43 |
|
!! |
44 |
|
!! Created by Charles F. Vardeman II on 03 Apr 2006. |
45 |
|
!! |
46 |
< |
!! PURPOSE: Generic Spline interplelation routines. These routines assume that we are on a uniform grid for |
47 |
< |
!! precomputation of spline parameters. |
46 |
> |
!! PURPOSE: Generic Spline interpolation routines. These routines |
47 |
> |
!! assume that we are on a uniform grid for precomputation of |
48 |
> |
!! spline parameters. |
49 |
|
!! |
50 |
|
!! @author Charles F. Vardeman II |
51 |
< |
!! @version $Id: interpolation.F90,v 1.1 2006-04-14 19:57:04 gezelter Exp $ |
51 |
> |
!! @version $Id: interpolation.F90,v 1.6 2006-04-17 21:49:12 gezelter Exp $ |
52 |
|
|
53 |
|
|
54 |
< |
module INTERPOLATION |
54 |
> |
module interpolation |
55 |
|
use definitions |
56 |
|
use status |
57 |
|
implicit none |
60 |
|
character(len = statusMsgSize) :: errMSG |
61 |
|
|
62 |
|
type, public :: cubicSpline |
63 |
< |
private |
63 |
> |
logical :: isUniform = .false. |
64 |
|
integer :: np = 0 |
64 |
– |
real(kind=dp) :: dx |
65 |
|
real(kind=dp) :: dx_i |
66 |
|
real (kind=dp), pointer,dimension(:) :: x => null() |
67 |
< |
real (kind=dp), pointer,dimension(4,:) :: c => null() |
67 |
> |
real (kind=dp), pointer,dimension(:,:) :: c => null() |
68 |
|
end type cubicSpline |
69 |
|
|
70 |
< |
interface splineLookup |
71 |
< |
module procedure multiSplint |
72 |
< |
module procedure splintd |
73 |
< |
module procedure splintd1 |
74 |
< |
module procedure splintd2 |
75 |
< |
end interface |
76 |
< |
|
77 |
< |
interface newSpline |
78 |
< |
module procedure newSplineWithoutDerivs |
79 |
< |
module procedure newSplineWithDerivs |
80 |
< |
end interface |
81 |
< |
|
70 |
> |
public :: newSpline |
71 |
|
public :: deleteSpline |
72 |
< |
|
72 |
> |
public :: lookupSpline |
73 |
> |
public :: lookupUniformSpline |
74 |
> |
public :: lookupNonuniformSpline |
75 |
> |
public :: lookupUniformSpline1d |
76 |
> |
|
77 |
|
contains |
78 |
+ |
|
79 |
|
|
80 |
< |
|
81 |
< |
subroutine newSplineWithoutDerivs(cs, x, y, yp1, ypn, boundary) |
88 |
< |
|
80 |
> |
subroutine newSpline(cs, x, y, yp1, ypn, isUniform) |
81 |
> |
|
82 |
|
!************************************************************************ |
83 |
|
! |
84 |
< |
! newSplineWithoutDerivs solves for slopes defining a cubic spline. |
84 |
> |
! newSpline solves for slopes defining a cubic spline. |
85 |
|
! |
86 |
|
! Discussion: |
87 |
|
! |
98 |
|
! Parameters: |
99 |
|
! |
100 |
|
! Input, real x(N), the abscissas or X values of |
101 |
< |
! the data points. The entries of TAU are assumed to be |
101 |
> |
! the data points. The entries of x are assumed to be |
102 |
|
! strictly increasing. |
103 |
|
! |
104 |
|
! Input, real y(I), contains the function value at x(I) for |
105 |
|
! I = 1, N. |
106 |
|
! |
107 |
< |
! yp1 contains the slope at x(1) and ypn contains |
108 |
< |
! the slope at x(N). |
107 |
> |
! Input, real yp1 contains the slope at x(1) |
108 |
> |
! Input, real ypn contains the slope at x(N) |
109 |
|
! |
110 |
< |
! On output, the intermediate slopes at x(I) have been |
111 |
< |
! stored in cs%C(2,I), for I = 2 to N-1. |
110 |
> |
! On output, the slopes at x(I) have been stored in |
111 |
> |
! cs%C(2,I), for I = 1 to N. |
112 |
|
|
113 |
|
implicit none |
114 |
|
|
115 |
|
type (cubicSpline), intent(inout) :: cs |
116 |
|
real( kind = DP ), intent(in) :: x(:), y(:) |
117 |
|
real( kind = DP ), intent(in) :: yp1, ypn |
118 |
< |
character(len=*), intent(in) :: boundary |
118 |
> |
logical, intent(in) :: isUniform |
119 |
|
real( kind = DP ) :: g, divdif1, divdif3, dx |
120 |
|
integer :: i, alloc_error, np |
121 |
|
|
122 |
|
alloc_error = 0 |
123 |
|
|
124 |
|
if (cs%np .ne. 0) then |
125 |
< |
call handleWarning("interpolation::newSplineWithoutDerivs", & |
126 |
< |
"Type was already created") |
125 |
> |
call handleWarning("interpolation::newSpline", & |
126 |
> |
"cubicSpline struct was already created") |
127 |
|
call deleteSpline(cs) |
128 |
|
end if |
129 |
|
|
130 |
|
! make sure the sizes match |
131 |
|
|
132 |
< |
if (size(x) .ne. size(y)) then |
133 |
< |
call handleError("interpolation::newSplineWithoutDerivs", & |
132 |
> |
np = size(x) |
133 |
> |
|
134 |
> |
if ( size(y) .ne. np ) then |
135 |
> |
call handleError("interpolation::newSpline", & |
136 |
|
"Array size mismatch") |
137 |
|
end if |
138 |
< |
|
144 |
< |
np = size(x) |
138 |
> |
|
139 |
|
cs%np = np |
140 |
+ |
cs%isUniform = isUniform |
141 |
|
|
142 |
|
allocate(cs%x(np), stat=alloc_error) |
143 |
|
if(alloc_error .ne. 0) then |
144 |
< |
call handleError("interpolation::newSplineWithoutDerivs", & |
144 |
> |
call handleError("interpolation::newSpline", & |
145 |
|
"Error in allocating storage for x") |
146 |
|
endif |
147 |
|
|
148 |
|
allocate(cs%c(4,np), stat=alloc_error) |
149 |
|
if(alloc_error .ne. 0) then |
150 |
< |
call handleError("interpolation::newSplineWithoutDerivs", & |
150 |
> |
call handleError("interpolation::newSpline", & |
151 |
|
"Error in allocating storage for c") |
152 |
|
endif |
153 |
|
|
156 |
|
cs%c(1,i) = y(i) |
157 |
|
enddo |
158 |
|
|
159 |
< |
if ((boundary.eq.'l').or.(boundary.eq.'L').or. & |
160 |
< |
(boundary.eq.'b').or.(boundary.eq.'B')) then |
166 |
< |
cs%c(2,1) = yp1 |
167 |
< |
else |
168 |
< |
cs%c(2,1) = 0.0_DP |
169 |
< |
endif |
170 |
< |
if ((boundary.eq.'u').or.(boundary.eq.'U').or. & |
171 |
< |
(boundary.eq.'b').or.(boundary.eq.'B')) then |
172 |
< |
cs%c(2,1) = ypn |
173 |
< |
else |
174 |
< |
cs%c(2,1) = 0.0_DP |
175 |
< |
endif |
159 |
> |
! Set the first derivative of the function to the second coefficient of |
160 |
> |
! each of the endpoints |
161 |
|
|
162 |
+ |
cs%c(2,1) = yp1 |
163 |
+ |
cs%c(2,np) = ypn |
164 |
+ |
|
165 |
|
! |
166 |
|
! Set up the right hand side of the linear system. |
167 |
|
! |
168 |
+ |
|
169 |
|
do i = 2, cs%np - 1 |
170 |
|
cs%c(2,i) = 3.0_DP * ( & |
171 |
|
(x(i) - x(i-1)) * (cs%c(1,i+1) - cs%c(1,i)) / (x(i+1) - x(i)) + & |
172 |
|
(x(i+1) - x(i)) * (cs%c(1,i) - cs%c(1,i-1)) / (x(i) - x(i-1))) |
173 |
|
end do |
185 |
– |
! |
186 |
– |
! Set the diagonal coefficients. |
187 |
– |
! |
188 |
– |
cs%c(4,1) = 1.0_DP |
189 |
– |
do i = 2, cs%np - 1 |
190 |
– |
cs%c(4,i) = 2.0_DP * ( x(i+1) - x(i-1) ) |
191 |
– |
end do |
192 |
– |
cs%c(4,n) = 1.0_DP |
193 |
– |
! |
194 |
– |
! Set the off-diagonal coefficients. |
195 |
– |
! |
196 |
– |
cs%c(3,1) = 0.0_DP |
197 |
– |
do i = 2, cs%np |
198 |
– |
cs%c(3,i) = x(i) - x(i-1) |
199 |
– |
end do |
200 |
– |
! |
201 |
– |
! Forward elimination. |
202 |
– |
! |
203 |
– |
do i = 2, cs%np - 1 |
204 |
– |
g = -cs%c(3,i+1) / cs%c(4,i-1) |
205 |
– |
cs%c(4,i) = cs%c(4,i) + g * cs%c(3,i-1) |
206 |
– |
cs%c(2,i) = cs%c(2,i) + g * cs%c(2,i-1) |
207 |
– |
end do |
208 |
– |
! |
209 |
– |
! Back substitution for the interior slopes. |
210 |
– |
! |
211 |
– |
do i = cs%np - 1, 2, -1 |
212 |
– |
cs%c(2,i) = ( cs%c(2,i) - cs%c(3,i) * cs%c(2,i+1) ) / cs%c(4,i) |
213 |
– |
end do |
214 |
– |
! |
215 |
– |
! Now compute the quadratic and cubic coefficients used in the |
216 |
– |
! piecewise polynomial representation. |
217 |
– |
! |
218 |
– |
do i = 1, cs%np - 1 |
219 |
– |
dx = x(i+1) - x(i) |
220 |
– |
divdif1 = ( cs%c(1,i+1) - cs%c(1,i) ) / dx |
221 |
– |
divdif3 = cs%c(2,i) + cs%c(2,i+1) - 2.0_DP * divdif1 |
222 |
– |
cs%c(3,i) = ( divdif1 - cs%c(2,i) - divdif3 ) / dx |
223 |
– |
cs%c(4,i) = divdif3 / ( dx * dx ) |
224 |
– |
end do |
225 |
– |
|
226 |
– |
cs%c(3,np) = 0.0_DP |
227 |
– |
cs%c(4,np) = 0.0_DP |
228 |
– |
|
229 |
– |
cs%dx = dx |
230 |
– |
cs%dxi = 1.0_DP / dx |
231 |
– |
return |
232 |
– |
end subroutine newSplineWithoutDerivs |
233 |
– |
|
234 |
– |
subroutine newSplineWithDerivs(cs, x, y, yp) |
174 |
|
|
236 |
– |
!************************************************************************ |
175 |
|
! |
238 |
– |
! newSplineWithDerivs |
239 |
– |
|
240 |
– |
implicit none |
241 |
– |
|
242 |
– |
type (cubicSpline), intent(inout) :: cs |
243 |
– |
real( kind = DP ), intent(in) :: x(:), y(:), yp(:) |
244 |
– |
real( kind = DP ) :: g, divdif1, divdif3, dx |
245 |
– |
integer :: i, alloc_error, np |
246 |
– |
|
247 |
– |
alloc_error = 0 |
248 |
– |
|
249 |
– |
if (cs%np .ne. 0) then |
250 |
– |
call handleWarning("interpolation::newSplineWithDerivs", & |
251 |
– |
"Type was already created") |
252 |
– |
call deleteSpline(cs) |
253 |
– |
end if |
254 |
– |
|
255 |
– |
! make sure the sizes match |
256 |
– |
|
257 |
– |
if ((size(x) .ne. size(y)).or.(size(x) .ne. size(yp))) then |
258 |
– |
call handleError("interpolation::newSplineWithDerivs", & |
259 |
– |
"Array size mismatch") |
260 |
– |
end if |
261 |
– |
|
262 |
– |
np = size(x) |
263 |
– |
cs%np = np |
264 |
– |
|
265 |
– |
allocate(cs%x(np), stat=alloc_error) |
266 |
– |
if(alloc_error .ne. 0) then |
267 |
– |
call handleError("interpolation::newSplineWithDerivs", & |
268 |
– |
"Error in allocating storage for x") |
269 |
– |
endif |
270 |
– |
|
271 |
– |
allocate(cs%c(4,np), stat=alloc_error) |
272 |
– |
if(alloc_error .ne. 0) then |
273 |
– |
call handleError("interpolation::newSplineWithDerivs", & |
274 |
– |
"Error in allocating storage for c") |
275 |
– |
endif |
276 |
– |
|
277 |
– |
do i = 1, np |
278 |
– |
cs%x(i) = x(i) |
279 |
– |
cs%c(1,i) = y(i) |
280 |
– |
cs%c(2,i) = yp(i) |
281 |
– |
enddo |
282 |
– |
! |
176 |
|
! Set the diagonal coefficients. |
177 |
|
! |
178 |
|
cs%c(4,1) = 1.0_DP |
179 |
|
do i = 2, cs%np - 1 |
180 |
|
cs%c(4,i) = 2.0_DP * ( x(i+1) - x(i-1) ) |
181 |
|
end do |
182 |
< |
cs%c(4,n) = 1.0_DP |
182 |
> |
cs%c(4,cs%np) = 1.0_DP |
183 |
|
! |
184 |
|
! Set the off-diagonal coefficients. |
185 |
|
! |
213 |
|
cs%c(4,i) = divdif3 / ( dx * dx ) |
214 |
|
end do |
215 |
|
|
216 |
< |
cs%c(3,np) = 0.0_DP |
217 |
< |
cs%c(4,np) = 0.0_DP |
216 |
> |
cs%c(3,cs%np) = 0.0_DP |
217 |
> |
cs%c(4,cs%np) = 0.0_DP |
218 |
|
|
219 |
< |
cs%dx = dx |
327 |
< |
cs%dxi = 1.0_DP / dx |
219 |
> |
cs%dx_i = 1.0_DP / dx |
220 |
|
|
221 |
|
return |
222 |
< |
end subroutine newSplineWithoutDerivs |
222 |
> |
end subroutine newSpline |
223 |
|
|
224 |
|
subroutine deleteSpline(this) |
225 |
|
|
238 |
|
|
239 |
|
end subroutine deleteSpline |
240 |
|
|
241 |
< |
subroutine lookup_nonuniform_spline(cs, xval, yval) |
241 |
> |
subroutine lookupNonuniformSpline(cs, xval, yval) |
242 |
|
|
243 |
|
!************************************************************************* |
244 |
|
! |
245 |
< |
! lookup_nonuniform_spline evaluates a piecewise cubic Hermite interpolant. |
245 |
> |
! lookupNonuniformSpline evaluates a piecewise cubic Hermite interpolant. |
246 |
|
! |
247 |
|
! Discussion: |
248 |
|
! |
267 |
|
type (cubicSpline), intent(in) :: cs |
268 |
|
real( kind = DP ), intent(in) :: xval |
269 |
|
real( kind = DP ), intent(out) :: yval |
270 |
+ |
real( kind = DP ) :: dx |
271 |
|
integer :: i, j |
272 |
|
! |
273 |
|
! Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains |
291 |
|
yval = cs%c(1,j) + dx * ( cs%c(2,j) + dx * ( cs%c(3,j) + dx * cs%c(4,j) ) ) |
292 |
|
|
293 |
|
return |
294 |
< |
end subroutine lookup_nonuniform_spline |
294 |
> |
end subroutine lookupNonuniformSpline |
295 |
|
|
296 |
< |
subroutine lookup_uniform_spline(cs, xval, yval) |
296 |
> |
subroutine lookupUniformSpline(cs, xval, yval) |
297 |
|
|
298 |
|
!************************************************************************* |
299 |
|
! |
300 |
< |
! lookup_uniform_spline evaluates a piecewise cubic Hermite interpolant. |
300 |
> |
! lookupUniformSpline evaluates a piecewise cubic Hermite interpolant. |
301 |
|
! |
302 |
|
! Discussion: |
303 |
|
! |
322 |
|
type (cubicSpline), intent(in) :: cs |
323 |
|
real( kind = DP ), intent(in) :: xval |
324 |
|
real( kind = DP ), intent(out) :: yval |
325 |
+ |
real( kind = DP ) :: a, b, c, d, dx |
326 |
|
integer :: i, j |
327 |
|
! |
328 |
|
! Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains |
329 |
|
! or is nearest to xval. |
330 |
|
|
331 |
< |
j = MAX(1, MIN(cs%np, idint((xval-cs%x(1)) * cs%dxi) + 1)) |
331 |
> |
j = MAX(1, MIN(cs%np, idint((xval-cs%x(1)) * cs%dx_i) + 1)) |
332 |
|
|
333 |
|
dx = xval - cs%x(j) |
334 |
|
|
335 |
< |
yval = cs%c(1,j) + dx * ( cs%c(2,j) + dx * ( cs%c(3,j) + dx * cs%c(4,j) ) ) |
335 |
> |
a = cs%c(1,j) |
336 |
> |
b = cs%c(2,j) |
337 |
> |
c = cs%c(3,j) |
338 |
> |
d = cs%c(4,j) |
339 |
> |
|
340 |
> |
yval = c + dx * d |
341 |
> |
yval = b + dx * yval |
342 |
> |
yval = a + dx * yval |
343 |
|
|
344 |
|
return |
345 |
< |
end subroutine lookup_uniform_spline |
345 |
> |
end subroutine lookupUniformSpline |
346 |
> |
|
347 |
> |
subroutine lookupUniformSpline1d(cs, xval, yval, dydx) |
348 |
> |
|
349 |
> |
implicit none |
350 |
> |
|
351 |
> |
type (cubicSpline), intent(in) :: cs |
352 |
> |
real( kind = DP ), intent(in) :: xval |
353 |
> |
real( kind = DP ), intent(out) :: yval, dydx |
354 |
> |
real( kind = DP ) :: a, b, c, d, dx |
355 |
> |
integer :: i, j |
356 |
> |
|
357 |
> |
! Find the interval J = [ cs%x(J), cs%x(J+1) ] that contains |
358 |
> |
! or is nearest to xval. |
359 |
> |
|
360 |
> |
j = MAX(1, MIN(cs%np, idint((xval-cs%x(1)) * cs%dx_i) + 1)) |
361 |
> |
|
362 |
> |
dx = xval - cs%x(j) |
363 |
> |
|
364 |
> |
a = cs%c(1,j) |
365 |
> |
b = cs%c(2,j) |
366 |
> |
c = cs%c(3,j) |
367 |
> |
d = cs%c(4,j) |
368 |
> |
|
369 |
> |
yval = c + dx * d |
370 |
> |
yval = b + dx * yval |
371 |
> |
yval = a + dx * yval |
372 |
> |
|
373 |
> |
dydx = 2.0d0 * c + 3.0d0 * d * dx |
374 |
> |
dydx = b + dx * dydx |
375 |
> |
|
376 |
> |
return |
377 |
> |
end subroutine lookupUniformSpline1d |
378 |
> |
|
379 |
> |
subroutine lookupSpline(cs, xval, yval) |
380 |
> |
|
381 |
> |
type (cubicSpline), intent(in) :: cs |
382 |
> |
real( kind = DP ), intent(inout) :: xval |
383 |
> |
real( kind = DP ), intent(inout) :: yval |
384 |
> |
|
385 |
> |
if (cs%isUniform) then |
386 |
> |
call lookupUniformSpline(cs, xval, yval) |
387 |
> |
else |
388 |
> |
call lookupNonuniformSpline(cs, xval, yval) |
389 |
> |
endif |
390 |
> |
|
391 |
> |
return |
392 |
> |
end subroutine lookupSpline |
393 |
|
|
394 |
< |
end module INTERPOLATION |
394 |
> |
end module interpolation |