43 |
|
!! |
44 |
|
!! Created by Charles F. Vardeman II on 03 Apr 2006. |
45 |
|
!! |
46 |
< |
!! PURPOSE: Generic Spline interplelation routines. These routines assume that we are on a uniform grid for |
47 |
< |
!! precomputation of spline parameters. |
46 |
> |
!! PURPOSE: Generic Spline interpolation routines. These routines |
47 |
> |
!! assume that we are on a uniform grid for precomputation of |
48 |
> |
!! spline parameters. |
49 |
|
!! |
50 |
|
!! @author Charles F. Vardeman II |
51 |
< |
!! @version $Id: interpolation.F90,v 1.2 2006-04-14 20:04:31 gezelter Exp $ |
51 |
> |
!! @version $Id: interpolation.F90,v 1.5 2006-04-14 21:59:23 gezelter Exp $ |
52 |
|
|
53 |
|
|
54 |
|
module INTERPOLATION |
61 |
|
|
62 |
|
type, public :: cubicSpline |
63 |
|
private |
64 |
+ |
logical :: isUniform = .false. |
65 |
|
integer :: np = 0 |
64 |
– |
real(kind=dp) :: dx |
66 |
|
real(kind=dp) :: dx_i |
67 |
|
real (kind=dp), pointer,dimension(:) :: x => null() |
68 |
|
real (kind=dp), pointer,dimension(:,:) :: c => null() |
69 |
|
end type cubicSpline |
70 |
|
|
71 |
< |
interface newSpline |
71 |
< |
module procedure newSplineWithoutDerivs |
72 |
< |
module procedure newSplineWithDerivs |
73 |
< |
end interface |
74 |
< |
|
71 |
> |
public :: newSpline |
72 |
|
public :: deleteSpline |
73 |
< |
|
73 |
> |
public :: lookup_spline |
74 |
> |
public :: lookup_uniform_spline |
75 |
> |
public :: lookup_nonuniform_spline |
76 |
> |
|
77 |
|
contains |
78 |
+ |
|
79 |
|
|
80 |
< |
|
81 |
< |
subroutine newSplineWithoutDerivs(cs, x, y, yp1, ypn, boundary) |
81 |
< |
|
80 |
> |
subroutine newSpline(cs, x, y, yp1, ypn, isUniform) |
81 |
> |
|
82 |
|
!************************************************************************ |
83 |
|
! |
84 |
< |
! newSplineWithoutDerivs solves for slopes defining a cubic spline. |
84 |
> |
! newSpline solves for slopes defining a cubic spline. |
85 |
|
! |
86 |
|
! Discussion: |
87 |
|
! |
98 |
|
! Parameters: |
99 |
|
! |
100 |
|
! Input, real x(N), the abscissas or X values of |
101 |
< |
! the data points. The entries of TAU are assumed to be |
101 |
> |
! the data points. The entries of x are assumed to be |
102 |
|
! strictly increasing. |
103 |
|
! |
104 |
|
! Input, real y(I), contains the function value at x(I) for |
105 |
|
! I = 1, N. |
106 |
|
! |
107 |
< |
! yp1 contains the slope at x(1) and ypn contains |
108 |
< |
! the slope at x(N). |
107 |
> |
! Input, real yp1 contains the slope at x(1) |
108 |
> |
! Input, real ypn contains the slope at x(N) |
109 |
|
! |
110 |
< |
! On output, the intermediate slopes at x(I) have been |
111 |
< |
! stored in cs%C(2,I), for I = 2 to N-1. |
110 |
> |
! On output, the slopes at x(I) have been stored in |
111 |
> |
! cs%C(2,I), for I = 1 to N. |
112 |
|
|
113 |
|
implicit none |
114 |
|
|
115 |
|
type (cubicSpline), intent(inout) :: cs |
116 |
|
real( kind = DP ), intent(in) :: x(:), y(:) |
117 |
|
real( kind = DP ), intent(in) :: yp1, ypn |
118 |
< |
character(len=*), intent(in) :: boundary |
118 |
> |
logical, intent(in) :: isUniform |
119 |
|
real( kind = DP ) :: g, divdif1, divdif3, dx |
120 |
|
integer :: i, alloc_error, np |
121 |
|
|
122 |
|
alloc_error = 0 |
123 |
|
|
124 |
|
if (cs%np .ne. 0) then |
125 |
< |
call handleWarning("interpolation::newSplineWithoutDerivs", & |
126 |
< |
"Type was already created") |
125 |
> |
call handleWarning("interpolation::newSpline", & |
126 |
> |
"cubicSpline struct was already created") |
127 |
|
call deleteSpline(cs) |
128 |
|
end if |
129 |
|
|
130 |
|
! make sure the sizes match |
131 |
|
|
132 |
< |
if (size(x) .ne. size(y)) then |
133 |
< |
call handleError("interpolation::newSplineWithoutDerivs", & |
132 |
> |
np = size(x) |
133 |
> |
|
134 |
> |
if ( size(y) .ne. np ) then |
135 |
> |
call handleError("interpolation::newSpline", & |
136 |
|
"Array size mismatch") |
137 |
|
end if |
138 |
< |
|
137 |
< |
np = size(x) |
138 |
> |
|
139 |
|
cs%np = np |
140 |
+ |
cs%isUniform = isUniform |
141 |
|
|
142 |
|
allocate(cs%x(np), stat=alloc_error) |
143 |
|
if(alloc_error .ne. 0) then |
144 |
< |
call handleError("interpolation::newSplineWithoutDerivs", & |
144 |
> |
call handleError("interpolation::newSpline", & |
145 |
|
"Error in allocating storage for x") |
146 |
|
endif |
147 |
|
|
148 |
|
allocate(cs%c(4,np), stat=alloc_error) |
149 |
|
if(alloc_error .ne. 0) then |
150 |
< |
call handleError("interpolation::newSplineWithoutDerivs", & |
150 |
> |
call handleError("interpolation::newSpline", & |
151 |
|
"Error in allocating storage for c") |
152 |
|
endif |
153 |
|
|
156 |
|
cs%c(1,i) = y(i) |
157 |
|
enddo |
158 |
|
|
159 |
< |
if ((boundary.eq.'l').or.(boundary.eq.'L').or. & |
160 |
< |
(boundary.eq.'b').or.(boundary.eq.'B')) then |
159 |
< |
cs%c(2,1) = yp1 |
160 |
< |
else |
161 |
< |
cs%c(2,1) = 0.0_DP |
162 |
< |
endif |
163 |
< |
if ((boundary.eq.'u').or.(boundary.eq.'U').or. & |
164 |
< |
(boundary.eq.'b').or.(boundary.eq.'B')) then |
165 |
< |
cs%c(2,1) = ypn |
166 |
< |
else |
167 |
< |
cs%c(2,1) = 0.0_DP |
168 |
< |
endif |
159 |
> |
! Set the first derivative of the function to the second coefficient of |
160 |
> |
! each of the endpoints |
161 |
|
|
162 |
+ |
cs%c(2,1) = yp1 |
163 |
+ |
cs%c(2,np) = ypn |
164 |
+ |
|
165 |
|
! |
166 |
|
! Set up the right hand side of the linear system. |
167 |
|
! |
168 |
+ |
|
169 |
|
do i = 2, cs%np - 1 |
170 |
|
cs%c(2,i) = 3.0_DP * ( & |
171 |
|
(x(i) - x(i-1)) * (cs%c(1,i+1) - cs%c(1,i)) / (x(i+1) - x(i)) + & |
172 |
|
(x(i+1) - x(i)) * (cs%c(1,i) - cs%c(1,i-1)) / (x(i) - x(i-1))) |
177 |
– |
end do |
178 |
– |
! |
179 |
– |
! Set the diagonal coefficients. |
180 |
– |
! |
181 |
– |
cs%c(4,1) = 1.0_DP |
182 |
– |
do i = 2, cs%np - 1 |
183 |
– |
cs%c(4,i) = 2.0_DP * ( x(i+1) - x(i-1) ) |
184 |
– |
end do |
185 |
– |
cs%c(4,cs%np) = 1.0_DP |
186 |
– |
! |
187 |
– |
! Set the off-diagonal coefficients. |
188 |
– |
! |
189 |
– |
cs%c(3,1) = 0.0_DP |
190 |
– |
do i = 2, cs%np |
191 |
– |
cs%c(3,i) = x(i) - x(i-1) |
192 |
– |
end do |
193 |
– |
! |
194 |
– |
! Forward elimination. |
195 |
– |
! |
196 |
– |
do i = 2, cs%np - 1 |
197 |
– |
g = -cs%c(3,i+1) / cs%c(4,i-1) |
198 |
– |
cs%c(4,i) = cs%c(4,i) + g * cs%c(3,i-1) |
199 |
– |
cs%c(2,i) = cs%c(2,i) + g * cs%c(2,i-1) |
173 |
|
end do |
201 |
– |
! |
202 |
– |
! Back substitution for the interior slopes. |
203 |
– |
! |
204 |
– |
do i = cs%np - 1, 2, -1 |
205 |
– |
cs%c(2,i) = ( cs%c(2,i) - cs%c(3,i) * cs%c(2,i+1) ) / cs%c(4,i) |
206 |
– |
end do |
207 |
– |
! |
208 |
– |
! Now compute the quadratic and cubic coefficients used in the |
209 |
– |
! piecewise polynomial representation. |
210 |
– |
! |
211 |
– |
do i = 1, cs%np - 1 |
212 |
– |
dx = x(i+1) - x(i) |
213 |
– |
divdif1 = ( cs%c(1,i+1) - cs%c(1,i) ) / dx |
214 |
– |
divdif3 = cs%c(2,i) + cs%c(2,i+1) - 2.0_DP * divdif1 |
215 |
– |
cs%c(3,i) = ( divdif1 - cs%c(2,i) - divdif3 ) / dx |
216 |
– |
cs%c(4,i) = divdif3 / ( dx * dx ) |
217 |
– |
end do |
174 |
|
|
219 |
– |
cs%c(3,cs%np) = 0.0_DP |
220 |
– |
cs%c(4,cs%np) = 0.0_DP |
221 |
– |
|
222 |
– |
cs%dx = dx |
223 |
– |
cs%dx_i = 1.0_DP / dx |
224 |
– |
return |
225 |
– |
end subroutine newSplineWithoutDerivs |
226 |
– |
|
227 |
– |
subroutine newSplineWithDerivs(cs, x, y, yp) |
228 |
– |
|
229 |
– |
!************************************************************************ |
175 |
|
! |
231 |
– |
! newSplineWithDerivs |
232 |
– |
|
233 |
– |
implicit none |
234 |
– |
|
235 |
– |
type (cubicSpline), intent(inout) :: cs |
236 |
– |
real( kind = DP ), intent(in) :: x(:), y(:), yp(:) |
237 |
– |
real( kind = DP ) :: g, divdif1, divdif3, dx |
238 |
– |
integer :: i, alloc_error, np |
239 |
– |
|
240 |
– |
alloc_error = 0 |
241 |
– |
|
242 |
– |
if (cs%np .ne. 0) then |
243 |
– |
call handleWarning("interpolation::newSplineWithDerivs", & |
244 |
– |
"Type was already created") |
245 |
– |
call deleteSpline(cs) |
246 |
– |
end if |
247 |
– |
|
248 |
– |
! make sure the sizes match |
249 |
– |
|
250 |
– |
if ((size(x) .ne. size(y)).or.(size(x) .ne. size(yp))) then |
251 |
– |
call handleError("interpolation::newSplineWithDerivs", & |
252 |
– |
"Array size mismatch") |
253 |
– |
end if |
254 |
– |
|
255 |
– |
np = size(x) |
256 |
– |
cs%np = np |
257 |
– |
|
258 |
– |
allocate(cs%x(np), stat=alloc_error) |
259 |
– |
if(alloc_error .ne. 0) then |
260 |
– |
call handleError("interpolation::newSplineWithDerivs", & |
261 |
– |
"Error in allocating storage for x") |
262 |
– |
endif |
263 |
– |
|
264 |
– |
allocate(cs%c(4,np), stat=alloc_error) |
265 |
– |
if(alloc_error .ne. 0) then |
266 |
– |
call handleError("interpolation::newSplineWithDerivs", & |
267 |
– |
"Error in allocating storage for c") |
268 |
– |
endif |
269 |
– |
|
270 |
– |
do i = 1, np |
271 |
– |
cs%x(i) = x(i) |
272 |
– |
cs%c(1,i) = y(i) |
273 |
– |
cs%c(2,i) = yp(i) |
274 |
– |
enddo |
275 |
– |
! |
176 |
|
! Set the diagonal coefficients. |
177 |
|
! |
178 |
|
cs%c(4,1) = 1.0_DP |
216 |
|
cs%c(3,cs%np) = 0.0_DP |
217 |
|
cs%c(4,cs%np) = 0.0_DP |
218 |
|
|
319 |
– |
cs%dx = dx |
219 |
|
cs%dx_i = 1.0_DP / dx |
220 |
|
|
221 |
|
return |
222 |
< |
end subroutine newSplineWithDerivs |
222 |
> |
end subroutine newSpline |
223 |
|
|
224 |
|
subroutine deleteSpline(this) |
225 |
|
|
336 |
|
|
337 |
|
return |
338 |
|
end subroutine lookup_uniform_spline |
339 |
+ |
|
340 |
+ |
subroutine lookup_spline(cs, xval, yval) |
341 |
+ |
|
342 |
+ |
type (cubicSpline), intent(in) :: cs |
343 |
+ |
real( kind = DP ), intent(inout) :: xval |
344 |
+ |
real( kind = DP ), intent(inout) :: yval |
345 |
+ |
|
346 |
+ |
if (cs%isUniform) then |
347 |
+ |
call lookup_uniform_spline(cs, xval, yval) |
348 |
+ |
else |
349 |
+ |
call lookup_nonuniform_spline(cs, xval, yval) |
350 |
+ |
endif |
351 |
+ |
|
352 |
+ |
return |
353 |
+ |
end subroutine lookup_spline |
354 |
|
|
355 |
|
end module INTERPOLATION |