ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1876 by gezelter, Fri May 17 17:10:11 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   #include <cmath>
43 < #include "integrators/RNEMD.hpp"
43 > #include <sstream>
44 > #include <string>
45 >
46 > #include "rnemd/RNEMD.hpp"
47   #include "math/Vector3.hpp"
48 + #include "math/Vector.hpp"
49   #include "math/SquareMatrix3.hpp"
50   #include "math/Polynomial.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "primitives/StuntDouble.hpp"
53   #include "utils/PhysicalConstants.hpp"
54   #include "utils/Tuple.hpp"
55 + #include "brains/Thermo.hpp"
56 + #include "math/ConvexHull.hpp"
57 + #ifdef IS_MPI
58 + #include <mpi.h>
59 + #endif
60  
61 < #ifndef IS_MPI
62 < #include "math/SeqRandNumGen.hpp"
63 < #else
55 < #include "math/ParallelRandNumGen.hpp"
61 > #ifdef _MSC_VER
62 > #define isnan(x) _isnan((x))
63 > #define isinf(x) (!_finite(x) && !_isnan(x))
64   #endif
65  
66   #define HONKING_LARGE_VALUE 1.0e10
67  
68 + using namespace std;
69   namespace OpenMD {
70    
71 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
71 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 >                                evaluatorA_(info), seleManA_(info),
73 >                                commonA_(info), evaluatorB_(info),
74 >                                seleManB_(info), commonB_(info),
75 >                                hasData_(false), hasDividingArea_(false),
76 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
77  
78 +    trialCount_ = 0;
79      failTrialCount_ = 0;
80      failRootCount_ = 0;
81  
82 <    int seedValue;
83 <    Globals * simParams = info->getSimParams();
82 >    Globals* simParams = info->getSimParams();
83 >    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
84  
85 <    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
86 <    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
72 <    stringToEnumMap_["PxScale"] = rnemdPxScale;
73 <    stringToEnumMap_["PyScale"] = rnemdPyScale;
74 <    stringToEnumMap_["PzScale"] = rnemdPzScale;
75 <    stringToEnumMap_["Px"] = rnemdPx;
76 <    stringToEnumMap_["Py"] = rnemdPy;
77 <    stringToEnumMap_["Pz"] = rnemdPz;
78 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
85 >    doRNEMD_ = rnemdParams->getUseRNEMD();
86 >    if (!doRNEMD_) return;
87  
88 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
89 <    evaluator_.loadScriptString(rnemdObjectSelection_);
90 <    seleMan_.setSelectionSet(evaluator_.evaluate());
88 >    stringToMethod_["Swap"]  = rnemdSwap;
89 >    stringToMethod_["NIVS"]  = rnemdNIVS;
90 >    stringToMethod_["VSS"]   = rnemdVSS;
91  
92 <    // do some sanity checking
92 >    stringToFluxType_["KE"]  = rnemdKE;
93 >    stringToFluxType_["Px"]  = rnemdPx;
94 >    stringToFluxType_["Py"]  = rnemdPy;
95 >    stringToFluxType_["Pz"]  = rnemdPz;
96 >    stringToFluxType_["Pvector"]  = rnemdPvector;
97 >    stringToFluxType_["Lx"]  = rnemdLx;
98 >    stringToFluxType_["Ly"]  = rnemdLy;
99 >    stringToFluxType_["Lz"]  = rnemdLz;
100 >    stringToFluxType_["Lvector"]  = rnemdLvector;
101 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
102 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
103 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
104 >    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
105 >    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
106 >    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
107 >    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
108  
109 <    int selectionCount = seleMan_.getSelectionCount();
110 <    int nIntegrable = info->getNGlobalIntegrableObjects();
109 >    runTime_ = simParams->getRunTime();
110 >    statusTime_ = simParams->getStatusTime();
111  
112 <    if (selectionCount > nIntegrable) {
112 >    const string methStr = rnemdParams->getMethod();
113 >    bool hasFluxType = rnemdParams->haveFluxType();
114 >
115 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
116 >
117 >    string fluxStr;
118 >    if (hasFluxType) {
119 >      fluxStr = rnemdParams->getFluxType();
120 >    } else {
121        sprintf(painCave.errMsg,
122 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
123 <              "\t\t%s\n"
124 <              "\thas resulted in %d selected objects.  However,\n"
125 <              "\tthe total number of integrable objects in the system\n"
126 <              "\tis only %d.  This is almost certainly not what you want\n"
127 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
128 <              "\tselector in the selection script!\n",
98 <              rnemdObjectSelection_.c_str(),
99 <              selectionCount, nIntegrable);
100 <      painCave.isFatal = 0;
122 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
123 >              "\twhich must be one of the following values:\n"
124 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
125 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
126 >              "\tmust be set to use RNEMD\n");
127 >      painCave.isFatal = 1;
128 >      painCave.severity = OPENMD_ERROR;
129        simError();
102
130      }
131 +
132 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
133 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
134 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
135 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
136 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
137 +    hasSelectionA_ = rnemdParams->haveSelectionA();
138 +    hasSelectionB_ = rnemdParams->haveSelectionB();
139 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
140 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
141 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
142 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
143 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
144 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
145 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
146 +    bool hasOutputFields = rnemdParams->haveOutputFields();
147      
148 <    const std::string st = simParams->getRNEMD_exchangeType();
148 >    map<string, RNEMDMethod>::iterator i;
149 >    i = stringToMethod_.find(methStr);
150 >    if (i != stringToMethod_.end())
151 >      rnemdMethod_ = i->second;
152 >    else {
153 >      sprintf(painCave.errMsg,
154 >              "RNEMD: The current method,\n"
155 >              "\t\t%s is not one of the recognized\n"
156 >              "\texchange methods: Swap, NIVS, or VSS\n",
157 >              methStr.c_str());
158 >      painCave.isFatal = 1;
159 >      painCave.severity = OPENMD_ERROR;
160 >      simError();
161 >    }
162  
163 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
164 <    i = stringToEnumMap_.find(st);
165 <    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
166 <    if (rnemdType_ == rnemdUnknown) {
167 <      std::cerr << "WARNING! RNEMD Type Unknown!\n";
163 >    map<string, RNEMDFluxType>::iterator j;
164 >    j = stringToFluxType_.find(fluxStr);
165 >    if (j != stringToFluxType_.end())
166 >      rnemdFluxType_ = j->second;
167 >    else {
168 >      sprintf(painCave.errMsg,
169 >              "RNEMD: The current fluxType,\n"
170 >              "\t\t%s\n"
171 >              "\tis not one of the recognized flux types.\n",
172 >              fluxStr.c_str());
173 >      painCave.isFatal = 1;
174 >      painCave.severity = OPENMD_ERROR;
175 >      simError();
176      }
177  
178 < #ifdef IS_MPI
179 <    if (worldRank == 0) {
180 < #endif
181 <
182 <      std::string rnemdFileName;
183 <      std::string xTempFileName;
184 <      std::string yTempFileName;
121 <      std::string zTempFileName;
122 <      switch(rnemdType_) {
123 <      case rnemdKineticSwap :
124 <      case rnemdKineticScale :
125 <        rnemdFileName = "temperature.log";
178 >    bool methodFluxMismatch = false;
179 >    bool hasCorrectFlux = false;
180 >    switch(rnemdMethod_) {
181 >    case rnemdSwap:
182 >      switch (rnemdFluxType_) {
183 >      case rnemdKE:
184 >        hasCorrectFlux = hasKineticFlux;
185          break;
186 <      case rnemdPx :
187 <      case rnemdPxScale :
188 <      case rnemdPy :
189 <      case rnemdPyScale :
131 <        rnemdFileName = "momemtum.log";
132 <        xTempFileName = "temperatureX.log";
133 <        yTempFileName = "temperatureY.log";
134 <        zTempFileName = "temperatureZ.log";
135 <        xTempLog_.open(xTempFileName.c_str());
136 <        yTempLog_.open(yTempFileName.c_str());
137 <        zTempLog_.open(zTempFileName.c_str());
186 >      case rnemdPx:
187 >      case rnemdPy:
188 >      case rnemdPz:
189 >        hasCorrectFlux = hasMomentumFlux;
190          break;
139      case rnemdPz :
140      case rnemdPzScale :
141      case rnemdUnknown :
191        default :
192 <        rnemdFileName = "rnemd.log";
192 >        methodFluxMismatch = true;
193          break;
194        }
195 <      rnemdLog_.open(rnemdFileName.c_str());
196 <
197 < #ifdef IS_MPI
195 >      break;
196 >    case rnemdNIVS:
197 >      switch (rnemdFluxType_) {
198 >      case rnemdKE:
199 >      case rnemdRotKE:
200 >      case rnemdFullKE:
201 >        hasCorrectFlux = hasKineticFlux;
202 >        break;
203 >      case rnemdPx:
204 >      case rnemdPy:
205 >      case rnemdPz:
206 >        hasCorrectFlux = hasMomentumFlux;
207 >        break;
208 >      case rnemdKePx:
209 >      case rnemdKePy:
210 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
211 >        break;
212 >      default:
213 >        methodFluxMismatch = true;
214 >        break;
215 >      }
216 >      break;
217 >    case rnemdVSS:
218 >      switch (rnemdFluxType_) {
219 >      case rnemdKE:
220 >      case rnemdRotKE:
221 >      case rnemdFullKE:
222 >        hasCorrectFlux = hasKineticFlux;
223 >        break;
224 >      case rnemdPx:
225 >      case rnemdPy:
226 >      case rnemdPz:
227 >        hasCorrectFlux = hasMomentumFlux;
228 >        break;
229 >      case rnemdLx:
230 >      case rnemdLy:
231 >      case rnemdLz:
232 >        hasCorrectFlux = hasAngularMomentumFlux;
233 >        break;
234 >      case rnemdPvector:
235 >        hasCorrectFlux = hasMomentumFluxVector;
236 >        break;
237 >      case rnemdLvector:
238 >        hasCorrectFlux = hasAngularMomentumFluxVector;
239 >        break;
240 >      case rnemdKePx:
241 >      case rnemdKePy:
242 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
243 >        break;
244 >      case rnemdKeLx:
245 >      case rnemdKeLy:
246 >      case rnemdKeLz:
247 >        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
248 >        break;
249 >      case rnemdKePvector:
250 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
251 >        break;
252 >      case rnemdKeLvector:
253 >        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
254 >        break;
255 >      default:
256 >        methodFluxMismatch = true;
257 >        break;
258 >      }
259 >    default:
260 >      break;
261      }
150 #endif
262  
263 <    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
264 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
265 <    midBin_ = nBins_ / 2;
266 <    if (simParams->haveRNEMD_logWidth()) {
267 <      rnemdLogWidth_ = simParams->getRNEMD_logWidth();
268 <      if (rnemdLogWidth_ != nBins_ || rnemdLogWidth_ != midBin_ + 1) {
269 <        std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
270 <        std::cerr << "Automaically set back to default.\n";
271 <        rnemdLogWidth_ = nBins_;
272 <      }
263 >    if (methodFluxMismatch) {
264 >      sprintf(painCave.errMsg,
265 >              "RNEMD: The current method,\n"
266 >              "\t\t%s\n"
267 >              "\tcannot be used with the current flux type, %s\n",
268 >              methStr.c_str(), fluxStr.c_str());
269 >      painCave.isFatal = 1;
270 >      painCave.severity = OPENMD_ERROR;
271 >      simError();        
272 >    }
273 >    if (!hasCorrectFlux) {
274 >      sprintf(painCave.errMsg,
275 >              "RNEMD: The current method, %s, and flux type, %s,\n"
276 >              "\tdid not have the correct flux value specified. Options\n"
277 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
278 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
279 >              methStr.c_str(), fluxStr.c_str());
280 >      painCave.isFatal = 1;
281 >      painCave.severity = OPENMD_ERROR;
282 >      simError();        
283 >    }
284 >
285 >    if (hasKineticFlux) {
286 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
287 >      // into  amu / fs^3:
288 >      kineticFlux_ = rnemdParams->getKineticFlux()
289 >        * PhysicalConstants::energyConvert;
290      } else {
291 <      rnemdLogWidth_ = nBins_;
291 >      kineticFlux_ = 0.0;
292      }
293 <    valueHist_.resize(rnemdLogWidth_, 0.0);
294 <    valueCount_.resize(rnemdLogWidth_, 0);
167 <    xTempHist_.resize(rnemdLogWidth_, 0.0);
168 <    yTempHist_.resize(rnemdLogWidth_, 0.0);
169 <    zTempHist_.resize(rnemdLogWidth_, 0.0);
170 <
171 <    set_RNEMD_exchange_total(0.0);
172 <    if (simParams->haveRNEMD_targetFlux()) {
173 <      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
293 >    if (hasMomentumFluxVector) {
294 >      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
295      } else {
296 <      set_RNEMD_target_flux(0.0);
296 >      momentumFluxVector_ = V3Zero;
297 >      if (hasMomentumFlux) {
298 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
299 >        switch (rnemdFluxType_) {
300 >        case rnemdPx:
301 >          momentumFluxVector_.x() = momentumFlux;
302 >          break;
303 >        case rnemdPy:
304 >          momentumFluxVector_.y() = momentumFlux;
305 >          break;
306 >        case rnemdPz:
307 >          momentumFluxVector_.z() = momentumFlux;
308 >          break;
309 >        case rnemdKePx:
310 >          momentumFluxVector_.x() = momentumFlux;
311 >          break;
312 >        case rnemdKePy:
313 >          momentumFluxVector_.y() = momentumFlux;
314 >          break;
315 >        default:
316 >          break;
317 >        }
318 >      }
319 >      if (hasAngularMomentumFluxVector) {
320 >        angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector();
321 >      } else {
322 >        angularMomentumFluxVector_ = V3Zero;
323 >        if (hasAngularMomentumFlux) {
324 >          RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
325 >          switch (rnemdFluxType_) {
326 >          case rnemdLx:
327 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
328 >            break;
329 >          case rnemdLy:
330 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
331 >            break;
332 >          case rnemdLz:
333 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
334 >            break;
335 >          case rnemdKeLx:
336 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
337 >            break;
338 >          case rnemdKeLy:
339 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
340 >            break;
341 >          case rnemdKeLz:
342 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
343 >            break;
344 >          default:
345 >            break;
346 >          }
347 >        }        
348 >      }
349 >
350 >      if (hasCoordinateOrigin) {
351 >        coordinateOrigin_ = rnemdParams->getCoordinateOrigin();
352 >      } else {
353 >        coordinateOrigin_ = V3Zero;
354 >      }
355 >
356 >      // do some sanity checking
357 >
358 >      int selectionCount = seleMan_.getSelectionCount();
359 >
360 >      int nIntegrable = info->getNGlobalIntegrableObjects();
361 >
362 >      if (selectionCount > nIntegrable) {
363 >        sprintf(painCave.errMsg,
364 >                "RNEMD: The current objectSelection,\n"
365 >                "\t\t%s\n"
366 >                "\thas resulted in %d selected objects.  However,\n"
367 >                "\tthe total number of integrable objects in the system\n"
368 >                "\tis only %d.  This is almost certainly not what you want\n"
369 >                "\tto do.  A likely cause of this is forgetting the _RB_0\n"
370 >                "\tselector in the selection script!\n",
371 >                rnemdObjectSelection_.c_str(),
372 >                selectionCount, nIntegrable);
373 >        painCave.isFatal = 0;
374 >        painCave.severity = OPENMD_WARNING;
375 >        simError();
376 >      }
377 >
378 >      areaAccumulator_ = new Accumulator();
379 >
380 >      nBins_ = rnemdParams->getOutputBins();
381 >      binWidth_ = rnemdParams->getOutputBinWidth();
382 >
383 >      data_.resize(RNEMD::ENDINDEX);
384 >      OutputData z;
385 >      z.units =  "Angstroms";
386 >      z.title =  "Z";
387 >      z.dataType = "RealType";
388 >      z.accumulator.reserve(nBins_);
389 >      for (int i = 0; i < nBins_; i++)
390 >        z.accumulator.push_back( new Accumulator() );
391 >      data_[Z] = z;
392 >      outputMap_["Z"] =  Z;
393 >
394 >      OutputData r;
395 >      r.units =  "Angstroms";
396 >      r.title =  "R";
397 >      r.dataType = "RealType";
398 >      r.accumulator.reserve(nBins_);
399 >      for (int i = 0; i < nBins_; i++)
400 >        r.accumulator.push_back( new Accumulator() );
401 >      data_[R] = r;
402 >      outputMap_["R"] =  R;
403 >
404 >      OutputData temperature;
405 >      temperature.units =  "K";
406 >      temperature.title =  "Temperature";
407 >      temperature.dataType = "RealType";
408 >      temperature.accumulator.reserve(nBins_);
409 >      for (int i = 0; i < nBins_; i++)
410 >        temperature.accumulator.push_back( new Accumulator() );
411 >      data_[TEMPERATURE] = temperature;
412 >      outputMap_["TEMPERATURE"] =  TEMPERATURE;
413 >
414 >      OutputData velocity;
415 >      velocity.units = "angstroms/fs";
416 >      velocity.title =  "Velocity";  
417 >      velocity.dataType = "Vector3d";
418 >      velocity.accumulator.reserve(nBins_);
419 >      for (int i = 0; i < nBins_; i++)
420 >        velocity.accumulator.push_back( new VectorAccumulator() );
421 >      data_[VELOCITY] = velocity;
422 >      outputMap_["VELOCITY"] = VELOCITY;
423 >
424 >      OutputData angularVelocity;
425 >      angularVelocity.units = "angstroms^2/fs";
426 >      angularVelocity.title =  "AngularVelocity";  
427 >      angularVelocity.dataType = "Vector3d";
428 >      angularVelocity.accumulator.reserve(nBins_);
429 >      for (int i = 0; i < nBins_; i++)
430 >        angularVelocity.accumulator.push_back( new VectorAccumulator() );
431 >      data_[ANGULARVELOCITY] = angularVelocity;
432 >      outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
433 >
434 >      OutputData density;
435 >      density.units =  "g cm^-3";
436 >      density.title =  "Density";
437 >      density.dataType = "RealType";
438 >      density.accumulator.reserve(nBins_);
439 >      for (int i = 0; i < nBins_; i++)
440 >        density.accumulator.push_back( new Accumulator() );
441 >      data_[DENSITY] = density;
442 >      outputMap_["DENSITY"] =  DENSITY;
443 >
444 >      if (hasOutputFields) {
445 >        parseOutputFileFormat(rnemdParams->getOutputFields());
446 >      } else {
447 >        if (usePeriodicBoundaryConditions_)
448 >          outputMask_.set(Z);
449 >        else
450 >          outputMask_.set(R);
451 >        switch (rnemdFluxType_) {
452 >        case rnemdKE:
453 >        case rnemdRotKE:
454 >        case rnemdFullKE:
455 >          outputMask_.set(TEMPERATURE);
456 >          break;
457 >        case rnemdPx:
458 >        case rnemdPy:
459 >          outputMask_.set(VELOCITY);
460 >          break;
461 >        case rnemdPz:        
462 >        case rnemdPvector:
463 >          outputMask_.set(VELOCITY);
464 >          outputMask_.set(DENSITY);
465 >          break;
466 >        case rnemdLx:
467 >        case rnemdLy:
468 >        case rnemdLz:
469 >        case rnemdLvector:
470 >          outputMask_.set(ANGULARVELOCITY);
471 >          break;
472 >        case rnemdKeLx:
473 >        case rnemdKeLy:
474 >        case rnemdKeLz:
475 >        case rnemdKeLvector:
476 >          outputMask_.set(TEMPERATURE);
477 >          outputMask_.set(ANGULARVELOCITY);
478 >          break;
479 >        case rnemdKePx:
480 >        case rnemdKePy:
481 >          outputMask_.set(TEMPERATURE);
482 >          outputMask_.set(VELOCITY);
483 >          break;
484 >        case rnemdKePvector:
485 >          outputMask_.set(TEMPERATURE);
486 >          outputMask_.set(VELOCITY);
487 >          outputMask_.set(DENSITY);        
488 >          break;
489 >        default:
490 >          break;
491 >        }
492 >      }
493 >      
494 >      if (hasOutputFileName) {
495 >        rnemdFileName_ = rnemdParams->getOutputFileName();
496 >      } else {
497 >        rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
498 >      }          
499 >
500 >      exchangeTime_ = rnemdParams->getExchangeTime();
501 >
502 >      Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
503 >      // total exchange sums are zeroed out at the beginning:
504 >
505 >      kineticExchange_ = 0.0;
506 >      momentumExchange_ = V3Zero;
507 >      angularMomentumExchange_ = V3Zero;
508 >
509 >      std::ostringstream selectionAstream;
510 >      std::ostringstream selectionBstream;
511 >    
512 >      if (hasSelectionA_) {
513 >        selectionA_ = rnemdParams->getSelectionA();
514 >      } else {
515 >        if (usePeriodicBoundaryConditions_) {    
516 >          Mat3x3d hmat = currentSnap_->getHmat();
517 >        
518 >          if (hasSlabWidth)
519 >            slabWidth_ = rnemdParams->getSlabWidth();
520 >          else
521 >            slabWidth_ = hmat(2,2) / 10.0;
522 >        
523 >          if (hasSlabACenter)
524 >            slabACenter_ = rnemdParams->getSlabACenter();
525 >          else
526 >            slabACenter_ = 0.0;
527 >        
528 >          selectionAstream << "select wrappedz > "
529 >                           << slabACenter_ - 0.5*slabWidth_
530 >                           <<  " && wrappedz < "
531 >                           << slabACenter_ + 0.5*slabWidth_;
532 >          selectionA_ = selectionAstream.str();
533 >        } else {
534 >          if (hasSphereARadius)
535 >            sphereARadius_ = rnemdParams->getSphereARadius();
536 >          else {
537 >            // use an initial guess to the size of the inner slab to be 1/10 the
538 >            // radius of an approximately spherical hull:
539 >            Thermo thermo(info);
540 >            RealType hVol = thermo.getHullVolume();
541 >            sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
542 >          }
543 >          selectionAstream << "select r < " << sphereARadius_;
544 >          selectionA_ = selectionAstream.str();
545 >        }
546 >      }
547 >    
548 >      if (hasSelectionB_) {
549 >        selectionB_ = rnemdParams->getSelectionB();
550 >      } else {
551 >        if (usePeriodicBoundaryConditions_) {    
552 >          Mat3x3d hmat = currentSnap_->getHmat();
553 >        
554 >          if (hasSlabWidth)
555 >            slabWidth_ = rnemdParams->getSlabWidth();
556 >          else
557 >            slabWidth_ = hmat(2,2) / 10.0;
558 >        
559 >          if (hasSlabBCenter)
560 >            slabBCenter_ = rnemdParams->getSlabBCenter();
561 >          else
562 >            slabBCenter_ = hmat(2,2) / 2.0;
563 >        
564 >          selectionBstream << "select wrappedz > "
565 >                           << slabBCenter_ - 0.5*slabWidth_
566 >                           <<  " && wrappedz < "
567 >                           << slabBCenter_ + 0.5*slabWidth_;
568 >          selectionB_ = selectionBstream.str();
569 >        } else {
570 >          if (hasSphereBRadius_) {
571 >            sphereBRadius_ = rnemdParams->getSphereBRadius();
572 >            selectionBstream << "select r > " << sphereBRadius_;
573 >            selectionB_ = selectionBstream.str();
574 >          } else {
575 >            selectionB_ = "select hull";
576 >            hasSelectionB_ = true;
577 >          }
578 >        }
579 >      }
580      }
581  
582 < #ifndef IS_MPI
583 <    if (simParams->haveSeed()) {
584 <      seedValue = simParams->getSeed();
585 <      randNumGen_ = new SeqRandNumGen(seedValue);
586 <    }else {
587 <      randNumGen_ = new SeqRandNumGen();
588 <    }    
589 < #else
590 <    if (simParams->haveSeed()) {
187 <      seedValue = simParams->getSeed();
188 <      randNumGen_ = new ParallelRandNumGen(seedValue);
189 <    }else {
190 <      randNumGen_ = new ParallelRandNumGen();
191 <    }    
192 < #endif
582 >    // object evaluator:
583 >    evaluator_.loadScriptString(rnemdObjectSelection_);
584 >    seleMan_.setSelectionSet(evaluator_.evaluate());
585 >    evaluatorA_.loadScriptString(selectionA_);
586 >    evaluatorB_.loadScriptString(selectionB_);
587 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
588 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
589 >    commonA_ = seleManA_ & seleMan_;
590 >    commonB_ = seleManB_ & seleMan_;  
591    }
592    
593 +    
594    RNEMD::~RNEMD() {
595 <    delete randNumGen_;
197 <
198 <    std::cerr << "total fail trials: " << failTrialCount_ << "\n";
595 >    if (!doRNEMD_) return;
596   #ifdef IS_MPI
597      if (worldRank == 0) {
598   #endif
599 <      rnemdLog_.close();
600 <      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
601 <        std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
602 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) {
603 <        xTempLog_.close();
207 <        yTempLog_.close();
208 <        zTempLog_.close();
209 <      }
599 >
600 >      writeOutputFile();
601 >
602 >      rnemdFile_.close();
603 >      
604   #ifdef IS_MPI
605      }
606   #endif
607 +
608 +    // delete all of the objects we created:
609 +    delete areaAccumulator_;    
610 +    data_.clear();
611    }
612 +  
613 +  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
614 +    if (!doRNEMD_) return;
615 +    int selei;
616 +    int selej;
617  
215  void RNEMD::doSwap() {
216
618      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
619      Mat3x3d hmat = currentSnap_->getHmat();
620  
220    seleMan_.setSelectionSet(evaluator_.evaluate());
221
222    int selei;
621      StuntDouble* sd;
224    int idx;
622  
623      RealType min_val;
624      bool min_found = false;  
# Line 231 | Line 628 | namespace OpenMD {
628      bool max_found = false;
629      StuntDouble* max_sd;
630  
631 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
632 <         sd = seleMan_.nextSelected(selei)) {
631 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
632 >         sd = seleManA_.nextSelected(selei)) {
633  
237      idx = sd->getLocalIndex();
238
634        Vector3d pos = sd->getPos();
635 <
635 >      
636        // wrap the stuntdouble's position back into the box:
637 <
637 >      
638        if (usePeriodicBoundaryConditions_)
639          currentSnap_->wrapVector(pos);
640 <
641 <      // which bin is this stuntdouble in?
642 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
643 <
644 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
645 <
646 <
252 <      // if we're in bin 0 or the middleBin
253 <      if (binNo == 0 || binNo == midBin_) {
640 >      
641 >      RealType mass = sd->getMass();
642 >      Vector3d vel = sd->getVel();
643 >      RealType value;
644 >      
645 >      switch(rnemdFluxType_) {
646 >      case rnemdKE :
647          
648 <        RealType mass = sd->getMass();
649 <        Vector3d vel = sd->getVel();
650 <        RealType value;
651 <
652 <        switch(rnemdType_) {
260 <        case rnemdKineticSwap :
648 >        value = mass * vel.lengthSquare();
649 >        
650 >        if (sd->isDirectional()) {
651 >          Vector3d angMom = sd->getJ();
652 >          Mat3x3d I = sd->getI();
653            
654 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
655 <                          vel[2]*vel[2]);
656 <          if (sd->isDirectional()) {
657 <            Vector3d angMom = sd->getJ();
658 <            Mat3x3d I = sd->getI();
659 <            
660 <            if (sd->isLinear()) {
661 <              int i = sd->linearAxis();
662 <              int j = (i + 1) % 3;
663 <              int k = (i + 2) % 3;
272 <              value += angMom[j] * angMom[j] / I(j, j) +
273 <                angMom[k] * angMom[k] / I(k, k);
274 <            } else {                        
275 <              value += angMom[0]*angMom[0]/I(0, 0)
276 <                + angMom[1]*angMom[1]/I(1, 1)
277 <                + angMom[2]*angMom[2]/I(2, 2);
278 <            }
654 >          if (sd->isLinear()) {
655 >            int i = sd->linearAxis();
656 >            int j = (i + 1) % 3;
657 >            int k = (i + 2) % 3;
658 >            value += angMom[j] * angMom[j] / I(j, j) +
659 >              angMom[k] * angMom[k] / I(k, k);
660 >          } else {                        
661 >            value += angMom[0]*angMom[0]/I(0, 0)
662 >              + angMom[1]*angMom[1]/I(1, 1)
663 >              + angMom[2]*angMom[2]/I(2, 2);
664            }
665 <          //make exchangeSum_ comparable between swap & scale
666 <          //temporarily without using energyConvert
667 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
668 <          value *= 0.5;
669 <          break;
670 <        case rnemdPx :
671 <          value = mass * vel[0];
672 <          break;
673 <        case rnemdPy :
674 <          value = mass * vel[1];
675 <          break;
676 <        case rnemdPz :
677 <          value = mass * vel[2];
678 <          break;
679 <        default :
680 <          break;
665 >        } //angular momenta exchange enabled
666 >        value *= 0.5;
667 >        break;
668 >      case rnemdPx :
669 >        value = mass * vel[0];
670 >        break;
671 >      case rnemdPy :
672 >        value = mass * vel[1];
673 >        break;
674 >      case rnemdPz :
675 >        value = mass * vel[2];
676 >        break;
677 >      default :
678 >        break;
679 >      }
680 >      if (!max_found) {
681 >        max_val = value;
682 >        max_sd = sd;
683 >        max_found = true;
684 >      } else {
685 >        if (max_val < value) {
686 >          max_val = value;
687 >          max_sd = sd;
688          }
689 +      }  
690 +    }
691          
692 <        if (binNo == 0) {
693 <          if (!min_found) {
694 <            min_val = value;
695 <            min_sd = sd;
696 <            min_found = true;
697 <          } else {
698 <            if (min_val > value) {
699 <              min_val = value;
700 <              min_sd = sd;
701 <            }
702 <          }
703 <        } else { //midBin_
704 <          if (!max_found) {
705 <            max_val = value;
706 <            max_sd = sd;
707 <            max_found = true;
708 <          } else {
709 <            if (max_val < value) {
710 <              max_val = value;
711 <              max_sd = sd;
712 <            }
713 <          }      
714 <        }
692 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
693 >         sd = seleManB_.nextSelected(selej)) {
694 >
695 >      Vector3d pos = sd->getPos();
696 >      
697 >      // wrap the stuntdouble's position back into the box:
698 >      
699 >      if (usePeriodicBoundaryConditions_)
700 >        currentSnap_->wrapVector(pos);
701 >      
702 >      RealType mass = sd->getMass();
703 >      Vector3d vel = sd->getVel();
704 >      RealType value;
705 >      
706 >      switch(rnemdFluxType_) {
707 >      case rnemdKE :
708 >        
709 >        value = mass * vel.lengthSquare();
710 >        
711 >        if (sd->isDirectional()) {
712 >          Vector3d angMom = sd->getJ();
713 >          Mat3x3d I = sd->getI();
714 >          
715 >          if (sd->isLinear()) {
716 >            int i = sd->linearAxis();
717 >            int j = (i + 1) % 3;
718 >            int k = (i + 2) % 3;
719 >            value += angMom[j] * angMom[j] / I(j, j) +
720 >              angMom[k] * angMom[k] / I(k, k);
721 >          } else {                        
722 >            value += angMom[0]*angMom[0]/I(0, 0)
723 >              + angMom[1]*angMom[1]/I(1, 1)
724 >              + angMom[2]*angMom[2]/I(2, 2);
725 >          }
726 >        } //angular momenta exchange enabled
727 >        value *= 0.5;
728 >        break;
729 >      case rnemdPx :
730 >        value = mass * vel[0];
731 >        break;
732 >      case rnemdPy :
733 >        value = mass * vel[1];
734 >        break;
735 >      case rnemdPz :
736 >        value = mass * vel[2];
737 >        break;
738 >      default :
739 >        break;
740        }
741 +      
742 +      if (!min_found) {
743 +        min_val = value;
744 +        min_sd = sd;
745 +        min_found = true;
746 +      } else {
747 +        if (min_val > value) {
748 +          min_val = value;
749 +          min_sd = sd;
750 +        }
751 +      }
752      }
753 <
754 < #ifdef IS_MPI
755 <    int nProc, worldRank;
756 <
327 <    nProc = MPI::COMM_WORLD.Get_size();
328 <    worldRank = MPI::COMM_WORLD.Get_rank();
329 <
753 >    
754 > #ifdef IS_MPI    
755 >    int worldRank = MPI::COMM_WORLD.Get_rank();
756 >    
757      bool my_min_found = min_found;
758      bool my_max_found = max_found;
759  
760      // Even if we didn't find a minimum, did someone else?
761 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
335 <                              1, MPI::BOOL, MPI::LAND);
336 <    
761 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
762      // Even if we didn't find a maximum, did someone else?
763 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
764 <                              1, MPI::BOOL, MPI::LAND);
765 <    
766 <    struct {
767 <      RealType val;
768 <      int rank;
769 <    } max_vals, min_vals;
770 <    
771 <    if (min_found) {
772 <      if (my_min_found)
763 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
764 > #endif
765 >
766 >    if (max_found && min_found) {
767 >
768 > #ifdef IS_MPI
769 >      struct {
770 >        RealType val;
771 >        int rank;
772 >      } max_vals, min_vals;
773 >      
774 >      if (my_min_found) {
775          min_vals.val = min_val;
776 <      else
776 >      } else {
777          min_vals.val = HONKING_LARGE_VALUE;
778 <      
778 >      }
779        min_vals.rank = worldRank;    
780        
781        // Who had the minimum?
782        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
783                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
784        min_val = min_vals.val;
358    }
785        
786 <    if (max_found) {
361 <      if (my_max_found)
786 >      if (my_max_found) {
787          max_vals.val = max_val;
788 <      else
788 >      } else {
789          max_vals.val = -HONKING_LARGE_VALUE;
790 <      
790 >      }
791        max_vals.rank = worldRank;    
792        
793        // Who had the maximum?
794        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
795                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
796        max_val = max_vals.val;
372    }
797   #endif
798 <
799 <    if (max_found && min_found) {
800 <      if (min_val< max_val) {
377 <
798 >      
799 >      if (min_val < max_val) {
800 >        
801   #ifdef IS_MPI      
802          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
803            // I have both maximum and minimum, so proceed like a single
804            // processor version:
805   #endif
806 <          // objects to be swapped: velocity & angular velocity
806 >
807            Vector3d min_vel = min_sd->getVel();
808            Vector3d max_vel = max_sd->getVel();
809            RealType temp_vel;
810            
811 <          switch(rnemdType_) {
812 <          case rnemdKineticSwap :
811 >          switch(rnemdFluxType_) {
812 >          case rnemdKE :
813              min_sd->setVel(max_vel);
814              max_sd->setVel(min_vel);
815 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
815 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
816                Vector3d min_angMom = min_sd->getJ();
817                Vector3d max_angMom = max_sd->getJ();
818                min_sd->setJ(max_angMom);
819                max_sd->setJ(min_angMom);
820 <            }
820 >            }//angular momenta exchange enabled
821 >            //assumes same rigid body identity
822              break;
823            case rnemdPx :
824              temp_vel = min_vel.x();
# Line 420 | Line 844 | namespace OpenMD {
844            default :
845              break;
846            }
847 +
848   #ifdef IS_MPI
849            // the rest of the cases only apply in parallel simulations:
850          } else if (max_vals.rank == worldRank) {
# Line 435 | Line 860 | namespace OpenMD {
860                                     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
861                                     min_vals.rank, 0, status);
862            
863 <          switch(rnemdType_) {
864 <          case rnemdKineticSwap :
863 >          switch(rnemdFluxType_) {
864 >          case rnemdKE :
865              max_sd->setVel(min_vel);
866 <            
866 >            //angular momenta exchange enabled
867              if (max_sd->isDirectional()) {
868                Vector3d min_angMom;
869                Vector3d max_angMom = max_sd->getJ();
870 <
870 >              
871                // point-to-point swap of the angular momentum vector
872                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
873                                         MPI::REALTYPE, min_vals.rank, 1,
874                                         min_angMom.getArrayPointer(), 3,
875                                         MPI::REALTYPE, min_vals.rank, 1,
876                                         status);
877 <
877 >              
878                max_sd->setJ(min_angMom);
879 <            }
879 >            }
880              break;
881            case rnemdPx :
882              max_vel.x() = min_vel.x();
# Line 481 | Line 906 | namespace OpenMD {
906                                     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
907                                     max_vals.rank, 0, status);
908            
909 <          switch(rnemdType_) {
910 <          case rnemdKineticSwap :
909 >          switch(rnemdFluxType_) {
910 >          case rnemdKE :
911              min_sd->setVel(max_vel);
912 <            
912 >            //angular momenta exchange enabled
913              if (min_sd->isDirectional()) {
914                Vector3d min_angMom = min_sd->getJ();
915                Vector3d max_angMom;
916 <
916 >              
917                // point-to-point swap of the angular momentum vector
918                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
919                                         MPI::REALTYPE, max_vals.rank, 1,
920                                         max_angMom.getArrayPointer(), 3,
921                                         MPI::REALTYPE, max_vals.rank, 1,
922                                         status);
923 <
923 >              
924                min_sd->setJ(max_angMom);
925              }
926              break;
# Line 516 | Line 941 | namespace OpenMD {
941            }
942          }
943   #endif
944 <        exchangeSum_ += max_val - min_val;
945 <      } else {
946 <        std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
944 >        
945 >        switch(rnemdFluxType_) {
946 >        case rnemdKE:
947 >          kineticExchange_ += max_val - min_val;
948 >          break;
949 >        case rnemdPx:
950 >          momentumExchange_.x() += max_val - min_val;
951 >          break;
952 >        case rnemdPy:
953 >          momentumExchange_.y() += max_val - min_val;
954 >          break;
955 >        case rnemdPz:
956 >          momentumExchange_.z() += max_val - min_val;
957 >          break;
958 >        default:
959 >          break;
960 >        }
961 >      } else {        
962 >        sprintf(painCave.errMsg,
963 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
964 >        painCave.isFatal = 0;
965 >        painCave.severity = OPENMD_INFO;
966 >        simError();        
967          failTrialCount_++;
968        }
969      } else {
970 <      std::cerr << "exchange NOT performed!\n";
971 <      std::cerr << "at least one of the two slabs empty.\n";
970 >      sprintf(painCave.errMsg,
971 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
972 >              "\twas not present in at least one of the two slabs.\n");
973 >      painCave.isFatal = 0;
974 >      painCave.severity = OPENMD_INFO;
975 >      simError();        
976        failTrialCount_++;
977 <    }
529 <    
977 >    }    
978    }
979    
980 <  void RNEMD::doScale() {
980 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
981 >    if (!doRNEMD_) return;
982 >    int selei;
983 >    int selej;
984  
985      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
986 +    RealType time = currentSnap_->getTime();    
987      Mat3x3d hmat = currentSnap_->getHmat();
988  
537    seleMan_.setSelectionSet(evaluator_.evaluate());
538
539    int selei;
989      StuntDouble* sd;
541    int idx;
990  
991 <    std::vector<StuntDouble*> hotBin, coldBin;
991 >    vector<StuntDouble*> hotBin, coldBin;
992  
993      RealType Phx = 0.0;
994      RealType Phy = 0.0;
# Line 548 | Line 996 | namespace OpenMD {
996      RealType Khx = 0.0;
997      RealType Khy = 0.0;
998      RealType Khz = 0.0;
999 +    RealType Khw = 0.0;
1000      RealType Pcx = 0.0;
1001      RealType Pcy = 0.0;
1002      RealType Pcz = 0.0;
1003      RealType Kcx = 0.0;
1004      RealType Kcy = 0.0;
1005      RealType Kcz = 0.0;
1006 +    RealType Kcw = 0.0;
1007  
1008 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1009 <         sd = seleMan_.nextSelected(selei)) {
1008 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1009 >         sd = smanA.nextSelected(selei)) {
1010  
561      idx = sd->getLocalIndex();
562
1011        Vector3d pos = sd->getPos();
1012 <
1012 >      
1013        // wrap the stuntdouble's position back into the box:
1014 <
1014 >      
1015        if (usePeriodicBoundaryConditions_)
1016          currentSnap_->wrapVector(pos);
1017 <
1018 <      // which bin is this stuntdouble in?
1019 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1020 <
1021 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1022 <
1023 <      // if we're in bin 0 or the middleBin
1024 <      if (binNo == 0 || binNo == midBin_) {
1025 <        
1026 <        RealType mass = sd->getMass();
1027 <        Vector3d vel = sd->getVel();
1028 <      
1029 <        if (binNo == 0) {
1030 <          hotBin.push_back(sd);
1031 <          Phx += mass * vel.x();
1032 <          Phy += mass * vel.y();
1033 <          Phz += mass * vel.z();
1034 <          Khx += mass * vel.x() * vel.x();
1035 <          Khy += mass * vel.y() * vel.y();
1036 <          Khz += mass * vel.z() * vel.z();
1037 <        } else { //midBin_
1038 <          coldBin.push_back(sd);
1039 <          Pcx += mass * vel.x();
1040 <          Pcy += mass * vel.y();
1041 <          Pcz += mass * vel.z();
1042 <          Kcx += mass * vel.x() * vel.x();
1043 <          Kcy += mass * vel.y() * vel.y();
1044 <          Kcz += mass * vel.z() * vel.z();
1045 <        }
1046 <      }
1047 <    }
1048 <
1049 <    Khx *= 0.5;
1050 <    Khy *= 0.5;
1051 <    Khz *= 0.5;
1052 <    Kcx *= 0.5;
1053 <    Kcy *= 0.5;
1017 >      
1018 >      
1019 >      RealType mass = sd->getMass();
1020 >      Vector3d vel = sd->getVel();
1021 >      
1022 >      hotBin.push_back(sd);
1023 >      Phx += mass * vel.x();
1024 >      Phy += mass * vel.y();
1025 >      Phz += mass * vel.z();
1026 >      Khx += mass * vel.x() * vel.x();
1027 >      Khy += mass * vel.y() * vel.y();
1028 >      Khz += mass * vel.z() * vel.z();
1029 >      if (sd->isDirectional()) {
1030 >        Vector3d angMom = sd->getJ();
1031 >        Mat3x3d I = sd->getI();
1032 >        if (sd->isLinear()) {
1033 >          int i = sd->linearAxis();
1034 >          int j = (i + 1) % 3;
1035 >          int k = (i + 2) % 3;
1036 >          Khw += angMom[j] * angMom[j] / I(j, j) +
1037 >            angMom[k] * angMom[k] / I(k, k);
1038 >        } else {
1039 >          Khw += angMom[0]*angMom[0]/I(0, 0)
1040 >            + angMom[1]*angMom[1]/I(1, 1)
1041 >            + angMom[2]*angMom[2]/I(2, 2);
1042 >        }
1043 >      }
1044 >    }
1045 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1046 >         sd = smanB.nextSelected(selej)) {
1047 >      Vector3d pos = sd->getPos();
1048 >      
1049 >      // wrap the stuntdouble's position back into the box:
1050 >      
1051 >      if (usePeriodicBoundaryConditions_)
1052 >        currentSnap_->wrapVector(pos);
1053 >            
1054 >      RealType mass = sd->getMass();
1055 >      Vector3d vel = sd->getVel();
1056 >
1057 >      coldBin.push_back(sd);
1058 >      Pcx += mass * vel.x();
1059 >      Pcy += mass * vel.y();
1060 >      Pcz += mass * vel.z();
1061 >      Kcx += mass * vel.x() * vel.x();
1062 >      Kcy += mass * vel.y() * vel.y();
1063 >      Kcz += mass * vel.z() * vel.z();
1064 >      if (sd->isDirectional()) {
1065 >        Vector3d angMom = sd->getJ();
1066 >        Mat3x3d I = sd->getI();
1067 >        if (sd->isLinear()) {
1068 >          int i = sd->linearAxis();
1069 >          int j = (i + 1) % 3;
1070 >          int k = (i + 2) % 3;
1071 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1072 >            angMom[k] * angMom[k] / I(k, k);
1073 >        } else {
1074 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1075 >            + angMom[1]*angMom[1]/I(1, 1)
1076 >            + angMom[2]*angMom[2]/I(2, 2);
1077 >        }
1078 >      }
1079 >    }
1080 >    
1081 >    Khx *= 0.5;
1082 >    Khy *= 0.5;
1083 >    Khz *= 0.5;
1084 >    Khw *= 0.5;
1085 >    Kcx *= 0.5;
1086 >    Kcy *= 0.5;
1087      Kcz *= 0.5;
1088 +    Kcw *= 0.5;
1089  
1090   #ifdef IS_MPI
1091      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
# Line 616 | Line 1098 | namespace OpenMD {
1098      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
1099      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
1100      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
1101 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
1102 +
1103      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
1104      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
1105      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
1106 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
1107   #endif
1108  
1109 <    //use coldBin coeff's
1109 >    //solve coldBin coeff's first
1110      RealType px = Pcx / Phx;
1111      RealType py = Pcy / Phy;
1112      RealType pz = Pcz / Phz;
1113 +    RealType c, x, y, z;
1114 +    bool successfulScale = false;
1115 +    if ((rnemdFluxType_ == rnemdFullKE) ||
1116 +        (rnemdFluxType_ == rnemdRotKE)) {
1117 +      //may need sanity check Khw & Kcw > 0
1118  
1119 <    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
1120 <    switch(rnemdType_) {
1121 <    case rnemdKineticScale :
1122 <    /*used hotBin coeff's & only scale x & y dimensions
1123 <      RealType px = Phx / Pcx;
634 <      RealType py = Phy / Pcy;
635 <      a110 = Khy;
636 <      c0 = - Khx - Khy - targetFlux_;
637 <      a000 = Khx;
638 <      a111 = Kcy * py * py
639 <      b11 = -2.0 * Kcy * py * (1.0 + py);
640 <      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
641 <      b01 = -2.0 * Kcx * px * (1.0 + px);
642 <      a001 = Kcx * px * px;
643 <    */
1119 >      if (rnemdFluxType_ == rnemdFullKE) {
1120 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1121 >      } else {
1122 >        c = 1.0 - kineticTarget_ / Kcw;
1123 >      }
1124  
1125 <      //scale all three dimensions, let x = y
1126 <      a000 = Kcx + Kcy;
1127 <      a110 = Kcz;
1128 <      c0 = targetFlux_ - Kcx - Kcy - Kcz;
1129 <      a001 = Khx * px * px + Khy * py * py;
1130 <      a111 = Khz * pz * pz;
1131 <      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1132 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
1133 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1134 <         + Khz * pz * (2.0 + pz) - targetFlux_;
1135 <      break;
1136 <    case rnemdPxScale :
1137 <      c = 1 - targetFlux_ / Pcx;
1138 <      a000 = Kcy;
1139 <      a110 = Kcz;
1140 <      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1141 <      a001 = py * py * Khy;
1142 <      a111 = pz * pz * Khz;
1143 <      b01 = -2.0 * Khy * py * (1.0 + py);
1144 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
1145 <      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1146 <         + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1147 <      break;
1148 <    case rnemdPyScale :
1149 <      c = 1 - targetFlux_ / Pcy;
1150 <      a000 = Kcx;
1151 <      a110 = Kcz;
1152 <      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1153 <      a001 = px * px * Khx;
1154 <      a111 = pz * pz * Khz;
1155 <      b01 = -2.0 * Khx * px * (1.0 + px);
1156 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
1157 <      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1158 <         + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1125 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1126 >        c = sqrt(c);
1127 >
1128 >        RealType w = 0.0;
1129 >        if (rnemdFluxType_ ==  rnemdFullKE) {
1130 >          x = 1.0 + px * (1.0 - c);
1131 >          y = 1.0 + py * (1.0 - c);
1132 >          z = 1.0 + pz * (1.0 - c);
1133 >          /* more complicated way
1134 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
1135 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
1136 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
1137 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
1138 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1139 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
1140 >          */
1141 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1142 >              (fabs(z - 1.0) < 0.1)) {
1143 >            w = 1.0 + (kineticTarget_
1144 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1145 >                       + Khz * (1.0 - z * z)) / Khw;
1146 >          }//no need to calculate w if x, y or z is out of range
1147 >        } else {
1148 >          w = 1.0 + kineticTarget_ / Khw;
1149 >        }
1150 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1151 >          //if w is in the right range, so should be x, y, z.
1152 >          vector<StuntDouble*>::iterator sdi;
1153 >          Vector3d vel;
1154 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1155 >            if (rnemdFluxType_ == rnemdFullKE) {
1156 >              vel = (*sdi)->getVel() * c;
1157 >              (*sdi)->setVel(vel);
1158 >            }
1159 >            if ((*sdi)->isDirectional()) {
1160 >              Vector3d angMom = (*sdi)->getJ() * c;
1161 >              (*sdi)->setJ(angMom);
1162 >            }
1163 >          }
1164 >          w = sqrt(w);
1165 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1166 >            if (rnemdFluxType_ == rnemdFullKE) {
1167 >              vel = (*sdi)->getVel();
1168 >              vel.x() *= x;
1169 >              vel.y() *= y;
1170 >              vel.z() *= z;
1171 >              (*sdi)->setVel(vel);
1172 >            }
1173 >            if ((*sdi)->isDirectional()) {
1174 >              Vector3d angMom = (*sdi)->getJ() * w;
1175 >              (*sdi)->setJ(angMom);
1176 >            }
1177 >          }
1178 >          successfulScale = true;
1179 >          kineticExchange_ += kineticTarget_;
1180 >        }
1181 >      }
1182 >    } else {
1183 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
1184 >      switch(rnemdFluxType_) {
1185 >      case rnemdKE :
1186 >        /* used hotBin coeff's & only scale x & y dimensions
1187 >           RealType px = Phx / Pcx;
1188 >           RealType py = Phy / Pcy;
1189 >           a110 = Khy;
1190 >           c0 = - Khx - Khy - kineticTarget_;
1191 >           a000 = Khx;
1192 >           a111 = Kcy * py * py;
1193 >           b11 = -2.0 * Kcy * py * (1.0 + py);
1194 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1195 >           b01 = -2.0 * Kcx * px * (1.0 + px);
1196 >           a001 = Kcx * px * px;
1197 >        */
1198 >        //scale all three dimensions, let c_x = c_y
1199 >        a000 = Kcx + Kcy;
1200 >        a110 = Kcz;
1201 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1202 >        a001 = Khx * px * px + Khy * py * py;
1203 >        a111 = Khz * pz * pz;
1204 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1205 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1206 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1207 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1208 >        break;
1209 >      case rnemdPx :
1210 >        c = 1 - momentumTarget_.x() / Pcx;
1211 >        a000 = Kcy;
1212 >        a110 = Kcz;
1213 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1214 >        a001 = py * py * Khy;
1215 >        a111 = pz * pz * Khz;
1216 >        b01 = -2.0 * Khy * py * (1.0 + py);
1217 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1218 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1219 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1220 >        break;
1221 >      case rnemdPy :
1222 >        c = 1 - momentumTarget_.y() / Pcy;
1223 >        a000 = Kcx;
1224 >        a110 = Kcz;
1225 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1226 >        a001 = px * px * Khx;
1227 >        a111 = pz * pz * Khz;
1228 >        b01 = -2.0 * Khx * px * (1.0 + px);
1229 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1230 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1231 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1232 >        break;
1233 >      case rnemdPz ://we don't really do this, do we?
1234 >        c = 1 - momentumTarget_.z() / Pcz;
1235 >        a000 = Kcx;
1236 >        a110 = Kcy;
1237 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1238 >        a001 = px * px * Khx;
1239 >        a111 = py * py * Khy;
1240 >        b01 = -2.0 * Khx * px * (1.0 + px);
1241 >        b11 = -2.0 * Khy * py * (1.0 + py);
1242 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1243 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1244 >        break;
1245 >      default :
1246 >        break;
1247 >      }
1248 >      
1249 >      RealType v1 = a000 * a111 - a001 * a110;
1250 >      RealType v2 = a000 * b01;
1251 >      RealType v3 = a000 * b11;
1252 >      RealType v4 = a000 * c1 - a001 * c0;
1253 >      RealType v8 = a110 * b01;
1254 >      RealType v10 = - b01 * c0;
1255 >      
1256 >      RealType u0 = v2 * v10 - v4 * v4;
1257 >      RealType u1 = -2.0 * v3 * v4;
1258 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1259 >      RealType u3 = -2.0 * v1 * v3;
1260 >      RealType u4 = - v1 * v1;
1261 >      //rescale coefficients
1262 >      RealType maxAbs = fabs(u0);
1263 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1264 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1265 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1266 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1267 >      u0 /= maxAbs;
1268 >      u1 /= maxAbs;
1269 >      u2 /= maxAbs;
1270 >      u3 /= maxAbs;
1271 >      u4 /= maxAbs;
1272 >      //max_element(start, end) is also available.
1273 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1274 >      poly.setCoefficient(4, u4);
1275 >      poly.setCoefficient(3, u3);
1276 >      poly.setCoefficient(2, u2);
1277 >      poly.setCoefficient(1, u1);
1278 >      poly.setCoefficient(0, u0);
1279 >      vector<RealType> realRoots = poly.FindRealRoots();
1280 >      
1281 >      vector<RealType>::iterator ri;
1282 >      RealType r1, r2, alpha0;
1283 >      vector<pair<RealType,RealType> > rps;
1284 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1285 >        r2 = *ri;
1286 >        //check if FindRealRoots() give the right answer
1287 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1288 >          sprintf(painCave.errMsg,
1289 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1290 >          painCave.isFatal = 0;
1291 >          simError();
1292 >          failRootCount_++;
1293 >        }
1294 >        //might not be useful w/o rescaling coefficients
1295 >        alpha0 = -c0 - a110 * r2 * r2;
1296 >        if (alpha0 >= 0.0) {
1297 >          r1 = sqrt(alpha0 / a000);
1298 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1299 >              < 1e-6)
1300 >            { rps.push_back(make_pair(r1, r2)); }
1301 >          if (r1 > 1e-6) { //r1 non-negative
1302 >            r1 = -r1;
1303 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1304 >                < 1e-6)
1305 >              { rps.push_back(make_pair(r1, r2)); }
1306 >          }
1307 >        }
1308 >      }
1309 >      // Consider combining together the solving pair part w/ the searching
1310 >      // best solution part so that we don't need the pairs vector
1311 >      if (!rps.empty()) {
1312 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1313 >        RealType diff;
1314 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1315 >        vector<pair<RealType,RealType> >::iterator rpi;
1316 >        for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1317 >          r1 = (*rpi).first;
1318 >          r2 = (*rpi).second;
1319 >          switch(rnemdFluxType_) {
1320 >          case rnemdKE :
1321 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1322 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1323 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1324 >            break;
1325 >          case rnemdPx :
1326 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1327 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1328 >            break;
1329 >          case rnemdPy :
1330 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1331 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1332 >            break;
1333 >          case rnemdPz :
1334 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1335 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1336 >          default :
1337 >            break;
1338 >          }
1339 >          if (diff < smallestDiff) {
1340 >            smallestDiff = diff;
1341 >            bestPair = *rpi;
1342 >          }
1343 >        }
1344 > #ifdef IS_MPI
1345 >        if (worldRank == 0) {
1346 > #endif
1347 >          // sprintf(painCave.errMsg,
1348 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1349 >          //         bestPair.first, bestPair.second);
1350 >          // painCave.isFatal = 0;
1351 >          // painCave.severity = OPENMD_INFO;
1352 >          // simError();
1353 > #ifdef IS_MPI
1354 >        }
1355 > #endif
1356 >        
1357 >        switch(rnemdFluxType_) {
1358 >        case rnemdKE :
1359 >          x = bestPair.first;
1360 >          y = bestPair.first;
1361 >          z = bestPair.second;
1362 >          break;
1363 >        case rnemdPx :
1364 >          x = c;
1365 >          y = bestPair.first;
1366 >          z = bestPair.second;
1367 >          break;
1368 >        case rnemdPy :
1369 >          x = bestPair.first;
1370 >          y = c;
1371 >          z = bestPair.second;
1372 >          break;
1373 >        case rnemdPz :
1374 >          x = bestPair.first;
1375 >          y = bestPair.second;
1376 >          z = c;
1377 >          break;          
1378 >        default :
1379 >          break;
1380 >        }
1381 >        vector<StuntDouble*>::iterator sdi;
1382 >        Vector3d vel;
1383 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1384 >          vel = (*sdi)->getVel();
1385 >          vel.x() *= x;
1386 >          vel.y() *= y;
1387 >          vel.z() *= z;
1388 >          (*sdi)->setVel(vel);
1389 >        }
1390 >        //convert to hotBin coefficient
1391 >        x = 1.0 + px * (1.0 - x);
1392 >        y = 1.0 + py * (1.0 - y);
1393 >        z = 1.0 + pz * (1.0 - z);
1394 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1395 >          vel = (*sdi)->getVel();
1396 >          vel.x() *= x;
1397 >          vel.y() *= y;
1398 >          vel.z() *= z;
1399 >          (*sdi)->setVel(vel);
1400 >        }
1401 >        successfulScale = true;
1402 >        switch(rnemdFluxType_) {
1403 >        case rnemdKE :
1404 >          kineticExchange_ += kineticTarget_;
1405 >          break;
1406 >        case rnemdPx :
1407 >        case rnemdPy :
1408 >        case rnemdPz :
1409 >          momentumExchange_ += momentumTarget_;
1410 >          break;          
1411 >        default :
1412 >          break;
1413 >        }      
1414 >      }
1415 >    }
1416 >    if (successfulScale != true) {
1417 >      sprintf(painCave.errMsg,
1418 >              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1419 >              "\tthe constraint equations may not exist or there may be\n"
1420 >              "\tno selected objects in one or both slabs.\n");
1421 >      painCave.isFatal = 0;
1422 >      painCave.severity = OPENMD_INFO;
1423 >      simError();        
1424 >      failTrialCount_++;
1425 >    }
1426 >  }
1427 >  
1428 >  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1429 >    if (!doRNEMD_) return;
1430 >    int selei;
1431 >    int selej;
1432 >
1433 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1434 >    RealType time = currentSnap_->getTime();    
1435 >    Mat3x3d hmat = currentSnap_->getHmat();
1436 >
1437 >    StuntDouble* sd;
1438 >
1439 >    vector<StuntDouble*> hotBin, coldBin;
1440 >
1441 >    Vector3d Ph(V3Zero);
1442 >    Vector3d Lh(V3Zero);
1443 >    RealType Mh = 0.0;
1444 >    Mat3x3d Ih(0.0);
1445 >    RealType Kh = 0.0;
1446 >    Vector3d Pc(V3Zero);
1447 >    Vector3d Lc(V3Zero);
1448 >    RealType Mc = 0.0;
1449 >    Mat3x3d Ic(0.0);
1450 >    RealType Kc = 0.0;
1451 >
1452 >    // Constraints can be on only the linear or angular momentum, but
1453 >    // not both.  Usually, the user will specify which they want, but
1454 >    // in case they don't, the use of periodic boundaries should make
1455 >    // the choice for us.
1456 >    bool doLinearPart = false;
1457 >    bool doAngularPart = false;
1458 >
1459 >    switch (rnemdFluxType_) {
1460 >    case rnemdPx:
1461 >    case rnemdPy:
1462 >    case rnemdPz:
1463 >    case rnemdPvector:
1464 >    case rnemdKePx:
1465 >    case rnemdKePy:
1466 >    case rnemdKePvector:
1467 >      doLinearPart = true;
1468        break;
1469 <    case rnemdPzScale ://we don't really do this, do we?
1470 <    default :
1469 >    case rnemdLx:
1470 >    case rnemdLy:
1471 >    case rnemdLz:
1472 >    case rnemdLvector:
1473 >    case rnemdKeLx:
1474 >    case rnemdKeLy:
1475 >    case rnemdKeLz:
1476 >    case rnemdKeLvector:
1477 >      doAngularPart = true;
1478        break;
1479 +    case rnemdKE:
1480 +    case rnemdRotKE:
1481 +    case rnemdFullKE:
1482 +    default:
1483 +      if (usePeriodicBoundaryConditions_)
1484 +        doLinearPart = true;
1485 +      else
1486 +        doAngularPart = true;
1487 +      break;
1488      }
1489 +    
1490 +    for (sd = smanA.beginSelected(selei); sd != NULL;
1491 +         sd = smanA.nextSelected(selei)) {
1492  
1493 <    RealType v1 = a000 * a111 - a001 * a110;
686 <    RealType v2 = a000 * b01;
687 <    RealType v3 = a000 * b11;
688 <    RealType v4 = a000 * c1 - a001 * c0;
689 <    RealType v8 = a110 * b01;
690 <    RealType v10 = - b01 * c0;
1493 >      Vector3d pos = sd->getPos();
1494  
1495 <    RealType u0 = v2 * v10 - v4 * v4;
1496 <    RealType u1 = -2.0 * v3 * v4;
1497 <    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1498 <    RealType u3 = -2.0 * v1 * v3;
1499 <    RealType u4 = - v1 * v1;
1500 <    //rescale coefficients
1501 <    RealType maxAbs = fabs(u0);
1502 <    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1503 <    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1504 <    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1505 <    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1506 <    u0 /= maxAbs;
1507 <    u1 /= maxAbs;
1508 <    u2 /= maxAbs;
1509 <    u3 /= maxAbs;
1510 <    u4 /= maxAbs;
1511 <    //max_element(start, end) is also available.
1512 <    Polynomial<RealType> poly; //same as DoublePolynomial poly;
1513 <    poly.setCoefficient(4, u4);
1514 <    poly.setCoefficient(3, u3);
1515 <    poly.setCoefficient(2, u2);
1516 <    poly.setCoefficient(1, u1);
1517 <    poly.setCoefficient(0, u0);
1518 <    std::vector<RealType> realRoots = poly.FindRealRoots();
1519 <
1520 <    std::vector<RealType>::iterator ri;
1521 <    RealType r1, r2, alpha0;
1522 <    std::vector<std::pair<RealType,RealType> > rps;
1523 <    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1524 <      r2 = *ri;
1525 <      //check if FindRealRoots() give the right answer
1526 <      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1527 <        std::cerr << "WARNING! eq solvers might have mistakes!\n";
1528 <        failRootCount_++;
1529 <      }
1530 <      //might not be useful w/o rescaling coefficients
728 <      alpha0 = -c0 - a110 * r2 * r2;
729 <      if (alpha0 >= 0.0) {
730 <        r1 = sqrt(alpha0 / a000);
731 <        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
732 <          { rps.push_back(std::make_pair(r1, r2)); }
733 <        if (r1 > 1e-6) { //r1 non-negative
734 <          r1 = -r1;
735 <          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
736 <            { rps.push_back(std::make_pair(r1, r2)); }
1495 >      // wrap the stuntdouble's position back into the box:
1496 >      
1497 >      if (usePeriodicBoundaryConditions_)
1498 >        currentSnap_->wrapVector(pos);
1499 >      
1500 >      RealType mass = sd->getMass();
1501 >      Vector3d vel = sd->getVel();
1502 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1503 >      RealType r2;
1504 >      
1505 >      hotBin.push_back(sd);
1506 >      Ph += mass * vel;
1507 >      Mh += mass;
1508 >      Kh += mass * vel.lengthSquare();
1509 >      Lh += mass * cross(rPos, vel);
1510 >      Ih -= outProduct(rPos, rPos) * mass;
1511 >      r2 = rPos.lengthSquare();
1512 >      Ih(0, 0) += mass * r2;
1513 >      Ih(1, 1) += mass * r2;
1514 >      Ih(2, 2) += mass * r2;
1515 >      
1516 >      if (rnemdFluxType_ == rnemdFullKE) {
1517 >        if (sd->isDirectional()) {
1518 >          Vector3d angMom = sd->getJ();
1519 >          Mat3x3d I = sd->getI();
1520 >          if (sd->isLinear()) {
1521 >            int i = sd->linearAxis();
1522 >            int j = (i + 1) % 3;
1523 >            int k = (i + 2) % 3;
1524 >            Kh += angMom[j] * angMom[j] / I(j, j) +
1525 >              angMom[k] * angMom[k] / I(k, k);
1526 >          } else {
1527 >            Kh += angMom[0] * angMom[0] / I(0, 0) +
1528 >              angMom[1] * angMom[1] / I(1, 1) +
1529 >              angMom[2] * angMom[2] / I(2, 2);
1530 >          }
1531          }
1532        }
1533      }
1534 <    // Consider combininig together the solving pair part w/ the searching
1535 <    // best solution part so that we don't need the pairs vector
1536 <    if (!rps.empty()) {
1537 <      RealType smallestDiff = HONKING_LARGE_VALUE;
1538 <      RealType diff;
1539 <      std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
1540 <      std::vector<std::pair<RealType,RealType> >::iterator rpi;
1541 <      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1542 <        r1 = (*rpi).first;
1543 <        r2 = (*rpi).second;
1544 <        switch(rnemdType_) {
1545 <        case rnemdKineticScale :
1546 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1547 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1548 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1549 <          break;
1550 <        case rnemdPxScale :
1551 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1552 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1553 <          break;
1554 <        case rnemdPyScale :
1555 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1556 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1557 <          break;
1558 <        case rnemdPzScale :
1559 <        default :
1560 <          break;
1534 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1535 >         sd = smanB.nextSelected(selej)) {
1536 >
1537 >      Vector3d pos = sd->getPos();
1538 >      
1539 >      // wrap the stuntdouble's position back into the box:
1540 >      
1541 >      if (usePeriodicBoundaryConditions_)
1542 >        currentSnap_->wrapVector(pos);
1543 >      
1544 >      RealType mass = sd->getMass();
1545 >      Vector3d vel = sd->getVel();
1546 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1547 >      RealType r2;
1548 >
1549 >      coldBin.push_back(sd);
1550 >      Pc += mass * vel;
1551 >      Mc += mass;
1552 >      Kc += mass * vel.lengthSquare();
1553 >      Lc += mass * cross(rPos, vel);
1554 >      Ic -= outProduct(rPos, rPos) * mass;
1555 >      r2 = rPos.lengthSquare();
1556 >      Ic(0, 0) += mass * r2;
1557 >      Ic(1, 1) += mass * r2;
1558 >      Ic(2, 2) += mass * r2;
1559 >      
1560 >      if (rnemdFluxType_ == rnemdFullKE) {
1561 >        if (sd->isDirectional()) {
1562 >          Vector3d angMom = sd->getJ();
1563 >          Mat3x3d I = sd->getI();
1564 >          if (sd->isLinear()) {
1565 >            int i = sd->linearAxis();
1566 >            int j = (i + 1) % 3;
1567 >            int k = (i + 2) % 3;
1568 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1569 >              angMom[k] * angMom[k] / I(k, k);
1570 >          } else {
1571 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1572 >              angMom[1] * angMom[1] / I(1, 1) +
1573 >              angMom[2] * angMom[2] / I(2, 2);
1574 >          }
1575          }
768        if (diff < smallestDiff) {
769          smallestDiff = diff;
770          bestPair = *rpi;
771        }
1576        }
1577 +    }
1578 +    
1579 +    Kh *= 0.5;
1580 +    Kc *= 0.5;
1581 +    
1582   #ifdef IS_MPI
1583 <      if (worldRank == 0) {
1583 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1584 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1585 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM);
1586 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM);
1587 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1588 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1589 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1590 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1591 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9,
1592 >                              MPI::REALTYPE, MPI::SUM);
1593 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9,
1594 >                              MPI::REALTYPE, MPI::SUM);
1595   #endif
1596 <        std::cerr << "we choose r1 = " << bestPair.first
777 <                  << " and r2 = " << bestPair.second << "\n";
778 < #ifdef IS_MPI
779 <      }
780 < #endif
1596 >    
1597  
1598 <      RealType x, y, z;
1599 <        switch(rnemdType_) {
1600 <        case rnemdKineticScale :
1601 <          x = bestPair.first;
1602 <          y = bestPair.first;
1603 <          z = bestPair.second;
1604 <          break;
1605 <        case rnemdPxScale :
1606 <          x = c;
1607 <          y = bestPair.first;
1608 <          z = bestPair.second;
1609 <          break;
1610 <        case rnemdPyScale :
1611 <          x = bestPair.first;
1612 <          y = c;
1613 <          z = bestPair.second;
1614 <          break;
1615 <        case rnemdPzScale :
1616 <        default :
1617 <          break;
1618 <        }
1619 <      std::vector<StuntDouble*>::iterator sdi;
1620 <      Vector3d vel;
1621 <      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1622 <        vel = (*sdi)->getVel();
1623 <        vel.x() *= x;
1624 <        vel.y() *= y;
1625 <        vel.z() *= z;
1626 <        (*sdi)->setVel(vel);
1627 <      }
1628 <      //convert to hotBin coefficient
1629 <      x = 1.0 + px * (1.0 - x);
1630 <      y = 1.0 + py * (1.0 - y);
1631 <      z = 1.0 + pz * (1.0 - z);
1632 <      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1633 <        vel = (*sdi)->getVel();
1634 <        vel.x() *= x;
1635 <        vel.y() *= y;
1636 <        vel.z() *= z;
1637 <        (*sdi)->setVel(vel);
1598 >    Vector3d ac, acrec, bc, bcrec;
1599 >    Vector3d ah, ahrec, bh, bhrec;
1600 >
1601 >    bool successfulExchange = false;
1602 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1603 >      Vector3d vc = Pc / Mc;
1604 >      ac = -momentumTarget_ / Mc + vc;
1605 >      acrec = -momentumTarget_ / Mc;
1606 >      
1607 >      // We now need the inverse of the inertia tensor to calculate the
1608 >      // angular velocity of the cold slab;
1609 >      Mat3x3d Ici = Ic.inverse();
1610 >      Vector3d omegac = Ici * Lc;
1611 >      bc  = -(Ici * angularMomentumTarget_) + omegac;
1612 >      bcrec = bc - omegac;
1613 >      
1614 >      RealType cNumerator = Kc - kineticTarget_;
1615 >      if (doLinearPart)
1616 >        cNumerator -= 0.5 * Mc * ac.lengthSquare();
1617 >      
1618 >      if (doAngularPart)
1619 >        cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1620 >
1621 >      if (cNumerator > 0.0) {
1622 >        
1623 >        RealType cDenominator = Kc;
1624 >
1625 >        if (doLinearPart)
1626 >          cDenominator -= 0.5 * Mc * vc.lengthSquare();
1627 >
1628 >        if (doAngularPart)
1629 >          cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1630 >        
1631 >        if (cDenominator > 0.0) {
1632 >          RealType c = sqrt(cNumerator / cDenominator);
1633 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1634 >            
1635 >            Vector3d vh = Ph / Mh;
1636 >            ah = momentumTarget_ / Mh + vh;
1637 >            ahrec = momentumTarget_ / Mh;
1638 >            
1639 >            // We now need the inverse of the inertia tensor to
1640 >            // calculate the angular velocity of the hot slab;
1641 >            Mat3x3d Ihi = Ih.inverse();
1642 >            Vector3d omegah = Ihi * Lh;
1643 >            bh  = (Ihi * angularMomentumTarget_) + omegah;
1644 >            bhrec = bh - omegah;
1645 >            
1646 >            RealType hNumerator = Kh + kineticTarget_;
1647 >            if (doLinearPart)
1648 >              hNumerator -= 0.5 * Mh * ah.lengthSquare();
1649 >            
1650 >            if (doAngularPart)
1651 >              hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1652 >              
1653 >            if (hNumerator > 0.0) {
1654 >              
1655 >              RealType hDenominator = Kh;
1656 >              if (doLinearPart)
1657 >                hDenominator -= 0.5 * Mh * vh.lengthSquare();
1658 >              if (doAngularPart)
1659 >                hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1660 >              
1661 >              if (hDenominator > 0.0) {
1662 >                RealType h = sqrt(hNumerator / hDenominator);
1663 >                if ((h > 0.9) && (h < 1.1)) {
1664 >                  
1665 >                  vector<StuntDouble*>::iterator sdi;
1666 >                  Vector3d vel;
1667 >                  Vector3d rPos;
1668 >                  
1669 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1670 >                    //vel = (*sdi)->getVel();
1671 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1672 >                    if (doLinearPart)
1673 >                      vel = ((*sdi)->getVel() - vc) * c + ac;
1674 >                    if (doAngularPart)
1675 >                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1676 >
1677 >                    (*sdi)->setVel(vel);
1678 >                    if (rnemdFluxType_ == rnemdFullKE) {
1679 >                      if ((*sdi)->isDirectional()) {
1680 >                        Vector3d angMom = (*sdi)->getJ() * c;
1681 >                        (*sdi)->setJ(angMom);
1682 >                      }
1683 >                    }
1684 >                  }
1685 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1686 >                    //vel = (*sdi)->getVel();
1687 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1688 >                    if (doLinearPart)
1689 >                      vel = ((*sdi)->getVel() - vh) * h + ah;    
1690 >                    if (doAngularPart)
1691 >                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);    
1692 >
1693 >                    (*sdi)->setVel(vel);
1694 >                    if (rnemdFluxType_ == rnemdFullKE) {
1695 >                      if ((*sdi)->isDirectional()) {
1696 >                        Vector3d angMom = (*sdi)->getJ() * h;
1697 >                        (*sdi)->setJ(angMom);
1698 >                      }
1699 >                    }
1700 >                  }
1701 >                  successfulExchange = true;
1702 >                  kineticExchange_ += kineticTarget_;
1703 >                  momentumExchange_ += momentumTarget_;
1704 >                  angularMomentumExchange_ += angularMomentumTarget_;
1705 >                }
1706 >              }
1707 >            }
1708 >          }
1709 >        }
1710        }
1711 <      exchangeSum_ += targetFlux_;
1712 <      //we may want to check whether the exchange has been successful
1713 <    } else {
1714 <      std::cerr << "exchange NOT performed!\n";
1711 >    }
1712 >    if (successfulExchange != true) {
1713 >      sprintf(painCave.errMsg,
1714 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1715 >              "\tthe constraint equations may not exist or there may be\n"
1716 >              "\tno selected objects in one or both slabs.\n");
1717 >      painCave.isFatal = 0;
1718 >      painCave.severity = OPENMD_INFO;
1719 >      simError();        
1720        failTrialCount_++;
1721      }
829
1722    }
1723  
1724 +  RealType RNEMD::getDividingArea() {
1725 +
1726 +    if (hasDividingArea_) return dividingArea_;
1727 +
1728 +    RealType areaA, areaB;
1729 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1730 +
1731 +    if (hasSelectionA_) {
1732 +      int isd;
1733 +      StuntDouble* sd;
1734 +      vector<StuntDouble*> aSites;
1735 +      seleManA_.setSelectionSet(evaluatorA_.evaluate());
1736 +      for (sd = seleManA_.beginSelected(isd); sd != NULL;
1737 +           sd = seleManA_.nextSelected(isd)) {
1738 +        aSites.push_back(sd);
1739 +      }
1740 + #if defined(HAVE_QHULL)
1741 +      ConvexHull* surfaceMeshA = new ConvexHull();
1742 +      surfaceMeshA->computeHull(aSites);
1743 +      areaA = surfaceMeshA->getArea();
1744 +      delete surfaceMeshA;
1745 + #else
1746 +      sprintf( painCave.errMsg,
1747 +               "RNEMD::getDividingArea : Hull calculation is not possible\n"
1748 +               "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1749 +      painCave.severity = OPENMD_ERROR;
1750 +      painCave.isFatal = 1;
1751 +      simError();
1752 + #endif
1753 +
1754 +    } else {
1755 +      if (usePeriodicBoundaryConditions_) {
1756 +        // in periodic boundaries, the surface area is twice the x-y
1757 +        // area of the current box:
1758 +        areaA = 2.0 * snap->getXYarea();
1759 +      } else {
1760 +        // in non-periodic simulations, without explicitly setting
1761 +        // selections, the sphere radius sets the surface area of the
1762 +        // dividing surface:
1763 +        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1764 +      }
1765 +    }
1766 +
1767 +    if (hasSelectionB_) {
1768 +      int isd;
1769 +      StuntDouble* sd;
1770 +      vector<StuntDouble*> bSites;
1771 +      seleManB_.setSelectionSet(evaluatorB_.evaluate());
1772 +      for (sd = seleManB_.beginSelected(isd); sd != NULL;
1773 +           sd = seleManB_.nextSelected(isd)) {
1774 +        bSites.push_back(sd);
1775 +      }
1776 +
1777 + #if defined(HAVE_QHULL)
1778 +      ConvexHull* surfaceMeshB = new ConvexHull();    
1779 +      surfaceMeshB->computeHull(bSites);
1780 +      areaB = surfaceMeshB->getArea();
1781 +      delete surfaceMeshB;
1782 + #else
1783 +      sprintf( painCave.errMsg,
1784 +               "RNEMD::getDividingArea : Hull calculation is not possible\n"
1785 +               "\twithout libqhull. Please rebuild OpenMD with qhull enabled.");
1786 +      painCave.severity = OPENMD_ERROR;
1787 +      painCave.isFatal = 1;
1788 +      simError();
1789 + #endif
1790 +
1791 +
1792 +    } else {
1793 +      if (usePeriodicBoundaryConditions_) {
1794 +        // in periodic boundaries, the surface area is twice the x-y
1795 +        // area of the current box:
1796 +        areaB = 2.0 * snap->getXYarea();
1797 +      } else {
1798 +        // in non-periodic simulations, without explicitly setting
1799 +        // selections, but if a sphereBradius has been set, just use that:
1800 +        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1801 +      }
1802 +    }
1803 +    
1804 +    dividingArea_ = min(areaA, areaB);
1805 +    hasDividingArea_ = true;
1806 +    return dividingArea_;
1807 +  }
1808 +  
1809    void RNEMD::doRNEMD() {
1810 +    if (!doRNEMD_) return;
1811 +    trialCount_++;
1812  
1813 <    switch(rnemdType_) {
1814 <    case rnemdKineticScale :
1815 <    case rnemdPxScale :
1816 <    case rnemdPyScale :
1817 <    case rnemdPzScale :
1818 <      doScale();
1813 >    // object evaluator:
1814 >    evaluator_.loadScriptString(rnemdObjectSelection_);
1815 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1816 >
1817 >    evaluatorA_.loadScriptString(selectionA_);
1818 >    evaluatorB_.loadScriptString(selectionB_);
1819 >
1820 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1821 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1822 >
1823 >    commonA_ = seleManA_ & seleMan_;
1824 >    commonB_ = seleManB_ & seleMan_;
1825 >
1826 >    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1827 >    // dt = exchange time interval
1828 >    // flux = target flux
1829 >    // dividingArea = smallest dividing surface between the two regions
1830 >
1831 >    hasDividingArea_ = false;
1832 >    RealType area = getDividingArea();
1833 >
1834 >    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1835 >    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1836 >    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1837 >
1838 >    switch(rnemdMethod_) {
1839 >    case rnemdSwap:
1840 >      doSwap(commonA_, commonB_);
1841        break;
1842 <    case rnemdKineticSwap :
1843 <    case rnemdPx :
843 <    case rnemdPy :
844 <    case rnemdPz :
845 <      doSwap();
1842 >    case rnemdNIVS:
1843 >      doNIVS(commonA_, commonB_);
1844        break;
1845 <    case rnemdUnknown :
1845 >    case rnemdVSS:
1846 >      doVSS(commonA_, commonB_);
1847 >      break;
1848 >    case rnemdUnkownMethod:
1849      default :
1850        break;
1851      }
1852    }
1853  
1854    void RNEMD::collectData() {
1855 <
1855 >    if (!doRNEMD_) return;
1856      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1857 +    
1858 +    // collectData can be called more frequently than the doRNEMD, so use the
1859 +    // computed area from the last exchange time:
1860 +    RealType area = getDividingArea();
1861 +    areaAccumulator_->add(area);
1862      Mat3x3d hmat = currentSnap_->getHmat();
857
1863      seleMan_.setSelectionSet(evaluator_.evaluate());
1864  
1865 <    int selei;
1865 >    int selei(0);
1866      StuntDouble* sd;
1867 <    int idx;
1867 >    int binNo;
1868  
1869 +    vector<RealType> binMass(nBins_, 0.0);
1870 +    vector<RealType> binPx(nBins_, 0.0);
1871 +    vector<RealType> binPy(nBins_, 0.0);
1872 +    vector<RealType> binPz(nBins_, 0.0);
1873 +    vector<RealType> binOmegax(nBins_, 0.0);
1874 +    vector<RealType> binOmegay(nBins_, 0.0);
1875 +    vector<RealType> binOmegaz(nBins_, 0.0);
1876 +    vector<RealType> binKE(nBins_, 0.0);
1877 +    vector<int> binDOF(nBins_, 0);
1878 +    vector<int> binCount(nBins_, 0);
1879 +
1880 +    // alternative approach, track all molecules instead of only those
1881 +    // selected for scaling/swapping:
1882 +    /*
1883 +      SimInfo::MoleculeIterator miter;
1884 +      vector<StuntDouble*>::iterator iiter;
1885 +      Molecule* mol;
1886 +      StuntDouble* sd;
1887 +      for (mol = info_->beginMolecule(miter); mol != NULL;
1888 +      mol = info_->nextMolecule(miter))
1889 +      sd is essentially sd
1890 +      for (sd = mol->beginIntegrableObject(iiter);
1891 +      sd != NULL;
1892 +      sd = mol->nextIntegrableObject(iiter))
1893 +    */
1894 +
1895      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1896 <         sd = seleMan_.nextSelected(selei)) {
1897 <      
867 <      idx = sd->getLocalIndex();
868 <      
1896 >         sd = seleMan_.nextSelected(selei)) {    
1897 >    
1898        Vector3d pos = sd->getPos();
1899  
1900        // wrap the stuntdouble's position back into the box:
1901        
1902 <      if (usePeriodicBoundaryConditions_)
1902 >      if (usePeriodicBoundaryConditions_) {
1903          currentSnap_->wrapVector(pos);
1904 <      
1905 <      // which bin is this stuntdouble in?
1906 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1907 <      
1908 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1904 >        // which bin is this stuntdouble in?
1905 >        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1906 >        // Shift molecules by half a box to have bins start at 0
1907 >        // The modulo operator is used to wrap the case when we are
1908 >        // beyond the end of the bins back to the beginning.
1909 >        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1910 >      } else {
1911 >        Vector3d rPos = pos - coordinateOrigin_;
1912 >        binNo = int(rPos.length() / binWidth_);
1913 >      }
1914  
881      if (rnemdLogWidth_ == midBin_ + 1)
882        if (binNo > midBin_)
883          binNo = nBins_ - binNo;
884
1915        RealType mass = sd->getMass();
1916        Vector3d vel = sd->getVel();
1917 <      RealType value;
1918 <      RealType xVal, yVal, zVal;
1917 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1918 >      Vector3d aVel = cross(rPos, vel);
1919 >      
1920 >      if (binNo >= 0 && binNo < nBins_)  {
1921 >        binCount[binNo]++;
1922 >        binMass[binNo] += mass;
1923 >        binPx[binNo] += mass*vel.x();
1924 >        binPy[binNo] += mass*vel.y();
1925 >        binPz[binNo] += mass*vel.z();
1926 >        binOmegax[binNo] += aVel.x();
1927 >        binOmegay[binNo] += aVel.y();
1928 >        binOmegaz[binNo] += aVel.z();
1929 >        binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1930 >        binDOF[binNo] += 3;
1931 >        
1932 >        if (sd->isDirectional()) {
1933 >          Vector3d angMom = sd->getJ();
1934 >          Mat3x3d I = sd->getI();
1935 >          if (sd->isLinear()) {
1936 >            int i = sd->linearAxis();
1937 >            int j = (i + 1) % 3;
1938 >            int k = (i + 2) % 3;
1939 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1940 >                                   angMom[k] * angMom[k] / I(k, k));
1941 >            binDOF[binNo] += 2;
1942 >          } else {
1943 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1944 >                                   angMom[1] * angMom[1] / I(1, 1) +
1945 >                                   angMom[2] * angMom[2] / I(2, 2));
1946 >            binDOF[binNo] += 3;
1947 >          }
1948 >        }
1949 >      }
1950 >    }
1951 >    
1952 > #ifdef IS_MPI
1953 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1954 >                              nBins_, MPI::INT, MPI::SUM);
1955 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1956 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1957 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1958 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1959 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1960 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1961 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1962 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1963 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0],
1964 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1965 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0],
1966 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1967 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0],
1968 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1969 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1970 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1971 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1972 >                              nBins_, MPI::INT, MPI::SUM);
1973 > #endif
1974  
1975 <      switch(rnemdType_) {
1976 <      case rnemdKineticSwap :
1977 <      case rnemdKineticScale :
1978 <        
1979 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
1980 <                        vel[2]*vel[2]);
1981 <        
1982 <        valueCount_[binNo] += 3;
1983 <        if (sd->isDirectional()) {
1984 <          Vector3d angMom = sd->getJ();
1985 <          Mat3x3d I = sd->getI();
1986 <          
1987 <          if (sd->isLinear()) {
1988 <            int i = sd->linearAxis();
1989 <            int j = (i + 1) % 3;
1990 <            int k = (i + 2) % 3;
1991 <            value += angMom[j] * angMom[j] / I(j, j) +
1992 <              angMom[k] * angMom[k] / I(k, k);
1975 >    Vector3d vel;
1976 >    Vector3d aVel;
1977 >    RealType den;
1978 >    RealType temp;
1979 >    RealType z;
1980 >    RealType r;
1981 >    for (int i = 0; i < nBins_; i++) {
1982 >      if (usePeriodicBoundaryConditions_) {
1983 >        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1984 >        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1985 >          / currentSnap_->getVolume() ;
1986 >      } else {
1987 >        r = (((RealType)i + 0.5) * binWidth_);
1988 >        RealType rinner = (RealType)i * binWidth_;
1989 >        RealType router = (RealType)(i+1) * binWidth_;
1990 >        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
1991 >          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
1992 >      }
1993 >      vel.x() = binPx[i] / binMass[i];
1994 >      vel.y() = binPy[i] / binMass[i];
1995 >      vel.z() = binPz[i] / binMass[i];
1996 >      aVel.x() = binOmegax[i] / binCount[i];
1997 >      aVel.y() = binOmegay[i] / binCount[i];
1998 >      aVel.z() = binOmegaz[i] / binCount[i];
1999  
2000 <            valueCount_[binNo] +=2;
2001 <
2002 <          } else {
2003 <            value += angMom[0]*angMom[0]/I(0, 0)
2004 <              + angMom[1]*angMom[1]/I(1, 1)
2005 <              + angMom[2]*angMom[2]/I(2, 2);
2006 <            valueCount_[binNo] +=3;
2007 <          }
2008 <        }
2009 <        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
2010 <
2011 <        break;
2012 <      case rnemdPx :
2013 <      case rnemdPxScale :
2014 <        value = mass * vel[0];
2015 <        valueCount_[binNo]++;
2016 <        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
2017 <          / PhysicalConstants::kb;
2018 <        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
2019 <          / PhysicalConstants::kb;
2020 <        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
2021 <          / PhysicalConstants::kb;
2022 <        xTempHist_[binNo] += xVal;
2023 <        yTempHist_[binNo] += yVal;
2024 <        zTempHist_[binNo] += zVal;
2025 <        break;
2026 <      case rnemdPy :
2027 <      case rnemdPyScale :
2028 <        value = mass * vel[1];
938 <        valueCount_[binNo]++;
939 <        break;
940 <      case rnemdPz :
941 <      case rnemdPzScale :
942 <        value = mass * vel[2];
943 <        valueCount_[binNo]++;
944 <        break;
945 <      case rnemdUnknown :
946 <      default :
947 <        break;
2000 >      if (binCount[i] > 0) {
2001 >        // only add values if there are things to add
2002 >        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
2003 >                                 PhysicalConstants::energyConvert);
2004 >        
2005 >        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
2006 >          if(outputMask_[j]) {
2007 >            switch(j) {
2008 >            case Z:
2009 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
2010 >              break;
2011 >            case R:
2012 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
2013 >              break;
2014 >            case TEMPERATURE:
2015 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2016 >              break;
2017 >            case VELOCITY:
2018 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2019 >              break;
2020 >            case ANGULARVELOCITY:  
2021 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel);
2022 >              break;
2023 >            case DENSITY:
2024 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2025 >              break;
2026 >            }
2027 >          }
2028 >        }
2029        }
949      valueHist_[binNo] += value;
2030      }
2031 <
2031 >    hasData_ = true;
2032    }
2033  
2034    void RNEMD::getStarted() {
2035 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2036 <    Stats& stat = currentSnap_->statData;
2037 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
2035 >    if (!doRNEMD_) return;
2036 >    hasDividingArea_ = false;
2037 >    collectData();
2038 >    writeOutputFile();
2039    }
2040  
2041 <  void RNEMD::getStatus() {
2041 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
2042 >    if (!doRNEMD_) return;
2043 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
2044 >    
2045 >    while(tokenizer.hasMoreTokens()) {
2046 >      std::string token(tokenizer.nextToken());
2047 >      toUpper(token);
2048 >      OutputMapType::iterator i = outputMap_.find(token);
2049 >      if (i != outputMap_.end()) {
2050 >        outputMask_.set(i->second);
2051 >      } else {
2052 >        sprintf( painCave.errMsg,
2053 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
2054 >                 "\toutputFileFormat keyword.\n", token.c_str() );
2055 >        painCave.isFatal = 0;
2056 >        painCave.severity = OPENMD_ERROR;
2057 >        simError();            
2058 >      }
2059 >    }  
2060 >  }
2061 >  
2062 >  void RNEMD::writeOutputFile() {
2063 >    if (!doRNEMD_) return;
2064 >    if (!hasData_) return;
2065 >    
2066 > #ifdef IS_MPI
2067 >    // If we're the root node, should we print out the results
2068 >    int worldRank = MPI::COMM_WORLD.Get_rank();
2069 >    if (worldRank == 0) {
2070 > #endif
2071 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
2072 >      
2073 >      if( !rnemdFile_ ){        
2074 >        sprintf( painCave.errMsg,
2075 >                 "Could not open \"%s\" for RNEMD output.\n",
2076 >                 rnemdFileName_.c_str());
2077 >        painCave.isFatal = 1;
2078 >        simError();
2079 >      }
2080  
2081 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
963 <    Stats& stat = currentSnap_->statData;
964 <    RealType time = currentSnap_->getTime();
2081 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2082  
2083 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
2084 <    //or to be more meaningful, define another item as exchangeSum_ / time
2083 >      RealType time = currentSnap_->getTime();
2084 >      RealType avgArea;
2085 >      areaAccumulator_->getAverage(avgArea);
2086  
2087 +      RealType Jz(0.0);
2088 +      Vector3d JzP(V3Zero);
2089 +      Vector3d JzL(V3Zero);
2090 +      if (time >= info_->getSimParams()->getDt()) {
2091 +        Jz = kineticExchange_ / (time * avgArea)
2092 +          / PhysicalConstants::energyConvert;
2093 +        JzP = momentumExchange_ / (time * avgArea);
2094 +        JzL = angularMomentumExchange_ / (time * avgArea);
2095 +      }
2096  
2097 < #ifdef IS_MPI
2097 >      rnemdFile_ << "#######################################################\n";
2098 >      rnemdFile_ << "# RNEMD {\n";
2099  
2100 <    // all processors have the same number of bins, and STL vectors pack their
2101 <    // arrays, so in theory, this should be safe:
2100 >      map<string, RNEMDMethod>::iterator mi;
2101 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2102 >        if ( (*mi).second == rnemdMethod_)
2103 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2104 >      }
2105 >      map<string, RNEMDFluxType>::iterator fi;
2106 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2107 >        if ( (*fi).second == rnemdFluxType_)
2108 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2109 >      }
2110 >      
2111 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2112  
2113 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
2114 <                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
2115 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
2116 <                              rnemdLogWidth_, MPI::INT, MPI::SUM);
2117 <
2118 <    // If we're the root node, should we print out the results
2119 <    int worldRank = MPI::COMM_WORLD.Get_rank();
2120 <    if (worldRank == 0) {
2121 < #endif
2122 <      int j;
2123 <      rnemdLog_ << time;
2124 <      for (j = 0; j < rnemdLogWidth_; j++) {
2125 <        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
2126 <        valueHist_[j] = 0.0;
2113 >      rnemdFile_ << "#    objectSelection = \""
2114 >                 << rnemdObjectSelection_ << "\";\n";
2115 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2116 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2117 >      rnemdFile_ << "# }\n";
2118 >      rnemdFile_ << "#######################################################\n";
2119 >      rnemdFile_ << "# RNEMD report:\n";      
2120 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2121 >      rnemdFile_ << "# Target flux:\n";
2122 >      rnemdFile_ << "#           kinetic = "
2123 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2124 >                 << " (kcal/mol/A^2/fs)\n";
2125 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2126 >                 << " (amu/A/fs^2)\n";
2127 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2128 >                 << " (amu/A^2/fs^2)\n";
2129 >      rnemdFile_ << "# Target one-time exchanges:\n";
2130 >      rnemdFile_ << "#          kinetic = "
2131 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2132 >                 << " (kcal/mol)\n";
2133 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2134 >                 << " (amu*A/fs)\n";
2135 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2136 >                 << " (amu*A^2/fs)\n";
2137 >      rnemdFile_ << "# Actual exchange totals:\n";
2138 >      rnemdFile_ << "#          kinetic = "
2139 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2140 >                 << " (kcal/mol)\n";
2141 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2142 >                 << " (amu*A/fs)\n";      
2143 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2144 >                 << " (amu*A^2/fs)\n";      
2145 >      rnemdFile_ << "# Actual flux:\n";
2146 >      rnemdFile_ << "#          kinetic = " << Jz
2147 >                 << " (kcal/mol/A^2/fs)\n";
2148 >      rnemdFile_ << "#          momentum = " << JzP
2149 >                 << " (amu/A/fs^2)\n";
2150 >      rnemdFile_ << "#  angular momentum = " << JzL
2151 >                 << " (amu/A^2/fs^2)\n";
2152 >      rnemdFile_ << "# Exchange statistics:\n";
2153 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2154 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2155 >      if (rnemdMethod_ == rnemdNIVS) {
2156 >        rnemdFile_ << "#  NIVS root-check errors = "
2157 >                   << failRootCount_ << "\n";
2158        }
2159 <      rnemdLog_ << "\n";
2160 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) {
2161 <        xTempLog_ << time;      
2162 <        for (j = 0; j < rnemdLogWidth_; j++) {
2163 <          xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j];
2164 <          xTempHist_[j] = 0.0;
2159 >      rnemdFile_ << "#######################################################\n";
2160 >      
2161 >      
2162 >      
2163 >      //write title
2164 >      rnemdFile_ << "#";
2165 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2166 >        if (outputMask_[i]) {
2167 >          rnemdFile_ << "\t" << data_[i].title <<
2168 >            "(" << data_[i].units << ")";
2169 >          // add some extra tabs for column alignment
2170 >          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2171          }
2172 <        xTempLog_ << "\n";
2173 <        yTempLog_ << time;
2174 <        for (j = 0; j < rnemdLogWidth_; j++) {
2175 <          yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j];
2176 <          yTempHist_[j] = 0.0;
2172 >      }
2173 >      rnemdFile_ << std::endl;
2174 >      
2175 >      rnemdFile_.precision(8);
2176 >      
2177 >      for (int j = 0; j < nBins_; j++) {        
2178 >        
2179 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2180 >          if (outputMask_[i]) {
2181 >            if (data_[i].dataType == "RealType")
2182 >              writeReal(i,j);
2183 >            else if (data_[i].dataType == "Vector3d")
2184 >              writeVector(i,j);
2185 >            else {
2186 >              sprintf( painCave.errMsg,
2187 >                       "RNEMD found an unknown data type for: %s ",
2188 >                       data_[i].title.c_str());
2189 >              painCave.isFatal = 1;
2190 >              simError();
2191 >            }
2192 >          }
2193          }
2194 <        yTempLog_ << "\n";
2195 <        zTempLog_ << time;
2196 <        for (j = 0; j < rnemdLogWidth_; j++) {
2197 <          zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j];
2198 <          zTempHist_[j] = 0.0;
2194 >        rnemdFile_ << std::endl;
2195 >        
2196 >      }        
2197 >
2198 >      rnemdFile_ << "#######################################################\n";
2199 >      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
2200 >      rnemdFile_ << "#######################################################\n";
2201 >
2202 >
2203 >      for (int j = 0; j < nBins_; j++) {        
2204 >        rnemdFile_ << "#";
2205 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2206 >          if (outputMask_[i]) {
2207 >            if (data_[i].dataType == "RealType")
2208 >              writeRealStdDev(i,j);
2209 >            else if (data_[i].dataType == "Vector3d")
2210 >              writeVectorStdDev(i,j);
2211 >            else {
2212 >              sprintf( painCave.errMsg,
2213 >                       "RNEMD found an unknown data type for: %s ",
2214 >                       data_[i].title.c_str());
2215 >              painCave.isFatal = 1;
2216 >              simError();
2217 >            }
2218 >          }
2219          }
2220 <        zTempLog_ << "\n";
2221 <      }
2222 <      for (j = 0; j < rnemdLogWidth_; j++) valueCount_[j] = 0;
2220 >        rnemdFile_ << std::endl;
2221 >        
2222 >      }        
2223 >      
2224 >      rnemdFile_.flush();
2225 >      rnemdFile_.close();
2226 >      
2227   #ifdef IS_MPI
2228 <    }    
2228 >    }
2229   #endif
2230 +    
2231 +  }
2232 +  
2233 +  void RNEMD::writeReal(int index, unsigned int bin) {
2234 +    if (!doRNEMD_) return;
2235 +    assert(index >=0 && index < ENDINDEX);
2236 +    assert(int(bin) < nBins_);
2237 +    RealType s;
2238 +    int count;
2239 +    
2240 +    count = data_[index].accumulator[bin]->count();
2241 +    if (count == 0) return;
2242 +    
2243 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2244 +    
2245 +    if (! isinf(s) && ! isnan(s)) {
2246 +      rnemdFile_ << "\t" << s;
2247 +    } else{
2248 +      sprintf( painCave.errMsg,
2249 +               "RNEMD detected a numerical error writing: %s for bin %u",
2250 +               data_[index].title.c_str(), bin);
2251 +      painCave.isFatal = 1;
2252 +      simError();
2253 +    }    
2254 +  }
2255 +  
2256 +  void RNEMD::writeVector(int index, unsigned int bin) {
2257 +    if (!doRNEMD_) return;
2258 +    assert(index >=0 && index < ENDINDEX);
2259 +    assert(int(bin) < nBins_);
2260 +    Vector3d s;
2261 +    int count;
2262 +    
2263 +    count = data_[index].accumulator[bin]->count();
2264  
2265 <      
2265 >    if (count == 0) return;
2266 >
2267 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2268 >    if (isinf(s[0]) || isnan(s[0]) ||
2269 >        isinf(s[1]) || isnan(s[1]) ||
2270 >        isinf(s[2]) || isnan(s[2]) ) {      
2271 >      sprintf( painCave.errMsg,
2272 >               "RNEMD detected a numerical error writing: %s for bin %u",
2273 >               data_[index].title.c_str(), bin);
2274 >      painCave.isFatal = 1;
2275 >      simError();
2276 >    } else {
2277 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2278 >    }
2279 >  }  
2280 >
2281 >  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
2282 >    if (!doRNEMD_) return;
2283 >    assert(index >=0 && index < ENDINDEX);
2284 >    assert(int(bin) < nBins_);
2285 >    RealType s;
2286 >    int count;
2287 >    
2288 >    count = data_[index].accumulator[bin]->count();
2289 >    if (count == 0) return;
2290 >    
2291 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
2292 >    
2293 >    if (! isinf(s) && ! isnan(s)) {
2294 >      rnemdFile_ << "\t" << s;
2295 >    } else{
2296 >      sprintf( painCave.errMsg,
2297 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2298 >               data_[index].title.c_str(), bin);
2299 >      painCave.isFatal = 1;
2300 >      simError();
2301 >    }    
2302    }
2303 +  
2304 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
2305 +    if (!doRNEMD_) return;
2306 +    assert(index >=0 && index < ENDINDEX);
2307 +    assert(int(bin) < nBins_);
2308 +    Vector3d s;
2309 +    int count;
2310 +    
2311 +    count = data_[index].accumulator[bin]->count();
2312 +    if (count == 0) return;
2313  
2314 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
2315 +    if (isinf(s[0]) || isnan(s[0]) ||
2316 +        isinf(s[1]) || isnan(s[1]) ||
2317 +        isinf(s[2]) || isnan(s[2]) ) {      
2318 +      sprintf( painCave.errMsg,
2319 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2320 +               data_[index].title.c_str(), bin);
2321 +      painCave.isFatal = 1;
2322 +      simError();
2323 +    } else {
2324 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2325 +    }
2326 +  }  
2327   }
2328 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (property svn:keywords), Revision 1876 by gezelter, Fri May 17 17:10:11 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines