1380 gezelter 1464 call self_self(i, eFrame, skch, pot(ELECTROSTATIC_POT), t)
1381 gezelter 117 #endif
1382 chrisfen 691 endif
1383 chuckv 1671
1384    
1385 chrisfen 708 if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1386 chuckv 1671
1387 chrisfen 703 ! loop over the excludes to accumulate RF stuff we've
1388     ! left out of the normal pair loop
1389 chuckv 1671
1390 gezelter 1346 do i1 = 1, nSkipsForLocalAtom(i)
1391     j = skipsForLocalAtom(i, i1)
1392 chuckv 1671
1393 chrisfen 703 ! prevent overcounting of the skips
1394     if (i.lt.j) then
1395 gezelter 939 call get_interatomic_vector(q(:,i), q(:,j), d_atm, ratmsq)
1396 gezelter 960 rVal = sqrt(ratmsq)
1397 gezelter 939 call get_switch(ratmsq, sw, dswdr, rVal,in_switching_region)
1398 chrisfen 699 #ifdef IS_MPI
1399 gezelter 1286 call rf_self_excludes(i, j, sw, 1.0_dp, eFrame, d_atm, rVal, &
1400 gezelter 1464 vpair, pot_local(ELECTROSTATIC_POT), f, t)
1401 chrisfen 699 #else
1402 gezelter 1286 call rf_self_excludes(i, j, sw, 1.0_dp, eFrame, d_atm, rVal, &
1403 gezelter 1464 vpair, pot(ELECTROSTATIC_POT), f, t)
1404 chrisfen 699 #endif
1405 chrisfen 703 endif
1406     enddo
1407 chrisfen 708 endif
1408 chrisfen 998
1409     if (do_box_dipole) then
1410     #ifdef IS_MPI
1411     call accumulate_box_dipole(i, eFrame, q(:,i), pChg_local, &
1412     nChg_local, pChgPos_local, nChgPos_local, dipVec_local, &
1413     pChgCount_local, nChgCount_local)
1414     #else
1415     call accumulate_box_dipole(i, eFrame, q(:,i), pChg, nChg, &
1416     pChgPos, nChgPos, dipVec, pChgCount, nChgCount)
1417     #endif
1418     endif
1419 chrisfen 703 enddo
1420 gezelter 117 endif
1421 chrisfen 998
1422 gezelter 117 #ifdef IS_MPI
1423 gezelter 962 #ifdef SINGLE_PRECISION
1424 gezelter 1464 call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_real,mpi_sum, &
1425 chuckv 1671 mpi_comm_world,mpi_err)
1426 gezelter 962 #else
1427 gezelter 1464 call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision, &
1428 chuckv 1671 mpi_sum, mpi_comm_world,mpi_err)
1429 gezelter 962 #endif
1430 chuckv 1671
1431 chrisfen 998 if (do_box_dipole) then
1432    
1433     #ifdef SINGLE_PRECISION
1434     call mpi_allreduce(pChg_local, pChg, 1, mpi_real, mpi_sum, &
1435     mpi_comm_world, mpi_err)
1436     call mpi_allreduce(nChg_local, nChg, 1, mpi_real, mpi_sum, &
1437     mpi_comm_world, mpi_err)
1438     call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer, mpi_sum,&
1439     mpi_comm_world, mpi_err)
1440     call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer, mpi_sum,&
1441     mpi_comm_world, mpi_err)
1442     call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_real, mpi_sum, &
1443     mpi_comm_world, mpi_err)
1444     call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_real, mpi_sum, &
1445     mpi_comm_world, mpi_err)
1446     call mpi_allreduce(dipVec_local, dipVec, 3, mpi_real, mpi_sum, &
1447     mpi_comm_world, mpi_err)
1448 gezelter 117 #else
1449 chrisfen 998 call mpi_allreduce(pChg_local, pChg, 1, mpi_double_precision, mpi_sum, &
1450     mpi_comm_world, mpi_err)
1451     call mpi_allreduce(nChg_local, nChg, 1, mpi_double_precision, mpi_sum, &
1452     mpi_comm_world, mpi_err)
1453     call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer,&
1454     mpi_sum, mpi_comm_world, mpi_err)
1455     call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer,&
1456     mpi_sum, mpi_comm_world, mpi_err)
1457     call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_double_precision, &
1458     mpi_sum, mpi_comm_world, mpi_err)
1459     call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_double_precision, &
1460     mpi_sum, mpi_comm_world, mpi_err)
1461     call mpi_allreduce(dipVec_local, dipVec, 3, mpi_double_precision, &
1462     mpi_sum, mpi_comm_world, mpi_err)
1463     #endif
1464    
1465     endif
1466 chuckv 1671
1467 gezelter 117 #endif
1468 chrisfen 998
1469     if (do_box_dipole) then
1470     ! first load the accumulated dipole moment (if dipoles were present)
1471     boxDipole(1) = dipVec(1)
1472     boxDipole(2) = dipVec(2)
1473     boxDipole(3) = dipVec(3)
1474    
1475     ! now include the dipole moment due to charges
1476     ! use the lesser of the positive and negative charge totals
1477     if (nChg .le. pChg) then
1478     chg_value = nChg
1479     else
1480     chg_value = pChg
1481     endif
1482 chuckv 1671
1483 chrisfen 998 ! find the average positions
1484     if (pChgCount .gt. 0 .and. nChgCount .gt. 0) then
1485     pChgPos = pChgPos / pChgCount
1486     nChgPos = nChgPos / nChgCount
1487     endif
1488    
1489     ! dipole is from the negative to the positive (physics notation)
1490     chgVec(1) = pChgPos(1) - nChgPos(1)
1491     chgVec(2) = pChgPos(2) - nChgPos(2)
1492     chgVec(3) = pChgPos(3) - nChgPos(3)
1493    
1494     boxDipole(1) = boxDipole(1) + chgVec(1) * chg_value
1495     boxDipole(2) = boxDipole(2) + chgVec(2) * chg_value
1496     boxDipole(3) = boxDipole(3) + chgVec(3) * chg_value
1497    
1498     endif
1499    
1500 gezelter 117 end subroutine do_force_loop
1501 chrisfen 532
1502 gezelter 1464 subroutine do_pair(i, j, rijsq, d, sw, &
1503 gezelter 1309 eFrame, A, f, t, pot, particle_pot, vpair, &
1504     fpair, d_grp, r_grp, rCut, topoDist)
1505 gezelter 117
1506 chuckv 656 real( kind = dp ) :: vpair, sw
1507 gezelter 662 real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1508 chuckv 1245 real( kind = dp ), dimension(nLocal) :: particle_pot
1509 gezelter 117 real( kind = dp ), dimension(3) :: fpair
1510     real( kind = dp ), dimension(nLocal) :: mfact
1511 gezelter 246 real( kind = dp ), dimension(9,nLocal) :: eFrame
1512 gezelter 117 real( kind = dp ), dimension(9,nLocal) :: A
1513     real( kind = dp ), dimension(3,nLocal) :: f
1514     real( kind = dp ), dimension(3,nLocal) :: t
1515    
1516     integer, intent(in) :: i, j
1517     real ( kind = dp ), intent(inout) :: rijsq
1518 chrisfen 695 real ( kind = dp ), intent(inout) :: r_grp
1519 gezelter 117 real ( kind = dp ), intent(inout) :: d(3)
1520 chrisfen 695 real ( kind = dp ), intent(inout) :: d_grp(3)
1521 chuckv 1671 real ( kind = dp ), intent(inout) :: rCut
1522 gezelter 1286 integer, intent(inout) :: topoDist
1523     real ( kind = dp ) :: r, pair_pot, vdwMult, electroMult
1524 gezelter 939 real ( kind = dp ) :: a_k, b_k, c_k, d_k, dx
1525 gezelter 1386
1526     real( kind = dp), dimension(3) :: f1, t1, t2
1527     real( kind = dp), dimension(9) :: A1, A2, eF1, eF2
1528 chuckv 1388 real( kind = dp) :: dfrhodrho_i, dfrhodrho_j
1529     real( kind = dp) :: rho_i, rho_j
1530 chuckv 1671 real( kind = dp) :: fshift_i, fshift_j
1531 gezelter 1386 real( kind = dp) :: p_vdw, p_elect, p_hb, p_met
1532     integer :: atid_i, atid_j, id1, id2, idx
1533 gezelter 939 integer :: k
1534 gezelter 117
1535 gezelter 571 integer :: iHash
1536 gezelter 560
1537 chrisfen 942 r = sqrt(rijsq)
1538 chuckv 1671
1539 gezelter 960 vpair = 0.0_dp
1540     fpair(1:3) = 0.0_dp
1541 gezelter 117
1542 gezelter 1386 p_vdw = 0.0
1543     p_elect = 0.0
1544     p_hb = 0.0
1545     p_met = 0.0
1546    
1547     f1(1:3) = 0.0
1548    
1549 gezelter 117 #ifdef IS_MPI
1550 gezelter 1386 atid_i = atid_row(i)
1551     atid_j = atid_col(j)
1552 gezelter 117 #else
1553 gezelter 1386 atid_i = atid(i)
1554     atid_j = atid(j)
1555 gezelter 117 #endif
1556 chuckv 1671
1557 gezelter 1386 iHash = InteractionHash(atid_i, atid_j)
1558 cli2 1289
1559 gezelter 1286 vdwMult = vdwScale(topoDist)
1560     electroMult = electrostaticScale(topoDist)
1561 cli2 1289
1562 chrisfen 703 if ( iand(iHash, LJ_PAIR).ne.0 ) then
1563 gezelter 1464 call do_lj_pair(atid_i, atid_j, d, r, rijsq, rcut, sw, vdwMult, vpair, fpair, &
1564     p_vdw, f1)
1565 gezelter 117 endif
1566 chuckv 1671
1567 chrisfen 703 if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1568 gezelter 1510 #ifdef IS_MPI
1569 gezelter 1464 call doElectrostaticPair(atid_i, atid_j, d, r, rijsq, rcut, sw, electroMult, &
1570 gezelter 1510 vpair, fpair, p_elect, eFrame_Row(:,i), eFrame_Col(:,j), &
1571     f1, t_Row(:,i), t_Col(:,j))
1572     #else
1573     call doElectrostaticPair(atid_i, atid_j, d, r, rijsq, rcut, sw, electroMult, &
1574     vpair, fpair, p_elect, eFrame(:,i), eFrame(:,j), f1, t(:,i), t(:,j))
1575     #endif
1576 chrisfen 703 endif
1577 gezelter 1615
1578 chrisfen 703 if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1579 gezelter 1510 #ifdef IS_MPI
1580 gezelter 1464 call do_sticky_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1581 gezelter 1520 p_hb, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1582 gezelter 1510 #else
1583     call do_sticky_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1584     p_hb, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1585     #endif
1586 chrisfen 703 endif
1587 chuckv 1671
1588 chrisfen 703 if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1589 gezelter 1510 #ifdef IS_MPI
1590 gezelter 1464 call do_sticky_power_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1591 gezelter 1520 p_hb, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1592 gezelter 1510 #else
1593     call do_sticky_power_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1594     p_hb, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1595     #endif
1596 chrisfen 703 endif
1597 chuckv 1671
1598 chrisfen 703 if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1599 gezelter 1510 #ifdef IS_MPI
1600 gezelter 1464 call do_gb_pair(atid_i, atid_j, d, r, rijsq, sw, vdwMult, vpair, fpair, &
1601 gezelter 1520 p_vdw, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1602 gezelter 1510 #else
1603     call do_gb_pair(atid_i, atid_j, d, r, rijsq, sw, vdwMult, vpair, fpair, &
1604     p_vdw, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1605     #endif
1606 chrisfen 703 endif
1607 chuckv 1671
1608 chrisfen 703 if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1609 gezelter 1510 #ifdef IS_MPI
1610 gezelter 1464 call do_gb_pair(atid_i, atid_j, d, r, rijsq, sw, vdwMult, vpair, fpair, &
1611 gezelter 1520 p_vdw, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1612 gezelter 1510 #else
1613     call do_gb_pair(atid_i, atid_j, d, r, rijsq, sw, vdwMult, vpair, fpair, &
1614     p_vdw, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1615     #endif
1616 chrisfen 703 endif
1617 chuckv 1671
1618     if ( iand(iHash, SHAPE_PAIR).ne.0 ) then
1619 gezelter 1510 #ifdef IS_MPI
1620 gezelter 1464 call do_shape_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1621 gezelter 1520 p_vdw, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1622 gezelter 1510 #else
1623     call do_shape_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1624     p_vdw, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1625     #endif
1626 chrisfen 703 endif
1627 chuckv 1671
1628     if ( iand(iHash, SHAPE_LJ).ne.0 ) then
1629 gezelter 1510 #ifdef IS_MPI
1630 gezelter 1464 call do_shape_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1631 gezelter 1520 p_vdw, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1632 gezelter 1510 #else
1633     call do_shape_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1634     p_vdw, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1635     #endif
1636 chrisfen 703 endif
1637 chuckv 733
1638 chuckv 1671 if ( iand(iHash, EAM_PAIR).ne.0 ) then
1639     #ifdef IS_MPI
1640 gezelter 1464 call do_eam_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, &
1641 gezelter 1510 fpair, p_met, f1, rho_row(i), rho_col(j), dfrhodrho_row(i), dfrhodrho_col(j), &
1642     fshift_i, fshift_j)
1643     #else
1644     call do_eam_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, &
1645     fpair, p_met, f1, rho(i), rho(j), dfrhodrho(i), dfrhodrho(j), fshift_i, fshift_j)
1646     #endif
1647 gezelter 1419 endif
1648    
1649 chuckv 1671 if ( iand(iHash, SC_PAIR).ne.0 ) then
1650     #ifdef IS_MPI
1651 gezelter 1464 call do_SC_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, &
1652 gezelter 1510 fpair, p_met, f1, rho_row(i), rho_col(j), dfrhodrho_row(i), dfrhodrho_col(j), &
1653     fshift_i, fshift_j)
1654     #else
1655     call do_SC_pair(atid_i, atid_j, d, r, rijsq, sw, vpair, &
1656     fpair, p_met, f1, rho(i), rho(j), dfrhodrho(i), dfrhodrho(j), fshift_i, fshift_j)
1657     #endif
1658 chuckv 733 endif
1659 chuckv 1671
1660     if ( iand(iHash, MNM_PAIR).ne.0 ) then
1661 gezelter 1510 #ifdef IS_MPI
1662 gezelter 1464 call do_mnm_pair(atid_i, atid_j, d, r, rijsq, rcut, sw, vdwMult, vpair, fpair, &
1663 gezelter 1510 p_vdw, A_Row(:,i), A_Col(:,j), f1, t_Row(:,i), t_Col(:,j))
1664     #else
1665     call do_mnm_pair(atid_i, atid_j, d, r, rijsq, rcut, sw, vdwMult, vpair, fpair, &
1666     p_vdw, A(:,i), A(:,j), f1, t(:,i), t(:,j))
1667     #endif
1668 gezelter 1174 endif
1669 gezelter 1386
1670    
1671     #ifdef IS_MPI
1672     id1 = AtomRowToGlobal(i)
1673     id2 = AtomColToGlobal(j)
1674    
1675     pot_row(VDW_POT,i) = pot_row(VDW_POT,i) + 0.5*p_vdw
1676     pot_col(VDW_POT,j) = pot_col(VDW_POT,j) + 0.5*p_vdw
1677     pot_row(ELECTROSTATIC_POT,i) = pot_row(ELECTROSTATIC_POT,i) + 0.5*p_elect
1678     pot_col(ELECTROSTATIC_POT,j) = pot_col(ELECTROSTATIC_POT,j) + 0.5*p_elect
1679     pot_row(HB_POT,i) = pot_row(HB_POT,i) + 0.5*p_hb
1680     pot_col(HB_POT,j) = pot_col(HB_POT,j) + 0.5*p_hb
1681     pot_Row(METALLIC_POT,i) = pot_Row(METALLIC_POT,i) + 0.5*p_met
1682     pot_Col(METALLIC_POT,j) = pot_Col(METALLIC_POT,j) + 0.5*p_met
1683    
1684     do idx = 1, 3
1685     f_Row(idx,i) = f_Row(idx,i) + f1(idx)
1686     f_Col(idx,j) = f_Col(idx,j) - f1(idx)
1687     enddo
1688 chuckv 1671 ! particle_pot is the difference between the full potential
1689 chuckv 1388 ! and the full potential without the presence of a particular
1690     ! particle (atom1).
1691     !
1692     ! This reduces the density at other particle locations, so
1693     ! we need to recompute the density at atom2 assuming atom1
1694     ! didn't contribute. This then requires recomputing the
1695     ! density functional for atom2 as well.
1696     !
1697     ! Most of the particle_pot heavy lifting comes from the
1698     ! pair interaction, and will be handled by vpair. Parallel version.
1699 chuckv 1671
1700 gezelter 1390 if ( (iand(iHash, EAM_PAIR).ne.0) .or. (iand(iHash, SC_PAIR).ne.0) ) then
1701 chuckv 1388 ppot_row(i) = ppot_row(i) - frho_row(j) + fshift_j
1702     ppot_col(j) = ppot_col(j) - frho_col(i) + fshift_i
1703     end if
1704 chuckv 1671
1705 gezelter 1386 #else
1706     id1 = i
1707     id2 = j
1708    
1709     pot(VDW_POT) = pot(VDW_POT) + p_vdw
1710     pot(ELECTROSTATIC_POT) = pot(ELECTROSTATIC_POT) + p_elect
1711     pot(HB_POT) = pot(HB_POT) + p_hb
1712     pot(METALLIC_POT) = pot(METALLIC_POT) + p_met
1713 chuckv 1671
1714 gezelter 1610 ! only done for single processor. In Parallel, the particle_pot
1715     ! is constructed from the row and column potentials.
1716 gezelter 1386
1717 gezelter 1610 particle_pot(i) = particle_pot(i) + vpair*sw
1718     particle_pot(j) = particle_pot(j) + vpair*sw
1719    
1720 gezelter 1386 do idx = 1, 3
1721     f(idx,i) = f(idx,i) + f1(idx)
1722     f(idx,j) = f(idx,j) - f1(idx)
1723     enddo
1724 chuckv 1671 ! particle_pot is the difference between the full potential
1725 chuckv 1388 ! and the full potential without the presence of a particular
1726     ! particle (atom1).
1727     !
1728     ! This reduces the density at other particle locations, so
1729     ! we need to recompute the density at atom2 assuming atom1
1730     ! didn't contribute. This then requires recomputing the
1731     ! density functional for atom2 as well.
1732     !
1733     ! Most of the particle_pot heavy lifting comes from the
1734     ! pair interaction, and will be handled by vpair. NonParallel version.
1735 gezelter 1390
1736     if ( (iand(iHash, EAM_PAIR).ne.0) .or. (iand(iHash, SC_PAIR).ne.0) ) then
1737 chuckv 1388 particle_pot(i) = particle_pot(i) - frho(j) + fshift_j
1738     particle_pot(j) = particle_pot(j) - frho(i) + fshift_i
1739     end if
1740    
1741    
1742 gezelter 1386 #endif
1743 chuckv 1671
1744 gezelter 1386 if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1745 chuckv 1671
1746 gezelter 1386 fpair(1) = fpair(1) + f1(1)
1747     fpair(2) = fpair(2) + f1(2)
1748     fpair(3) = fpair(3) + f1(3)
1749 chuckv 1671
1750 gezelter 1386 endif
1751    
1752    
1753 gezelter 117 end subroutine do_pair
1754    
1755 gezelter 762 subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1756 gezelter 1464 eFrame, A, f, t, pot)
1757 chuckv 1671
1758 chuckv 656 real( kind = dp ) :: sw
1759 gezelter 662 real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1760 chrisfen 532 real( kind = dp ), dimension(9,nLocal) :: eFrame
1761     real (kind=dp), dimension(9,nLocal) :: A
1762     real (kind=dp), dimension(3,nLocal) :: f
1763     real (kind=dp), dimension(3,nLocal) :: t
1764 chuckv 1671
1765 chrisfen 532 integer, intent(in) :: i, j
1766 gezelter 762 real ( kind = dp ), intent(inout) :: rijsq, rcijsq, rCut
1767 chrisfen 532 real ( kind = dp ) :: r, rc
1768     real ( kind = dp ), intent(inout) :: d(3), dc(3)
1769 chuckv 1389 real ( kind = dp ) :: rho_i_at_j, rho_j_at_i
1770 gezelter 1386 integer :: atid_i, atid_j, iHash
1771 chuckv 1671
1772 chrisfen 942 r = sqrt(rijsq)
1773 chuckv 1671
1774     #ifdef IS_MPI
1775 gezelter 1386 atid_i = atid_row(i)
1776 chuckv 1671 atid_j = atid_col(j)
1777     #else
1778 gezelter 1386 atid_i = atid(i)
1779 chuckv 1671 atid_j = atid(j)
1780 gezelter 117 #endif
1781 chuckv 1388 rho_i_at_j = 0.0_dp
1782     rho_j_at_i = 0.0_dp
1783 chuckv 1671
1784 gezelter 1386 iHash = InteractionHash(atid_i, atid_j)
1785 chrisfen 532
1786 chuckv 1671 if ( iand(iHash, EAM_PAIR).ne.0 ) then
1787 gezelter 1464 call calc_EAM_prepair_rho(atid_i, atid_j, d, r, rijsq, rho_i_at_j, rho_j_at_i)
1788 chrisfen 532 endif
1789 chuckv 1671
1790     if ( iand(iHash, SC_PAIR).ne.0 ) then
1791 gezelter 1464 call calc_SC_prepair_rho(atid_i, atid_j, d, r, rijsq, rho_i_at_j, rho_j_at_i)
1792 chuckv 733 endif
1793 chuckv 1388
1794 chuckv 1671 if ( iand(iHash, EAM_PAIR).ne.0 .or. iand(iHash, SC_PAIR).ne.0 ) then
1795 chuckv 1388 #ifdef IS_MPI
1796     rho_col(j) = rho_col(j) + rho_i_at_j
1797     rho_row(i) = rho_row(i) + rho_j_at_i
1798     #else
1799     rho(j) = rho(j) + rho_i_at_j
1800     rho(i) = rho(i) + rho_j_at_i
1801 chuckv 1671 #endif
1802 chuckv 1388 endif
1803 chuckv 1671
1804 chrisfen 532 end subroutine do_prepair
1805    
1806    
1807 gezelter 1285 subroutine do_preforce(nlocal, pot, particle_pot)
1808 chrisfen 532 integer :: nlocal
1809 gezelter 662 real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1810 gezelter 1285 real( kind = dp ),dimension(nlocal) :: particle_pot
1811 chuckv 1388 integer :: sc_err = 0
1812 chrisfen 532
1813 chuckv 1388 #ifdef IS_MPI
1814 chuckv 1389 if ((FF_uses_EAM .and. SIM_uses_EAM) .or. (FF_uses_SC .and. SIM_uses_SC)) then
1815 chuckv 1388 call scatter(rho_row,rho,plan_atom_row,sc_err)
1816     if (sc_err /= 0 ) then
1817     call handleError("do_preforce()", "Error scattering rho_row into rho")
1818     endif
1819     call scatter(rho_col,rho_tmp,plan_atom_col,sc_err)
1820     if (sc_err /= 0 ) then
1821 chuckv 1671 call handleError("do_preforce()", "Error scattering rho_col into rho")
1822 chuckv 1388 endif
1823     rho(1:nlocal) = rho(1:nlocal) + rho_tmp(1:nlocal)
1824     end if
1825     #endif
1826    
1827    
1828 chuckv 1671
1829 chrisfen 532 if (FF_uses_EAM .and. SIM_uses_EAM) then
1830 gezelter 1285 call calc_EAM_preforce_Frho(nlocal, pot(METALLIC_POT), particle_pot)
1831 chrisfen 532 endif
1832 chuckv 733 if (FF_uses_SC .and. SIM_uses_SC) then
1833 gezelter 1285 call calc_SC_preforce_Frho(nlocal, pot(METALLIC_POT), particle_pot)
1834 chuckv 733 endif
1835 chuckv 1388
1836     #ifdef IS_MPI
1837 chuckv 1389 if ((FF_uses_EAM .and. SIM_uses_EAM) .or. (FF_uses_SC .and. SIM_uses_SC)) then
1838 chuckv 1388 !! communicate f(rho) and derivatives back into row and column arrays
1839     call gather(frho,frho_row,plan_atom_row, sc_err)
1840     if (sc_err /= 0) then
1841     call handleError("do_preforce()","MPI gather frho_row failure")
1842     endif
1843     call gather(dfrhodrho,dfrhodrho_row,plan_atom_row, sc_err)
1844     if (sc_err /= 0) then
1845     call handleError("do_preforce()","MPI gather dfrhodrho_row failure")
1846     endif
1847     call gather(frho,frho_col,plan_atom_col, sc_err)
1848     if (sc_err /= 0) then
1849     call handleError("do_preforce()","MPI gather frho_col failure")
1850     endif
1851     call gather(dfrhodrho,dfrhodrho_col,plan_atom_col, sc_err)
1852     if (sc_err /= 0) then
1853     call handleError("do_preforce()","MPI gather dfrhodrho_col failure")
1854     endif
1855     end if
1856     #endif
1857    
1858 chrisfen 532 end subroutine do_preforce
1859    
1860    
1861     subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1862    
1863     real (kind = dp), dimension(3) :: q_i
1864     real (kind = dp), dimension(3) :: q_j
1865     real ( kind = dp ), intent(out) :: r_sq
1866     real( kind = dp ) :: d(3), scaled(3)
1867 chuckv 1507 real(kind=dp)::t
1868 chrisfen 532 integer i
1869    
1870 gezelter 938 d(1) = q_j(1) - q_i(1)
1871     d(2) = q_j(2) - q_i(2)
1872     d(3) = q_j(3) - q_i(3)
1873 chrisfen 532
1874     ! Wrap back into periodic box if necessary
1875     if ( SIM_uses_PBC ) then
1876    
1877     if( .not.boxIsOrthorhombic ) then
1878     ! calc the scaled coordinates.
1879 gezelter 1508 ! unwrap the matmul and do things explicitly
1880 gezelter 939 ! scaled = matmul(HmatInv, d)
1881 chrisfen 532
1882 gezelter 939 scaled(1) = HmatInv(1,1)*d(1) + HmatInv(1,2)*d(2) + HmatInv(1,3)*d(3)
1883     scaled(2) = HmatInv(2,1)*d(1) + HmatInv(2,2)*d(2) + HmatInv(2,3)*d(3)
1884     scaled(3) = HmatInv(3,1)*d(1) + HmatInv(3,2)*d(2) + HmatInv(3,3)*d(3)
1885 chuckv 1671
1886 gezelter 1508 ! wrap the scaled coordinates (but don't use anint for speed)
1887 chrisfen 532
1888 chuckv 1507 t = scaled(1)
1889 gezelter 1517 if (t .gt. 0.0) then
1890 chuckv 1507 scaled(1) = t - floor(t + 0.5)
1891     else
1892 gezelter 1516 scaled(1) = t - ceiling(t - 0.5)
1893 chuckv 1507 endif
1894 chrisfen 532
1895 chuckv 1507 t = scaled(2)
1896 gezelter 1517 if (t .gt. 0.0) then
1897 chuckv 1507 scaled(2) = t - floor(t + 0.5)
1898     else
1899 gezelter 1516 scaled(2) = t - ceiling(t - 0.5)
1900 chuckv 1507 endif
1901    
1902     t = scaled(3)
1903 gezelter 1517 if (t .gt. 0.0) then
1904 chuckv 1507 scaled(3) = t - floor(t + 0.5)
1905     else
1906 gezelter 1516 scaled(3) = t - ceiling(t - 0.5)
1907 chuckv 1507 endif
1908    
1909 chuckv 1671 ! calc the wrapped real coordinates from the wrapped scaled
1910 chrisfen 532 ! coordinates
1911 gezelter 939 ! d = matmul(Hmat,scaled)
1912     d(1)= Hmat(1,1)*scaled(1) + Hmat(1,2)*scaled(2) + Hmat(1,3)*scaled(3)
1913     d(2)= Hmat(2,1)*scaled(1) + Hmat(2,2)*scaled(2) + Hmat(2,3)*scaled(3)
1914     d(3)= Hmat(3,1)*scaled(1) + Hmat(3,2)*scaled(2) + Hmat(3,3)*scaled(3)
1915 chrisfen 532
1916     else
1917 chuckv 1507 ! calc the scaled coordinates
1918 gezelter 938 scaled(1) = d(1) * HmatInv(1,1)
1919     scaled(2) = d(2) * HmatInv(2,2)
1920     scaled(3) = d(3) * HmatInv(3,3)
1921 chuckv 1671
1922 gezelter 938 ! wrap the scaled coordinates
1923 chuckv 1671
1924 chuckv 1507 t = scaled(1)
1925 gezelter 1517 if (t .gt. 0.0) then
1926 chuckv 1507 scaled(1) = t - floor(t + 0.5)
1927     else
1928 gezelter 1516 scaled(1) = t - ceiling(t - 0.5)
1929 chuckv 1507 endif
1930 chrisfen 532
1931 chuckv 1507 t = scaled(2)
1932 gezelter 1517 if (t .gt. 0.0) then
1933 chuckv 1507 scaled(2) = t - floor(t + 0.5)
1934     else
1935 gezelter 1516 scaled(2) = t - ceiling(t - 0.5)
1936 chuckv 1507 endif
1937    
1938     t = scaled(3)
1939 gezelter 1517 if (t .gt. 0.0) then
1940 chuckv 1507 scaled(3) = t - floor(t + 0.5)
1941     else
1942 gezelter 1516 scaled(3) = t - ceiling(t - 0.5)
1943 chuckv 1507 endif
1944    
1945 chuckv 1671 ! calc the wrapped real coordinates from the wrapped scaled
1946 gezelter 938 ! coordinates
1947 chrisfen 532
1948 gezelter 938 d(1) = scaled(1)*Hmat(1,1)
1949     d(2) = scaled(2)*Hmat(2,2)
1950     d(3) = scaled(3)*Hmat(3,3)
1951 chrisfen 532
1952     endif
1953    
1954     endif
1955    
1956 gezelter 938 r_sq = d(1)*d(1) + d(2)*d(2) + d(3)*d(3)
1957 chrisfen 532
1958     end subroutine get_interatomic_vector
1959    
1960     subroutine zero_work_arrays()
1961    
1962 gezelter 117 #ifdef IS_MPI
1963    
1964 chrisfen 532 q_Row = 0.0_dp
1965     q_Col = 0.0_dp
1966    
1967     q_group_Row = 0.0_dp
1968 chuckv 1671 q_group_Col = 0.0_dp
1969 chrisfen 532
1970     eFrame_Row = 0.0_dp
1971     eFrame_Col = 0.0_dp
1972    
1973     A_Row = 0.0_dp
1974     A_Col = 0.0_dp
1975    
1976     f_Row = 0.0_dp
1977     f_Col = 0.0_dp
1978     f_Temp = 0.0_dp
1979    
1980     t_Row = 0.0_dp
1981     t_Col = 0.0_dp
1982     t_Temp = 0.0_dp
1983    
1984     pot_Row = 0.0_dp
1985     pot_Col = 0.0_dp
1986     pot_Temp = 0.0_dp
1987 gezelter 1309 ppot_Temp = 0.0_dp
1988 chrisfen 532
1989 chuckv 1388 frho_row = 0.0_dp
1990     frho_col = 0.0_dp
1991     rho_row = 0.0_dp
1992     rho_col = 0.0_dp
1993     rho_tmp = 0.0_dp
1994     dfrhodrho_row = 0.0_dp
1995     dfrhodrho_col = 0.0_dp
1996 chuckv 1671
1997 gezelter 117 #endif
1998 chuckv 1388 rho = 0.0_dp
1999     frho = 0.0_dp
2000     dfrhodrho = 0.0_dp
2001 chrisfen 532
2002     end subroutine zero_work_arrays
2003    
2004     function skipThisPair(atom1, atom2) result(skip_it)
2005     integer, intent(in) :: atom1
2006     integer, intent(in), optional :: atom2
2007     logical :: skip_it
2008     integer :: unique_id_1, unique_id_2
2009     integer :: me_i,me_j
2010     integer :: i
2011    
2012 chuckv 1671 skip_it = .false.
2013 chrisfen 532
2014     !! there are a number of reasons to skip a pair or a particle
2015     !! mostly we do this to exclude atoms who are involved in short
2016 chuckv 1671 !! range interactions (bonds, bends, torsions), but we also need
2017 chrisfen 532 !! to exclude some overcounted interactions that result from
2018     !! the parallel decomposition
2019    
2020 gezelter 117 #ifdef IS_MPI
2021 chrisfen 532 !! in MPI, we have to look up the unique IDs for each atom
2022     unique_id_1 = AtomRowToGlobal(atom1)
2023     unique_id_2 = AtomColToGlobal(atom2)
2024     !! this situation should only arise in MPI simulations
2025     if (unique_id_1 == unique_id_2) then
2026     skip_it = .true.
2027     return
2028     end if
2029    
2030     !! this prevents us from doing the pair on multiple processors
2031     if (unique_id_1 < unique_id_2) then
2032     if (mod(unique_id_1 + unique_id_2,2) == 0) then
2033     skip_it = .true.
2034     return
2035     endif
2036 chuckv 1671 else
2037     if (mod(unique_id_1 + unique_id_2,2) == 1) then
2038 chrisfen 532 skip_it = .true.
2039     return
2040     endif
2041     endif
2042 gezelter 1286 #else
2043     !! in the normal loop, the atom numbers are unique
2044     unique_id_1 = atom1
2045     unique_id_2 = atom2
2046 gezelter 117 #endif
2047 gezelter 1346
2048 chuckv 1671 #ifdef IS_MPI
2049 gezelter 1346 do i = 1, nSkipsForRowAtom(atom1)
2050     if (skipsForRowAtom(atom1, i) .eq. unique_id_2) then
2051 chrisfen 532 skip_it = .true.
2052     return
2053     endif
2054     end do
2055 gezelter 1346 #else
2056     do i = 1, nSkipsForLocalAtom(atom1)
2057     if (skipsForLocalAtom(atom1, i) .eq. unique_id_2) then
2058     skip_it = .true.
2059     return
2060     endif
2061     end do
2062     #endif
2063 chrisfen 532
2064     return
2065     end function skipThisPair
2066    
2067 gezelter 1286 function getTopoDistance(atom1, atom2) result(topoDist)
2068     integer, intent(in) :: atom1
2069     integer, intent(in) :: atom2
2070     integer :: topoDist
2071     integer :: unique_id_2
2072     integer :: i
2073    
2074     #ifdef IS_MPI
2075     unique_id_2 = AtomColToGlobal(atom2)
2076     #else
2077     unique_id_2 = atom2
2078     #endif
2079    
2080     ! zero is default for unconnected (i.e. normal) pair interactions
2081    
2082     topoDist = 0
2083    
2084     do i = 1, nTopoPairsForAtom(atom1)
2085     if (toposForAtom(atom1, i) .eq. unique_id_2) then
2086     topoDist = topoDistance(atom1, i)
2087     return
2088     endif
2089     end do
2090    
2091     return
2092     end function getTopoDistance
2093    
2094 chrisfen 532 function FF_UsesDirectionalAtoms() result(doesit)
2095     logical :: doesit
2096 gezelter 571 doesit = FF_uses_DirectionalAtoms
2097 chrisfen 532 end function FF_UsesDirectionalAtoms
2098    
2099     function FF_RequiresPrepairCalc() result(doesit)
2100     logical :: doesit
2101 chuckv 1162 doesit = FF_uses_EAM .or. FF_uses_SC
2102 chrisfen 532 end function FF_RequiresPrepairCalc
2103    
2104 gezelter 117 #ifdef PROFILE
2105 chrisfen 532 function getforcetime() result(totalforcetime)
2106     real(kind=dp) :: totalforcetime
2107     totalforcetime = forcetime
2108     end function getforcetime
2109 gezelter 117 #endif
2110    
2111 chrisfen 532 !! This cleans componets of force arrays belonging only to fortran
2112    
2113 chuckv 1671 subroutine add_stress_tensor(dpair, fpair, tau, v_j, J_v)
2114 chrisfen 532
2115 chuckv 1671 real( kind = dp ), dimension(3), intent(in) :: dpair, fpair, v_j
2116 gezelter 1126 real( kind = dp ), dimension(9), intent(inout) :: tau
2117 chrisfen 532
2118 chuckv 1671 real( kind = dp ), dimension(3), intent(inout) :: J_v
2119 chrisfen 532 ! because the d vector is the rj - ri vector, and
2120     ! because fx, fy, fz are the force on atom i, we need a
2121 chuckv 1671 ! negative sign here:
2122 chrisfen 532
2123 gezelter 1126 tau(1) = tau(1) - dpair(1) * fpair(1)
2124     tau(2) = tau(2) - dpair(1) * fpair(2)
2125     tau(3) = tau(3) - dpair(1) * fpair(3)
2126     tau(4) = tau(4) - dpair(2) * fpair(1)
2127     tau(5) = tau(5) - dpair(2) * fpair(2)
2128     tau(6) = tau(6) - dpair(2) * fpair(3)
2129     tau(7) = tau(7) - dpair(3) * fpair(1)
2130     tau(8) = tau(8) - dpair(3) * fpair(2)
2131     tau(9) = tau(9) - dpair(3) * fpair(3)
2132 chrisfen 532
2133 chuckv 1680
2134 chuckv 1682 ! write(*,*) v_j(1),v_j(2),v_j(3)
2135 chuckv 1680 J_v(1) = J_v(1) + dpair(1)*(fpair(1)*v_j(1) + fpair(2)*v_j(2) + fpair(3)*v_j(3))
2136     J_v(2) = J_v(2) + dpair(2)*(fpair(1)*v_j(1) + fpair(2)*v_j(2) + fpair(3)*v_j(3))
2137     J_v(3) = J_v(3) + dpair(3)*(fpair(1)*v_j(1) + fpair(2)*v_j(2) + fpair(3)*v_j(3))
2138     ! J_v(1) = J_v(1) + tau(1)*v_j(1) + tau(4)*v_j(2) + tau(7)*v_j(3)
2139     ! J_v(2) = J_v(2) + tau(2)*v_j(1) + tau(5)*v_j(2) + tau(8)*v_j(3)
2140     ! J_v(3) = J_v(3) + tau(3)*v_j(1) + tau(6)*v_j(2) + tau(9)*v_j(3)
2141    
2142    
2143 chuckv 1681
2144 chrisfen 532 end subroutine add_stress_tensor
2145    
2146 chuckv 1678 !! Calculates the \sum r_ji*(f_ji *DOT* vj) component of the heat flux S
2147 chuckv 1671 subroutine add_heat_flux(dpair, fpair, v_j, S)
2148     real(kind=dp), dimension(3), intent(in) :: dpair,fpair, v_j
2149     real(kind=dp), dimension(3), intent(inout) :: S
2150 chuckv 1678 S(1) = S(1) + dpair(1) * (fpair(1)*v_j(1) + fpair(2)*v_j(2) + fpair(3)*v_j(3))
2151     S(2) = S(2) + dpair(2) * (fpair(1)*v_j(1) + fpair(2)*v_j(2) + fpair(3)*v_j(3))
2152     S(3) = S(3) + dpair(3) * (fpair(1)*v_j(1) + fpair(2)*v_j(2) + fpair(3)*v_j(3))
2153     !!S(1) = S(1) + fpair(1)*v_j(1)*dpair(1)
2154     !!S(2) = S(2) + fpair(2)*v_j(2)*dpair(2)
2155     !!S(3) = S(3) + fpair(3)*v_j(3)*dpair(3)
2156 chuckv 1671
2157 chuckv 1680
2158 chuckv 1671 end subroutine add_heat_flux
2159 gezelter 117 end module doForces

Properties

Name Value
svn:keywords Author Id Revision Date