1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <iostream> |
44 |
|
45 |
#include <cstdlib> |
46 |
#include <cmath> |
47 |
|
48 |
#include "utils/simError.h" |
49 |
#include "utils/MoLocator.hpp" |
50 |
#include "types/AtomType.hpp" |
51 |
|
52 |
namespace OpenMD { |
53 |
MoLocator::MoLocator( MoleculeStamp* theStamp, ForceField* theFF){ |
54 |
|
55 |
myStamp = theStamp; |
56 |
myFF = theFF; |
57 |
nIntegrableObjects = myStamp->getNIntegrable(); |
58 |
calcRef(); |
59 |
} |
60 |
|
61 |
void MoLocator::placeMol( const Vector3d& offset, const Vector3d& ort, Molecule* mol){ |
62 |
|
63 |
Vector3d newCoor; |
64 |
Vector3d curRefCoor; |
65 |
RotMat3x3d rotMat = latVec2RotMat(ort); |
66 |
|
67 |
if(mol->getNIntegrableObjects() != nIntegrableObjects){ |
68 |
sprintf( painCave.errMsg, |
69 |
"MoLocator error.\n" |
70 |
" The number of integrable objects of MoleculeStamp is not the same as that of Molecule\n"); |
71 |
painCave.isFatal = 1; |
72 |
simError(); |
73 |
} |
74 |
|
75 |
Molecule::IntegrableObjectIterator ii; |
76 |
StuntDouble* integrableObject; |
77 |
int i; |
78 |
for (integrableObject = mol->beginIntegrableObject(ii), i = 0; integrableObject != NULL; |
79 |
integrableObject = mol->nextIntegrableObject(ii), ++i) { |
80 |
|
81 |
newCoor = rotMat * refCoords[i]; |
82 |
newCoor += offset; |
83 |
|
84 |
integrableObject->setPos(newCoor); |
85 |
integrableObject->setVel(V3Zero); |
86 |
|
87 |
if(integrableObject->isDirectional()){ |
88 |
integrableObject->setA(rotMat * integrableObject->getA()); |
89 |
integrableObject->setJ(V3Zero); |
90 |
} |
91 |
} |
92 |
} |
93 |
|
94 |
void MoLocator::calcRef( void ){ |
95 |
AtomStamp* currAtomStamp; |
96 |
RigidBodyStamp* rbStamp; |
97 |
unsigned int nAtoms; |
98 |
int nRigidBodies; |
99 |
std::vector<RealType> mass; |
100 |
Vector3d coor; |
101 |
Vector3d refMolCom; |
102 |
int nAtomsInRb; |
103 |
RealType totMassInRb; |
104 |
RealType currAtomMass; |
105 |
RealType molMass; |
106 |
|
107 |
nAtoms= myStamp->getNAtoms(); |
108 |
nRigidBodies = myStamp->getNRigidBodies(); |
109 |
|
110 |
for(unsigned int i = 0; i < nAtoms; i++){ |
111 |
|
112 |
currAtomStamp = myStamp->getAtomStamp(i); |
113 |
|
114 |
if( !currAtomStamp->havePosition() ){ |
115 |
sprintf( painCave.errMsg, |
116 |
"MoLocator error.\n" |
117 |
" Component %s, atom %s does not have a position specified.\n" |
118 |
" This means MoLocator cannot initalize it's position.\n", |
119 |
myStamp->getName().c_str(), |
120 |
currAtomStamp->getType().c_str()); |
121 |
|
122 |
painCave.isFatal = 1; |
123 |
simError(); |
124 |
} |
125 |
|
126 |
//if atom belongs to rigidbody, just skip it |
127 |
if(myStamp->isAtomInRigidBody(i)) |
128 |
continue; |
129 |
//get mass and the reference coordinate |
130 |
else{ |
131 |
currAtomMass = getAtomMass(currAtomStamp->getType(), myFF); |
132 |
mass.push_back(currAtomMass); |
133 |
coor.x() = currAtomStamp->getPosX(); |
134 |
coor.y() = currAtomStamp->getPosY(); |
135 |
coor.z() = currAtomStamp->getPosZ(); |
136 |
refCoords.push_back(coor); |
137 |
|
138 |
} |
139 |
} |
140 |
|
141 |
for(int i = 0; i < nRigidBodies; i++){ |
142 |
|
143 |
rbStamp = myStamp->getRigidBodyStamp(i); |
144 |
nAtomsInRb = rbStamp->getNMembers(); |
145 |
|
146 |
coor.x() = 0.0; |
147 |
coor.y() = 0.0; |
148 |
coor.z() = 0.0; |
149 |
totMassInRb = 0.0; |
150 |
|
151 |
for(int j = 0; j < nAtomsInRb; j++){ |
152 |
|
153 |
currAtomStamp = myStamp->getAtomStamp(rbStamp->getMemberAt(j)); |
154 |
currAtomMass = getAtomMass(currAtomStamp->getType(), myFF); |
155 |
totMassInRb += currAtomMass; |
156 |
|
157 |
coor.x() += currAtomStamp->getPosX() * currAtomMass; |
158 |
coor.y() += currAtomStamp->getPosY() * currAtomMass; |
159 |
coor.z() += currAtomStamp->getPosZ() * currAtomMass; |
160 |
} |
161 |
|
162 |
mass.push_back(totMassInRb); |
163 |
coor /= totMassInRb; |
164 |
refCoords.push_back(coor); |
165 |
} |
166 |
|
167 |
|
168 |
//calculate the reference center of mass |
169 |
molMass = 0; |
170 |
refMolCom.x() = 0; |
171 |
refMolCom.y() = 0; |
172 |
refMolCom.z() = 0; |
173 |
|
174 |
for(int i = 0; i < nIntegrableObjects; i++){ |
175 |
refMolCom += refCoords[i] * mass[i]; |
176 |
molMass += mass[i]; |
177 |
} |
178 |
|
179 |
refMolCom /= molMass; |
180 |
|
181 |
//move the reference center of mass to (0,0,0) and adjust the reference coordinate |
182 |
//of the integrabel objects |
183 |
for(int i = 0; i < nIntegrableObjects; i++) |
184 |
refCoords[i] -= refMolCom; |
185 |
} |
186 |
|
187 |
RealType getAtomMass(const std::string& at, ForceField* myFF) { |
188 |
RealType mass; |
189 |
AtomType* atomType= myFF->getAtomType(at); |
190 |
if (atomType != NULL) { |
191 |
mass = atomType->getMass(); |
192 |
} else { |
193 |
mass = 0.0; |
194 |
std::cerr << "Can not find AtomType: " << at << std::endl; |
195 |
} |
196 |
return mass; |
197 |
} |
198 |
|
199 |
RealType getMolMass(MoleculeStamp *molStamp, ForceField *myFF) { |
200 |
unsigned int nAtoms; |
201 |
RealType totMass = 0; |
202 |
nAtoms = molStamp->getNAtoms(); |
203 |
|
204 |
for(unsigned int i = 0; i < nAtoms; i++) { |
205 |
AtomStamp *currAtomStamp = molStamp->getAtomStamp(i); |
206 |
totMass += getAtomMass(currAtomStamp->getType(), myFF); |
207 |
} |
208 |
return totMass; |
209 |
} |
210 |
RotMat3x3d latVec2RotMat(const Vector3d& lv){ |
211 |
|
212 |
RealType theta =acos(lv[2]); |
213 |
RealType phi = atan2(lv[1], lv[0]); |
214 |
RealType psi = 0; |
215 |
|
216 |
return RotMat3x3d(phi, theta, psi); |
217 |
|
218 |
} |
219 |
} |
220 |
|