6 |
|
!! redistribute this software in source and binary code form, provided |
7 |
|
!! that the following conditions are met: |
8 |
|
!! |
9 |
< |
!! 1. Acknowledgement of the program authors must be made in any |
10 |
< |
!! publication of scientific results based in part on use of the |
11 |
< |
!! program. An acceptable form of acknowledgement is citation of |
12 |
< |
!! the article in which the program was described (Matthew |
13 |
< |
!! A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
!! J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
!! Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
!! J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
!! |
18 |
< |
!! 2. Redistributions of source code must retain the above copyright |
9 |
> |
!! 1. Redistributions of source code must retain the above copyright |
10 |
|
!! notice, this list of conditions and the following disclaimer. |
11 |
|
!! |
12 |
< |
!! 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
!! 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
!! notice, this list of conditions and the following disclaimer in the |
14 |
|
!! documentation and/or other materials provided with the |
15 |
|
!! distribution. |
29 |
|
!! University of Notre Dame has been advised of the possibility of |
30 |
|
!! such damages. |
31 |
|
!! |
32 |
+ |
!! SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
!! research, please cite the appropriate papers when you publish your |
34 |
+ |
!! work. Good starting points are: |
35 |
+ |
!! |
36 |
+ |
!! [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
!! [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
!! [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
!! [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
!! |
41 |
+ |
!! |
42 |
|
!! interpolation.F90 |
43 |
|
!! |
44 |
|
!! Created by Charles F. Vardeman II on 03 Apr 2006. |
45 |
|
!! |
46 |
< |
!! PURPOSE: Generic Spline interplelation routines. These routines assume that we are on a uniform grid for |
47 |
< |
!! precomputation of spline parameters. |
46 |
> |
!! PURPOSE: Generic Spline interpolation routines. |
47 |
|
!! |
48 |
|
!! @author Charles F. Vardeman II |
49 |
< |
!! @version $Id: interpolation.F90,v 1.3 2006-04-14 21:06:55 chrisfen Exp $ |
49 |
> |
!! @version $Id: interpolation.F90,v 1.10 2009-11-25 20:02:05 gezelter Exp $ |
50 |
|
|
51 |
|
|
52 |
< |
module INTERPOLATION |
52 |
> |
module interpolation |
53 |
|
use definitions |
54 |
|
use status |
55 |
|
implicit none |
56 |
|
PRIVATE |
57 |
|
|
59 |
– |
character(len = statusMsgSize) :: errMSG |
60 |
– |
|
58 |
|
type, public :: cubicSpline |
59 |
< |
private |
60 |
< |
integer :: np = 0 |
64 |
< |
real(kind=dp) :: dx |
59 |
> |
logical :: isUniform = .false. |
60 |
> |
integer :: n = 0 |
61 |
|
real(kind=dp) :: dx_i |
62 |
|
real (kind=dp), pointer,dimension(:) :: x => null() |
63 |
< |
real (kind=dp), pointer,dimension(:,:) :: c => null() |
63 |
> |
real (kind=dp), pointer,dimension(:) :: y => null() |
64 |
> |
real (kind=dp), pointer,dimension(:) :: b => null() |
65 |
> |
real (kind=dp), pointer,dimension(:) :: c => null() |
66 |
> |
real (kind=dp), pointer,dimension(:) :: d => null() |
67 |
|
end type cubicSpline |
68 |
|
|
69 |
< |
interface newSpline |
71 |
< |
module procedure newSpline |
72 |
< |
end interface |
73 |
< |
|
69 |
> |
public :: newSpline |
70 |
|
public :: deleteSpline |
71 |
< |
|
71 |
> |
public :: lookupSpline |
72 |
> |
public :: lookupUniformSpline |
73 |
> |
public :: lookupNonuniformSpline |
74 |
> |
public :: lookupUniformSpline1d |
75 |
> |
|
76 |
|
contains |
77 |
+ |
|
78 |
|
|
79 |
< |
|
80 |
< |
subroutine newSpline(cs, x, y, yp1, ypn) |
80 |
< |
|
81 |
< |
!************************************************************************ |
82 |
< |
! |
83 |
< |
! newSplineWithoutDerivs solves for slopes defining a cubic spline. |
84 |
< |
! |
85 |
< |
! Discussion: |
86 |
< |
! |
87 |
< |
! A tridiagonal linear system for the unknown slopes S(I) of |
88 |
< |
! F at x(I), I=1,..., N, is generated and then solved by Gauss |
89 |
< |
! elimination, with S(I) ending up in cs%C(2,I), for all I. |
90 |
< |
! |
91 |
< |
! Reference: |
92 |
< |
! |
93 |
< |
! Carl DeBoor, |
94 |
< |
! A Practical Guide to Splines, |
95 |
< |
! Springer Verlag. |
96 |
< |
! |
97 |
< |
! Parameters: |
98 |
< |
! |
99 |
< |
! Input, real x(N), the abscissas or X values of |
100 |
< |
! the data points. The entries of x are assumed to be |
101 |
< |
! strictly increasing. |
102 |
< |
! |
103 |
< |
! Input, real y(I), contains the function value at x(I) for |
104 |
< |
! I = 1, N. |
105 |
< |
! |
106 |
< |
! yp1 contains the slope at x(1) and ypn contains |
107 |
< |
! the slope at x(N). |
108 |
< |
! |
109 |
< |
! On output, the intermediate slopes at x(I) have been |
110 |
< |
! stored in cs%C(2,I), for I = 2 to N-1. |
111 |
< |
|
79 |
> |
subroutine newSpline(cs, x, y, isUniform) |
80 |
> |
|
81 |
|
implicit none |
82 |
|
|
83 |
|
type (cubicSpline), intent(inout) :: cs |
84 |
|
real( kind = DP ), intent(in) :: x(:), y(:) |
85 |
< |
real( kind = DP ), intent(in) :: yp1, ypn |
86 |
< |
real( kind = DP ) :: g, divdif1, divdif3, dx |
118 |
< |
integer :: i, alloc_error, np |
85 |
> |
real( kind = DP ) :: fp1, fpn, p |
86 |
> |
REAL( KIND = DP), DIMENSION(size(x)-1) :: diff_y, H |
87 |
|
|
88 |
+ |
logical, intent(in) :: isUniform |
89 |
+ |
integer :: i, alloc_error, n, k |
90 |
+ |
|
91 |
|
alloc_error = 0 |
92 |
|
|
93 |
< |
if (cs%np .ne. 0) then |
94 |
< |
call handleWarning("interpolation::newSplineWithoutDerivs", & |
95 |
< |
"Type was already created") |
93 |
> |
if (cs%n .ne. 0) then |
94 |
> |
call handleWarning("interpolation::newSpline", & |
95 |
> |
"cubicSpline struct was already created") |
96 |
|
call deleteSpline(cs) |
97 |
|
end if |
98 |
|
|
99 |
|
! make sure the sizes match |
100 |
|
|
101 |
< |
if (size(x) .ne. size(y)) then |
102 |
< |
call handleError("interpolation::newSplineWithoutDerivs", & |
101 |
> |
n = size(x) |
102 |
> |
|
103 |
> |
if ( size(y) .ne. size(x) ) then |
104 |
> |
call handleError("interpolation::newSpline", & |
105 |
|
"Array size mismatch") |
106 |
|
end if |
107 |
+ |
|
108 |
+ |
cs%n = n |
109 |
+ |
cs%isUniform = isUniform |
110 |
|
|
111 |
< |
np = size(x) |
136 |
< |
cs%np = np |
137 |
< |
|
138 |
< |
allocate(cs%x(np), stat=alloc_error) |
111 |
> |
allocate(cs%x(n), stat=alloc_error) |
112 |
|
if(alloc_error .ne. 0) then |
113 |
< |
call handleError("interpolation::newSplineWithoutDerivs", & |
113 |
> |
call handleError("interpolation::newSpline", & |
114 |
|
"Error in allocating storage for x") |
115 |
|
endif |
116 |
|
|
117 |
< |
allocate(cs%c(4,np), stat=alloc_error) |
117 |
> |
allocate(cs%y(n), stat=alloc_error) |
118 |
|
if(alloc_error .ne. 0) then |
119 |
< |
call handleError("interpolation::newSplineWithoutDerivs", & |
119 |
> |
call handleError("interpolation::newSpline", & |
120 |
> |
"Error in allocating storage for y") |
121 |
> |
endif |
122 |
> |
|
123 |
> |
allocate(cs%b(n), stat=alloc_error) |
124 |
> |
if(alloc_error .ne. 0) then |
125 |
> |
call handleError("interpolation::newSpline", & |
126 |
> |
"Error in allocating storage for b") |
127 |
> |
endif |
128 |
> |
|
129 |
> |
allocate(cs%c(n), stat=alloc_error) |
130 |
> |
if(alloc_error .ne. 0) then |
131 |
> |
call handleError("interpolation::newSpline", & |
132 |
|
"Error in allocating storage for c") |
133 |
|
endif |
134 |
< |
|
135 |
< |
do i = 1, np |
134 |
> |
|
135 |
> |
allocate(cs%d(n), stat=alloc_error) |
136 |
> |
if(alloc_error .ne. 0) then |
137 |
> |
call handleError("interpolation::newSpline", & |
138 |
> |
"Error in allocating storage for d") |
139 |
> |
endif |
140 |
> |
|
141 |
> |
! make sure we are monotinically increasing in x: |
142 |
> |
|
143 |
> |
h = diff(x) |
144 |
> |
if (any(h <= 0)) then |
145 |
> |
call handleError("interpolation::newSpline", & |
146 |
> |
"Negative dx interval found") |
147 |
> |
end if |
148 |
> |
|
149 |
> |
! load x and y values into the cubicSpline structure: |
150 |
> |
|
151 |
> |
do i = 1, n |
152 |
|
cs%x(i) = x(i) |
153 |
< |
cs%c(1,i) = y(i) |
154 |
< |
enddo |
153 |
> |
cs%y(i) = y(i) |
154 |
> |
end do |
155 |
|
|
156 |
< |
! Set the first derivative of the function to the second coefficient of |
157 |
< |
! each of the endpoints |
156 |
> |
! Calculate coefficients for the tridiagonal system: store |
157 |
> |
! sub-diagonal in B, diagonal in D, difference quotient in C. |
158 |
|
|
159 |
< |
cs%c(2,1) = yp1 |
160 |
< |
cs%c(2,np) = ypn |
161 |
< |
|
159 |
> |
cs%b(1:n-1) = h |
160 |
> |
diff_y = diff(y) |
161 |
> |
cs%c(1:n-1) = diff_y / h |
162 |
|
|
163 |
< |
! |
164 |
< |
! Set up the right hand side of the linear system. |
165 |
< |
! |
166 |
< |
do i = 2, cs%np - 1 |
167 |
< |
cs%c(2,i) = 3.0_DP * ( & |
168 |
< |
(x(i) - x(i-1)) * (cs%c(1,i+1) - cs%c(1,i)) / (x(i+1) - x(i)) + & |
169 |
< |
(x(i+1) - x(i)) * (cs%c(1,i) - cs%c(1,i-1)) / (x(i) - x(i-1))) |
163 |
> |
if (n == 2) then |
164 |
> |
! Assume the derivatives at both endpoints are zero |
165 |
> |
! another assumption could be made to have a linear interpolant |
166 |
> |
! between the two points. In that case, the b coefficients |
167 |
> |
! below would be diff_y(1)/h(1) and the c and d coefficients would |
168 |
> |
! both be zero. |
169 |
> |
cs%b(1) = 0.0_dp |
170 |
> |
cs%c(1) = -3.0_dp * (diff_y(1)/h(1))**2 |
171 |
> |
cs%d(1) = -2.0_dp * (diff_y(1)/h(1))**3 |
172 |
> |
cs%b(2) = cs%b(1) |
173 |
> |
cs%c(2) = 0.0_dp |
174 |
> |
cs%d(2) = 0.0_dp |
175 |
> |
cs%dx_i = 1.0_dp / h(1) |
176 |
> |
return |
177 |
> |
end if |
178 |
> |
|
179 |
> |
cs%d(1) = 2.0_dp * cs%b(1) |
180 |
> |
do i = 2, n-1 |
181 |
> |
cs%d(i) = 2.0_dp * (cs%b(i) + cs%b(i-1)) |
182 |
|
end do |
183 |
< |
! |
184 |
< |
! Set the diagonal coefficients. |
185 |
< |
! |
186 |
< |
cs%c(4,1) = 1.0_DP |
187 |
< |
do i = 2, cs%np - 1 |
188 |
< |
cs%c(4,i) = 2.0_DP * ( x(i+1) - x(i-1) ) |
189 |
< |
end do |
190 |
< |
cs%c(4,cs%np) = 1.0_DP |
191 |
< |
! |
192 |
< |
! Set the off-diagonal coefficients. |
193 |
< |
! |
194 |
< |
cs%c(3,1) = 0.0_DP |
195 |
< |
do i = 2, cs%np |
196 |
< |
cs%c(3,i) = x(i) - x(i-1) |
197 |
< |
end do |
198 |
< |
! |
199 |
< |
! Forward elimination. |
200 |
< |
! |
201 |
< |
do i = 2, cs%np - 1 |
202 |
< |
g = -cs%c(3,i+1) / cs%c(4,i-1) |
203 |
< |
cs%c(4,i) = cs%c(4,i) + g * cs%c(3,i-1) |
204 |
< |
cs%c(2,i) = cs%c(2,i) + g * cs%c(2,i-1) |
183 |
> |
cs%d(n) = 2.0_dp * cs%b(n-1) |
184 |
> |
|
185 |
> |
! Calculate estimates for the end slopes using polynomials |
186 |
> |
! that interpolate the data nearest the end. |
187 |
> |
|
188 |
> |
fp1 = cs%c(1) - cs%b(1)*(cs%c(2) - cs%c(1))/(cs%b(1) + cs%b(2)) |
189 |
> |
if (n > 3) then |
190 |
> |
fp1 = fp1 + cs%b(1)*((cs%b(1) + cs%b(2))*(cs%c(3) - cs%c(2))/ & |
191 |
> |
(cs%b(2) + cs%b(3)) - cs%c(2) + cs%c(1))/(x(4) - x(1)) |
192 |
> |
end if |
193 |
> |
|
194 |
> |
fpn = cs%c(n-1) + cs%b(n-1)*(cs%c(n-1) - cs%c(n-2))/(cs%b(n-2) + cs%b(n-1)) |
195 |
> |
if (n > 3) then |
196 |
> |
fpn = fpn + cs%b(n-1)*(cs%c(n-1) - cs%c(n-2) - (cs%b(n-2) + cs%b(n-1))* & |
197 |
> |
(cs%c(n-2) - cs%c(n-3))/(cs%b(n-2) + cs%b(n-3)))/(x(n) - x(n-3)) |
198 |
> |
end if |
199 |
> |
|
200 |
> |
! Calculate the right hand side and store it in C. |
201 |
> |
|
202 |
> |
cs%c(n) = 3.0_dp * (fpn - cs%c(n-1)) |
203 |
> |
do i = n-1,2,-1 |
204 |
> |
cs%c(i) = 3.0_dp * (cs%c(i) - cs%c(i-1)) |
205 |
|
end do |
206 |
< |
! |
207 |
< |
! Back substitution for the interior slopes. |
208 |
< |
! |
209 |
< |
do i = cs%np - 1, 2, -1 |
210 |
< |
cs%c(2,i) = ( cs%c(2,i) - cs%c(3,i) * cs%c(2,i+1) ) / cs%c(4,i) |
206 |
> |
cs%c(1) = 3.0_dp * (cs%c(1) - fp1) |
207 |
> |
|
208 |
> |
! Solve the tridiagonal system. |
209 |
> |
|
210 |
> |
do k = 2, n |
211 |
> |
p = cs%b(k-1) / cs%d(k-1) |
212 |
> |
cs%d(k) = cs%d(k) - p*cs%b(k-1) |
213 |
> |
cs%c(k) = cs%c(k) - p*cs%c(k-1) |
214 |
|
end do |
215 |
< |
! |
216 |
< |
! Now compute the quadratic and cubic coefficients used in the |
217 |
< |
! piecewise polynomial representation. |
202 |
< |
! |
203 |
< |
do i = 1, cs%np - 1 |
204 |
< |
dx = x(i+1) - x(i) |
205 |
< |
divdif1 = ( cs%c(1,i+1) - cs%c(1,i) ) / dx |
206 |
< |
divdif3 = cs%c(2,i) + cs%c(2,i+1) - 2.0_DP * divdif1 |
207 |
< |
cs%c(3,i) = ( divdif1 - cs%c(2,i) - divdif3 ) / dx |
208 |
< |
cs%c(4,i) = divdif3 / ( dx * dx ) |
215 |
> |
cs%c(n) = cs%c(n) / cs%d(n) |
216 |
> |
do k = n-1, 1, -1 |
217 |
> |
cs%c(k) = (cs%c(k) - cs%b(k) * cs%c(k+1)) / cs%d(k) |
218 |
|
end do |
219 |
|
|
220 |
< |
cs%c(3,cs%np) = 0.0_DP |
212 |
< |
cs%c(4,cs%np) = 0.0_DP |
220 |
> |
! Calculate the coefficients defining the spline. |
221 |
|
|
222 |
< |
cs%dx = dx |
223 |
< |
cs%dx_i = 1.0_DP / dx |
224 |
< |
return |
217 |
< |
end subroutine newSplineWithoutDerivs |
222 |
> |
cs%d(1:n-1) = diff(cs%c) / (3.0_dp * h) |
223 |
> |
cs%b(1:n-1) = diff_y / h - h * (cs%c(1:n-1) + h * cs%d(1:n-1)) |
224 |
> |
cs%b(n) = cs%b(n-1) + h(n-1) * (2.0_dp*cs%c(n-1) + h(n-1)*3.0_dp*cs%d(n-1)) |
225 |
|
|
226 |
+ |
if (isUniform) then |
227 |
+ |
cs%dx_i = 1.0_dp / (x(2) - x(1)) |
228 |
+ |
endif |
229 |
+ |
|
230 |
+ |
return |
231 |
+ |
|
232 |
+ |
contains |
233 |
+ |
|
234 |
+ |
function diff(v) |
235 |
+ |
! Auxiliary function to compute the forward difference |
236 |
+ |
! of data stored in a vector v. |
237 |
+ |
|
238 |
+ |
implicit none |
239 |
+ |
real (kind = dp), dimension(:), intent(in) :: v |
240 |
+ |
real (kind = dp), dimension(size(v)-1) :: diff |
241 |
+ |
|
242 |
+ |
integer :: n |
243 |
+ |
|
244 |
+ |
n = size(v) |
245 |
+ |
diff = v(2:n) - v(1:n-1) |
246 |
+ |
return |
247 |
+ |
end function diff |
248 |
+ |
|
249 |
+ |
end subroutine newSpline |
250 |
+ |
|
251 |
|
subroutine deleteSpline(this) |
252 |
|
|
253 |
|
type(cubicSpline) :: this |
254 |
|
|
255 |
< |
if(associated(this%x)) then |
256 |
< |
deallocate(this%x) |
257 |
< |
this%x => null() |
255 |
> |
if(associated(this%d)) then |
256 |
> |
deallocate(this%d) |
257 |
> |
this%d => null() |
258 |
|
end if |
259 |
|
if(associated(this%c)) then |
260 |
|
deallocate(this%c) |
261 |
|
this%c => null() |
262 |
|
end if |
263 |
+ |
if(associated(this%b)) then |
264 |
+ |
deallocate(this%b) |
265 |
+ |
this%b => null() |
266 |
+ |
end if |
267 |
+ |
if(associated(this%y)) then |
268 |
+ |
deallocate(this%y) |
269 |
+ |
this%y => null() |
270 |
+ |
end if |
271 |
+ |
if(associated(this%x)) then |
272 |
+ |
deallocate(this%x) |
273 |
+ |
this%x => null() |
274 |
+ |
end if |
275 |
|
|
276 |
< |
this%np = 0 |
276 |
> |
this%n = 0 |
277 |
|
|
278 |
|
end subroutine deleteSpline |
279 |
|
|
280 |
< |
subroutine lookup_nonuniform_spline(cs, xval, yval) |
280 |
> |
subroutine lookupNonuniformSpline(cs, xval, yval) |
281 |
|
|
238 |
– |
!************************************************************************* |
239 |
– |
! |
240 |
– |
! lookup_nonuniform_spline evaluates a piecewise cubic Hermite interpolant. |
241 |
– |
! |
242 |
– |
! Discussion: |
243 |
– |
! |
244 |
– |
! newSpline must be called first, to set up the |
245 |
– |
! spline data from the raw function and derivative data. |
246 |
– |
! |
247 |
– |
! Modified: |
248 |
– |
! |
249 |
– |
! 06 April 1999 |
250 |
– |
! |
251 |
– |
! Reference: |
252 |
– |
! |
253 |
– |
! Conte and de Boor, |
254 |
– |
! Algorithm PCUBIC, |
255 |
– |
! Elementary Numerical Analysis, |
256 |
– |
! 1973, page 234. |
257 |
– |
! |
258 |
– |
! Parameters: |
259 |
– |
! |
282 |
|
implicit none |
283 |
|
|
284 |
|
type (cubicSpline), intent(in) :: cs |
285 |
|
real( kind = DP ), intent(in) :: xval |
286 |
|
real( kind = DP ), intent(out) :: yval |
287 |
< |
real( kind = DP ) :: dx |
287 |
> |
real( kind = DP ) :: dx |
288 |
|
integer :: i, j |
289 |
|
! |
290 |
|
! Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains |
291 |
|
! or is nearest to xval. |
292 |
|
! |
293 |
< |
j = cs%np - 1 |
293 |
> |
j = cs%n - 1 |
294 |
|
|
295 |
< |
do i = 1, cs%np - 2 |
295 |
> |
do i = 0, cs%n - 2 |
296 |
|
|
297 |
|
if ( xval < cs%x(i+1) ) then |
298 |
|
j = i |
304 |
|
! Evaluate the cubic polynomial. |
305 |
|
! |
306 |
|
dx = xval - cs%x(j) |
307 |
< |
|
286 |
< |
yval = cs%c(1,j) + dx * ( cs%c(2,j) + dx * ( cs%c(3,j) + dx * cs%c(4,j) ) ) |
307 |
> |
yval = cs%y(j) + dx*(cs%b(j) + dx*(cs%c(j) + dx*cs%d(j))) |
308 |
|
|
309 |
|
return |
310 |
< |
end subroutine lookup_nonuniform_spline |
310 |
> |
end subroutine lookupNonuniformSpline |
311 |
|
|
312 |
< |
subroutine lookup_uniform_spline(cs, xval, yval) |
312 |
> |
subroutine lookupUniformSpline(cs, xval, yval) |
313 |
|
|
293 |
– |
!************************************************************************* |
294 |
– |
! |
295 |
– |
! lookup_uniform_spline evaluates a piecewise cubic Hermite interpolant. |
296 |
– |
! |
297 |
– |
! Discussion: |
298 |
– |
! |
299 |
– |
! newSpline must be called first, to set up the |
300 |
– |
! spline data from the raw function and derivative data. |
301 |
– |
! |
302 |
– |
! Modified: |
303 |
– |
! |
304 |
– |
! 06 April 1999 |
305 |
– |
! |
306 |
– |
! Reference: |
307 |
– |
! |
308 |
– |
! Conte and de Boor, |
309 |
– |
! Algorithm PCUBIC, |
310 |
– |
! Elementary Numerical Analysis, |
311 |
– |
! 1973, page 234. |
312 |
– |
! |
313 |
– |
! Parameters: |
314 |
– |
! |
314 |
|
implicit none |
315 |
|
|
316 |
|
type (cubicSpline), intent(in) :: cs |
317 |
|
real( kind = DP ), intent(in) :: xval |
318 |
|
real( kind = DP ), intent(out) :: yval |
319 |
< |
real( kind = DP ) :: dx |
319 |
> |
real( kind = DP ) :: dx |
320 |
|
integer :: i, j |
321 |
|
! |
322 |
|
! Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains |
323 |
|
! or is nearest to xval. |
324 |
+ |
|
325 |
+ |
j = MAX(1, MIN(cs%n-1, int((xval-cs%x(1)) * cs%dx_i) + 1)) |
326 |
+ |
|
327 |
+ |
dx = xval - cs%x(j) |
328 |
+ |
yval = cs%y(j) + dx*(cs%b(j) + dx*(cs%c(j) + dx*cs%d(j))) |
329 |
+ |
|
330 |
+ |
return |
331 |
+ |
end subroutine lookupUniformSpline |
332 |
|
|
333 |
< |
j = MAX(1, MIN(cs%np, idint((xval-cs%x(1)) * cs%dx_i) + 1)) |
333 |
> |
subroutine lookupUniformSpline1d(cs, xval, yval, dydx) |
334 |
> |
|
335 |
> |
implicit none |
336 |
|
|
337 |
+ |
type (cubicSpline), intent(in) :: cs |
338 |
+ |
real( kind = DP ), intent(in) :: xval |
339 |
+ |
real( kind = DP ), intent(out) :: yval, dydx |
340 |
+ |
real( kind = DP ) :: dx |
341 |
+ |
integer :: i, j |
342 |
+ |
|
343 |
+ |
! Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains |
344 |
+ |
! or is nearest to xval. |
345 |
+ |
|
346 |
+ |
|
347 |
+ |
j = MAX(1, MIN(cs%n-1, int((xval-cs%x(1)) * cs%dx_i) + 1)) |
348 |
+ |
|
349 |
|
dx = xval - cs%x(j) |
350 |
+ |
yval = cs%y(j) + dx*(cs%b(j) + dx*(cs%c(j) + dx*cs%d(j))) |
351 |
|
|
352 |
< |
yval = cs%c(1,j) + dx * ( cs%c(2,j) + dx * ( cs%c(3,j) + dx * cs%c(4,j) ) ) |
352 |
> |
dydx = cs%b(j) + dx*(2.0_dp * cs%c(j) + 3.0_dp * dx * cs%d(j)) |
353 |
> |
|
354 |
> |
return |
355 |
> |
end subroutine lookupUniformSpline1d |
356 |
> |
|
357 |
> |
subroutine lookupSpline(cs, xval, yval) |
358 |
> |
|
359 |
> |
type (cubicSpline), intent(in) :: cs |
360 |
> |
real( kind = DP ), intent(inout) :: xval |
361 |
> |
real( kind = DP ), intent(inout) :: yval |
362 |
|
|
363 |
+ |
if (cs%isUniform) then |
364 |
+ |
call lookupUniformSpline(cs, xval, yval) |
365 |
+ |
else |
366 |
+ |
call lookupNonuniformSpline(cs, xval, yval) |
367 |
+ |
endif |
368 |
+ |
|
369 |
|
return |
370 |
< |
end subroutine lookup_uniform_spline |
370 |
> |
end subroutine lookupSpline |
371 |
|
|
372 |
< |
end module INTERPOLATION |
372 |
> |
end module interpolation |