ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing branches/development/src/rnemd/RNEMD.cpp (file contents):
Revision 1813 by gezelter, Fri Nov 16 21:39:55 2012 UTC vs.
Revision 1876 by gezelter, Fri May 17 17:10:11 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   #include <cmath>
43 + #include <sstream>
44 + #include <string>
45 +
46   #include "rnemd/RNEMD.hpp"
47   #include "math/Vector3.hpp"
48   #include "math/Vector.hpp"
# Line 49 | Line 52
52   #include "primitives/StuntDouble.hpp"
53   #include "utils/PhysicalConstants.hpp"
54   #include "utils/Tuple.hpp"
55 + #include "brains/Thermo.hpp"
56 + #include "math/ConvexHull.hpp"
57   #ifdef IS_MPI
58   #include <mpi.h>
59   #endif
# Line 64 | Line 69 | namespace OpenMD {
69   namespace OpenMD {
70    
71    RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 +                                evaluatorA_(info), seleManA_(info),
73 +                                commonA_(info), evaluatorB_(info),
74 +                                seleManB_(info), commonB_(info),
75 +                                hasData_(false), hasDividingArea_(false),
76                                  usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
77  
78      trialCount_ = 0;
79      failTrialCount_ = 0;
80      failRootCount_ = 0;
81  
82 <    Globals * simParams = info->getSimParams();
82 >    Globals* simParams = info->getSimParams();
83      RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
84  
85      doRNEMD_ = rnemdParams->getUseRNEMD();
# Line 85 | Line 94 | namespace OpenMD {
94      stringToFluxType_["Py"]  = rnemdPy;
95      stringToFluxType_["Pz"]  = rnemdPz;
96      stringToFluxType_["Pvector"]  = rnemdPvector;
97 +    stringToFluxType_["Lx"]  = rnemdLx;
98 +    stringToFluxType_["Ly"]  = rnemdLy;
99 +    stringToFluxType_["Lz"]  = rnemdLz;
100 +    stringToFluxType_["Lvector"]  = rnemdLvector;
101      stringToFluxType_["KE+Px"]  = rnemdKePx;
102      stringToFluxType_["KE+Py"]  = rnemdKePy;
103      stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
104 +    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
105 +    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
106 +    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
107 +    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
108  
109      runTime_ = simParams->getRunTime();
110      statusTime_ = simParams->getStatusTime();
111  
95    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
96    evaluator_.loadScriptString(rnemdObjectSelection_);
97    seleMan_.setSelectionSet(evaluator_.evaluate());
98
112      const string methStr = rnemdParams->getMethod();
113      bool hasFluxType = rnemdParams->haveFluxType();
114  
115 +    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
116 +
117      string fluxStr;
118      if (hasFluxType) {
119        fluxStr = rnemdParams->getFluxType();
# Line 106 | Line 121 | namespace OpenMD {
121        sprintf(painCave.errMsg,
122                "RNEMD: No fluxType was set in the md file.  This parameter,\n"
123                "\twhich must be one of the following values:\n"
124 <              "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n"
124 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
125 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
126                "\tmust be set to use RNEMD\n");
127        painCave.isFatal = 1;
128        painCave.severity = OPENMD_ERROR;
# Line 116 | Line 132 | namespace OpenMD {
132      bool hasKineticFlux = rnemdParams->haveKineticFlux();
133      bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
134      bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
135 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
136 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
137 +    hasSelectionA_ = rnemdParams->haveSelectionA();
138 +    hasSelectionB_ = rnemdParams->haveSelectionB();
139      bool hasSlabWidth = rnemdParams->haveSlabWidth();
140      bool hasSlabACenter = rnemdParams->haveSlabACenter();
141      bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
142 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
143 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
144 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
145      bool hasOutputFileName = rnemdParams->haveOutputFileName();
146      bool hasOutputFields = rnemdParams->haveOutputFields();
147      
# Line 203 | Line 226 | namespace OpenMD {
226        case rnemdPz:
227          hasCorrectFlux = hasMomentumFlux;
228          break;
229 +      case rnemdLx:
230 +      case rnemdLy:
231 +      case rnemdLz:
232 +        hasCorrectFlux = hasAngularMomentumFlux;
233 +        break;
234        case rnemdPvector:
235          hasCorrectFlux = hasMomentumFluxVector;
236          break;
237 +      case rnemdLvector:
238 +        hasCorrectFlux = hasAngularMomentumFluxVector;
239 +        break;
240        case rnemdKePx:
241        case rnemdKePy:
242          hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
243          break;
244 +      case rnemdKeLx:
245 +      case rnemdKeLy:
246 +      case rnemdKeLz:
247 +        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
248 +        break;
249        case rnemdKePvector:
250          hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
251          break;
252 +      case rnemdKeLvector:
253 +        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
254 +        break;
255        default:
256          methodFluxMismatch = true;
257          break;
# Line 235 | Line 274 | namespace OpenMD {
274        sprintf(painCave.errMsg,
275                "RNEMD: The current method, %s, and flux type, %s,\n"
276                "\tdid not have the correct flux value specified. Options\n"
277 <              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
277 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
278 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
279                methStr.c_str(), fluxStr.c_str());
280        painCave.isFatal = 1;
281        painCave.severity = OPENMD_ERROR;
# Line 275 | Line 315 | namespace OpenMD {
315          default:
316            break;
317          }
318 <      }    
319 <    }
318 >      }
319 >      if (hasAngularMomentumFluxVector) {
320 >        angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector();
321 >      } else {
322 >        angularMomentumFluxVector_ = V3Zero;
323 >        if (hasAngularMomentumFlux) {
324 >          RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
325 >          switch (rnemdFluxType_) {
326 >          case rnemdLx:
327 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
328 >            break;
329 >          case rnemdLy:
330 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
331 >            break;
332 >          case rnemdLz:
333 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
334 >            break;
335 >          case rnemdKeLx:
336 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
337 >            break;
338 >          case rnemdKeLy:
339 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
340 >            break;
341 >          case rnemdKeLz:
342 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
343 >            break;
344 >          default:
345 >            break;
346 >          }
347 >        }        
348 >      }
349  
350 <    // do some sanity checking
350 >      if (hasCoordinateOrigin) {
351 >        coordinateOrigin_ = rnemdParams->getCoordinateOrigin();
352 >      } else {
353 >        coordinateOrigin_ = V3Zero;
354 >      }
355  
356 <    int selectionCount = seleMan_.getSelectionCount();
356 >      // do some sanity checking
357  
358 <    int nIntegrable = info->getNGlobalIntegrableObjects();
358 >      int selectionCount = seleMan_.getSelectionCount();
359  
360 <    if (selectionCount > nIntegrable) {
288 <      sprintf(painCave.errMsg,
289 <              "RNEMD: The current objectSelection,\n"
290 <              "\t\t%s\n"
291 <              "\thas resulted in %d selected objects.  However,\n"
292 <              "\tthe total number of integrable objects in the system\n"
293 <              "\tis only %d.  This is almost certainly not what you want\n"
294 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
295 <              "\tselector in the selection script!\n",
296 <              rnemdObjectSelection_.c_str(),
297 <              selectionCount, nIntegrable);
298 <      painCave.isFatal = 0;
299 <      painCave.severity = OPENMD_WARNING;
300 <      simError();
301 <    }
360 >      int nIntegrable = info->getNGlobalIntegrableObjects();
361  
362 <    areaAccumulator_ = new Accumulator();
362 >      if (selectionCount > nIntegrable) {
363 >        sprintf(painCave.errMsg,
364 >                "RNEMD: The current objectSelection,\n"
365 >                "\t\t%s\n"
366 >                "\thas resulted in %d selected objects.  However,\n"
367 >                "\tthe total number of integrable objects in the system\n"
368 >                "\tis only %d.  This is almost certainly not what you want\n"
369 >                "\tto do.  A likely cause of this is forgetting the _RB_0\n"
370 >                "\tselector in the selection script!\n",
371 >                rnemdObjectSelection_.c_str(),
372 >                selectionCount, nIntegrable);
373 >        painCave.isFatal = 0;
374 >        painCave.severity = OPENMD_WARNING;
375 >        simError();
376 >      }
377  
378 <    nBins_ = rnemdParams->getOutputBins();
378 >      areaAccumulator_ = new Accumulator();
379  
380 <    data_.resize(RNEMD::ENDINDEX);
381 <    OutputData z;
309 <    z.units =  "Angstroms";
310 <    z.title =  "Z";
311 <    z.dataType = "RealType";
312 <    z.accumulator.reserve(nBins_);
313 <    for (int i = 0; i < nBins_; i++)
314 <      z.accumulator.push_back( new Accumulator() );
315 <    data_[Z] = z;
316 <    outputMap_["Z"] =  Z;
380 >      nBins_ = rnemdParams->getOutputBins();
381 >      binWidth_ = rnemdParams->getOutputBinWidth();
382  
383 <    OutputData temperature;
384 <    temperature.units =  "K";
385 <    temperature.title =  "Temperature";
386 <    temperature.dataType = "RealType";
387 <    temperature.accumulator.reserve(nBins_);
388 <    for (int i = 0; i < nBins_; i++)
389 <      temperature.accumulator.push_back( new Accumulator() );
390 <    data_[TEMPERATURE] = temperature;
391 <    outputMap_["TEMPERATURE"] =  TEMPERATURE;
383 >      data_.resize(RNEMD::ENDINDEX);
384 >      OutputData z;
385 >      z.units =  "Angstroms";
386 >      z.title =  "Z";
387 >      z.dataType = "RealType";
388 >      z.accumulator.reserve(nBins_);
389 >      for (int i = 0; i < nBins_; i++)
390 >        z.accumulator.push_back( new Accumulator() );
391 >      data_[Z] = z;
392 >      outputMap_["Z"] =  Z;
393  
394 <    OutputData velocity;
395 <    velocity.units = "angstroms/fs";
396 <    velocity.title =  "Velocity";  
397 <    velocity.dataType = "Vector3d";
398 <    velocity.accumulator.reserve(nBins_);
399 <    for (int i = 0; i < nBins_; i++)
400 <      velocity.accumulator.push_back( new VectorAccumulator() );
401 <    data_[VELOCITY] = velocity;
402 <    outputMap_["VELOCITY"] = VELOCITY;
337 <
338 <    OutputData density;
339 <    density.units =  "g cm^-3";
340 <    density.title =  "Density";
341 <    density.dataType = "RealType";
342 <    density.accumulator.reserve(nBins_);
343 <    for (int i = 0; i < nBins_; i++)
344 <      density.accumulator.push_back( new Accumulator() );
345 <    data_[DENSITY] = density;
346 <    outputMap_["DENSITY"] =  DENSITY;
394 >      OutputData r;
395 >      r.units =  "Angstroms";
396 >      r.title =  "R";
397 >      r.dataType = "RealType";
398 >      r.accumulator.reserve(nBins_);
399 >      for (int i = 0; i < nBins_; i++)
400 >        r.accumulator.push_back( new Accumulator() );
401 >      data_[R] = r;
402 >      outputMap_["R"] =  R;
403  
404 <    if (hasOutputFields) {
405 <      parseOutputFileFormat(rnemdParams->getOutputFields());
406 <    } else {
407 <      outputMask_.set(Z);
408 <      switch (rnemdFluxType_) {
409 <      case rnemdKE:
410 <      case rnemdRotKE:
411 <      case rnemdFullKE:
412 <        outputMask_.set(TEMPERATURE);
357 <        break;
358 <      case rnemdPx:
359 <      case rnemdPy:
360 <        outputMask_.set(VELOCITY);
361 <        break;
362 <      case rnemdPz:        
363 <      case rnemdPvector:
364 <        outputMask_.set(VELOCITY);
365 <        outputMask_.set(DENSITY);
366 <        break;
367 <      case rnemdKePx:
368 <      case rnemdKePy:
369 <        outputMask_.set(TEMPERATURE);
370 <        outputMask_.set(VELOCITY);
371 <        break;
372 <      case rnemdKePvector:
373 <        outputMask_.set(TEMPERATURE);
374 <        outputMask_.set(VELOCITY);
375 <        outputMask_.set(DENSITY);        
376 <        break;
377 <      default:
378 <        break;
379 <      }
380 <    }
381 <      
382 <    if (hasOutputFileName) {
383 <      rnemdFileName_ = rnemdParams->getOutputFileName();
384 <    } else {
385 <      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
386 <    }          
404 >      OutputData temperature;
405 >      temperature.units =  "K";
406 >      temperature.title =  "Temperature";
407 >      temperature.dataType = "RealType";
408 >      temperature.accumulator.reserve(nBins_);
409 >      for (int i = 0; i < nBins_; i++)
410 >        temperature.accumulator.push_back( new Accumulator() );
411 >      data_[TEMPERATURE] = temperature;
412 >      outputMap_["TEMPERATURE"] =  TEMPERATURE;
413  
414 <    exchangeTime_ = rnemdParams->getExchangeTime();
414 >      OutputData velocity;
415 >      velocity.units = "angstroms/fs";
416 >      velocity.title =  "Velocity";  
417 >      velocity.dataType = "Vector3d";
418 >      velocity.accumulator.reserve(nBins_);
419 >      for (int i = 0; i < nBins_; i++)
420 >        velocity.accumulator.push_back( new VectorAccumulator() );
421 >      data_[VELOCITY] = velocity;
422 >      outputMap_["VELOCITY"] = VELOCITY;
423  
424 <    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
425 <    Mat3x3d hmat = currentSnap_->getHmat();
426 <  
427 <    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
428 <    // Lx, Ly = box dimensions in x & y
429 <    // dt = exchange time interval
430 <    // flux = target flux
424 >      OutputData angularVelocity;
425 >      angularVelocity.units = "angstroms^2/fs";
426 >      angularVelocity.title =  "AngularVelocity";  
427 >      angularVelocity.dataType = "Vector3d";
428 >      angularVelocity.accumulator.reserve(nBins_);
429 >      for (int i = 0; i < nBins_; i++)
430 >        angularVelocity.accumulator.push_back( new VectorAccumulator() );
431 >      data_[ANGULARVELOCITY] = angularVelocity;
432 >      outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
433  
434 <    RealType area = currentSnap_->getXYarea();
435 <    kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
436 <    momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
434 >      OutputData density;
435 >      density.units =  "g cm^-3";
436 >      density.title =  "Density";
437 >      density.dataType = "RealType";
438 >      density.accumulator.reserve(nBins_);
439 >      for (int i = 0; i < nBins_; i++)
440 >        density.accumulator.push_back( new Accumulator() );
441 >      data_[DENSITY] = density;
442 >      outputMap_["DENSITY"] =  DENSITY;
443  
444 <    // total exchange sums are zeroed out at the beginning:
444 >      if (hasOutputFields) {
445 >        parseOutputFileFormat(rnemdParams->getOutputFields());
446 >      } else {
447 >        if (usePeriodicBoundaryConditions_)
448 >          outputMask_.set(Z);
449 >        else
450 >          outputMask_.set(R);
451 >        switch (rnemdFluxType_) {
452 >        case rnemdKE:
453 >        case rnemdRotKE:
454 >        case rnemdFullKE:
455 >          outputMask_.set(TEMPERATURE);
456 >          break;
457 >        case rnemdPx:
458 >        case rnemdPy:
459 >          outputMask_.set(VELOCITY);
460 >          break;
461 >        case rnemdPz:        
462 >        case rnemdPvector:
463 >          outputMask_.set(VELOCITY);
464 >          outputMask_.set(DENSITY);
465 >          break;
466 >        case rnemdLx:
467 >        case rnemdLy:
468 >        case rnemdLz:
469 >        case rnemdLvector:
470 >          outputMask_.set(ANGULARVELOCITY);
471 >          break;
472 >        case rnemdKeLx:
473 >        case rnemdKeLy:
474 >        case rnemdKeLz:
475 >        case rnemdKeLvector:
476 >          outputMask_.set(TEMPERATURE);
477 >          outputMask_.set(ANGULARVELOCITY);
478 >          break;
479 >        case rnemdKePx:
480 >        case rnemdKePy:
481 >          outputMask_.set(TEMPERATURE);
482 >          outputMask_.set(VELOCITY);
483 >          break;
484 >        case rnemdKePvector:
485 >          outputMask_.set(TEMPERATURE);
486 >          outputMask_.set(VELOCITY);
487 >          outputMask_.set(DENSITY);        
488 >          break;
489 >        default:
490 >          break;
491 >        }
492 >      }
493 >      
494 >      if (hasOutputFileName) {
495 >        rnemdFileName_ = rnemdParams->getOutputFileName();
496 >      } else {
497 >        rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
498 >      }          
499  
500 <    kineticExchange_ = 0.0;
405 <    momentumExchange_ = V3Zero;
500 >      exchangeTime_ = rnemdParams->getExchangeTime();
501  
502 <    if (hasSlabWidth)
503 <      slabWidth_ = rnemdParams->getSlabWidth();
504 <    else
505 <      slabWidth_ = hmat(2,2) / 10.0;
506 <  
507 <    if (hasSlabACenter)
508 <      slabACenter_ = rnemdParams->getSlabACenter();
509 <    else
510 <      slabACenter_ = 0.0;
502 >      Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
503 >      // total exchange sums are zeroed out at the beginning:
504 >
505 >      kineticExchange_ = 0.0;
506 >      momentumExchange_ = V3Zero;
507 >      angularMomentumExchange_ = V3Zero;
508 >
509 >      std::ostringstream selectionAstream;
510 >      std::ostringstream selectionBstream;
511      
512 <    if (hasSlabBCenter)
513 <      slabBCenter_ = rnemdParams->getSlabBCenter();
514 <    else
515 <      slabBCenter_ = hmat(2,2) / 2.0;
512 >      if (hasSelectionA_) {
513 >        selectionA_ = rnemdParams->getSelectionA();
514 >      } else {
515 >        if (usePeriodicBoundaryConditions_) {    
516 >          Mat3x3d hmat = currentSnap_->getHmat();
517 >        
518 >          if (hasSlabWidth)
519 >            slabWidth_ = rnemdParams->getSlabWidth();
520 >          else
521 >            slabWidth_ = hmat(2,2) / 10.0;
522 >        
523 >          if (hasSlabACenter)
524 >            slabACenter_ = rnemdParams->getSlabACenter();
525 >          else
526 >            slabACenter_ = 0.0;
527 >        
528 >          selectionAstream << "select wrappedz > "
529 >                           << slabACenter_ - 0.5*slabWidth_
530 >                           <<  " && wrappedz < "
531 >                           << slabACenter_ + 0.5*slabWidth_;
532 >          selectionA_ = selectionAstream.str();
533 >        } else {
534 >          if (hasSphereARadius)
535 >            sphereARadius_ = rnemdParams->getSphereARadius();
536 >          else {
537 >            // use an initial guess to the size of the inner slab to be 1/10 the
538 >            // radius of an approximately spherical hull:
539 >            Thermo thermo(info);
540 >            RealType hVol = thermo.getHullVolume();
541 >            sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
542 >          }
543 >          selectionAstream << "select r < " << sphereARadius_;
544 >          selectionA_ = selectionAstream.str();
545 >        }
546 >      }
547      
548 +      if (hasSelectionB_) {
549 +        selectionB_ = rnemdParams->getSelectionB();
550 +      } else {
551 +        if (usePeriodicBoundaryConditions_) {    
552 +          Mat3x3d hmat = currentSnap_->getHmat();
553 +        
554 +          if (hasSlabWidth)
555 +            slabWidth_ = rnemdParams->getSlabWidth();
556 +          else
557 +            slabWidth_ = hmat(2,2) / 10.0;
558 +        
559 +          if (hasSlabBCenter)
560 +            slabBCenter_ = rnemdParams->getSlabBCenter();
561 +          else
562 +            slabBCenter_ = hmat(2,2) / 2.0;
563 +        
564 +          selectionBstream << "select wrappedz > "
565 +                           << slabBCenter_ - 0.5*slabWidth_
566 +                           <<  " && wrappedz < "
567 +                           << slabBCenter_ + 0.5*slabWidth_;
568 +          selectionB_ = selectionBstream.str();
569 +        } else {
570 +          if (hasSphereBRadius_) {
571 +            sphereBRadius_ = rnemdParams->getSphereBRadius();
572 +            selectionBstream << "select r > " << sphereBRadius_;
573 +            selectionB_ = selectionBstream.str();
574 +          } else {
575 +            selectionB_ = "select hull";
576 +            hasSelectionB_ = true;
577 +          }
578 +        }
579 +      }
580 +    }
581 +
582 +    // object evaluator:
583 +    evaluator_.loadScriptString(rnemdObjectSelection_);
584 +    seleMan_.setSelectionSet(evaluator_.evaluate());
585 +    evaluatorA_.loadScriptString(selectionA_);
586 +    evaluatorB_.loadScriptString(selectionB_);
587 +    seleManA_.setSelectionSet(evaluatorA_.evaluate());
588 +    seleManB_.setSelectionSet(evaluatorB_.evaluate());
589 +    commonA_ = seleManA_ & seleMan_;
590 +    commonB_ = seleManB_ & seleMan_;  
591    }
592 <  
592 >  
593 >    
594    RNEMD::~RNEMD() {
595      if (!doRNEMD_) return;
596   #ifdef IS_MPI
# Line 434 | Line 604 | namespace OpenMD {
604   #ifdef IS_MPI
605      }
606   #endif
607 +
608 +    // delete all of the objects we created:
609 +    delete areaAccumulator_;    
610 +    data_.clear();
611    }
612    
613 <  bool RNEMD::inSlabA(Vector3d pos) {
440 <    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
441 <  }
442 <  bool RNEMD::inSlabB(Vector3d pos) {
443 <    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
444 <  }
445 <
446 <  void RNEMD::doSwap() {
613 >  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
614      if (!doRNEMD_) return;
615 +    int selei;
616 +    int selej;
617 +
618      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
619      Mat3x3d hmat = currentSnap_->getHmat();
620  
451    seleMan_.setSelectionSet(evaluator_.evaluate());
452
453    int selei;
621      StuntDouble* sd;
622  
623      RealType min_val;
# Line 461 | Line 628 | namespace OpenMD {
628      bool max_found = false;
629      StuntDouble* max_sd;
630  
631 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
632 <         sd = seleMan_.nextSelected(selei)) {
631 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
632 >         sd = seleManA_.nextSelected(selei)) {
633  
634        Vector3d pos = sd->getPos();
635 <
635 >      
636        // wrap the stuntdouble's position back into the box:
637 <
637 >      
638        if (usePeriodicBoundaryConditions_)
639          currentSnap_->wrapVector(pos);
640 <      bool inA = inSlabA(pos);
641 <      bool inB = inSlabB(pos);
642 <
643 <      if (inA || inB) {
640 >      
641 >      RealType mass = sd->getMass();
642 >      Vector3d vel = sd->getVel();
643 >      RealType value;
644 >      
645 >      switch(rnemdFluxType_) {
646 >      case rnemdKE :
647          
648 <        RealType mass = sd->getMass();
649 <        Vector3d vel = sd->getVel();
650 <        RealType value;
651 <        
652 <        switch(rnemdFluxType_) {
483 <        case rnemdKE :
648 >        value = mass * vel.lengthSquare();
649 >        
650 >        if (sd->isDirectional()) {
651 >          Vector3d angMom = sd->getJ();
652 >          Mat3x3d I = sd->getI();
653            
654 <          value = mass * vel.lengthSquare();
655 <          
656 <          if (sd->isDirectional()) {
657 <            Vector3d angMom = sd->getJ();
658 <            Mat3x3d I = sd->getI();
659 <            
660 <            if (sd->isLinear()) {
661 <              int i = sd->linearAxis();
662 <              int j = (i + 1) % 3;
663 <              int k = (i + 2) % 3;
664 <              value += angMom[j] * angMom[j] / I(j, j) +
665 <                angMom[k] * angMom[k] / I(k, k);
666 <            } else {                        
667 <              value += angMom[0]*angMom[0]/I(0, 0)
668 <                + angMom[1]*angMom[1]/I(1, 1)
669 <                + angMom[2]*angMom[2]/I(2, 2);
670 <            }
671 <          } //angular momenta exchange enabled
672 <          value *= 0.5;
673 <          break;
674 <        case rnemdPx :
675 <          value = mass * vel[0];
676 <          break;
677 <        case rnemdPy :
678 <          value = mass * vel[1];
679 <          break;
680 <        case rnemdPz :
681 <          value = mass * vel[2];
682 <          break;
683 <        default :
684 <          break;
654 >          if (sd->isLinear()) {
655 >            int i = sd->linearAxis();
656 >            int j = (i + 1) % 3;
657 >            int k = (i + 2) % 3;
658 >            value += angMom[j] * angMom[j] / I(j, j) +
659 >              angMom[k] * angMom[k] / I(k, k);
660 >          } else {                        
661 >            value += angMom[0]*angMom[0]/I(0, 0)
662 >              + angMom[1]*angMom[1]/I(1, 1)
663 >              + angMom[2]*angMom[2]/I(2, 2);
664 >          }
665 >        } //angular momenta exchange enabled
666 >        value *= 0.5;
667 >        break;
668 >      case rnemdPx :
669 >        value = mass * vel[0];
670 >        break;
671 >      case rnemdPy :
672 >        value = mass * vel[1];
673 >        break;
674 >      case rnemdPz :
675 >        value = mass * vel[2];
676 >        break;
677 >      default :
678 >        break;
679 >      }
680 >      if (!max_found) {
681 >        max_val = value;
682 >        max_sd = sd;
683 >        max_found = true;
684 >      } else {
685 >        if (max_val < value) {
686 >          max_val = value;
687 >          max_sd = sd;
688          }
689 +      }  
690 +    }
691          
692 <        if (inA == 0) {
693 <          if (!min_found) {
694 <            min_val = value;
695 <            min_sd = sd;
696 <            min_found = true;
697 <          } else {
698 <            if (min_val > value) {
699 <              min_val = value;
700 <              min_sd = sd;
701 <            }
702 <          }
703 <        } else {
704 <          if (!max_found) {
705 <            max_val = value;
706 <            max_sd = sd;
707 <            max_found = true;
708 <          } else {
709 <            if (max_val < value) {
710 <              max_val = value;
711 <              max_sd = sd;
712 <            }
713 <          }      
714 <        }
692 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
693 >         sd = seleManB_.nextSelected(selej)) {
694 >
695 >      Vector3d pos = sd->getPos();
696 >      
697 >      // wrap the stuntdouble's position back into the box:
698 >      
699 >      if (usePeriodicBoundaryConditions_)
700 >        currentSnap_->wrapVector(pos);
701 >      
702 >      RealType mass = sd->getMass();
703 >      Vector3d vel = sd->getVel();
704 >      RealType value;
705 >      
706 >      switch(rnemdFluxType_) {
707 >      case rnemdKE :
708 >        
709 >        value = mass * vel.lengthSquare();
710 >        
711 >        if (sd->isDirectional()) {
712 >          Vector3d angMom = sd->getJ();
713 >          Mat3x3d I = sd->getI();
714 >          
715 >          if (sd->isLinear()) {
716 >            int i = sd->linearAxis();
717 >            int j = (i + 1) % 3;
718 >            int k = (i + 2) % 3;
719 >            value += angMom[j] * angMom[j] / I(j, j) +
720 >              angMom[k] * angMom[k] / I(k, k);
721 >          } else {                        
722 >            value += angMom[0]*angMom[0]/I(0, 0)
723 >              + angMom[1]*angMom[1]/I(1, 1)
724 >              + angMom[2]*angMom[2]/I(2, 2);
725 >          }
726 >        } //angular momenta exchange enabled
727 >        value *= 0.5;
728 >        break;
729 >      case rnemdPx :
730 >        value = mass * vel[0];
731 >        break;
732 >      case rnemdPy :
733 >        value = mass * vel[1];
734 >        break;
735 >      case rnemdPz :
736 >        value = mass * vel[2];
737 >        break;
738 >      default :
739 >        break;
740        }
741 +      
742 +      if (!min_found) {
743 +        min_val = value;
744 +        min_sd = sd;
745 +        min_found = true;
746 +      } else {
747 +        if (min_val > value) {
748 +          min_val = value;
749 +          min_sd = sd;
750 +        }
751 +      }
752      }
753      
754   #ifdef IS_MPI    
# Line 767 | Line 977 | namespace OpenMD {
977      }    
978    }
979    
980 <  void RNEMD::doNIVS() {
980 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
981      if (!doRNEMD_) return;
982 +    int selei;
983 +    int selej;
984 +
985      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
986 +    RealType time = currentSnap_->getTime();    
987      Mat3x3d hmat = currentSnap_->getHmat();
988  
775    seleMan_.setSelectionSet(evaluator_.evaluate());
776
777    int selei;
989      StuntDouble* sd;
990  
991      vector<StuntDouble*> hotBin, coldBin;
# Line 794 | Line 1005 | namespace OpenMD {
1005      RealType Kcz = 0.0;
1006      RealType Kcw = 0.0;
1007  
1008 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1009 <         sd = seleMan_.nextSelected(selei)) {
1008 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1009 >         sd = smanA.nextSelected(selei)) {
1010  
1011        Vector3d pos = sd->getPos();
1012 <
1012 >      
1013        // wrap the stuntdouble's position back into the box:
1014 <
1014 >      
1015        if (usePeriodicBoundaryConditions_)
1016          currentSnap_->wrapVector(pos);
1017 <
1018 <      // which bin is this stuntdouble in?
1019 <      bool inA = inSlabA(pos);
1020 <      bool inB = inSlabB(pos);
1017 >      
1018 >      
1019 >      RealType mass = sd->getMass();
1020 >      Vector3d vel = sd->getVel();
1021 >      
1022 >      hotBin.push_back(sd);
1023 >      Phx += mass * vel.x();
1024 >      Phy += mass * vel.y();
1025 >      Phz += mass * vel.z();
1026 >      Khx += mass * vel.x() * vel.x();
1027 >      Khy += mass * vel.y() * vel.y();
1028 >      Khz += mass * vel.z() * vel.z();
1029 >      if (sd->isDirectional()) {
1030 >        Vector3d angMom = sd->getJ();
1031 >        Mat3x3d I = sd->getI();
1032 >        if (sd->isLinear()) {
1033 >          int i = sd->linearAxis();
1034 >          int j = (i + 1) % 3;
1035 >          int k = (i + 2) % 3;
1036 >          Khw += angMom[j] * angMom[j] / I(j, j) +
1037 >            angMom[k] * angMom[k] / I(k, k);
1038 >        } else {
1039 >          Khw += angMom[0]*angMom[0]/I(0, 0)
1040 >            + angMom[1]*angMom[1]/I(1, 1)
1041 >            + angMom[2]*angMom[2]/I(2, 2);
1042 >        }
1043 >      }
1044 >    }
1045 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1046 >         sd = smanB.nextSelected(selej)) {
1047 >      Vector3d pos = sd->getPos();
1048 >      
1049 >      // wrap the stuntdouble's position back into the box:
1050 >      
1051 >      if (usePeriodicBoundaryConditions_)
1052 >        currentSnap_->wrapVector(pos);
1053 >            
1054 >      RealType mass = sd->getMass();
1055 >      Vector3d vel = sd->getVel();
1056  
1057 <      if (inA || inB) {
1058 <              
1059 <        RealType mass = sd->getMass();
1060 <        Vector3d vel = sd->getVel();
1061 <      
1062 <        if (inA) {
1063 <          hotBin.push_back(sd);
1064 <          Phx += mass * vel.x();
1065 <          Phy += mass * vel.y();
1066 <          Phz += mass * vel.z();
1067 <          Khx += mass * vel.x() * vel.x();
1068 <          Khy += mass * vel.y() * vel.y();
1069 <          Khz += mass * vel.z() * vel.z();
1070 <          if (sd->isDirectional()) {
1071 <            Vector3d angMom = sd->getJ();
1072 <            Mat3x3d I = sd->getI();
1073 <            if (sd->isLinear()) {
1074 <              int i = sd->linearAxis();
1075 <              int j = (i + 1) % 3;
1076 <              int k = (i + 2) % 3;
1077 <              Khw += angMom[j] * angMom[j] / I(j, j) +
832 <                angMom[k] * angMom[k] / I(k, k);
833 <            } else {
834 <              Khw += angMom[0]*angMom[0]/I(0, 0)
835 <                + angMom[1]*angMom[1]/I(1, 1)
836 <                + angMom[2]*angMom[2]/I(2, 2);
837 <            }
838 <          }
839 <        } else {
840 <          coldBin.push_back(sd);
841 <          Pcx += mass * vel.x();
842 <          Pcy += mass * vel.y();
843 <          Pcz += mass * vel.z();
844 <          Kcx += mass * vel.x() * vel.x();
845 <          Kcy += mass * vel.y() * vel.y();
846 <          Kcz += mass * vel.z() * vel.z();
847 <          if (sd->isDirectional()) {
848 <            Vector3d angMom = sd->getJ();
849 <            Mat3x3d I = sd->getI();
850 <            if (sd->isLinear()) {
851 <              int i = sd->linearAxis();
852 <              int j = (i + 1) % 3;
853 <              int k = (i + 2) % 3;
854 <              Kcw += angMom[j] * angMom[j] / I(j, j) +
855 <                angMom[k] * angMom[k] / I(k, k);
856 <            } else {
857 <              Kcw += angMom[0]*angMom[0]/I(0, 0)
858 <                + angMom[1]*angMom[1]/I(1, 1)
859 <                + angMom[2]*angMom[2]/I(2, 2);
860 <            }
861 <          }
862 <        }
1057 >      coldBin.push_back(sd);
1058 >      Pcx += mass * vel.x();
1059 >      Pcy += mass * vel.y();
1060 >      Pcz += mass * vel.z();
1061 >      Kcx += mass * vel.x() * vel.x();
1062 >      Kcy += mass * vel.y() * vel.y();
1063 >      Kcz += mass * vel.z() * vel.z();
1064 >      if (sd->isDirectional()) {
1065 >        Vector3d angMom = sd->getJ();
1066 >        Mat3x3d I = sd->getI();
1067 >        if (sd->isLinear()) {
1068 >          int i = sd->linearAxis();
1069 >          int j = (i + 1) % 3;
1070 >          int k = (i + 2) % 3;
1071 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1072 >            angMom[k] * angMom[k] / I(k, k);
1073 >        } else {
1074 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1075 >            + angMom[1]*angMom[1]/I(1, 1)
1076 >            + angMom[2]*angMom[2]/I(2, 2);
1077 >        }
1078        }
1079      }
1080      
# Line 936 | Line 1151 | namespace OpenMD {
1151            //if w is in the right range, so should be x, y, z.
1152            vector<StuntDouble*>::iterator sdi;
1153            Vector3d vel;
1154 <          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1154 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1155              if (rnemdFluxType_ == rnemdFullKE) {
1156                vel = (*sdi)->getVel() * c;
1157                (*sdi)->setVel(vel);
# Line 947 | Line 1162 | namespace OpenMD {
1162              }
1163            }
1164            w = sqrt(w);
1165 <          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1165 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1166              if (rnemdFluxType_ == rnemdFullKE) {
1167                vel = (*sdi)->getVel();
1168                vel.x() *= x;
# Line 1066 | Line 1281 | namespace OpenMD {
1281        vector<RealType>::iterator ri;
1282        RealType r1, r2, alpha0;
1283        vector<pair<RealType,RealType> > rps;
1284 <      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1284 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1285          r2 = *ri;
1286          //check if FindRealRoots() give the right answer
1287          if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
# Line 1098 | Line 1313 | namespace OpenMD {
1313          RealType diff;
1314          pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1315          vector<pair<RealType,RealType> >::iterator rpi;
1316 <        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1316 >        for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1317            r1 = (*rpi).first;
1318            r2 = (*rpi).second;
1319            switch(rnemdFluxType_) {
# Line 1165 | Line 1380 | namespace OpenMD {
1380          }
1381          vector<StuntDouble*>::iterator sdi;
1382          Vector3d vel;
1383 <        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1383 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1384            vel = (*sdi)->getVel();
1385            vel.x() *= x;
1386            vel.y() *= y;
# Line 1176 | Line 1391 | namespace OpenMD {
1391          x = 1.0 + px * (1.0 - x);
1392          y = 1.0 + py * (1.0 - y);
1393          z = 1.0 + pz * (1.0 - z);
1394 <        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1394 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1395            vel = (*sdi)->getVel();
1396            vel.x() *= x;
1397            vel.y() *= y;
# Line 1209 | Line 1424 | namespace OpenMD {
1424        failTrialCount_++;
1425      }
1426    }
1427 <
1428 <  void RNEMD::doVSS() {
1427 >  
1428 >  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1429      if (!doRNEMD_) return;
1430 +    int selei;
1431 +    int selej;
1432 +
1433      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1434      RealType time = currentSnap_->getTime();    
1435      Mat3x3d hmat = currentSnap_->getHmat();
1436  
1219    seleMan_.setSelectionSet(evaluator_.evaluate());
1220
1221    int selei;
1437      StuntDouble* sd;
1438  
1439      vector<StuntDouble*> hotBin, coldBin;
1440  
1441      Vector3d Ph(V3Zero);
1442 +    Vector3d Lh(V3Zero);
1443      RealType Mh = 0.0;
1444 +    Mat3x3d Ih(0.0);
1445      RealType Kh = 0.0;
1446      Vector3d Pc(V3Zero);
1447 +    Vector3d Lc(V3Zero);
1448      RealType Mc = 0.0;
1449 +    Mat3x3d Ic(0.0);
1450      RealType Kc = 0.0;
1232    
1451  
1452 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1453 <         sd = seleMan_.nextSelected(selei)) {
1452 >    // Constraints can be on only the linear or angular momentum, but
1453 >    // not both.  Usually, the user will specify which they want, but
1454 >    // in case they don't, the use of periodic boundaries should make
1455 >    // the choice for us.
1456 >    bool doLinearPart = false;
1457 >    bool doAngularPart = false;
1458  
1459 +    switch (rnemdFluxType_) {
1460 +    case rnemdPx:
1461 +    case rnemdPy:
1462 +    case rnemdPz:
1463 +    case rnemdPvector:
1464 +    case rnemdKePx:
1465 +    case rnemdKePy:
1466 +    case rnemdKePvector:
1467 +      doLinearPart = true;
1468 +      break;
1469 +    case rnemdLx:
1470 +    case rnemdLy:
1471 +    case rnemdLz:
1472 +    case rnemdLvector:
1473 +    case rnemdKeLx:
1474 +    case rnemdKeLy:
1475 +    case rnemdKeLz:
1476 +    case rnemdKeLvector:
1477 +      doAngularPart = true;
1478 +      break;
1479 +    case rnemdKE:
1480 +    case rnemdRotKE:
1481 +    case rnemdFullKE:
1482 +    default:
1483 +      if (usePeriodicBoundaryConditions_)
1484 +        doLinearPart = true;
1485 +      else
1486 +        doAngularPart = true;
1487 +      break;
1488 +    }
1489 +    
1490 +    for (sd = smanA.beginSelected(selei); sd != NULL;
1491 +         sd = smanA.nextSelected(selei)) {
1492 +
1493        Vector3d pos = sd->getPos();
1494  
1495        // wrap the stuntdouble's position back into the box:
1496 +      
1497 +      if (usePeriodicBoundaryConditions_)
1498 +        currentSnap_->wrapVector(pos);
1499 +      
1500 +      RealType mass = sd->getMass();
1501 +      Vector3d vel = sd->getVel();
1502 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1503 +      RealType r2;
1504 +      
1505 +      hotBin.push_back(sd);
1506 +      Ph += mass * vel;
1507 +      Mh += mass;
1508 +      Kh += mass * vel.lengthSquare();
1509 +      Lh += mass * cross(rPos, vel);
1510 +      Ih -= outProduct(rPos, rPos) * mass;
1511 +      r2 = rPos.lengthSquare();
1512 +      Ih(0, 0) += mass * r2;
1513 +      Ih(1, 1) += mass * r2;
1514 +      Ih(2, 2) += mass * r2;
1515 +      
1516 +      if (rnemdFluxType_ == rnemdFullKE) {
1517 +        if (sd->isDirectional()) {
1518 +          Vector3d angMom = sd->getJ();
1519 +          Mat3x3d I = sd->getI();
1520 +          if (sd->isLinear()) {
1521 +            int i = sd->linearAxis();
1522 +            int j = (i + 1) % 3;
1523 +            int k = (i + 2) % 3;
1524 +            Kh += angMom[j] * angMom[j] / I(j, j) +
1525 +              angMom[k] * angMom[k] / I(k, k);
1526 +          } else {
1527 +            Kh += angMom[0] * angMom[0] / I(0, 0) +
1528 +              angMom[1] * angMom[1] / I(1, 1) +
1529 +              angMom[2] * angMom[2] / I(2, 2);
1530 +          }
1531 +        }
1532 +      }
1533 +    }
1534 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1535 +         sd = smanB.nextSelected(selej)) {
1536  
1537 +      Vector3d pos = sd->getPos();
1538 +      
1539 +      // wrap the stuntdouble's position back into the box:
1540 +      
1541        if (usePeriodicBoundaryConditions_)
1542          currentSnap_->wrapVector(pos);
1543 +      
1544 +      RealType mass = sd->getMass();
1545 +      Vector3d vel = sd->getVel();
1546 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1547 +      RealType r2;
1548  
1549 <      // which bin is this stuntdouble in?
1550 <      bool inA = inSlabA(pos);
1551 <      bool inB = inSlabB(pos);
1549 >      coldBin.push_back(sd);
1550 >      Pc += mass * vel;
1551 >      Mc += mass;
1552 >      Kc += mass * vel.lengthSquare();
1553 >      Lc += mass * cross(rPos, vel);
1554 >      Ic -= outProduct(rPos, rPos) * mass;
1555 >      r2 = rPos.lengthSquare();
1556 >      Ic(0, 0) += mass * r2;
1557 >      Ic(1, 1) += mass * r2;
1558 >      Ic(2, 2) += mass * r2;
1559        
1560 <      if (inA || inB) {
1561 <        
1562 <        RealType mass = sd->getMass();
1563 <        Vector3d vel = sd->getVel();
1564 <      
1565 <        if (inA) {
1566 <          hotBin.push_back(sd);
1567 <          Ph += mass * vel;
1568 <          Mh += mass;
1569 <          Kh += mass * vel.lengthSquare();
1570 <          if (rnemdFluxType_ == rnemdFullKE) {
1571 <            if (sd->isDirectional()) {
1572 <              Vector3d angMom = sd->getJ();
1573 <              Mat3x3d I = sd->getI();
1574 <              if (sd->isLinear()) {
1575 <                int i = sd->linearAxis();
1264 <                int j = (i + 1) % 3;
1265 <                int k = (i + 2) % 3;
1266 <                Kh += angMom[j] * angMom[j] / I(j, j) +
1267 <                  angMom[k] * angMom[k] / I(k, k);
1268 <              } else {
1269 <                Kh += angMom[0] * angMom[0] / I(0, 0) +
1270 <                  angMom[1] * angMom[1] / I(1, 1) +
1271 <                  angMom[2] * angMom[2] / I(2, 2);
1272 <              }
1273 <            }
1274 <          }
1275 <        } else { //midBin_
1276 <          coldBin.push_back(sd);
1277 <          Pc += mass * vel;
1278 <          Mc += mass;
1279 <          Kc += mass * vel.lengthSquare();
1280 <          if (rnemdFluxType_ == rnemdFullKE) {
1281 <            if (sd->isDirectional()) {
1282 <              Vector3d angMom = sd->getJ();
1283 <              Mat3x3d I = sd->getI();
1284 <              if (sd->isLinear()) {
1285 <                int i = sd->linearAxis();
1286 <                int j = (i + 1) % 3;
1287 <                int k = (i + 2) % 3;
1288 <                Kc += angMom[j] * angMom[j] / I(j, j) +
1289 <                  angMom[k] * angMom[k] / I(k, k);
1290 <              } else {
1291 <                Kc += angMom[0] * angMom[0] / I(0, 0) +
1292 <                  angMom[1] * angMom[1] / I(1, 1) +
1293 <                  angMom[2] * angMom[2] / I(2, 2);
1294 <              }
1295 <            }
1296 <          }
1297 <        }
1560 >      if (rnemdFluxType_ == rnemdFullKE) {
1561 >        if (sd->isDirectional()) {
1562 >          Vector3d angMom = sd->getJ();
1563 >          Mat3x3d I = sd->getI();
1564 >          if (sd->isLinear()) {
1565 >            int i = sd->linearAxis();
1566 >            int j = (i + 1) % 3;
1567 >            int k = (i + 2) % 3;
1568 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1569 >              angMom[k] * angMom[k] / I(k, k);
1570 >          } else {
1571 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1572 >              angMom[1] * angMom[1] / I(1, 1) +
1573 >              angMom[2] * angMom[2] / I(2, 2);
1574 >          }
1575 >        }
1576        }
1577      }
1578      
# Line 1304 | Line 1582 | namespace OpenMD {
1582   #ifdef IS_MPI
1583      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1584      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1585 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM);
1586 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM);
1587      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1588      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1589      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1590      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1591 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9,
1592 +                              MPI::REALTYPE, MPI::SUM);
1593 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9,
1594 +                              MPI::REALTYPE, MPI::SUM);
1595   #endif
1596 +    
1597  
1598 +    Vector3d ac, acrec, bc, bcrec;
1599 +    Vector3d ah, ahrec, bh, bhrec;
1600 +
1601      bool successfulExchange = false;
1602      if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1603        Vector3d vc = Pc / Mc;
1604 <      Vector3d ac = -momentumTarget_ / Mc + vc;
1605 <      Vector3d acrec = -momentumTarget_ / Mc;
1606 <      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1604 >      ac = -momentumTarget_ / Mc + vc;
1605 >      acrec = -momentumTarget_ / Mc;
1606 >      
1607 >      // We now need the inverse of the inertia tensor to calculate the
1608 >      // angular velocity of the cold slab;
1609 >      Mat3x3d Ici = Ic.inverse();
1610 >      Vector3d omegac = Ici * Lc;
1611 >      bc  = -(Ici * angularMomentumTarget_) + omegac;
1612 >      bcrec = bc - omegac;
1613 >      
1614 >      RealType cNumerator = Kc - kineticTarget_;
1615 >      if (doLinearPart)
1616 >        cNumerator -= 0.5 * Mc * ac.lengthSquare();
1617 >      
1618 >      if (doAngularPart)
1619 >        cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1620 >
1621        if (cNumerator > 0.0) {
1622 <        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1622 >        
1623 >        RealType cDenominator = Kc;
1624 >
1625 >        if (doLinearPart)
1626 >          cDenominator -= 0.5 * Mc * vc.lengthSquare();
1627 >
1628 >        if (doAngularPart)
1629 >          cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1630 >        
1631          if (cDenominator > 0.0) {
1632            RealType c = sqrt(cNumerator / cDenominator);
1633            if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1634 +            
1635              Vector3d vh = Ph / Mh;
1636 <            Vector3d ah = momentumTarget_ / Mh + vh;
1637 <            Vector3d ahrec = momentumTarget_ / Mh;
1638 <            RealType hNumerator = Kh + kineticTarget_
1639 <              - 0.5 * Mh * ah.lengthSquare();
1640 <            if (hNumerator > 0.0) {
1641 <              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1636 >            ah = momentumTarget_ / Mh + vh;
1637 >            ahrec = momentumTarget_ / Mh;
1638 >            
1639 >            // We now need the inverse of the inertia tensor to
1640 >            // calculate the angular velocity of the hot slab;
1641 >            Mat3x3d Ihi = Ih.inverse();
1642 >            Vector3d omegah = Ihi * Lh;
1643 >            bh  = (Ihi * angularMomentumTarget_) + omegah;
1644 >            bhrec = bh - omegah;
1645 >            
1646 >            RealType hNumerator = Kh + kineticTarget_;
1647 >            if (doLinearPart)
1648 >              hNumerator -= 0.5 * Mh * ah.lengthSquare();
1649 >            
1650 >            if (doAngularPart)
1651 >              hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1652 >              
1653 >            if (hNumerator > 0.0) {
1654 >              
1655 >              RealType hDenominator = Kh;
1656 >              if (doLinearPart)
1657 >                hDenominator -= 0.5 * Mh * vh.lengthSquare();
1658 >              if (doAngularPart)
1659 >                hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1660 >              
1661                if (hDenominator > 0.0) {
1662                  RealType h = sqrt(hNumerator / hDenominator);
1663                  if ((h > 0.9) && (h < 1.1)) {
1664 <
1664 >                  
1665                    vector<StuntDouble*>::iterator sdi;
1666                    Vector3d vel;
1667 <                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1667 >                  Vector3d rPos;
1668 >                  
1669 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1670                      //vel = (*sdi)->getVel();
1671 <                    vel = ((*sdi)->getVel() - vc) * c + ac;
1671 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1672 >                    if (doLinearPart)
1673 >                      vel = ((*sdi)->getVel() - vc) * c + ac;
1674 >                    if (doAngularPart)
1675 >                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1676 >
1677                      (*sdi)->setVel(vel);
1678                      if (rnemdFluxType_ == rnemdFullKE) {
1679                        if ((*sdi)->isDirectional()) {
# Line 1345 | Line 1682 | namespace OpenMD {
1682                        }
1683                      }
1684                    }
1685 <                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1685 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1686                      //vel = (*sdi)->getVel();
1687 <                    vel = ((*sdi)->getVel() - vh) * h + ah;
1687 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1688 >                    if (doLinearPart)
1689 >                      vel = ((*sdi)->getVel() - vh) * h + ah;    
1690 >                    if (doAngularPart)
1691 >                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);    
1692 >
1693                      (*sdi)->setVel(vel);
1694                      if (rnemdFluxType_ == rnemdFullKE) {
1695                        if ((*sdi)->isDirectional()) {
# Line 1359 | Line 1701 | namespace OpenMD {
1701                    successfulExchange = true;
1702                    kineticExchange_ += kineticTarget_;
1703                    momentumExchange_ += momentumTarget_;
1704 +                  angularMomentumExchange_ += angularMomentumTarget_;
1705                  }
1706                }
1707              }
# Line 1378 | Line 1721 | namespace OpenMD {
1721      }
1722    }
1723  
1724 +  RealType RNEMD::getDividingArea() {
1725 +
1726 +    if (hasDividingArea_) return dividingArea_;
1727 +
1728 +    RealType areaA, areaB;
1729 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1730 +
1731 +    if (hasSelectionA_) {
1732 +      int isd;
1733 +      StuntDouble* sd;
1734 +      vector<StuntDouble*> aSites;
1735 +      seleManA_.setSelectionSet(evaluatorA_.evaluate());
1736 +      for (sd = seleManA_.beginSelected(isd); sd != NULL;
1737 +           sd = seleManA_.nextSelected(isd)) {
1738 +        aSites.push_back(sd);
1739 +      }
1740 + #if defined(HAVE_QHULL)
1741 +      ConvexHull* surfaceMeshA = new ConvexHull();
1742 +      surfaceMeshA->computeHull(aSites);
1743 +      areaA = surfaceMeshA->getArea();
1744 +      delete surfaceMeshA;
1745 + #else
1746 +      sprintf( painCave.errMsg,
1747 +               "RNEMD::getDividingArea : Hull calculation is not possible\n"
1748 +               "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1749 +      painCave.severity = OPENMD_ERROR;
1750 +      painCave.isFatal = 1;
1751 +      simError();
1752 + #endif
1753 +
1754 +    } else {
1755 +      if (usePeriodicBoundaryConditions_) {
1756 +        // in periodic boundaries, the surface area is twice the x-y
1757 +        // area of the current box:
1758 +        areaA = 2.0 * snap->getXYarea();
1759 +      } else {
1760 +        // in non-periodic simulations, without explicitly setting
1761 +        // selections, the sphere radius sets the surface area of the
1762 +        // dividing surface:
1763 +        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1764 +      }
1765 +    }
1766 +
1767 +    if (hasSelectionB_) {
1768 +      int isd;
1769 +      StuntDouble* sd;
1770 +      vector<StuntDouble*> bSites;
1771 +      seleManB_.setSelectionSet(evaluatorB_.evaluate());
1772 +      for (sd = seleManB_.beginSelected(isd); sd != NULL;
1773 +           sd = seleManB_.nextSelected(isd)) {
1774 +        bSites.push_back(sd);
1775 +      }
1776 +
1777 + #if defined(HAVE_QHULL)
1778 +      ConvexHull* surfaceMeshB = new ConvexHull();    
1779 +      surfaceMeshB->computeHull(bSites);
1780 +      areaB = surfaceMeshB->getArea();
1781 +      delete surfaceMeshB;
1782 + #else
1783 +      sprintf( painCave.errMsg,
1784 +               "RNEMD::getDividingArea : Hull calculation is not possible\n"
1785 +               "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1786 +      painCave.severity = OPENMD_ERROR;
1787 +      painCave.isFatal = 1;
1788 +      simError();
1789 + #endif
1790 +
1791 +
1792 +    } else {
1793 +      if (usePeriodicBoundaryConditions_) {
1794 +        // in periodic boundaries, the surface area is twice the x-y
1795 +        // area of the current box:
1796 +        areaB = 2.0 * snap->getXYarea();
1797 +      } else {
1798 +        // in non-periodic simulations, without explicitly setting
1799 +        // selections, but if a sphereBradius has been set, just use that:
1800 +        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1801 +      }
1802 +    }
1803 +    
1804 +    dividingArea_ = min(areaA, areaB);
1805 +    hasDividingArea_ = true;
1806 +    return dividingArea_;
1807 +  }
1808 +  
1809    void RNEMD::doRNEMD() {
1810      if (!doRNEMD_) return;
1811      trialCount_++;
1812 +
1813 +    // object evaluator:
1814 +    evaluator_.loadScriptString(rnemdObjectSelection_);
1815 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1816 +
1817 +    evaluatorA_.loadScriptString(selectionA_);
1818 +    evaluatorB_.loadScriptString(selectionB_);
1819 +
1820 +    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1821 +    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1822 +
1823 +    commonA_ = seleManA_ & seleMan_;
1824 +    commonB_ = seleManB_ & seleMan_;
1825 +
1826 +    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1827 +    // dt = exchange time interval
1828 +    // flux = target flux
1829 +    // dividingArea = smallest dividing surface between the two regions
1830 +
1831 +    hasDividingArea_ = false;
1832 +    RealType area = getDividingArea();
1833 +
1834 +    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1835 +    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1836 +    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1837 +
1838      switch(rnemdMethod_) {
1839      case rnemdSwap:
1840 <      doSwap();
1840 >      doSwap(commonA_, commonB_);
1841        break;
1842      case rnemdNIVS:
1843 <      doNIVS();
1843 >      doNIVS(commonA_, commonB_);
1844        break;
1845      case rnemdVSS:
1846 <      doVSS();
1846 >      doVSS(commonA_, commonB_);
1847        break;
1848      case rnemdUnkownMethod:
1849      default :
# Line 1400 | Line 1854 | namespace OpenMD {
1854    void RNEMD::collectData() {
1855      if (!doRNEMD_) return;
1856      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1857 +    
1858 +    // collectData can be called more frequently than the doRNEMD, so use the
1859 +    // computed area from the last exchange time:
1860 +    RealType area = getDividingArea();
1861 +    areaAccumulator_->add(area);
1862      Mat3x3d hmat = currentSnap_->getHmat();
1404
1405    areaAccumulator_->add(currentSnap_->getXYarea());
1406
1863      seleMan_.setSelectionSet(evaluator_.evaluate());
1864  
1865      int selei(0);
1866      StuntDouble* sd;
1867 +    int binNo;
1868  
1869      vector<RealType> binMass(nBins_, 0.0);
1870      vector<RealType> binPx(nBins_, 0.0);
1871      vector<RealType> binPy(nBins_, 0.0);
1872      vector<RealType> binPz(nBins_, 0.0);
1873 +    vector<RealType> binOmegax(nBins_, 0.0);
1874 +    vector<RealType> binOmegay(nBins_, 0.0);
1875 +    vector<RealType> binOmegaz(nBins_, 0.0);
1876      vector<RealType> binKE(nBins_, 0.0);
1877      vector<int> binDOF(nBins_, 0);
1878      vector<int> binCount(nBins_, 0);
# Line 1420 | Line 1880 | namespace OpenMD {
1880      // alternative approach, track all molecules instead of only those
1881      // selected for scaling/swapping:
1882      /*
1883 <    SimInfo::MoleculeIterator miter;
1884 <    vector<StuntDouble*>::iterator iiter;
1885 <    Molecule* mol;
1886 <    StuntDouble* sd;
1887 <    for (mol = info_->beginMolecule(miter); mol != NULL;
1883 >      SimInfo::MoleculeIterator miter;
1884 >      vector<StuntDouble*>::iterator iiter;
1885 >      Molecule* mol;
1886 >      StuntDouble* sd;
1887 >      for (mol = info_->beginMolecule(miter); mol != NULL;
1888        mol = info_->nextMolecule(miter))
1889        sd is essentially sd
1890 <        for (sd = mol->beginIntegrableObject(iiter);
1891 <             sd != NULL;
1892 <             sd = mol->nextIntegrableObject(iiter))
1890 >      for (sd = mol->beginIntegrableObject(iiter);
1891 >      sd != NULL;
1892 >      sd = mol->nextIntegrableObject(iiter))
1893      */
1894  
1895      for (sd = seleMan_.beginSelected(selei); sd != NULL;
# Line 1439 | Line 1899 | namespace OpenMD {
1899  
1900        // wrap the stuntdouble's position back into the box:
1901        
1902 <      if (usePeriodicBoundaryConditions_)
1902 >      if (usePeriodicBoundaryConditions_) {
1903          currentSnap_->wrapVector(pos);
1904 +        // which bin is this stuntdouble in?
1905 +        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1906 +        // Shift molecules by half a box to have bins start at 0
1907 +        // The modulo operator is used to wrap the case when we are
1908 +        // beyond the end of the bins back to the beginning.
1909 +        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1910 +      } else {
1911 +        Vector3d rPos = pos - coordinateOrigin_;
1912 +        binNo = int(rPos.length() / binWidth_);
1913 +      }
1914  
1445
1446      // which bin is this stuntdouble in?
1447      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1448      // Shift molecules by half a box to have bins start at 0
1449      // The modulo operator is used to wrap the case when we are
1450      // beyond the end of the bins back to the beginning.
1451      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1452
1915        RealType mass = sd->getMass();
1916        Vector3d vel = sd->getVel();
1917 <
1918 <      binCount[binNo]++;
1919 <      binMass[binNo] += mass;
1920 <      binPx[binNo] += mass*vel.x();
1921 <      binPy[binNo] += mass*vel.y();
1922 <      binPz[binNo] += mass*vel.z();
1923 <      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1924 <      binDOF[binNo] += 3;
1925 <
1926 <      if (sd->isDirectional()) {
1927 <        Vector3d angMom = sd->getJ();
1928 <        Mat3x3d I = sd->getI();
1929 <        if (sd->isLinear()) {
1930 <          int i = sd->linearAxis();
1931 <          int j = (i + 1) % 3;
1932 <          int k = (i + 2) % 3;
1933 <          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1934 <                                 angMom[k] * angMom[k] / I(k, k));
1935 <          binDOF[binNo] += 2;
1936 <        } else {
1937 <          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1938 <                                 angMom[1] * angMom[1] / I(1, 1) +
1939 <                                 angMom[2] * angMom[2] / I(2, 2));
1940 <          binDOF[binNo] += 3;
1917 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1918 >      Vector3d aVel = cross(rPos, vel);
1919 >      
1920 >      if (binNo >= 0 && binNo < nBins_)  {
1921 >        binCount[binNo]++;
1922 >        binMass[binNo] += mass;
1923 >        binPx[binNo] += mass*vel.x();
1924 >        binPy[binNo] += mass*vel.y();
1925 >        binPz[binNo] += mass*vel.z();
1926 >        binOmegax[binNo] += aVel.x();
1927 >        binOmegay[binNo] += aVel.y();
1928 >        binOmegaz[binNo] += aVel.z();
1929 >        binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1930 >        binDOF[binNo] += 3;
1931 >        
1932 >        if (sd->isDirectional()) {
1933 >          Vector3d angMom = sd->getJ();
1934 >          Mat3x3d I = sd->getI();
1935 >          if (sd->isLinear()) {
1936 >            int i = sd->linearAxis();
1937 >            int j = (i + 1) % 3;
1938 >            int k = (i + 2) % 3;
1939 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1940 >                                   angMom[k] * angMom[k] / I(k, k));
1941 >            binDOF[binNo] += 2;
1942 >          } else {
1943 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1944 >                                   angMom[1] * angMom[1] / I(1, 1) +
1945 >                                   angMom[2] * angMom[2] / I(2, 2));
1946 >            binDOF[binNo] += 3;
1947 >          }
1948          }
1949        }
1950      }
# Line 1491 | Line 1960 | namespace OpenMD {
1960                                nBins_, MPI::REALTYPE, MPI::SUM);
1961      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1962                                nBins_, MPI::REALTYPE, MPI::SUM);
1963 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0],
1964 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1965 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0],
1966 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1967 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0],
1968 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1969      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1970                                nBins_, MPI::REALTYPE, MPI::SUM);
1971      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
# Line 1498 | Line 1973 | namespace OpenMD {
1973   #endif
1974  
1975      Vector3d vel;
1976 +    Vector3d aVel;
1977      RealType den;
1978      RealType temp;
1979      RealType z;
1980 +    RealType r;
1981      for (int i = 0; i < nBins_; i++) {
1982 <      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1982 >      if (usePeriodicBoundaryConditions_) {
1983 >        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1984 >        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1985 >          / currentSnap_->getVolume() ;
1986 >      } else {
1987 >        r = (((RealType)i + 0.5) * binWidth_);
1988 >        RealType rinner = (RealType)i * binWidth_;
1989 >        RealType router = (RealType)(i+1) * binWidth_;
1990 >        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
1991 >          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
1992 >      }
1993        vel.x() = binPx[i] / binMass[i];
1994        vel.y() = binPy[i] / binMass[i];
1995        vel.z() = binPz[i] / binMass[i];
1996 +      aVel.x() = binOmegax[i] / binCount[i];
1997 +      aVel.y() = binOmegay[i] / binCount[i];
1998 +      aVel.z() = binOmegaz[i] / binCount[i];
1999  
1510      den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1511        / currentSnap_->getVolume() ;
1512
2000        if (binCount[i] > 0) {
2001          // only add values if there are things to add
2002          temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
# Line 1521 | Line 2008 | namespace OpenMD {
2008              case Z:
2009                dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
2010                break;
2011 +            case R:
2012 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
2013 +              break;
2014              case TEMPERATURE:
2015                dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2016                break;
2017              case VELOCITY:
2018                dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2019                break;
2020 +            case ANGULARVELOCITY:  
2021 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel);
2022 +              break;
2023              case DENSITY:
2024                dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2025                break;
# Line 1535 | Line 2028 | namespace OpenMD {
2028          }
2029        }
2030      }
2031 +    hasData_ = true;
2032    }
2033  
2034    void RNEMD::getStarted() {
2035      if (!doRNEMD_) return;
2036 +    hasDividingArea_ = false;
2037      collectData();
2038      writeOutputFile();
2039    }
# Line 1566 | Line 2061 | namespace OpenMD {
2061    
2062    void RNEMD::writeOutputFile() {
2063      if (!doRNEMD_) return;
2064 +    if (!hasData_) return;
2065      
2066   #ifdef IS_MPI
2067      // If we're the root node, should we print out the results
# Line 1587 | Line 2083 | namespace OpenMD {
2083        RealType time = currentSnap_->getTime();
2084        RealType avgArea;
2085        areaAccumulator_->getAverage(avgArea);
1590      RealType Jz = kineticExchange_ / (2.0 * time * avgArea)
1591        / PhysicalConstants::energyConvert;
1592      Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);      
2086  
2087 +      RealType Jz(0.0);
2088 +      Vector3d JzP(V3Zero);
2089 +      Vector3d JzL(V3Zero);
2090 +      if (time >= info_->getSimParams()->getDt()) {
2091 +        Jz = kineticExchange_ / (time * avgArea)
2092 +          / PhysicalConstants::energyConvert;
2093 +        JzP = momentumExchange_ / (time * avgArea);
2094 +        JzL = angularMomentumExchange_ / (time * avgArea);
2095 +      }
2096 +
2097        rnemdFile_ << "#######################################################\n";
2098        rnemdFile_ << "# RNEMD {\n";
2099  
# Line 1609 | Line 2112 | namespace OpenMD {
2112  
2113        rnemdFile_ << "#    objectSelection = \""
2114                   << rnemdObjectSelection_ << "\";\n";
2115 <      rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n";
2116 <      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n";
1614 <      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n";
2115 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2116 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2117        rnemdFile_ << "# }\n";
2118        rnemdFile_ << "#######################################################\n";
2119        rnemdFile_ << "# RNEMD report:\n";      
2120 <      rnemdFile_ << "#     running time = " << time << " fs\n";
2121 <      rnemdFile_ << "#     target flux:\n";
2122 <      rnemdFile_ << "#         kinetic = "
2120 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2121 >      rnemdFile_ << "# Target flux:\n";
2122 >      rnemdFile_ << "#           kinetic = "
2123                   << kineticFlux_ / PhysicalConstants::energyConvert
2124                   << " (kcal/mol/A^2/fs)\n";
2125 <      rnemdFile_ << "#         momentum = " << momentumFluxVector_
2125 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2126                   << " (amu/A/fs^2)\n";
2127 <      rnemdFile_ << "#     target one-time exchanges:\n";
2128 <      rnemdFile_ << "#         kinetic = "
2127 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2128 >                 << " (amu/A^2/fs^2)\n";
2129 >      rnemdFile_ << "# Target one-time exchanges:\n";
2130 >      rnemdFile_ << "#          kinetic = "
2131                   << kineticTarget_ / PhysicalConstants::energyConvert
2132                   << " (kcal/mol)\n";
2133 <      rnemdFile_ << "#         momentum = " << momentumTarget_
2133 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2134                   << " (amu*A/fs)\n";
2135 <      rnemdFile_ << "#     actual exchange totals:\n";
2136 <      rnemdFile_ << "#         kinetic = "
2135 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2136 >                 << " (amu*A^2/fs)\n";
2137 >      rnemdFile_ << "# Actual exchange totals:\n";
2138 >      rnemdFile_ << "#          kinetic = "
2139                   << kineticExchange_ / PhysicalConstants::energyConvert
2140                   << " (kcal/mol)\n";
2141 <      rnemdFile_ << "#         momentum = " << momentumExchange_
2141 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2142                   << " (amu*A/fs)\n";      
2143 <      rnemdFile_ << "#     actual flux:\n";
2144 <      rnemdFile_ << "#         kinetic = " << Jz
2143 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2144 >                 << " (amu*A^2/fs)\n";      
2145 >      rnemdFile_ << "# Actual flux:\n";
2146 >      rnemdFile_ << "#          kinetic = " << Jz
2147                   << " (kcal/mol/A^2/fs)\n";
2148 <      rnemdFile_ << "#         momentum = " << JzP
2148 >      rnemdFile_ << "#          momentum = " << JzP
2149                   << " (amu/A/fs^2)\n";
2150 <      rnemdFile_ << "#     exchange statistics:\n";
2151 <      rnemdFile_ << "#         attempted = " << trialCount_ << "\n";
2152 <      rnemdFile_ << "#         failed = " << failTrialCount_ << "\n";    
2150 >      rnemdFile_ << "#  angular momentum = " << JzL
2151 >                 << " (amu/A^2/fs^2)\n";
2152 >      rnemdFile_ << "# Exchange statistics:\n";
2153 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2154 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2155        if (rnemdMethod_ == rnemdNIVS) {
2156 <        rnemdFile_ << "#         NIVS root-check errors = "
2156 >        rnemdFile_ << "#  NIVS root-check errors = "
2157                     << failRootCount_ << "\n";
2158        }
2159        rnemdFile_ << "#######################################################\n";
# Line 1670 | Line 2180 | namespace OpenMD {
2180            if (outputMask_[i]) {
2181              if (data_[i].dataType == "RealType")
2182                writeReal(i,j);
2183 <            else if (data_[i].dataType == "Vector3d")
2183 >            else if (data_[i].dataType == "Vector3d")
2184                writeVector(i,j);
2185              else {
2186                sprintf( painCave.errMsg,
# Line 1723 | Line 2233 | namespace OpenMD {
2233    void RNEMD::writeReal(int index, unsigned int bin) {
2234      if (!doRNEMD_) return;
2235      assert(index >=0 && index < ENDINDEX);
2236 <    assert(bin < nBins_);
2236 >    assert(int(bin) < nBins_);
2237      RealType s;
2238 +    int count;
2239      
2240 +    count = data_[index].accumulator[bin]->count();
2241 +    if (count == 0) return;
2242 +    
2243      dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2244      
2245      if (! isinf(s) && ! isnan(s)) {
2246        rnemdFile_ << "\t" << s;
2247      } else{
2248        sprintf( painCave.errMsg,
2249 <               "RNEMD detected a numerical error writing: %s for bin %d",
2249 >               "RNEMD detected a numerical error writing: %s for bin %u",
2250                 data_[index].title.c_str(), bin);
2251        painCave.isFatal = 1;
2252        simError();
# Line 1742 | Line 2256 | namespace OpenMD {
2256    void RNEMD::writeVector(int index, unsigned int bin) {
2257      if (!doRNEMD_) return;
2258      assert(index >=0 && index < ENDINDEX);
2259 <    assert(bin < nBins_);
2259 >    assert(int(bin) < nBins_);
2260      Vector3d s;
2261 +    int count;
2262 +    
2263 +    count = data_[index].accumulator[bin]->count();
2264 +
2265 +    if (count == 0) return;
2266 +
2267      dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2268      if (isinf(s[0]) || isnan(s[0]) ||
2269          isinf(s[1]) || isnan(s[1]) ||
2270          isinf(s[2]) || isnan(s[2]) ) {      
2271        sprintf( painCave.errMsg,
2272 <               "RNEMD detected a numerical error writing: %s for bin %d",
2272 >               "RNEMD detected a numerical error writing: %s for bin %u",
2273                 data_[index].title.c_str(), bin);
2274        painCave.isFatal = 1;
2275        simError();
# Line 1761 | Line 2281 | namespace OpenMD {
2281    void RNEMD::writeRealStdDev(int index, unsigned int bin) {
2282      if (!doRNEMD_) return;
2283      assert(index >=0 && index < ENDINDEX);
2284 <    assert(bin < nBins_);
2284 >    assert(int(bin) < nBins_);
2285      RealType s;
2286 +    int count;
2287      
2288 +    count = data_[index].accumulator[bin]->count();
2289 +    if (count == 0) return;
2290 +    
2291      dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
2292      
2293      if (! isinf(s) && ! isnan(s)) {
2294        rnemdFile_ << "\t" << s;
2295      } else{
2296        sprintf( painCave.errMsg,
2297 <               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
2297 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2298                 data_[index].title.c_str(), bin);
2299        painCave.isFatal = 1;
2300        simError();
# Line 1780 | Line 2304 | namespace OpenMD {
2304    void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
2305      if (!doRNEMD_) return;
2306      assert(index >=0 && index < ENDINDEX);
2307 <    assert(bin < nBins_);
2307 >    assert(int(bin) < nBins_);
2308      Vector3d s;
2309 +    int count;
2310 +    
2311 +    count = data_[index].accumulator[bin]->count();
2312 +    if (count == 0) return;
2313 +
2314      dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
2315      if (isinf(s[0]) || isnan(s[0]) ||
2316          isinf(s[1]) || isnan(s[1]) ||
2317          isinf(s[2]) || isnan(s[2]) ) {      
2318        sprintf( painCave.errMsg,
2319 <               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
2319 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2320                 data_[index].title.c_str(), bin);
2321        painCave.isFatal = 1;
2322        simError();

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines