71 |
|
RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), |
72 |
|
evaluatorA_(info), seleManA_(info), |
73 |
|
commonA_(info), evaluatorB_(info), |
74 |
< |
seleManB_(info), commonB_(info), |
74 |
> |
seleManB_(info), commonB_(info), |
75 |
> |
hasData_(false), hasDividingArea_(false), |
76 |
|
usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { |
77 |
|
|
78 |
|
trialCount_ = 0; |
557 |
|
slabWidth_ = hmat(2,2) / 10.0; |
558 |
|
|
559 |
|
if (hasSlabBCenter) |
560 |
< |
slabBCenter_ = rnemdParams->getSlabACenter(); |
560 |
> |
slabBCenter_ = rnemdParams->getSlabBCenter(); |
561 |
|
else |
562 |
|
slabBCenter_ = hmat(2,2) / 2.0; |
563 |
|
|
578 |
|
} |
579 |
|
} |
580 |
|
} |
581 |
+ |
|
582 |
|
// object evaluator: |
583 |
|
evaluator_.loadScriptString(rnemdObjectSelection_); |
584 |
|
seleMan_.setSelectionSet(evaluator_.evaluate()); |
583 |
– |
|
585 |
|
evaluatorA_.loadScriptString(selectionA_); |
586 |
|
evaluatorB_.loadScriptString(selectionB_); |
586 |
– |
|
587 |
|
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
588 |
|
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
589 |
– |
|
589 |
|
commonA_ = seleManA_ & seleMan_; |
590 |
< |
commonB_ = seleManB_ & seleMan_; |
590 |
> |
commonB_ = seleManB_ & seleMan_; |
591 |
|
} |
592 |
|
|
593 |
|
|
604 |
|
#ifdef IS_MPI |
605 |
|
} |
606 |
|
#endif |
607 |
+ |
|
608 |
+ |
// delete all of the objects we created: |
609 |
+ |
delete areaAccumulator_; |
610 |
+ |
data_.clear(); |
611 |
|
} |
612 |
|
|
613 |
|
void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) { |
1151 |
|
//if w is in the right range, so should be x, y, z. |
1152 |
|
vector<StuntDouble*>::iterator sdi; |
1153 |
|
Vector3d vel; |
1154 |
< |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1154 |
> |
for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1155 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1156 |
|
vel = (*sdi)->getVel() * c; |
1157 |
|
(*sdi)->setVel(vel); |
1162 |
|
} |
1163 |
|
} |
1164 |
|
w = sqrt(w); |
1165 |
< |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1165 |
> |
for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1166 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1167 |
|
vel = (*sdi)->getVel(); |
1168 |
|
vel.x() *= x; |
1281 |
|
vector<RealType>::iterator ri; |
1282 |
|
RealType r1, r2, alpha0; |
1283 |
|
vector<pair<RealType,RealType> > rps; |
1284 |
< |
for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) { |
1284 |
> |
for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) { |
1285 |
|
r2 = *ri; |
1286 |
|
//check if FindRealRoots() give the right answer |
1287 |
|
if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { |
1313 |
|
RealType diff; |
1314 |
|
pair<RealType,RealType> bestPair = make_pair(1.0, 1.0); |
1315 |
|
vector<pair<RealType,RealType> >::iterator rpi; |
1316 |
< |
for (rpi = rps.begin(); rpi != rps.end(); rpi++) { |
1316 |
> |
for (rpi = rps.begin(); rpi != rps.end(); ++rpi) { |
1317 |
|
r1 = (*rpi).first; |
1318 |
|
r2 = (*rpi).second; |
1319 |
|
switch(rnemdFluxType_) { |
1380 |
|
} |
1381 |
|
vector<StuntDouble*>::iterator sdi; |
1382 |
|
Vector3d vel; |
1383 |
< |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1383 |
> |
for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1384 |
|
vel = (*sdi)->getVel(); |
1385 |
|
vel.x() *= x; |
1386 |
|
vel.y() *= y; |
1391 |
|
x = 1.0 + px * (1.0 - x); |
1392 |
|
y = 1.0 + py * (1.0 - y); |
1393 |
|
z = 1.0 + pz * (1.0 - z); |
1394 |
< |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1394 |
> |
for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1395 |
|
vel = (*sdi)->getVel(); |
1396 |
|
vel.x() *= x; |
1397 |
|
vel.y() *= y; |
1448 |
|
RealType Mc = 0.0; |
1449 |
|
Mat3x3d Ic(0.0); |
1450 |
|
RealType Kc = 0.0; |
1451 |
+ |
|
1452 |
+ |
// Constraints can be on only the linear or angular momentum, but |
1453 |
+ |
// not both. Usually, the user will specify which they want, but |
1454 |
+ |
// in case they don't, the use of periodic boundaries should make |
1455 |
+ |
// the choice for us. |
1456 |
+ |
bool doLinearPart = false; |
1457 |
+ |
bool doAngularPart = false; |
1458 |
+ |
|
1459 |
+ |
switch (rnemdFluxType_) { |
1460 |
+ |
case rnemdPx: |
1461 |
+ |
case rnemdPy: |
1462 |
+ |
case rnemdPz: |
1463 |
+ |
case rnemdPvector: |
1464 |
+ |
case rnemdKePx: |
1465 |
+ |
case rnemdKePy: |
1466 |
+ |
case rnemdKePvector: |
1467 |
+ |
doLinearPart = true; |
1468 |
+ |
break; |
1469 |
+ |
case rnemdLx: |
1470 |
+ |
case rnemdLy: |
1471 |
+ |
case rnemdLz: |
1472 |
+ |
case rnemdLvector: |
1473 |
+ |
case rnemdKeLx: |
1474 |
+ |
case rnemdKeLy: |
1475 |
+ |
case rnemdKeLz: |
1476 |
+ |
case rnemdKeLvector: |
1477 |
+ |
doAngularPart = true; |
1478 |
+ |
break; |
1479 |
+ |
case rnemdKE: |
1480 |
+ |
case rnemdRotKE: |
1481 |
+ |
case rnemdFullKE: |
1482 |
+ |
default: |
1483 |
+ |
if (usePeriodicBoundaryConditions_) |
1484 |
+ |
doLinearPart = true; |
1485 |
+ |
else |
1486 |
+ |
doAngularPart = true; |
1487 |
+ |
break; |
1488 |
+ |
} |
1489 |
|
|
1490 |
|
for (sd = smanA.beginSelected(selei); sd != NULL; |
1491 |
|
sd = smanA.nextSelected(selei)) { |
1594 |
|
MPI::REALTYPE, MPI::SUM); |
1595 |
|
#endif |
1596 |
|
|
1597 |
+ |
|
1598 |
+ |
Vector3d ac, acrec, bc, bcrec; |
1599 |
+ |
Vector3d ah, ahrec, bh, bhrec; |
1600 |
+ |
|
1601 |
|
bool successfulExchange = false; |
1602 |
|
if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty |
1603 |
|
Vector3d vc = Pc / Mc; |
1604 |
< |
Vector3d ac = -momentumTarget_ / Mc + vc; |
1605 |
< |
Vector3d acrec = -momentumTarget_ / Mc; |
1604 |
> |
ac = -momentumTarget_ / Mc + vc; |
1605 |
> |
acrec = -momentumTarget_ / Mc; |
1606 |
|
|
1607 |
|
// We now need the inverse of the inertia tensor to calculate the |
1608 |
|
// angular velocity of the cold slab; |
1609 |
|
Mat3x3d Ici = Ic.inverse(); |
1610 |
|
Vector3d omegac = Ici * Lc; |
1611 |
< |
Vector3d bc = -(Ici * angularMomentumTarget_) + omegac; |
1612 |
< |
Vector3d bcrec = bc - omegac; |
1611 |
> |
bc = -(Ici * angularMomentumTarget_) + omegac; |
1612 |
> |
bcrec = bc - omegac; |
1613 |
|
|
1614 |
< |
RealType cNumerator = Kc - kineticTarget_ |
1615 |
< |
- 0.5 * Mc * ac.lengthSquare() - 0.5 * ( dot(bc, Ic * bc)); |
1614 |
> |
RealType cNumerator = Kc - kineticTarget_; |
1615 |
> |
if (doLinearPart) |
1616 |
> |
cNumerator -= 0.5 * Mc * ac.lengthSquare(); |
1617 |
> |
|
1618 |
> |
if (doAngularPart) |
1619 |
> |
cNumerator -= 0.5 * ( dot(bc, Ic * bc)); |
1620 |
> |
|
1621 |
|
if (cNumerator > 0.0) { |
1622 |
|
|
1623 |
< |
RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare() |
1624 |
< |
- 0.5*(dot(omegac, Ic * omegac)); |
1623 |
> |
RealType cDenominator = Kc; |
1624 |
> |
|
1625 |
> |
if (doLinearPart) |
1626 |
> |
cDenominator -= 0.5 * Mc * vc.lengthSquare(); |
1627 |
> |
|
1628 |
> |
if (doAngularPart) |
1629 |
> |
cDenominator -= 0.5*(dot(omegac, Ic * omegac)); |
1630 |
|
|
1631 |
|
if (cDenominator > 0.0) { |
1632 |
|
RealType c = sqrt(cNumerator / cDenominator); |
1633 |
|
if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients |
1634 |
|
|
1635 |
|
Vector3d vh = Ph / Mh; |
1636 |
< |
Vector3d ah = momentumTarget_ / Mh + vh; |
1637 |
< |
Vector3d ahrec = momentumTarget_ / Mh; |
1636 |
> |
ah = momentumTarget_ / Mh + vh; |
1637 |
> |
ahrec = momentumTarget_ / Mh; |
1638 |
|
|
1639 |
|
// We now need the inverse of the inertia tensor to |
1640 |
|
// calculate the angular velocity of the hot slab; |
1641 |
|
Mat3x3d Ihi = Ih.inverse(); |
1642 |
|
Vector3d omegah = Ihi * Lh; |
1643 |
< |
Vector3d bh = (Ihi * angularMomentumTarget_) + omegah; |
1644 |
< |
Vector3d bhrec = bh - omegah; |
1643 |
> |
bh = (Ihi * angularMomentumTarget_) + omegah; |
1644 |
> |
bhrec = bh - omegah; |
1645 |
|
|
1646 |
< |
RealType hNumerator = Kh + kineticTarget_ |
1647 |
< |
- 0.5 * Mh * ah.lengthSquare() - 0.5 * ( dot(bh, Ih * bh));; |
1646 |
> |
RealType hNumerator = Kh + kineticTarget_; |
1647 |
> |
if (doLinearPart) |
1648 |
> |
hNumerator -= 0.5 * Mh * ah.lengthSquare(); |
1649 |
> |
|
1650 |
> |
if (doAngularPart) |
1651 |
> |
hNumerator -= 0.5 * ( dot(bh, Ih * bh)); |
1652 |
> |
|
1653 |
|
if (hNumerator > 0.0) { |
1654 |
|
|
1655 |
< |
RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare() |
1656 |
< |
- 0.5*(dot(omegah, Ih * omegah)); |
1655 |
> |
RealType hDenominator = Kh; |
1656 |
> |
if (doLinearPart) |
1657 |
> |
hDenominator -= 0.5 * Mh * vh.lengthSquare(); |
1658 |
> |
if (doAngularPart) |
1659 |
> |
hDenominator -= 0.5*(dot(omegah, Ih * omegah)); |
1660 |
|
|
1661 |
|
if (hDenominator > 0.0) { |
1662 |
|
RealType h = sqrt(hNumerator / hDenominator); |
1666 |
|
Vector3d vel; |
1667 |
|
Vector3d rPos; |
1668 |
|
|
1669 |
< |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1669 |
> |
for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1670 |
|
//vel = (*sdi)->getVel(); |
1671 |
|
rPos = (*sdi)->getPos() - coordinateOrigin_; |
1672 |
< |
vel = ((*sdi)->getVel() - vc - cross(omegac, rPos)) * c |
1673 |
< |
+ ac + cross(bc, rPos); |
1672 |
> |
if (doLinearPart) |
1673 |
> |
vel = ((*sdi)->getVel() - vc) * c + ac; |
1674 |
> |
if (doAngularPart) |
1675 |
> |
vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos); |
1676 |
> |
|
1677 |
|
(*sdi)->setVel(vel); |
1678 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1679 |
|
if ((*sdi)->isDirectional()) { |
1682 |
|
} |
1683 |
|
} |
1684 |
|
} |
1685 |
< |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1685 |
> |
for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1686 |
|
//vel = (*sdi)->getVel(); |
1687 |
|
rPos = (*sdi)->getPos() - coordinateOrigin_; |
1688 |
< |
vel = ((*sdi)->getVel() - vh - cross(omegah, rPos)) * h |
1689 |
< |
+ ah + cross(bh, rPos); |
1688 |
> |
if (doLinearPart) |
1689 |
> |
vel = ((*sdi)->getVel() - vh) * h + ah; |
1690 |
> |
if (doAngularPart) |
1691 |
> |
vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos); |
1692 |
> |
|
1693 |
|
(*sdi)->setVel(vel); |
1694 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1695 |
|
if ((*sdi)->isDirectional()) { |
1732 |
|
int isd; |
1733 |
|
StuntDouble* sd; |
1734 |
|
vector<StuntDouble*> aSites; |
1666 |
– |
ConvexHull* surfaceMeshA = new ConvexHull(); |
1735 |
|
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1736 |
|
for (sd = seleManA_.beginSelected(isd); sd != NULL; |
1737 |
|
sd = seleManA_.nextSelected(isd)) { |
1738 |
|
aSites.push_back(sd); |
1739 |
|
} |
1740 |
+ |
#if defined(HAVE_QHULL) |
1741 |
+ |
ConvexHull* surfaceMeshA = new ConvexHull(); |
1742 |
|
surfaceMeshA->computeHull(aSites); |
1743 |
|
areaA = surfaceMeshA->getArea(); |
1744 |
+ |
delete surfaceMeshA; |
1745 |
+ |
#else |
1746 |
+ |
sprintf( painCave.errMsg, |
1747 |
+ |
"RNEMD::getDividingArea : Hull calculation is not possible\n" |
1748 |
+ |
"\twithout libqhull. Please rebuild OpenMD with qhull enabled."); |
1749 |
+ |
painCave.severity = OPENMD_ERROR; |
1750 |
+ |
painCave.isFatal = 1; |
1751 |
+ |
simError(); |
1752 |
+ |
#endif |
1753 |
+ |
|
1754 |
|
} else { |
1755 |
|
if (usePeriodicBoundaryConditions_) { |
1756 |
|
// in periodic boundaries, the surface area is twice the x-y |
1768 |
|
int isd; |
1769 |
|
StuntDouble* sd; |
1770 |
|
vector<StuntDouble*> bSites; |
1691 |
– |
ConvexHull* surfaceMeshB = new ConvexHull(); |
1771 |
|
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1772 |
|
for (sd = seleManB_.beginSelected(isd); sd != NULL; |
1773 |
|
sd = seleManB_.nextSelected(isd)) { |
1774 |
|
bSites.push_back(sd); |
1775 |
|
} |
1776 |
+ |
|
1777 |
+ |
#if defined(HAVE_QHULL) |
1778 |
+ |
ConvexHull* surfaceMeshB = new ConvexHull(); |
1779 |
|
surfaceMeshB->computeHull(bSites); |
1780 |
|
areaB = surfaceMeshB->getArea(); |
1781 |
+ |
delete surfaceMeshB; |
1782 |
+ |
#else |
1783 |
+ |
sprintf( painCave.errMsg, |
1784 |
+ |
"RNEMD::getDividingArea : Hull calculation is not possible\n" |
1785 |
+ |
"\twithout libqhull. Please rebuild OpenMD with qhull enabled."); |
1786 |
+ |
painCave.severity = OPENMD_ERROR; |
1787 |
+ |
painCave.isFatal = 1; |
1788 |
+ |
simError(); |
1789 |
+ |
#endif |
1790 |
+ |
|
1791 |
+ |
|
1792 |
|
} else { |
1793 |
|
if (usePeriodicBoundaryConditions_) { |
1794 |
|
// in periodic boundaries, the surface area is twice the x-y |
1993 |
|
vel.x() = binPx[i] / binMass[i]; |
1994 |
|
vel.y() = binPy[i] / binMass[i]; |
1995 |
|
vel.z() = binPz[i] / binMass[i]; |
1996 |
< |
aVel.x() = binOmegax[i]; |
1997 |
< |
aVel.y() = binOmegay[i]; |
1998 |
< |
aVel.z() = binOmegaz[i]; |
1996 |
> |
aVel.x() = binOmegax[i] / binCount[i]; |
1997 |
> |
aVel.y() = binOmegay[i] / binCount[i]; |
1998 |
> |
aVel.z() = binOmegaz[i] / binCount[i]; |
1999 |
|
|
2000 |
|
if (binCount[i] > 0) { |
2001 |
|
// only add values if there are things to add |
2028 |
|
} |
2029 |
|
} |
2030 |
|
} |
2031 |
+ |
hasData_ = true; |
2032 |
|
} |
2033 |
|
|
2034 |
|
void RNEMD::getStarted() { |
2061 |
|
|
2062 |
|
void RNEMD::writeOutputFile() { |
2063 |
|
if (!doRNEMD_) return; |
2064 |
+ |
if (!hasData_) return; |
2065 |
|
|
2066 |
|
#ifdef IS_MPI |
2067 |
|
// If we're the root node, should we print out the results |
2083 |
|
RealType time = currentSnap_->getTime(); |
2084 |
|
RealType avgArea; |
2085 |
|
areaAccumulator_->getAverage(avgArea); |
1991 |
– |
RealType Jz = kineticExchange_ / (time * avgArea) |
1992 |
– |
/ PhysicalConstants::energyConvert; |
1993 |
– |
Vector3d JzP = momentumExchange_ / (time * avgArea); |
1994 |
– |
Vector3d JzL = angularMomentumExchange_ / (time * avgArea); |
2086 |
|
|
2087 |
+ |
RealType Jz(0.0); |
2088 |
+ |
Vector3d JzP(V3Zero); |
2089 |
+ |
Vector3d JzL(V3Zero); |
2090 |
+ |
if (time >= info_->getSimParams()->getDt()) { |
2091 |
+ |
Jz = kineticExchange_ / (time * avgArea) |
2092 |
+ |
/ PhysicalConstants::energyConvert; |
2093 |
+ |
JzP = momentumExchange_ / (time * avgArea); |
2094 |
+ |
JzL = angularMomentumExchange_ / (time * avgArea); |
2095 |
+ |
} |
2096 |
+ |
|
2097 |
|
rnemdFile_ << "#######################################################\n"; |
2098 |
|
rnemdFile_ << "# RNEMD {\n"; |
2099 |
|
|
2246 |
|
rnemdFile_ << "\t" << s; |
2247 |
|
} else{ |
2248 |
|
sprintf( painCave.errMsg, |
2249 |
< |
"RNEMD detected a numerical error writing: %s for bin %d", |
2249 |
> |
"RNEMD detected a numerical error writing: %s for bin %u", |
2250 |
|
data_[index].title.c_str(), bin); |
2251 |
|
painCave.isFatal = 1; |
2252 |
|
simError(); |
2269 |
|
isinf(s[1]) || isnan(s[1]) || |
2270 |
|
isinf(s[2]) || isnan(s[2]) ) { |
2271 |
|
sprintf( painCave.errMsg, |
2272 |
< |
"RNEMD detected a numerical error writing: %s for bin %d", |
2272 |
> |
"RNEMD detected a numerical error writing: %s for bin %u", |
2273 |
|
data_[index].title.c_str(), bin); |
2274 |
|
painCave.isFatal = 1; |
2275 |
|
simError(); |
2294 |
|
rnemdFile_ << "\t" << s; |
2295 |
|
} else{ |
2296 |
|
sprintf( painCave.errMsg, |
2297 |
< |
"RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2297 |
> |
"RNEMD detected a numerical error writing: %s std. dev. for bin %u", |
2298 |
|
data_[index].title.c_str(), bin); |
2299 |
|
painCave.isFatal = 1; |
2300 |
|
simError(); |
2316 |
|
isinf(s[1]) || isnan(s[1]) || |
2317 |
|
isinf(s[2]) || isnan(s[2]) ) { |
2318 |
|
sprintf( painCave.errMsg, |
2319 |
< |
"RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2319 |
> |
"RNEMD detected a numerical error writing: %s std. dev. for bin %u", |
2320 |
|
data_[index].title.c_str(), bin); |
2321 |
|
painCave.isFatal = 1; |
2322 |
|
simError(); |