35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
#include <cmath> |
43 |
+ |
#include <sstream> |
44 |
+ |
#include <string> |
45 |
+ |
|
46 |
|
#include "rnemd/RNEMD.hpp" |
47 |
|
#include "math/Vector3.hpp" |
48 |
|
#include "math/Vector.hpp" |
52 |
|
#include "primitives/StuntDouble.hpp" |
53 |
|
#include "utils/PhysicalConstants.hpp" |
54 |
|
#include "utils/Tuple.hpp" |
55 |
+ |
#include "brains/Thermo.hpp" |
56 |
+ |
#include "math/ConvexHull.hpp" |
57 |
|
#ifdef IS_MPI |
58 |
|
#include <mpi.h> |
59 |
|
#endif |
60 |
|
|
61 |
+ |
#ifdef _MSC_VER |
62 |
+ |
#define isnan(x) _isnan((x)) |
63 |
+ |
#define isinf(x) (!_finite(x) && !_isnan(x)) |
64 |
+ |
#endif |
65 |
+ |
|
66 |
|
#define HONKING_LARGE_VALUE 1.0e10 |
67 |
|
|
68 |
|
using namespace std; |
69 |
|
namespace OpenMD { |
70 |
|
|
71 |
|
RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), |
72 |
+ |
evaluatorA_(info), seleManA_(info), |
73 |
+ |
commonA_(info), evaluatorB_(info), |
74 |
+ |
seleManB_(info), commonB_(info), |
75 |
+ |
hasData_(false), hasDividingArea_(false), |
76 |
|
usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { |
77 |
|
|
78 |
|
trialCount_ = 0; |
79 |
|
failTrialCount_ = 0; |
80 |
|
failRootCount_ = 0; |
81 |
|
|
82 |
< |
int seedValue; |
69 |
< |
Globals * simParams = info->getSimParams(); |
82 |
> |
Globals* simParams = info->getSimParams(); |
83 |
|
RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); |
84 |
|
|
85 |
|
doRNEMD_ = rnemdParams->getUseRNEMD(); |
94 |
|
stringToFluxType_["Py"] = rnemdPy; |
95 |
|
stringToFluxType_["Pz"] = rnemdPz; |
96 |
|
stringToFluxType_["Pvector"] = rnemdPvector; |
97 |
+ |
stringToFluxType_["Lx"] = rnemdLx; |
98 |
+ |
stringToFluxType_["Ly"] = rnemdLy; |
99 |
+ |
stringToFluxType_["Lz"] = rnemdLz; |
100 |
+ |
stringToFluxType_["Lvector"] = rnemdLvector; |
101 |
|
stringToFluxType_["KE+Px"] = rnemdKePx; |
102 |
|
stringToFluxType_["KE+Py"] = rnemdKePy; |
103 |
|
stringToFluxType_["KE+Pvector"] = rnemdKePvector; |
104 |
+ |
stringToFluxType_["KE+Lx"] = rnemdKeLx; |
105 |
+ |
stringToFluxType_["KE+Ly"] = rnemdKeLy; |
106 |
+ |
stringToFluxType_["KE+Lz"] = rnemdKeLz; |
107 |
+ |
stringToFluxType_["KE+Lvector"] = rnemdKeLvector; |
108 |
|
|
109 |
|
runTime_ = simParams->getRunTime(); |
110 |
|
statusTime_ = simParams->getStatusTime(); |
111 |
|
|
91 |
– |
rnemdObjectSelection_ = rnemdParams->getObjectSelection(); |
92 |
– |
evaluator_.loadScriptString(rnemdObjectSelection_); |
93 |
– |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
94 |
– |
|
112 |
|
const string methStr = rnemdParams->getMethod(); |
113 |
|
bool hasFluxType = rnemdParams->haveFluxType(); |
114 |
|
|
115 |
+ |
rnemdObjectSelection_ = rnemdParams->getObjectSelection(); |
116 |
+ |
|
117 |
|
string fluxStr; |
118 |
|
if (hasFluxType) { |
119 |
|
fluxStr = rnemdParams->getFluxType(); |
121 |
|
sprintf(painCave.errMsg, |
122 |
|
"RNEMD: No fluxType was set in the md file. This parameter,\n" |
123 |
|
"\twhich must be one of the following values:\n" |
124 |
< |
"\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n" |
124 |
> |
"\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n" |
125 |
> |
"\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n" |
126 |
|
"\tmust be set to use RNEMD\n"); |
127 |
|
painCave.isFatal = 1; |
128 |
|
painCave.severity = OPENMD_ERROR; |
132 |
|
bool hasKineticFlux = rnemdParams->haveKineticFlux(); |
133 |
|
bool hasMomentumFlux = rnemdParams->haveMomentumFlux(); |
134 |
|
bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector(); |
135 |
+ |
bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux(); |
136 |
+ |
bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector(); |
137 |
+ |
hasSelectionA_ = rnemdParams->haveSelectionA(); |
138 |
+ |
hasSelectionB_ = rnemdParams->haveSelectionB(); |
139 |
|
bool hasSlabWidth = rnemdParams->haveSlabWidth(); |
140 |
|
bool hasSlabACenter = rnemdParams->haveSlabACenter(); |
141 |
|
bool hasSlabBCenter = rnemdParams->haveSlabBCenter(); |
142 |
+ |
bool hasSphereARadius = rnemdParams->haveSphereARadius(); |
143 |
+ |
hasSphereBRadius_ = rnemdParams->haveSphereBRadius(); |
144 |
+ |
bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin(); |
145 |
|
bool hasOutputFileName = rnemdParams->haveOutputFileName(); |
146 |
|
bool hasOutputFields = rnemdParams->haveOutputFields(); |
147 |
|
|
226 |
|
case rnemdPz: |
227 |
|
hasCorrectFlux = hasMomentumFlux; |
228 |
|
break; |
229 |
+ |
case rnemdLx: |
230 |
+ |
case rnemdLy: |
231 |
+ |
case rnemdLz: |
232 |
+ |
hasCorrectFlux = hasAngularMomentumFlux; |
233 |
+ |
break; |
234 |
|
case rnemdPvector: |
235 |
|
hasCorrectFlux = hasMomentumFluxVector; |
236 |
|
break; |
237 |
+ |
case rnemdLvector: |
238 |
+ |
hasCorrectFlux = hasAngularMomentumFluxVector; |
239 |
+ |
break; |
240 |
|
case rnemdKePx: |
241 |
|
case rnemdKePy: |
242 |
|
hasCorrectFlux = hasMomentumFlux && hasKineticFlux; |
243 |
+ |
break; |
244 |
+ |
case rnemdKeLx: |
245 |
+ |
case rnemdKeLy: |
246 |
+ |
case rnemdKeLz: |
247 |
+ |
hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux; |
248 |
|
break; |
249 |
|
case rnemdKePvector: |
250 |
|
hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux; |
251 |
|
break; |
252 |
+ |
case rnemdKeLvector: |
253 |
+ |
hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux; |
254 |
+ |
break; |
255 |
|
default: |
256 |
|
methodFluxMismatch = true; |
257 |
|
break; |
274 |
|
sprintf(painCave.errMsg, |
275 |
|
"RNEMD: The current method, %s, and flux type, %s,\n" |
276 |
|
"\tdid not have the correct flux value specified. Options\n" |
277 |
< |
"\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n", |
277 |
> |
"\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n" |
278 |
> |
"\tmomentumFluxVector, and angularMomentumFluxVector.\n", |
279 |
|
methStr.c_str(), fluxStr.c_str()); |
280 |
|
painCave.isFatal = 1; |
281 |
|
painCave.severity = OPENMD_ERROR; |
315 |
|
default: |
316 |
|
break; |
317 |
|
} |
318 |
< |
} |
319 |
< |
} |
318 |
> |
} |
319 |
> |
if (hasAngularMomentumFluxVector) { |
320 |
> |
angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector(); |
321 |
> |
} else { |
322 |
> |
angularMomentumFluxVector_ = V3Zero; |
323 |
> |
if (hasAngularMomentumFlux) { |
324 |
> |
RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux(); |
325 |
> |
switch (rnemdFluxType_) { |
326 |
> |
case rnemdLx: |
327 |
> |
angularMomentumFluxVector_.x() = angularMomentumFlux; |
328 |
> |
break; |
329 |
> |
case rnemdLy: |
330 |
> |
angularMomentumFluxVector_.y() = angularMomentumFlux; |
331 |
> |
break; |
332 |
> |
case rnemdLz: |
333 |
> |
angularMomentumFluxVector_.z() = angularMomentumFlux; |
334 |
> |
break; |
335 |
> |
case rnemdKeLx: |
336 |
> |
angularMomentumFluxVector_.x() = angularMomentumFlux; |
337 |
> |
break; |
338 |
> |
case rnemdKeLy: |
339 |
> |
angularMomentumFluxVector_.y() = angularMomentumFlux; |
340 |
> |
break; |
341 |
> |
case rnemdKeLz: |
342 |
> |
angularMomentumFluxVector_.z() = angularMomentumFlux; |
343 |
> |
break; |
344 |
> |
default: |
345 |
> |
break; |
346 |
> |
} |
347 |
> |
} |
348 |
> |
} |
349 |
|
|
350 |
< |
// do some sanity checking |
350 |
> |
if (hasCoordinateOrigin) { |
351 |
> |
coordinateOrigin_ = rnemdParams->getCoordinateOrigin(); |
352 |
> |
} else { |
353 |
> |
coordinateOrigin_ = V3Zero; |
354 |
> |
} |
355 |
|
|
356 |
< |
int selectionCount = seleMan_.getSelectionCount(); |
280 |
< |
|
281 |
< |
int nIntegrable = info->getNGlobalIntegrableObjects(); |
356 |
> |
// do some sanity checking |
357 |
|
|
358 |
< |
if (selectionCount > nIntegrable) { |
284 |
< |
sprintf(painCave.errMsg, |
285 |
< |
"RNEMD: The current objectSelection,\n" |
286 |
< |
"\t\t%s\n" |
287 |
< |
"\thas resulted in %d selected objects. However,\n" |
288 |
< |
"\tthe total number of integrable objects in the system\n" |
289 |
< |
"\tis only %d. This is almost certainly not what you want\n" |
290 |
< |
"\tto do. A likely cause of this is forgetting the _RB_0\n" |
291 |
< |
"\tselector in the selection script!\n", |
292 |
< |
rnemdObjectSelection_.c_str(), |
293 |
< |
selectionCount, nIntegrable); |
294 |
< |
painCave.isFatal = 0; |
295 |
< |
painCave.severity = OPENMD_WARNING; |
296 |
< |
simError(); |
297 |
< |
} |
358 |
> |
int selectionCount = seleMan_.getSelectionCount(); |
359 |
|
|
360 |
< |
areaAccumulator_ = new Accumulator(); |
360 |
> |
int nIntegrable = info->getNGlobalIntegrableObjects(); |
361 |
|
|
362 |
< |
nBins_ = rnemdParams->getOutputBins(); |
362 |
> |
if (selectionCount > nIntegrable) { |
363 |
> |
sprintf(painCave.errMsg, |
364 |
> |
"RNEMD: The current objectSelection,\n" |
365 |
> |
"\t\t%s\n" |
366 |
> |
"\thas resulted in %d selected objects. However,\n" |
367 |
> |
"\tthe total number of integrable objects in the system\n" |
368 |
> |
"\tis only %d. This is almost certainly not what you want\n" |
369 |
> |
"\tto do. A likely cause of this is forgetting the _RB_0\n" |
370 |
> |
"\tselector in the selection script!\n", |
371 |
> |
rnemdObjectSelection_.c_str(), |
372 |
> |
selectionCount, nIntegrable); |
373 |
> |
painCave.isFatal = 0; |
374 |
> |
painCave.severity = OPENMD_WARNING; |
375 |
> |
simError(); |
376 |
> |
} |
377 |
|
|
378 |
< |
data_.resize(RNEMD::ENDINDEX); |
304 |
< |
OutputData z; |
305 |
< |
z.units = "Angstroms"; |
306 |
< |
z.title = "Z"; |
307 |
< |
z.dataType = "RealType"; |
308 |
< |
z.accumulator.reserve(nBins_); |
309 |
< |
for (unsigned int i = 0; i < nBins_; i++) |
310 |
< |
z.accumulator.push_back( new Accumulator() ); |
311 |
< |
data_[Z] = z; |
312 |
< |
outputMap_["Z"] = Z; |
378 |
> |
areaAccumulator_ = new Accumulator(); |
379 |
|
|
380 |
< |
OutputData temperature; |
381 |
< |
temperature.units = "K"; |
316 |
< |
temperature.title = "Temperature"; |
317 |
< |
temperature.dataType = "RealType"; |
318 |
< |
temperature.accumulator.reserve(nBins_); |
319 |
< |
for (unsigned int i = 0; i < nBins_; i++) |
320 |
< |
temperature.accumulator.push_back( new Accumulator() ); |
321 |
< |
data_[TEMPERATURE] = temperature; |
322 |
< |
outputMap_["TEMPERATURE"] = TEMPERATURE; |
380 |
> |
nBins_ = rnemdParams->getOutputBins(); |
381 |
> |
binWidth_ = rnemdParams->getOutputBinWidth(); |
382 |
|
|
383 |
< |
OutputData velocity; |
384 |
< |
velocity.units = "angstroms/fs"; |
385 |
< |
velocity.title = "Velocity"; |
386 |
< |
velocity.dataType = "Vector3d"; |
387 |
< |
velocity.accumulator.reserve(nBins_); |
388 |
< |
for (unsigned int i = 0; i < nBins_; i++) |
389 |
< |
velocity.accumulator.push_back( new VectorAccumulator() ); |
390 |
< |
data_[VELOCITY] = velocity; |
391 |
< |
outputMap_["VELOCITY"] = VELOCITY; |
383 |
> |
data_.resize(RNEMD::ENDINDEX); |
384 |
> |
OutputData z; |
385 |
> |
z.units = "Angstroms"; |
386 |
> |
z.title = "Z"; |
387 |
> |
z.dataType = "RealType"; |
388 |
> |
z.accumulator.reserve(nBins_); |
389 |
> |
for (int i = 0; i < nBins_; i++) |
390 |
> |
z.accumulator.push_back( new Accumulator() ); |
391 |
> |
data_[Z] = z; |
392 |
> |
outputMap_["Z"] = Z; |
393 |
|
|
394 |
< |
OutputData density; |
395 |
< |
density.units = "g cm^-3"; |
396 |
< |
density.title = "Density"; |
397 |
< |
density.dataType = "RealType"; |
398 |
< |
density.accumulator.reserve(nBins_); |
399 |
< |
for (unsigned int i = 0; i < nBins_; i++) |
400 |
< |
density.accumulator.push_back( new Accumulator() ); |
401 |
< |
data_[DENSITY] = density; |
402 |
< |
outputMap_["DENSITY"] = DENSITY; |
394 |
> |
OutputData r; |
395 |
> |
r.units = "Angstroms"; |
396 |
> |
r.title = "R"; |
397 |
> |
r.dataType = "RealType"; |
398 |
> |
r.accumulator.reserve(nBins_); |
399 |
> |
for (int i = 0; i < nBins_; i++) |
400 |
> |
r.accumulator.push_back( new Accumulator() ); |
401 |
> |
data_[R] = r; |
402 |
> |
outputMap_["R"] = R; |
403 |
|
|
404 |
< |
if (hasOutputFields) { |
405 |
< |
parseOutputFileFormat(rnemdParams->getOutputFields()); |
406 |
< |
} else { |
407 |
< |
outputMask_.set(Z); |
408 |
< |
switch (rnemdFluxType_) { |
409 |
< |
case rnemdKE: |
410 |
< |
case rnemdRotKE: |
411 |
< |
case rnemdFullKE: |
412 |
< |
outputMask_.set(TEMPERATURE); |
353 |
< |
break; |
354 |
< |
case rnemdPx: |
355 |
< |
case rnemdPy: |
356 |
< |
outputMask_.set(VELOCITY); |
357 |
< |
break; |
358 |
< |
case rnemdPz: |
359 |
< |
case rnemdPvector: |
360 |
< |
outputMask_.set(VELOCITY); |
361 |
< |
outputMask_.set(DENSITY); |
362 |
< |
break; |
363 |
< |
case rnemdKePx: |
364 |
< |
case rnemdKePy: |
365 |
< |
outputMask_.set(TEMPERATURE); |
366 |
< |
outputMask_.set(VELOCITY); |
367 |
< |
break; |
368 |
< |
case rnemdKePvector: |
369 |
< |
outputMask_.set(TEMPERATURE); |
370 |
< |
outputMask_.set(VELOCITY); |
371 |
< |
outputMask_.set(DENSITY); |
372 |
< |
break; |
373 |
< |
default: |
374 |
< |
break; |
375 |
< |
} |
376 |
< |
} |
377 |
< |
|
378 |
< |
if (hasOutputFileName) { |
379 |
< |
rnemdFileName_ = rnemdParams->getOutputFileName(); |
380 |
< |
} else { |
381 |
< |
rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; |
382 |
< |
} |
404 |
> |
OutputData temperature; |
405 |
> |
temperature.units = "K"; |
406 |
> |
temperature.title = "Temperature"; |
407 |
> |
temperature.dataType = "RealType"; |
408 |
> |
temperature.accumulator.reserve(nBins_); |
409 |
> |
for (int i = 0; i < nBins_; i++) |
410 |
> |
temperature.accumulator.push_back( new Accumulator() ); |
411 |
> |
data_[TEMPERATURE] = temperature; |
412 |
> |
outputMap_["TEMPERATURE"] = TEMPERATURE; |
413 |
|
|
414 |
< |
exchangeTime_ = rnemdParams->getExchangeTime(); |
414 |
> |
OutputData velocity; |
415 |
> |
velocity.units = "angstroms/fs"; |
416 |
> |
velocity.title = "Velocity"; |
417 |
> |
velocity.dataType = "Vector3d"; |
418 |
> |
velocity.accumulator.reserve(nBins_); |
419 |
> |
for (int i = 0; i < nBins_; i++) |
420 |
> |
velocity.accumulator.push_back( new VectorAccumulator() ); |
421 |
> |
data_[VELOCITY] = velocity; |
422 |
> |
outputMap_["VELOCITY"] = VELOCITY; |
423 |
|
|
424 |
< |
Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); |
425 |
< |
Mat3x3d hmat = currentSnap_->getHmat(); |
426 |
< |
|
427 |
< |
// Target exchange quantities (in each exchange) = 2 Lx Ly dt flux |
428 |
< |
// Lx, Ly = box dimensions in x & y |
429 |
< |
// dt = exchange time interval |
430 |
< |
// flux = target flux |
424 |
> |
OutputData angularVelocity; |
425 |
> |
angularVelocity.units = "angstroms^2/fs"; |
426 |
> |
angularVelocity.title = "AngularVelocity"; |
427 |
> |
angularVelocity.dataType = "Vector3d"; |
428 |
> |
angularVelocity.accumulator.reserve(nBins_); |
429 |
> |
for (int i = 0; i < nBins_; i++) |
430 |
> |
angularVelocity.accumulator.push_back( new VectorAccumulator() ); |
431 |
> |
data_[ANGULARVELOCITY] = angularVelocity; |
432 |
> |
outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY; |
433 |
|
|
434 |
< |
RealType area = currentSnap_->getXYarea(); |
435 |
< |
kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area; |
436 |
< |
momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area; |
434 |
> |
OutputData density; |
435 |
> |
density.units = "g cm^-3"; |
436 |
> |
density.title = "Density"; |
437 |
> |
density.dataType = "RealType"; |
438 |
> |
density.accumulator.reserve(nBins_); |
439 |
> |
for (int i = 0; i < nBins_; i++) |
440 |
> |
density.accumulator.push_back( new Accumulator() ); |
441 |
> |
data_[DENSITY] = density; |
442 |
> |
outputMap_["DENSITY"] = DENSITY; |
443 |
|
|
444 |
< |
// total exchange sums are zeroed out at the beginning: |
444 |
> |
if (hasOutputFields) { |
445 |
> |
parseOutputFileFormat(rnemdParams->getOutputFields()); |
446 |
> |
} else { |
447 |
> |
if (usePeriodicBoundaryConditions_) |
448 |
> |
outputMask_.set(Z); |
449 |
> |
else |
450 |
> |
outputMask_.set(R); |
451 |
> |
switch (rnemdFluxType_) { |
452 |
> |
case rnemdKE: |
453 |
> |
case rnemdRotKE: |
454 |
> |
case rnemdFullKE: |
455 |
> |
outputMask_.set(TEMPERATURE); |
456 |
> |
break; |
457 |
> |
case rnemdPx: |
458 |
> |
case rnemdPy: |
459 |
> |
outputMask_.set(VELOCITY); |
460 |
> |
break; |
461 |
> |
case rnemdPz: |
462 |
> |
case rnemdPvector: |
463 |
> |
outputMask_.set(VELOCITY); |
464 |
> |
outputMask_.set(DENSITY); |
465 |
> |
break; |
466 |
> |
case rnemdLx: |
467 |
> |
case rnemdLy: |
468 |
> |
case rnemdLz: |
469 |
> |
case rnemdLvector: |
470 |
> |
outputMask_.set(ANGULARVELOCITY); |
471 |
> |
break; |
472 |
> |
case rnemdKeLx: |
473 |
> |
case rnemdKeLy: |
474 |
> |
case rnemdKeLz: |
475 |
> |
case rnemdKeLvector: |
476 |
> |
outputMask_.set(TEMPERATURE); |
477 |
> |
outputMask_.set(ANGULARVELOCITY); |
478 |
> |
break; |
479 |
> |
case rnemdKePx: |
480 |
> |
case rnemdKePy: |
481 |
> |
outputMask_.set(TEMPERATURE); |
482 |
> |
outputMask_.set(VELOCITY); |
483 |
> |
break; |
484 |
> |
case rnemdKePvector: |
485 |
> |
outputMask_.set(TEMPERATURE); |
486 |
> |
outputMask_.set(VELOCITY); |
487 |
> |
outputMask_.set(DENSITY); |
488 |
> |
break; |
489 |
> |
default: |
490 |
> |
break; |
491 |
> |
} |
492 |
> |
} |
493 |
> |
|
494 |
> |
if (hasOutputFileName) { |
495 |
> |
rnemdFileName_ = rnemdParams->getOutputFileName(); |
496 |
> |
} else { |
497 |
> |
rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; |
498 |
> |
} |
499 |
|
|
500 |
< |
kineticExchange_ = 0.0; |
401 |
< |
momentumExchange_ = V3Zero; |
500 |
> |
exchangeTime_ = rnemdParams->getExchangeTime(); |
501 |
|
|
502 |
< |
if (hasSlabWidth) |
503 |
< |
slabWidth_ = rnemdParams->getSlabWidth(); |
504 |
< |
else |
505 |
< |
slabWidth_ = hmat(2,2) / 10.0; |
506 |
< |
|
507 |
< |
if (hasSlabACenter) |
508 |
< |
slabACenter_ = rnemdParams->getSlabACenter(); |
509 |
< |
else |
510 |
< |
slabACenter_ = 0.0; |
502 |
> |
Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); |
503 |
> |
// total exchange sums are zeroed out at the beginning: |
504 |
> |
|
505 |
> |
kineticExchange_ = 0.0; |
506 |
> |
momentumExchange_ = V3Zero; |
507 |
> |
angularMomentumExchange_ = V3Zero; |
508 |
> |
|
509 |
> |
std::ostringstream selectionAstream; |
510 |
> |
std::ostringstream selectionBstream; |
511 |
|
|
512 |
< |
if (hasSlabBCenter) |
513 |
< |
slabBCenter_ = rnemdParams->getSlabBCenter(); |
514 |
< |
else |
515 |
< |
slabBCenter_ = hmat(2,2) / 2.0; |
512 |
> |
if (hasSelectionA_) { |
513 |
> |
selectionA_ = rnemdParams->getSelectionA(); |
514 |
> |
} else { |
515 |
> |
if (usePeriodicBoundaryConditions_) { |
516 |
> |
Mat3x3d hmat = currentSnap_->getHmat(); |
517 |
> |
|
518 |
> |
if (hasSlabWidth) |
519 |
> |
slabWidth_ = rnemdParams->getSlabWidth(); |
520 |
> |
else |
521 |
> |
slabWidth_ = hmat(2,2) / 10.0; |
522 |
> |
|
523 |
> |
if (hasSlabACenter) |
524 |
> |
slabACenter_ = rnemdParams->getSlabACenter(); |
525 |
> |
else |
526 |
> |
slabACenter_ = 0.0; |
527 |
> |
|
528 |
> |
selectionAstream << "select wrappedz > " |
529 |
> |
<< slabACenter_ - 0.5*slabWidth_ |
530 |
> |
<< " && wrappedz < " |
531 |
> |
<< slabACenter_ + 0.5*slabWidth_; |
532 |
> |
selectionA_ = selectionAstream.str(); |
533 |
> |
} else { |
534 |
> |
if (hasSphereARadius) |
535 |
> |
sphereARadius_ = rnemdParams->getSphereARadius(); |
536 |
> |
else { |
537 |
> |
// use an initial guess to the size of the inner slab to be 1/10 the |
538 |
> |
// radius of an approximately spherical hull: |
539 |
> |
Thermo thermo(info); |
540 |
> |
RealType hVol = thermo.getHullVolume(); |
541 |
> |
sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0); |
542 |
> |
} |
543 |
> |
selectionAstream << "select r < " << sphereARadius_; |
544 |
> |
selectionA_ = selectionAstream.str(); |
545 |
> |
} |
546 |
> |
} |
547 |
|
|
548 |
+ |
if (hasSelectionB_) { |
549 |
+ |
selectionB_ = rnemdParams->getSelectionB(); |
550 |
+ |
} else { |
551 |
+ |
if (usePeriodicBoundaryConditions_) { |
552 |
+ |
Mat3x3d hmat = currentSnap_->getHmat(); |
553 |
+ |
|
554 |
+ |
if (hasSlabWidth) |
555 |
+ |
slabWidth_ = rnemdParams->getSlabWidth(); |
556 |
+ |
else |
557 |
+ |
slabWidth_ = hmat(2,2) / 10.0; |
558 |
+ |
|
559 |
+ |
if (hasSlabBCenter) |
560 |
+ |
slabBCenter_ = rnemdParams->getSlabBCenter(); |
561 |
+ |
else |
562 |
+ |
slabBCenter_ = hmat(2,2) / 2.0; |
563 |
+ |
|
564 |
+ |
selectionBstream << "select wrappedz > " |
565 |
+ |
<< slabBCenter_ - 0.5*slabWidth_ |
566 |
+ |
<< " && wrappedz < " |
567 |
+ |
<< slabBCenter_ + 0.5*slabWidth_; |
568 |
+ |
selectionB_ = selectionBstream.str(); |
569 |
+ |
} else { |
570 |
+ |
if (hasSphereBRadius_) { |
571 |
+ |
sphereBRadius_ = rnemdParams->getSphereBRadius(); |
572 |
+ |
selectionBstream << "select r > " << sphereBRadius_; |
573 |
+ |
selectionB_ = selectionBstream.str(); |
574 |
+ |
} else { |
575 |
+ |
selectionB_ = "select hull"; |
576 |
+ |
hasSelectionB_ = true; |
577 |
+ |
} |
578 |
+ |
} |
579 |
+ |
} |
580 |
+ |
} |
581 |
+ |
|
582 |
+ |
// object evaluator: |
583 |
+ |
evaluator_.loadScriptString(rnemdObjectSelection_); |
584 |
+ |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
585 |
+ |
evaluatorA_.loadScriptString(selectionA_); |
586 |
+ |
evaluatorB_.loadScriptString(selectionB_); |
587 |
+ |
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
588 |
+ |
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
589 |
+ |
commonA_ = seleManA_ & seleMan_; |
590 |
+ |
commonB_ = seleManB_ & seleMan_; |
591 |
|
} |
592 |
< |
|
592 |
> |
|
593 |
> |
|
594 |
|
RNEMD::~RNEMD() { |
595 |
|
if (!doRNEMD_) return; |
596 |
|
#ifdef IS_MPI |
604 |
|
#ifdef IS_MPI |
605 |
|
} |
606 |
|
#endif |
607 |
+ |
|
608 |
+ |
// delete all of the objects we created: |
609 |
+ |
delete areaAccumulator_; |
610 |
+ |
data_.clear(); |
611 |
|
} |
612 |
|
|
613 |
< |
bool RNEMD::inSlabA(Vector3d pos) { |
436 |
< |
return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_); |
437 |
< |
} |
438 |
< |
bool RNEMD::inSlabB(Vector3d pos) { |
439 |
< |
return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_); |
440 |
< |
} |
441 |
< |
|
442 |
< |
void RNEMD::doSwap() { |
613 |
> |
void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) { |
614 |
|
if (!doRNEMD_) return; |
615 |
+ |
int selei; |
616 |
+ |
int selej; |
617 |
+ |
|
618 |
|
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
619 |
|
Mat3x3d hmat = currentSnap_->getHmat(); |
620 |
|
|
447 |
– |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
448 |
– |
|
449 |
– |
int selei; |
621 |
|
StuntDouble* sd; |
451 |
– |
int idx; |
622 |
|
|
623 |
|
RealType min_val; |
624 |
|
bool min_found = false; |
628 |
|
bool max_found = false; |
629 |
|
StuntDouble* max_sd; |
630 |
|
|
631 |
< |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
632 |
< |
sd = seleMan_.nextSelected(selei)) { |
631 |
> |
for (sd = seleManA_.beginSelected(selei); sd != NULL; |
632 |
> |
sd = seleManA_.nextSelected(selei)) { |
633 |
|
|
464 |
– |
idx = sd->getLocalIndex(); |
465 |
– |
|
634 |
|
Vector3d pos = sd->getPos(); |
635 |
< |
|
635 |
> |
|
636 |
|
// wrap the stuntdouble's position back into the box: |
637 |
< |
|
637 |
> |
|
638 |
|
if (usePeriodicBoundaryConditions_) |
639 |
|
currentSnap_->wrapVector(pos); |
640 |
< |
bool inA = inSlabA(pos); |
641 |
< |
bool inB = inSlabB(pos); |
642 |
< |
|
643 |
< |
if (inA || inB) { |
640 |
> |
|
641 |
> |
RealType mass = sd->getMass(); |
642 |
> |
Vector3d vel = sd->getVel(); |
643 |
> |
RealType value; |
644 |
> |
|
645 |
> |
switch(rnemdFluxType_) { |
646 |
> |
case rnemdKE : |
647 |
|
|
648 |
< |
RealType mass = sd->getMass(); |
649 |
< |
Vector3d vel = sd->getVel(); |
650 |
< |
RealType value; |
651 |
< |
|
652 |
< |
switch(rnemdFluxType_) { |
482 |
< |
case rnemdKE : |
648 |
> |
value = mass * vel.lengthSquare(); |
649 |
> |
|
650 |
> |
if (sd->isDirectional()) { |
651 |
> |
Vector3d angMom = sd->getJ(); |
652 |
> |
Mat3x3d I = sd->getI(); |
653 |
|
|
654 |
< |
value = mass * vel.lengthSquare(); |
655 |
< |
|
656 |
< |
if (sd->isDirectional()) { |
657 |
< |
Vector3d angMom = sd->getJ(); |
658 |
< |
Mat3x3d I = sd->getI(); |
659 |
< |
|
660 |
< |
if (sd->isLinear()) { |
661 |
< |
int i = sd->linearAxis(); |
662 |
< |
int j = (i + 1) % 3; |
663 |
< |
int k = (i + 2) % 3; |
664 |
< |
value += angMom[j] * angMom[j] / I(j, j) + |
665 |
< |
angMom[k] * angMom[k] / I(k, k); |
666 |
< |
} else { |
667 |
< |
value += angMom[0]*angMom[0]/I(0, 0) |
668 |
< |
+ angMom[1]*angMom[1]/I(1, 1) |
669 |
< |
+ angMom[2]*angMom[2]/I(2, 2); |
670 |
< |
} |
671 |
< |
} //angular momenta exchange enabled |
672 |
< |
value *= 0.5; |
673 |
< |
break; |
674 |
< |
case rnemdPx : |
675 |
< |
value = mass * vel[0]; |
676 |
< |
break; |
677 |
< |
case rnemdPy : |
678 |
< |
value = mass * vel[1]; |
679 |
< |
break; |
680 |
< |
case rnemdPz : |
681 |
< |
value = mass * vel[2]; |
682 |
< |
break; |
683 |
< |
default : |
684 |
< |
break; |
654 |
> |
if (sd->isLinear()) { |
655 |
> |
int i = sd->linearAxis(); |
656 |
> |
int j = (i + 1) % 3; |
657 |
> |
int k = (i + 2) % 3; |
658 |
> |
value += angMom[j] * angMom[j] / I(j, j) + |
659 |
> |
angMom[k] * angMom[k] / I(k, k); |
660 |
> |
} else { |
661 |
> |
value += angMom[0]*angMom[0]/I(0, 0) |
662 |
> |
+ angMom[1]*angMom[1]/I(1, 1) |
663 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
664 |
> |
} |
665 |
> |
} //angular momenta exchange enabled |
666 |
> |
value *= 0.5; |
667 |
> |
break; |
668 |
> |
case rnemdPx : |
669 |
> |
value = mass * vel[0]; |
670 |
> |
break; |
671 |
> |
case rnemdPy : |
672 |
> |
value = mass * vel[1]; |
673 |
> |
break; |
674 |
> |
case rnemdPz : |
675 |
> |
value = mass * vel[2]; |
676 |
> |
break; |
677 |
> |
default : |
678 |
> |
break; |
679 |
> |
} |
680 |
> |
if (!max_found) { |
681 |
> |
max_val = value; |
682 |
> |
max_sd = sd; |
683 |
> |
max_found = true; |
684 |
> |
} else { |
685 |
> |
if (max_val < value) { |
686 |
> |
max_val = value; |
687 |
> |
max_sd = sd; |
688 |
|
} |
689 |
+ |
} |
690 |
+ |
} |
691 |
|
|
692 |
< |
if (inA == 0) { |
693 |
< |
if (!min_found) { |
694 |
< |
min_val = value; |
695 |
< |
min_sd = sd; |
696 |
< |
min_found = true; |
697 |
< |
} else { |
698 |
< |
if (min_val > value) { |
699 |
< |
min_val = value; |
700 |
< |
min_sd = sd; |
701 |
< |
} |
702 |
< |
} |
703 |
< |
} else { |
704 |
< |
if (!max_found) { |
705 |
< |
max_val = value; |
706 |
< |
max_sd = sd; |
707 |
< |
max_found = true; |
708 |
< |
} else { |
709 |
< |
if (max_val < value) { |
710 |
< |
max_val = value; |
711 |
< |
max_sd = sd; |
712 |
< |
} |
713 |
< |
} |
714 |
< |
} |
692 |
> |
for (sd = seleManB_.beginSelected(selej); sd != NULL; |
693 |
> |
sd = seleManB_.nextSelected(selej)) { |
694 |
> |
|
695 |
> |
Vector3d pos = sd->getPos(); |
696 |
> |
|
697 |
> |
// wrap the stuntdouble's position back into the box: |
698 |
> |
|
699 |
> |
if (usePeriodicBoundaryConditions_) |
700 |
> |
currentSnap_->wrapVector(pos); |
701 |
> |
|
702 |
> |
RealType mass = sd->getMass(); |
703 |
> |
Vector3d vel = sd->getVel(); |
704 |
> |
RealType value; |
705 |
> |
|
706 |
> |
switch(rnemdFluxType_) { |
707 |
> |
case rnemdKE : |
708 |
> |
|
709 |
> |
value = mass * vel.lengthSquare(); |
710 |
> |
|
711 |
> |
if (sd->isDirectional()) { |
712 |
> |
Vector3d angMom = sd->getJ(); |
713 |
> |
Mat3x3d I = sd->getI(); |
714 |
> |
|
715 |
> |
if (sd->isLinear()) { |
716 |
> |
int i = sd->linearAxis(); |
717 |
> |
int j = (i + 1) % 3; |
718 |
> |
int k = (i + 2) % 3; |
719 |
> |
value += angMom[j] * angMom[j] / I(j, j) + |
720 |
> |
angMom[k] * angMom[k] / I(k, k); |
721 |
> |
} else { |
722 |
> |
value += angMom[0]*angMom[0]/I(0, 0) |
723 |
> |
+ angMom[1]*angMom[1]/I(1, 1) |
724 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
725 |
> |
} |
726 |
> |
} //angular momenta exchange enabled |
727 |
> |
value *= 0.5; |
728 |
> |
break; |
729 |
> |
case rnemdPx : |
730 |
> |
value = mass * vel[0]; |
731 |
> |
break; |
732 |
> |
case rnemdPy : |
733 |
> |
value = mass * vel[1]; |
734 |
> |
break; |
735 |
> |
case rnemdPz : |
736 |
> |
value = mass * vel[2]; |
737 |
> |
break; |
738 |
> |
default : |
739 |
> |
break; |
740 |
|
} |
741 |
+ |
|
742 |
+ |
if (!min_found) { |
743 |
+ |
min_val = value; |
744 |
+ |
min_sd = sd; |
745 |
+ |
min_found = true; |
746 |
+ |
} else { |
747 |
+ |
if (min_val > value) { |
748 |
+ |
min_val = value; |
749 |
+ |
min_sd = sd; |
750 |
+ |
} |
751 |
+ |
} |
752 |
|
} |
753 |
|
|
754 |
< |
#ifdef IS_MPI |
755 |
< |
int nProc, worldRank; |
754 |
> |
#ifdef IS_MPI |
755 |
> |
int worldRank = MPI::COMM_WORLD.Get_rank(); |
756 |
|
|
546 |
– |
nProc = MPI::COMM_WORLD.Get_size(); |
547 |
– |
worldRank = MPI::COMM_WORLD.Get_rank(); |
548 |
– |
|
757 |
|
bool my_min_found = min_found; |
758 |
|
bool my_max_found = max_found; |
759 |
|
|
977 |
|
} |
978 |
|
} |
979 |
|
|
980 |
< |
void RNEMD::doNIVS() { |
980 |
> |
void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) { |
981 |
|
if (!doRNEMD_) return; |
982 |
+ |
int selei; |
983 |
+ |
int selej; |
984 |
+ |
|
985 |
|
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
986 |
+ |
RealType time = currentSnap_->getTime(); |
987 |
|
Mat3x3d hmat = currentSnap_->getHmat(); |
988 |
|
|
777 |
– |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
778 |
– |
|
779 |
– |
int selei; |
989 |
|
StuntDouble* sd; |
781 |
– |
int idx; |
990 |
|
|
991 |
|
vector<StuntDouble*> hotBin, coldBin; |
992 |
|
|
1005 |
|
RealType Kcz = 0.0; |
1006 |
|
RealType Kcw = 0.0; |
1007 |
|
|
1008 |
< |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1009 |
< |
sd = seleMan_.nextSelected(selei)) { |
1008 |
> |
for (sd = smanA.beginSelected(selei); sd != NULL; |
1009 |
> |
sd = smanA.nextSelected(selei)) { |
1010 |
|
|
803 |
– |
idx = sd->getLocalIndex(); |
804 |
– |
|
1011 |
|
Vector3d pos = sd->getPos(); |
1012 |
< |
|
1012 |
> |
|
1013 |
|
// wrap the stuntdouble's position back into the box: |
1014 |
< |
|
1014 |
> |
|
1015 |
|
if (usePeriodicBoundaryConditions_) |
1016 |
|
currentSnap_->wrapVector(pos); |
1017 |
+ |
|
1018 |
+ |
|
1019 |
+ |
RealType mass = sd->getMass(); |
1020 |
+ |
Vector3d vel = sd->getVel(); |
1021 |
+ |
|
1022 |
+ |
hotBin.push_back(sd); |
1023 |
+ |
Phx += mass * vel.x(); |
1024 |
+ |
Phy += mass * vel.y(); |
1025 |
+ |
Phz += mass * vel.z(); |
1026 |
+ |
Khx += mass * vel.x() * vel.x(); |
1027 |
+ |
Khy += mass * vel.y() * vel.y(); |
1028 |
+ |
Khz += mass * vel.z() * vel.z(); |
1029 |
+ |
if (sd->isDirectional()) { |
1030 |
+ |
Vector3d angMom = sd->getJ(); |
1031 |
+ |
Mat3x3d I = sd->getI(); |
1032 |
+ |
if (sd->isLinear()) { |
1033 |
+ |
int i = sd->linearAxis(); |
1034 |
+ |
int j = (i + 1) % 3; |
1035 |
+ |
int k = (i + 2) % 3; |
1036 |
+ |
Khw += angMom[j] * angMom[j] / I(j, j) + |
1037 |
+ |
angMom[k] * angMom[k] / I(k, k); |
1038 |
+ |
} else { |
1039 |
+ |
Khw += angMom[0]*angMom[0]/I(0, 0) |
1040 |
+ |
+ angMom[1]*angMom[1]/I(1, 1) |
1041 |
+ |
+ angMom[2]*angMom[2]/I(2, 2); |
1042 |
+ |
} |
1043 |
+ |
} |
1044 |
+ |
} |
1045 |
+ |
for (sd = smanB.beginSelected(selej); sd != NULL; |
1046 |
+ |
sd = smanB.nextSelected(selej)) { |
1047 |
+ |
Vector3d pos = sd->getPos(); |
1048 |
+ |
|
1049 |
+ |
// wrap the stuntdouble's position back into the box: |
1050 |
+ |
|
1051 |
+ |
if (usePeriodicBoundaryConditions_) |
1052 |
+ |
currentSnap_->wrapVector(pos); |
1053 |
+ |
|
1054 |
+ |
RealType mass = sd->getMass(); |
1055 |
+ |
Vector3d vel = sd->getVel(); |
1056 |
|
|
1057 |
< |
// which bin is this stuntdouble in? |
1058 |
< |
bool inA = inSlabA(pos); |
1059 |
< |
bool inB = inSlabB(pos); |
1060 |
< |
|
1061 |
< |
if (inA || inB) { |
1062 |
< |
|
1063 |
< |
RealType mass = sd->getMass(); |
1064 |
< |
Vector3d vel = sd->getVel(); |
1065 |
< |
|
1066 |
< |
if (inA) { |
1067 |
< |
hotBin.push_back(sd); |
1068 |
< |
Phx += mass * vel.x(); |
1069 |
< |
Phy += mass * vel.y(); |
1070 |
< |
Phz += mass * vel.z(); |
1071 |
< |
Khx += mass * vel.x() * vel.x(); |
1072 |
< |
Khy += mass * vel.y() * vel.y(); |
1073 |
< |
Khz += mass * vel.z() * vel.z(); |
1074 |
< |
if (sd->isDirectional()) { |
1075 |
< |
Vector3d angMom = sd->getJ(); |
1076 |
< |
Mat3x3d I = sd->getI(); |
1077 |
< |
if (sd->isLinear()) { |
833 |
< |
int i = sd->linearAxis(); |
834 |
< |
int j = (i + 1) % 3; |
835 |
< |
int k = (i + 2) % 3; |
836 |
< |
Khw += angMom[j] * angMom[j] / I(j, j) + |
837 |
< |
angMom[k] * angMom[k] / I(k, k); |
838 |
< |
} else { |
839 |
< |
Khw += angMom[0]*angMom[0]/I(0, 0) |
840 |
< |
+ angMom[1]*angMom[1]/I(1, 1) |
841 |
< |
+ angMom[2]*angMom[2]/I(2, 2); |
842 |
< |
} |
843 |
< |
} |
844 |
< |
} else { |
845 |
< |
coldBin.push_back(sd); |
846 |
< |
Pcx += mass * vel.x(); |
847 |
< |
Pcy += mass * vel.y(); |
848 |
< |
Pcz += mass * vel.z(); |
849 |
< |
Kcx += mass * vel.x() * vel.x(); |
850 |
< |
Kcy += mass * vel.y() * vel.y(); |
851 |
< |
Kcz += mass * vel.z() * vel.z(); |
852 |
< |
if (sd->isDirectional()) { |
853 |
< |
Vector3d angMom = sd->getJ(); |
854 |
< |
Mat3x3d I = sd->getI(); |
855 |
< |
if (sd->isLinear()) { |
856 |
< |
int i = sd->linearAxis(); |
857 |
< |
int j = (i + 1) % 3; |
858 |
< |
int k = (i + 2) % 3; |
859 |
< |
Kcw += angMom[j] * angMom[j] / I(j, j) + |
860 |
< |
angMom[k] * angMom[k] / I(k, k); |
861 |
< |
} else { |
862 |
< |
Kcw += angMom[0]*angMom[0]/I(0, 0) |
863 |
< |
+ angMom[1]*angMom[1]/I(1, 1) |
864 |
< |
+ angMom[2]*angMom[2]/I(2, 2); |
865 |
< |
} |
866 |
< |
} |
867 |
< |
} |
1057 |
> |
coldBin.push_back(sd); |
1058 |
> |
Pcx += mass * vel.x(); |
1059 |
> |
Pcy += mass * vel.y(); |
1060 |
> |
Pcz += mass * vel.z(); |
1061 |
> |
Kcx += mass * vel.x() * vel.x(); |
1062 |
> |
Kcy += mass * vel.y() * vel.y(); |
1063 |
> |
Kcz += mass * vel.z() * vel.z(); |
1064 |
> |
if (sd->isDirectional()) { |
1065 |
> |
Vector3d angMom = sd->getJ(); |
1066 |
> |
Mat3x3d I = sd->getI(); |
1067 |
> |
if (sd->isLinear()) { |
1068 |
> |
int i = sd->linearAxis(); |
1069 |
> |
int j = (i + 1) % 3; |
1070 |
> |
int k = (i + 2) % 3; |
1071 |
> |
Kcw += angMom[j] * angMom[j] / I(j, j) + |
1072 |
> |
angMom[k] * angMom[k] / I(k, k); |
1073 |
> |
} else { |
1074 |
> |
Kcw += angMom[0]*angMom[0]/I(0, 0) |
1075 |
> |
+ angMom[1]*angMom[1]/I(1, 1) |
1076 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
1077 |
> |
} |
1078 |
|
} |
1079 |
|
} |
1080 |
|
|
1151 |
|
//if w is in the right range, so should be x, y, z. |
1152 |
|
vector<StuntDouble*>::iterator sdi; |
1153 |
|
Vector3d vel; |
1154 |
< |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1154 |
> |
for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1155 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1156 |
|
vel = (*sdi)->getVel() * c; |
1157 |
|
(*sdi)->setVel(vel); |
1162 |
|
} |
1163 |
|
} |
1164 |
|
w = sqrt(w); |
1165 |
< |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1165 |
> |
for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1166 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1167 |
|
vel = (*sdi)->getVel(); |
1168 |
|
vel.x() *= x; |
1281 |
|
vector<RealType>::iterator ri; |
1282 |
|
RealType r1, r2, alpha0; |
1283 |
|
vector<pair<RealType,RealType> > rps; |
1284 |
< |
for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) { |
1284 |
> |
for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) { |
1285 |
|
r2 = *ri; |
1286 |
|
//check if FindRealRoots() give the right answer |
1287 |
|
if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { |
1313 |
|
RealType diff; |
1314 |
|
pair<RealType,RealType> bestPair = make_pair(1.0, 1.0); |
1315 |
|
vector<pair<RealType,RealType> >::iterator rpi; |
1316 |
< |
for (rpi = rps.begin(); rpi != rps.end(); rpi++) { |
1316 |
> |
for (rpi = rps.begin(); rpi != rps.end(); ++rpi) { |
1317 |
|
r1 = (*rpi).first; |
1318 |
|
r2 = (*rpi).second; |
1319 |
|
switch(rnemdFluxType_) { |
1380 |
|
} |
1381 |
|
vector<StuntDouble*>::iterator sdi; |
1382 |
|
Vector3d vel; |
1383 |
< |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1383 |
> |
for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1384 |
|
vel = (*sdi)->getVel(); |
1385 |
|
vel.x() *= x; |
1386 |
|
vel.y() *= y; |
1391 |
|
x = 1.0 + px * (1.0 - x); |
1392 |
|
y = 1.0 + py * (1.0 - y); |
1393 |
|
z = 1.0 + pz * (1.0 - z); |
1394 |
< |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1394 |
> |
for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1395 |
|
vel = (*sdi)->getVel(); |
1396 |
|
vel.x() *= x; |
1397 |
|
vel.y() *= y; |
1424 |
|
failTrialCount_++; |
1425 |
|
} |
1426 |
|
} |
1427 |
< |
|
1428 |
< |
void RNEMD::doVSS() { |
1427 |
> |
|
1428 |
> |
void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) { |
1429 |
|
if (!doRNEMD_) return; |
1430 |
+ |
int selei; |
1431 |
+ |
int selej; |
1432 |
+ |
|
1433 |
|
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1434 |
|
RealType time = currentSnap_->getTime(); |
1435 |
|
Mat3x3d hmat = currentSnap_->getHmat(); |
1436 |
|
|
1224 |
– |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1225 |
– |
|
1226 |
– |
int selei; |
1437 |
|
StuntDouble* sd; |
1228 |
– |
int idx; |
1438 |
|
|
1439 |
|
vector<StuntDouble*> hotBin, coldBin; |
1440 |
|
|
1441 |
|
Vector3d Ph(V3Zero); |
1442 |
+ |
Vector3d Lh(V3Zero); |
1443 |
|
RealType Mh = 0.0; |
1444 |
+ |
Mat3x3d Ih(0.0); |
1445 |
|
RealType Kh = 0.0; |
1446 |
|
Vector3d Pc(V3Zero); |
1447 |
+ |
Vector3d Lc(V3Zero); |
1448 |
|
RealType Mc = 0.0; |
1449 |
+ |
Mat3x3d Ic(0.0); |
1450 |
|
RealType Kc = 0.0; |
1238 |
– |
|
1451 |
|
|
1452 |
< |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1453 |
< |
sd = seleMan_.nextSelected(selei)) { |
1452 |
> |
// Constraints can be on only the linear or angular momentum, but |
1453 |
> |
// not both. Usually, the user will specify which they want, but |
1454 |
> |
// in case they don't, the use of periodic boundaries should make |
1455 |
> |
// the choice for us. |
1456 |
> |
bool doLinearPart = false; |
1457 |
> |
bool doAngularPart = false; |
1458 |
|
|
1459 |
< |
idx = sd->getLocalIndex(); |
1459 |
> |
switch (rnemdFluxType_) { |
1460 |
> |
case rnemdPx: |
1461 |
> |
case rnemdPy: |
1462 |
> |
case rnemdPz: |
1463 |
> |
case rnemdPvector: |
1464 |
> |
case rnemdKePx: |
1465 |
> |
case rnemdKePy: |
1466 |
> |
case rnemdKePvector: |
1467 |
> |
doLinearPart = true; |
1468 |
> |
break; |
1469 |
> |
case rnemdLx: |
1470 |
> |
case rnemdLy: |
1471 |
> |
case rnemdLz: |
1472 |
> |
case rnemdLvector: |
1473 |
> |
case rnemdKeLx: |
1474 |
> |
case rnemdKeLy: |
1475 |
> |
case rnemdKeLz: |
1476 |
> |
case rnemdKeLvector: |
1477 |
> |
doAngularPart = true; |
1478 |
> |
break; |
1479 |
> |
case rnemdKE: |
1480 |
> |
case rnemdRotKE: |
1481 |
> |
case rnemdFullKE: |
1482 |
> |
default: |
1483 |
> |
if (usePeriodicBoundaryConditions_) |
1484 |
> |
doLinearPart = true; |
1485 |
> |
else |
1486 |
> |
doAngularPart = true; |
1487 |
> |
break; |
1488 |
> |
} |
1489 |
> |
|
1490 |
> |
for (sd = smanA.beginSelected(selei); sd != NULL; |
1491 |
> |
sd = smanA.nextSelected(selei)) { |
1492 |
|
|
1493 |
|
Vector3d pos = sd->getPos(); |
1494 |
|
|
1495 |
|
// wrap the stuntdouble's position back into the box: |
1496 |
+ |
|
1497 |
+ |
if (usePeriodicBoundaryConditions_) |
1498 |
+ |
currentSnap_->wrapVector(pos); |
1499 |
+ |
|
1500 |
+ |
RealType mass = sd->getMass(); |
1501 |
+ |
Vector3d vel = sd->getVel(); |
1502 |
+ |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1503 |
+ |
RealType r2; |
1504 |
+ |
|
1505 |
+ |
hotBin.push_back(sd); |
1506 |
+ |
Ph += mass * vel; |
1507 |
+ |
Mh += mass; |
1508 |
+ |
Kh += mass * vel.lengthSquare(); |
1509 |
+ |
Lh += mass * cross(rPos, vel); |
1510 |
+ |
Ih -= outProduct(rPos, rPos) * mass; |
1511 |
+ |
r2 = rPos.lengthSquare(); |
1512 |
+ |
Ih(0, 0) += mass * r2; |
1513 |
+ |
Ih(1, 1) += mass * r2; |
1514 |
+ |
Ih(2, 2) += mass * r2; |
1515 |
+ |
|
1516 |
+ |
if (rnemdFluxType_ == rnemdFullKE) { |
1517 |
+ |
if (sd->isDirectional()) { |
1518 |
+ |
Vector3d angMom = sd->getJ(); |
1519 |
+ |
Mat3x3d I = sd->getI(); |
1520 |
+ |
if (sd->isLinear()) { |
1521 |
+ |
int i = sd->linearAxis(); |
1522 |
+ |
int j = (i + 1) % 3; |
1523 |
+ |
int k = (i + 2) % 3; |
1524 |
+ |
Kh += angMom[j] * angMom[j] / I(j, j) + |
1525 |
+ |
angMom[k] * angMom[k] / I(k, k); |
1526 |
+ |
} else { |
1527 |
+ |
Kh += angMom[0] * angMom[0] / I(0, 0) + |
1528 |
+ |
angMom[1] * angMom[1] / I(1, 1) + |
1529 |
+ |
angMom[2] * angMom[2] / I(2, 2); |
1530 |
+ |
} |
1531 |
+ |
} |
1532 |
+ |
} |
1533 |
+ |
} |
1534 |
+ |
for (sd = smanB.beginSelected(selej); sd != NULL; |
1535 |
+ |
sd = smanB.nextSelected(selej)) { |
1536 |
|
|
1537 |
+ |
Vector3d pos = sd->getPos(); |
1538 |
+ |
|
1539 |
+ |
// wrap the stuntdouble's position back into the box: |
1540 |
+ |
|
1541 |
|
if (usePeriodicBoundaryConditions_) |
1542 |
|
currentSnap_->wrapVector(pos); |
1543 |
+ |
|
1544 |
+ |
RealType mass = sd->getMass(); |
1545 |
+ |
Vector3d vel = sd->getVel(); |
1546 |
+ |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1547 |
+ |
RealType r2; |
1548 |
|
|
1549 |
< |
// which bin is this stuntdouble in? |
1550 |
< |
bool inA = inSlabA(pos); |
1551 |
< |
bool inB = inSlabB(pos); |
1549 |
> |
coldBin.push_back(sd); |
1550 |
> |
Pc += mass * vel; |
1551 |
> |
Mc += mass; |
1552 |
> |
Kc += mass * vel.lengthSquare(); |
1553 |
> |
Lc += mass * cross(rPos, vel); |
1554 |
> |
Ic -= outProduct(rPos, rPos) * mass; |
1555 |
> |
r2 = rPos.lengthSquare(); |
1556 |
> |
Ic(0, 0) += mass * r2; |
1557 |
> |
Ic(1, 1) += mass * r2; |
1558 |
> |
Ic(2, 2) += mass * r2; |
1559 |
|
|
1560 |
< |
if (inA || inB) { |
1561 |
< |
|
1562 |
< |
RealType mass = sd->getMass(); |
1563 |
< |
Vector3d vel = sd->getVel(); |
1564 |
< |
|
1565 |
< |
if (inA) { |
1566 |
< |
hotBin.push_back(sd); |
1567 |
< |
Ph += mass * vel; |
1568 |
< |
Mh += mass; |
1569 |
< |
Kh += mass * vel.lengthSquare(); |
1570 |
< |
if (rnemdFluxType_ == rnemdFullKE) { |
1571 |
< |
if (sd->isDirectional()) { |
1572 |
< |
Vector3d angMom = sd->getJ(); |
1573 |
< |
Mat3x3d I = sd->getI(); |
1574 |
< |
if (sd->isLinear()) { |
1575 |
< |
int i = sd->linearAxis(); |
1272 |
< |
int j = (i + 1) % 3; |
1273 |
< |
int k = (i + 2) % 3; |
1274 |
< |
Kh += angMom[j] * angMom[j] / I(j, j) + |
1275 |
< |
angMom[k] * angMom[k] / I(k, k); |
1276 |
< |
} else { |
1277 |
< |
Kh += angMom[0] * angMom[0] / I(0, 0) + |
1278 |
< |
angMom[1] * angMom[1] / I(1, 1) + |
1279 |
< |
angMom[2] * angMom[2] / I(2, 2); |
1280 |
< |
} |
1281 |
< |
} |
1282 |
< |
} |
1283 |
< |
} else { //midBin_ |
1284 |
< |
coldBin.push_back(sd); |
1285 |
< |
Pc += mass * vel; |
1286 |
< |
Mc += mass; |
1287 |
< |
Kc += mass * vel.lengthSquare(); |
1288 |
< |
if (rnemdFluxType_ == rnemdFullKE) { |
1289 |
< |
if (sd->isDirectional()) { |
1290 |
< |
Vector3d angMom = sd->getJ(); |
1291 |
< |
Mat3x3d I = sd->getI(); |
1292 |
< |
if (sd->isLinear()) { |
1293 |
< |
int i = sd->linearAxis(); |
1294 |
< |
int j = (i + 1) % 3; |
1295 |
< |
int k = (i + 2) % 3; |
1296 |
< |
Kc += angMom[j] * angMom[j] / I(j, j) + |
1297 |
< |
angMom[k] * angMom[k] / I(k, k); |
1298 |
< |
} else { |
1299 |
< |
Kc += angMom[0] * angMom[0] / I(0, 0) + |
1300 |
< |
angMom[1] * angMom[1] / I(1, 1) + |
1301 |
< |
angMom[2] * angMom[2] / I(2, 2); |
1302 |
< |
} |
1303 |
< |
} |
1304 |
< |
} |
1305 |
< |
} |
1560 |
> |
if (rnemdFluxType_ == rnemdFullKE) { |
1561 |
> |
if (sd->isDirectional()) { |
1562 |
> |
Vector3d angMom = sd->getJ(); |
1563 |
> |
Mat3x3d I = sd->getI(); |
1564 |
> |
if (sd->isLinear()) { |
1565 |
> |
int i = sd->linearAxis(); |
1566 |
> |
int j = (i + 1) % 3; |
1567 |
> |
int k = (i + 2) % 3; |
1568 |
> |
Kc += angMom[j] * angMom[j] / I(j, j) + |
1569 |
> |
angMom[k] * angMom[k] / I(k, k); |
1570 |
> |
} else { |
1571 |
> |
Kc += angMom[0] * angMom[0] / I(0, 0) + |
1572 |
> |
angMom[1] * angMom[1] / I(1, 1) + |
1573 |
> |
angMom[2] * angMom[2] / I(2, 2); |
1574 |
> |
} |
1575 |
> |
} |
1576 |
|
} |
1577 |
|
} |
1578 |
|
|
1582 |
|
#ifdef IS_MPI |
1583 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM); |
1584 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM); |
1585 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM); |
1586 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM); |
1587 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM); |
1588 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM); |
1589 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM); |
1590 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM); |
1591 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9, |
1592 |
+ |
MPI::REALTYPE, MPI::SUM); |
1593 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9, |
1594 |
+ |
MPI::REALTYPE, MPI::SUM); |
1595 |
|
#endif |
1596 |
+ |
|
1597 |
|
|
1598 |
+ |
Vector3d ac, acrec, bc, bcrec; |
1599 |
+ |
Vector3d ah, ahrec, bh, bhrec; |
1600 |
+ |
RealType cNumerator, cDenominator; |
1601 |
+ |
RealType hNumerator, hDenominator; |
1602 |
+ |
|
1603 |
+ |
|
1604 |
|
bool successfulExchange = false; |
1605 |
|
if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty |
1606 |
|
Vector3d vc = Pc / Mc; |
1607 |
< |
Vector3d ac = -momentumTarget_ / Mc + vc; |
1608 |
< |
Vector3d acrec = -momentumTarget_ / Mc; |
1609 |
< |
RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare(); |
1607 |
> |
ac = -momentumTarget_ / Mc + vc; |
1608 |
> |
acrec = -momentumTarget_ / Mc; |
1609 |
> |
|
1610 |
> |
// We now need the inverse of the inertia tensor to calculate the |
1611 |
> |
// angular velocity of the cold slab; |
1612 |
> |
Mat3x3d Ici = Ic.inverse(); |
1613 |
> |
Vector3d omegac = Ici * Lc; |
1614 |
> |
bc = -(Ici * angularMomentumTarget_) + omegac; |
1615 |
> |
bcrec = bc - omegac; |
1616 |
> |
|
1617 |
> |
cNumerator = Kc - kineticTarget_; |
1618 |
> |
if (doLinearPart) |
1619 |
> |
cNumerator -= 0.5 * Mc * ac.lengthSquare(); |
1620 |
> |
|
1621 |
> |
if (doAngularPart) |
1622 |
> |
cNumerator -= 0.5 * ( dot(bc, Ic * bc)); |
1623 |
> |
|
1624 |
|
if (cNumerator > 0.0) { |
1625 |
< |
RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare(); |
1625 |
> |
|
1626 |
> |
cDenominator = Kc; |
1627 |
> |
|
1628 |
> |
if (doLinearPart) |
1629 |
> |
cDenominator -= 0.5 * Mc * vc.lengthSquare(); |
1630 |
> |
|
1631 |
> |
if (doAngularPart) |
1632 |
> |
cDenominator -= 0.5*(dot(omegac, Ic * omegac)); |
1633 |
> |
|
1634 |
|
if (cDenominator > 0.0) { |
1635 |
|
RealType c = sqrt(cNumerator / cDenominator); |
1636 |
|
if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients |
1637 |
+ |
|
1638 |
|
Vector3d vh = Ph / Mh; |
1639 |
< |
Vector3d ah = momentumTarget_ / Mh + vh; |
1640 |
< |
Vector3d ahrec = momentumTarget_ / Mh; |
1641 |
< |
RealType hNumerator = Kh + kineticTarget_ |
1642 |
< |
- 0.5 * Mh * ah.lengthSquare(); |
1643 |
< |
if (hNumerator > 0.0) { |
1644 |
< |
RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare(); |
1639 |
> |
ah = momentumTarget_ / Mh + vh; |
1640 |
> |
ahrec = momentumTarget_ / Mh; |
1641 |
> |
|
1642 |
> |
// We now need the inverse of the inertia tensor to |
1643 |
> |
// calculate the angular velocity of the hot slab; |
1644 |
> |
Mat3x3d Ihi = Ih.inverse(); |
1645 |
> |
Vector3d omegah = Ihi * Lh; |
1646 |
> |
bh = (Ihi * angularMomentumTarget_) + omegah; |
1647 |
> |
bhrec = bh - omegah; |
1648 |
> |
|
1649 |
> |
hNumerator = Kh + kineticTarget_; |
1650 |
> |
if (doLinearPart) |
1651 |
> |
hNumerator -= 0.5 * Mh * ah.lengthSquare(); |
1652 |
> |
|
1653 |
> |
if (doAngularPart) |
1654 |
> |
hNumerator -= 0.5 * ( dot(bh, Ih * bh)); |
1655 |
> |
|
1656 |
> |
if (hNumerator > 0.0) { |
1657 |
> |
|
1658 |
> |
hDenominator = Kh; |
1659 |
> |
if (doLinearPart) |
1660 |
> |
hDenominator -= 0.5 * Mh * vh.lengthSquare(); |
1661 |
> |
if (doAngularPart) |
1662 |
> |
hDenominator -= 0.5*(dot(omegah, Ih * omegah)); |
1663 |
> |
|
1664 |
|
if (hDenominator > 0.0) { |
1665 |
|
RealType h = sqrt(hNumerator / hDenominator); |
1666 |
|
if ((h > 0.9) && (h < 1.1)) { |
1667 |
< |
|
1667 |
> |
|
1668 |
|
vector<StuntDouble*>::iterator sdi; |
1669 |
|
Vector3d vel; |
1670 |
< |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1670 |
> |
Vector3d rPos; |
1671 |
> |
|
1672 |
> |
for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1673 |
|
//vel = (*sdi)->getVel(); |
1674 |
< |
vel = ((*sdi)->getVel() - vc) * c + ac; |
1674 |
> |
rPos = (*sdi)->getPos() - coordinateOrigin_; |
1675 |
> |
if (doLinearPart) |
1676 |
> |
vel = ((*sdi)->getVel() - vc) * c + ac; |
1677 |
> |
if (doAngularPart) |
1678 |
> |
vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos); |
1679 |
> |
|
1680 |
|
(*sdi)->setVel(vel); |
1681 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1682 |
|
if ((*sdi)->isDirectional()) { |
1685 |
|
} |
1686 |
|
} |
1687 |
|
} |
1688 |
< |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1688 |
> |
for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1689 |
|
//vel = (*sdi)->getVel(); |
1690 |
< |
vel = ((*sdi)->getVel() - vh) * h + ah; |
1690 |
> |
rPos = (*sdi)->getPos() - coordinateOrigin_; |
1691 |
> |
if (doLinearPart) |
1692 |
> |
vel = ((*sdi)->getVel() - vh) * h + ah; |
1693 |
> |
if (doAngularPart) |
1694 |
> |
vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos); |
1695 |
> |
|
1696 |
|
(*sdi)->setVel(vel); |
1697 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1698 |
|
if ((*sdi)->isDirectional()) { |
1704 |
|
successfulExchange = true; |
1705 |
|
kineticExchange_ += kineticTarget_; |
1706 |
|
momentumExchange_ += momentumTarget_; |
1707 |
+ |
angularMomentumExchange_ += angularMomentumTarget_; |
1708 |
|
} |
1709 |
|
} |
1710 |
|
} |
1723 |
|
failTrialCount_++; |
1724 |
|
} |
1725 |
|
} |
1726 |
+ |
|
1727 |
+ |
RealType RNEMD::getDividingArea() { |
1728 |
+ |
|
1729 |
+ |
if (hasDividingArea_) return dividingArea_; |
1730 |
+ |
|
1731 |
+ |
RealType areaA, areaB; |
1732 |
+ |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
1733 |
+ |
|
1734 |
+ |
if (hasSelectionA_) { |
1735 |
+ |
int isd; |
1736 |
+ |
StuntDouble* sd; |
1737 |
+ |
vector<StuntDouble*> aSites; |
1738 |
+ |
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1739 |
+ |
for (sd = seleManA_.beginSelected(isd); sd != NULL; |
1740 |
+ |
sd = seleManA_.nextSelected(isd)) { |
1741 |
+ |
aSites.push_back(sd); |
1742 |
+ |
} |
1743 |
+ |
ConvexHull* surfaceMeshA = new ConvexHull(); |
1744 |
+ |
surfaceMeshA->computeHull(aSites); |
1745 |
+ |
areaA = surfaceMeshA->getArea(); |
1746 |
+ |
delete surfaceMeshA; |
1747 |
+ |
|
1748 |
+ |
} else { |
1749 |
+ |
if (usePeriodicBoundaryConditions_) { |
1750 |
+ |
// in periodic boundaries, the surface area is twice the x-y |
1751 |
+ |
// area of the current box: |
1752 |
+ |
areaA = 2.0 * snap->getXYarea(); |
1753 |
+ |
} else { |
1754 |
+ |
// in non-periodic simulations, without explicitly setting |
1755 |
+ |
// selections, the sphere radius sets the surface area of the |
1756 |
+ |
// dividing surface: |
1757 |
+ |
areaA = 4.0 * M_PI * pow(sphereARadius_, 2); |
1758 |
+ |
} |
1759 |
+ |
} |
1760 |
+ |
|
1761 |
+ |
|
1762 |
|
|
1763 |
+ |
if (hasSelectionB_) { |
1764 |
+ |
int isd; |
1765 |
+ |
StuntDouble* sd; |
1766 |
+ |
vector<StuntDouble*> bSites; |
1767 |
+ |
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1768 |
+ |
for (sd = seleManB_.beginSelected(isd); sd != NULL; |
1769 |
+ |
sd = seleManB_.nextSelected(isd)) { |
1770 |
+ |
bSites.push_back(sd); |
1771 |
+ |
} |
1772 |
+ |
ConvexHull* surfaceMeshB = new ConvexHull(); |
1773 |
+ |
surfaceMeshB->computeHull(bSites); |
1774 |
+ |
areaB = surfaceMeshB->getArea(); |
1775 |
+ |
delete surfaceMeshB; |
1776 |
+ |
|
1777 |
+ |
} else { |
1778 |
+ |
if (usePeriodicBoundaryConditions_) { |
1779 |
+ |
// in periodic boundaries, the surface area is twice the x-y |
1780 |
+ |
// area of the current box: |
1781 |
+ |
areaB = 2.0 * snap->getXYarea(); |
1782 |
+ |
} else { |
1783 |
+ |
// in non-periodic simulations, without explicitly setting |
1784 |
+ |
// selections, but if a sphereBradius has been set, just use that: |
1785 |
+ |
areaB = 4.0 * M_PI * pow(sphereBRadius_, 2); |
1786 |
+ |
} |
1787 |
+ |
} |
1788 |
+ |
|
1789 |
+ |
dividingArea_ = min(areaA, areaB); |
1790 |
+ |
hasDividingArea_ = true; |
1791 |
+ |
return dividingArea_; |
1792 |
+ |
} |
1793 |
+ |
|
1794 |
|
void RNEMD::doRNEMD() { |
1795 |
|
if (!doRNEMD_) return; |
1796 |
|
trialCount_++; |
1797 |
+ |
|
1798 |
+ |
// object evaluator: |
1799 |
+ |
evaluator_.loadScriptString(rnemdObjectSelection_); |
1800 |
+ |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1801 |
+ |
|
1802 |
+ |
evaluatorA_.loadScriptString(selectionA_); |
1803 |
+ |
evaluatorB_.loadScriptString(selectionB_); |
1804 |
+ |
|
1805 |
+ |
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1806 |
+ |
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1807 |
+ |
|
1808 |
+ |
commonA_ = seleManA_ & seleMan_; |
1809 |
+ |
commonB_ = seleManB_ & seleMan_; |
1810 |
+ |
|
1811 |
+ |
// Target exchange quantities (in each exchange) = dividingArea * dt * flux |
1812 |
+ |
// dt = exchange time interval |
1813 |
+ |
// flux = target flux |
1814 |
+ |
// dividingArea = smallest dividing surface between the two regions |
1815 |
+ |
|
1816 |
+ |
hasDividingArea_ = false; |
1817 |
+ |
RealType area = getDividingArea(); |
1818 |
+ |
|
1819 |
+ |
kineticTarget_ = kineticFlux_ * exchangeTime_ * area; |
1820 |
+ |
momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area; |
1821 |
+ |
angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area; |
1822 |
+ |
|
1823 |
|
switch(rnemdMethod_) { |
1824 |
|
case rnemdSwap: |
1825 |
< |
doSwap(); |
1825 |
> |
doSwap(commonA_, commonB_); |
1826 |
|
break; |
1827 |
|
case rnemdNIVS: |
1828 |
< |
doNIVS(); |
1828 |
> |
doNIVS(commonA_, commonB_); |
1829 |
|
break; |
1830 |
|
case rnemdVSS: |
1831 |
< |
doVSS(); |
1831 |
> |
doVSS(commonA_, commonB_); |
1832 |
|
break; |
1833 |
|
case rnemdUnkownMethod: |
1834 |
|
default : |
1839 |
|
void RNEMD::collectData() { |
1840 |
|
if (!doRNEMD_) return; |
1841 |
|
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1842 |
+ |
|
1843 |
+ |
// collectData can be called more frequently than the doRNEMD, so use the |
1844 |
+ |
// computed area from the last exchange time: |
1845 |
+ |
RealType area = getDividingArea(); |
1846 |
+ |
areaAccumulator_->add(area); |
1847 |
|
Mat3x3d hmat = currentSnap_->getHmat(); |
1412 |
– |
|
1413 |
– |
areaAccumulator_->add(currentSnap_->getXYarea()); |
1414 |
– |
|
1848 |
|
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1849 |
|
|
1850 |
|
int selei(0); |
1851 |
|
StuntDouble* sd; |
1852 |
< |
int idx; |
1852 |
> |
int binNo; |
1853 |
|
|
1854 |
|
vector<RealType> binMass(nBins_, 0.0); |
1855 |
|
vector<RealType> binPx(nBins_, 0.0); |
1856 |
|
vector<RealType> binPy(nBins_, 0.0); |
1857 |
|
vector<RealType> binPz(nBins_, 0.0); |
1858 |
+ |
vector<RealType> binOmegax(nBins_, 0.0); |
1859 |
+ |
vector<RealType> binOmegay(nBins_, 0.0); |
1860 |
+ |
vector<RealType> binOmegaz(nBins_, 0.0); |
1861 |
|
vector<RealType> binKE(nBins_, 0.0); |
1862 |
|
vector<int> binDOF(nBins_, 0); |
1863 |
|
vector<int> binCount(nBins_, 0); |
1865 |
|
// alternative approach, track all molecules instead of only those |
1866 |
|
// selected for scaling/swapping: |
1867 |
|
/* |
1868 |
< |
SimInfo::MoleculeIterator miter; |
1869 |
< |
vector<StuntDouble*>::iterator iiter; |
1870 |
< |
Molecule* mol; |
1871 |
< |
StuntDouble* sd; |
1872 |
< |
for (mol = info_->beginMolecule(miter); mol != NULL; |
1868 |
> |
SimInfo::MoleculeIterator miter; |
1869 |
> |
vector<StuntDouble*>::iterator iiter; |
1870 |
> |
Molecule* mol; |
1871 |
> |
StuntDouble* sd; |
1872 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
1873 |
|
mol = info_->nextMolecule(miter)) |
1874 |
|
sd is essentially sd |
1875 |
< |
for (sd = mol->beginIntegrableObject(iiter); |
1876 |
< |
sd != NULL; |
1877 |
< |
sd = mol->nextIntegrableObject(iiter)) |
1875 |
> |
for (sd = mol->beginIntegrableObject(iiter); |
1876 |
> |
sd != NULL; |
1877 |
> |
sd = mol->nextIntegrableObject(iiter)) |
1878 |
|
*/ |
1879 |
|
|
1880 |
|
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1881 |
< |
sd = seleMan_.nextSelected(selei)) { |
1881 |
> |
sd = seleMan_.nextSelected(selei)) { |
1882 |
|
|
1447 |
– |
idx = sd->getLocalIndex(); |
1448 |
– |
|
1883 |
|
Vector3d pos = sd->getPos(); |
1884 |
|
|
1885 |
|
// wrap the stuntdouble's position back into the box: |
1886 |
|
|
1887 |
< |
if (usePeriodicBoundaryConditions_) |
1887 |
> |
if (usePeriodicBoundaryConditions_) { |
1888 |
|
currentSnap_->wrapVector(pos); |
1889 |
+ |
// which bin is this stuntdouble in? |
1890 |
+ |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1891 |
+ |
// Shift molecules by half a box to have bins start at 0 |
1892 |
+ |
// The modulo operator is used to wrap the case when we are |
1893 |
+ |
// beyond the end of the bins back to the beginning. |
1894 |
+ |
binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
1895 |
+ |
} else { |
1896 |
+ |
Vector3d rPos = pos - coordinateOrigin_; |
1897 |
+ |
binNo = int(rPos.length() / binWidth_); |
1898 |
+ |
} |
1899 |
|
|
1456 |
– |
|
1457 |
– |
// which bin is this stuntdouble in? |
1458 |
– |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1459 |
– |
// Shift molecules by half a box to have bins start at 0 |
1460 |
– |
// The modulo operator is used to wrap the case when we are |
1461 |
– |
// beyond the end of the bins back to the beginning. |
1462 |
– |
int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
1463 |
– |
|
1900 |
|
RealType mass = sd->getMass(); |
1901 |
|
Vector3d vel = sd->getVel(); |
1902 |
< |
|
1903 |
< |
binCount[binNo]++; |
1904 |
< |
binMass[binNo] += mass; |
1905 |
< |
binPx[binNo] += mass*vel.x(); |
1906 |
< |
binPy[binNo] += mass*vel.y(); |
1907 |
< |
binPz[binNo] += mass*vel.z(); |
1908 |
< |
binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); |
1909 |
< |
binDOF[binNo] += 3; |
1910 |
< |
|
1911 |
< |
if (sd->isDirectional()) { |
1912 |
< |
Vector3d angMom = sd->getJ(); |
1913 |
< |
Mat3x3d I = sd->getI(); |
1914 |
< |
if (sd->isLinear()) { |
1915 |
< |
int i = sd->linearAxis(); |
1916 |
< |
int j = (i + 1) % 3; |
1917 |
< |
int k = (i + 2) % 3; |
1918 |
< |
binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
1919 |
< |
angMom[k] * angMom[k] / I(k, k)); |
1920 |
< |
binDOF[binNo] += 2; |
1921 |
< |
} else { |
1922 |
< |
binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
1923 |
< |
angMom[1] * angMom[1] / I(1, 1) + |
1924 |
< |
angMom[2] * angMom[2] / I(2, 2)); |
1925 |
< |
binDOF[binNo] += 3; |
1902 |
> |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1903 |
> |
Vector3d aVel = cross(rPos, vel); |
1904 |
> |
|
1905 |
> |
if (binNo >= 0 && binNo < nBins_) { |
1906 |
> |
binCount[binNo]++; |
1907 |
> |
binMass[binNo] += mass; |
1908 |
> |
binPx[binNo] += mass*vel.x(); |
1909 |
> |
binPy[binNo] += mass*vel.y(); |
1910 |
> |
binPz[binNo] += mass*vel.z(); |
1911 |
> |
binOmegax[binNo] += aVel.x(); |
1912 |
> |
binOmegay[binNo] += aVel.y(); |
1913 |
> |
binOmegaz[binNo] += aVel.z(); |
1914 |
> |
binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); |
1915 |
> |
binDOF[binNo] += 3; |
1916 |
> |
|
1917 |
> |
if (sd->isDirectional()) { |
1918 |
> |
Vector3d angMom = sd->getJ(); |
1919 |
> |
Mat3x3d I = sd->getI(); |
1920 |
> |
if (sd->isLinear()) { |
1921 |
> |
int i = sd->linearAxis(); |
1922 |
> |
int j = (i + 1) % 3; |
1923 |
> |
int k = (i + 2) % 3; |
1924 |
> |
binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
1925 |
> |
angMom[k] * angMom[k] / I(k, k)); |
1926 |
> |
binDOF[binNo] += 2; |
1927 |
> |
} else { |
1928 |
> |
binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
1929 |
> |
angMom[1] * angMom[1] / I(1, 1) + |
1930 |
> |
angMom[2] * angMom[2] / I(2, 2)); |
1931 |
> |
binDOF[binNo] += 3; |
1932 |
> |
} |
1933 |
|
} |
1934 |
|
} |
1935 |
|
} |
1945 |
|
nBins_, MPI::REALTYPE, MPI::SUM); |
1946 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0], |
1947 |
|
nBins_, MPI::REALTYPE, MPI::SUM); |
1948 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0], |
1949 |
+ |
nBins_, MPI::REALTYPE, MPI::SUM); |
1950 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0], |
1951 |
+ |
nBins_, MPI::REALTYPE, MPI::SUM); |
1952 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0], |
1953 |
+ |
nBins_, MPI::REALTYPE, MPI::SUM); |
1954 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0], |
1955 |
|
nBins_, MPI::REALTYPE, MPI::SUM); |
1956 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0], |
1958 |
|
#endif |
1959 |
|
|
1960 |
|
Vector3d vel; |
1961 |
+ |
Vector3d aVel; |
1962 |
|
RealType den; |
1963 |
|
RealType temp; |
1964 |
|
RealType z; |
1965 |
+ |
RealType r; |
1966 |
|
for (int i = 0; i < nBins_; i++) { |
1967 |
< |
z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); |
1967 |
> |
if (usePeriodicBoundaryConditions_) { |
1968 |
> |
z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); |
1969 |
> |
den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
1970 |
> |
/ currentSnap_->getVolume() ; |
1971 |
> |
} else { |
1972 |
> |
r = (((RealType)i + 0.5) * binWidth_); |
1973 |
> |
RealType rinner = (RealType)i * binWidth_; |
1974 |
> |
RealType router = (RealType)(i+1) * binWidth_; |
1975 |
> |
den = binMass[i] * 3.0 * PhysicalConstants::densityConvert |
1976 |
> |
/ (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
1977 |
> |
} |
1978 |
|
vel.x() = binPx[i] / binMass[i]; |
1979 |
|
vel.y() = binPy[i] / binMass[i]; |
1980 |
|
vel.z() = binPz[i] / binMass[i]; |
1981 |
+ |
aVel.x() = binOmegax[i] / binCount[i]; |
1982 |
+ |
aVel.y() = binOmegay[i] / binCount[i]; |
1983 |
+ |
aVel.z() = binOmegaz[i] / binCount[i]; |
1984 |
|
|
1985 |
< |
den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
1986 |
< |
/ currentSnap_->getVolume() ; |
1987 |
< |
|
1988 |
< |
temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * |
1989 |
< |
PhysicalConstants::energyConvert); |
1990 |
< |
|
1991 |
< |
for (unsigned int j = 0; j < outputMask_.size(); ++j) { |
1992 |
< |
if(outputMask_[j]) { |
1993 |
< |
switch(j) { |
1994 |
< |
case Z: |
1995 |
< |
(data_[j].accumulator[i])->add(z); |
1996 |
< |
break; |
1997 |
< |
case TEMPERATURE: |
1998 |
< |
data_[j].accumulator[i]->add(temp); |
1999 |
< |
break; |
2000 |
< |
case VELOCITY: |
2001 |
< |
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); |
2002 |
< |
break; |
2003 |
< |
case DENSITY: |
2004 |
< |
data_[j].accumulator[i]->add(den); |
2005 |
< |
break; |
1985 |
> |
if (binCount[i] > 0) { |
1986 |
> |
// only add values if there are things to add |
1987 |
> |
temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * |
1988 |
> |
PhysicalConstants::energyConvert); |
1989 |
> |
|
1990 |
> |
for (unsigned int j = 0; j < outputMask_.size(); ++j) { |
1991 |
> |
if(outputMask_[j]) { |
1992 |
> |
switch(j) { |
1993 |
> |
case Z: |
1994 |
> |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z); |
1995 |
> |
break; |
1996 |
> |
case R: |
1997 |
> |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r); |
1998 |
> |
break; |
1999 |
> |
case TEMPERATURE: |
2000 |
> |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp); |
2001 |
> |
break; |
2002 |
> |
case VELOCITY: |
2003 |
> |
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); |
2004 |
> |
break; |
2005 |
> |
case ANGULARVELOCITY: |
2006 |
> |
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel); |
2007 |
> |
break; |
2008 |
> |
case DENSITY: |
2009 |
> |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den); |
2010 |
> |
break; |
2011 |
> |
} |
2012 |
|
} |
2013 |
|
} |
2014 |
|
} |
2015 |
|
} |
2016 |
+ |
hasData_ = true; |
2017 |
|
} |
2018 |
|
|
2019 |
|
void RNEMD::getStarted() { |
2020 |
|
if (!doRNEMD_) return; |
2021 |
+ |
hasDividingArea_ = false; |
2022 |
|
collectData(); |
2023 |
|
writeOutputFile(); |
2024 |
|
} |
2046 |
|
|
2047 |
|
void RNEMD::writeOutputFile() { |
2048 |
|
if (!doRNEMD_) return; |
2049 |
+ |
if (!hasData_) return; |
2050 |
|
|
2051 |
|
#ifdef IS_MPI |
2052 |
|
// If we're the root node, should we print out the results |
2068 |
|
RealType time = currentSnap_->getTime(); |
2069 |
|
RealType avgArea; |
2070 |
|
areaAccumulator_->getAverage(avgArea); |
1598 |
– |
RealType Jz = kineticExchange_ / (2.0 * time * avgArea) |
1599 |
– |
/ PhysicalConstants::energyConvert; |
1600 |
– |
Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea); |
2071 |
|
|
2072 |
+ |
RealType Jz(0.0); |
2073 |
+ |
Vector3d JzP(V3Zero); |
2074 |
+ |
Vector3d JzL(V3Zero); |
2075 |
+ |
if (time >= info_->getSimParams()->getDt()) { |
2076 |
+ |
Jz = kineticExchange_ / (time * avgArea) |
2077 |
+ |
/ PhysicalConstants::energyConvert; |
2078 |
+ |
JzP = momentumExchange_ / (time * avgArea); |
2079 |
+ |
JzL = angularMomentumExchange_ / (time * avgArea); |
2080 |
+ |
} |
2081 |
+ |
|
2082 |
|
rnemdFile_ << "#######################################################\n"; |
2083 |
|
rnemdFile_ << "# RNEMD {\n"; |
2084 |
|
|
2097 |
|
|
2098 |
|
rnemdFile_ << "# objectSelection = \"" |
2099 |
|
<< rnemdObjectSelection_ << "\";\n"; |
2100 |
< |
rnemdFile_ << "# slabWidth = " << slabWidth_ << ";\n"; |
2101 |
< |
rnemdFile_ << "# slabAcenter = " << slabACenter_ << ";\n"; |
1622 |
< |
rnemdFile_ << "# slabBcenter = " << slabBCenter_ << ";\n"; |
2100 |
> |
rnemdFile_ << "# selectionA = \"" << selectionA_ << "\";\n"; |
2101 |
> |
rnemdFile_ << "# selectionB = \"" << selectionB_ << "\";\n"; |
2102 |
|
rnemdFile_ << "# }\n"; |
2103 |
|
rnemdFile_ << "#######################################################\n"; |
2104 |
|
rnemdFile_ << "# RNEMD report:\n"; |
2105 |
< |
rnemdFile_ << "# running time = " << time << " fs\n"; |
2106 |
< |
rnemdFile_ << "# target flux:\n"; |
2107 |
< |
rnemdFile_ << "# kinetic = " |
2105 |
> |
rnemdFile_ << "# running time = " << time << " fs\n"; |
2106 |
> |
rnemdFile_ << "# Target flux:\n"; |
2107 |
> |
rnemdFile_ << "# kinetic = " |
2108 |
|
<< kineticFlux_ / PhysicalConstants::energyConvert |
2109 |
|
<< " (kcal/mol/A^2/fs)\n"; |
2110 |
< |
rnemdFile_ << "# momentum = " << momentumFluxVector_ |
2110 |
> |
rnemdFile_ << "# momentum = " << momentumFluxVector_ |
2111 |
|
<< " (amu/A/fs^2)\n"; |
2112 |
< |
rnemdFile_ << "# target one-time exchanges:\n"; |
2113 |
< |
rnemdFile_ << "# kinetic = " |
2112 |
> |
rnemdFile_ << "# angular momentum = " << angularMomentumFluxVector_ |
2113 |
> |
<< " (amu/A^2/fs^2)\n"; |
2114 |
> |
rnemdFile_ << "# Target one-time exchanges:\n"; |
2115 |
> |
rnemdFile_ << "# kinetic = " |
2116 |
|
<< kineticTarget_ / PhysicalConstants::energyConvert |
2117 |
|
<< " (kcal/mol)\n"; |
2118 |
< |
rnemdFile_ << "# momentum = " << momentumTarget_ |
2118 |
> |
rnemdFile_ << "# momentum = " << momentumTarget_ |
2119 |
|
<< " (amu*A/fs)\n"; |
2120 |
< |
rnemdFile_ << "# actual exchange totals:\n"; |
2121 |
< |
rnemdFile_ << "# kinetic = " |
2120 |
> |
rnemdFile_ << "# angular momentum = " << angularMomentumTarget_ |
2121 |
> |
<< " (amu*A^2/fs)\n"; |
2122 |
> |
rnemdFile_ << "# Actual exchange totals:\n"; |
2123 |
> |
rnemdFile_ << "# kinetic = " |
2124 |
|
<< kineticExchange_ / PhysicalConstants::energyConvert |
2125 |
|
<< " (kcal/mol)\n"; |
2126 |
< |
rnemdFile_ << "# momentum = " << momentumExchange_ |
2126 |
> |
rnemdFile_ << "# momentum = " << momentumExchange_ |
2127 |
|
<< " (amu*A/fs)\n"; |
2128 |
< |
rnemdFile_ << "# actual flux:\n"; |
2129 |
< |
rnemdFile_ << "# kinetic = " << Jz |
2128 |
> |
rnemdFile_ << "# angular momentum = " << angularMomentumExchange_ |
2129 |
> |
<< " (amu*A^2/fs)\n"; |
2130 |
> |
rnemdFile_ << "# Actual flux:\n"; |
2131 |
> |
rnemdFile_ << "# kinetic = " << Jz |
2132 |
|
<< " (kcal/mol/A^2/fs)\n"; |
2133 |
< |
rnemdFile_ << "# momentum = " << JzP |
2133 |
> |
rnemdFile_ << "# momentum = " << JzP |
2134 |
|
<< " (amu/A/fs^2)\n"; |
2135 |
< |
rnemdFile_ << "# exchange statistics:\n"; |
2136 |
< |
rnemdFile_ << "# attempted = " << trialCount_ << "\n"; |
2137 |
< |
rnemdFile_ << "# failed = " << failTrialCount_ << "\n"; |
2135 |
> |
rnemdFile_ << "# angular momentum = " << JzL |
2136 |
> |
<< " (amu/A^2/fs^2)\n"; |
2137 |
> |
rnemdFile_ << "# Exchange statistics:\n"; |
2138 |
> |
rnemdFile_ << "# attempted = " << trialCount_ << "\n"; |
2139 |
> |
rnemdFile_ << "# failed = " << failTrialCount_ << "\n"; |
2140 |
|
if (rnemdMethod_ == rnemdNIVS) { |
2141 |
< |
rnemdFile_ << "# NIVS root-check errors = " |
2141 |
> |
rnemdFile_ << "# NIVS root-check errors = " |
2142 |
|
<< failRootCount_ << "\n"; |
2143 |
|
} |
2144 |
|
rnemdFile_ << "#######################################################\n"; |
2159 |
|
|
2160 |
|
rnemdFile_.precision(8); |
2161 |
|
|
2162 |
< |
for (unsigned int j = 0; j < nBins_; j++) { |
2162 |
> |
for (int j = 0; j < nBins_; j++) { |
2163 |
|
|
2164 |
|
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
2165 |
|
if (outputMask_[i]) { |
2166 |
|
if (data_[i].dataType == "RealType") |
2167 |
|
writeReal(i,j); |
2168 |
< |
else if (data_[i].dataType == "Vector3d") |
2168 |
> |
else if (data_[i].dataType == "Vector3d") |
2169 |
|
writeVector(i,j); |
2170 |
|
else { |
2171 |
|
sprintf( painCave.errMsg, |
2185 |
|
rnemdFile_ << "#######################################################\n"; |
2186 |
|
|
2187 |
|
|
2188 |
< |
for (unsigned int j = 0; j < nBins_; j++) { |
2188 |
> |
for (int j = 0; j < nBins_; j++) { |
2189 |
|
rnemdFile_ << "#"; |
2190 |
|
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
2191 |
|
if (outputMask_[i]) { |
2218 |
|
void RNEMD::writeReal(int index, unsigned int bin) { |
2219 |
|
if (!doRNEMD_) return; |
2220 |
|
assert(index >=0 && index < ENDINDEX); |
2221 |
< |
assert(bin < nBins_); |
2221 |
> |
assert(int(bin) < nBins_); |
2222 |
|
RealType s; |
2223 |
+ |
int count; |
2224 |
|
|
2225 |
< |
data_[index].accumulator[bin]->getAverage(s); |
2225 |
> |
count = data_[index].accumulator[bin]->count(); |
2226 |
> |
if (count == 0) return; |
2227 |
|
|
2228 |
+ |
dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s); |
2229 |
+ |
|
2230 |
|
if (! isinf(s) && ! isnan(s)) { |
2231 |
|
rnemdFile_ << "\t" << s; |
2232 |
|
} else{ |
2233 |
|
sprintf( painCave.errMsg, |
2234 |
< |
"RNEMD detected a numerical error writing: %s for bin %d", |
2234 |
> |
"RNEMD detected a numerical error writing: %s for bin %u", |
2235 |
|
data_[index].title.c_str(), bin); |
2236 |
|
painCave.isFatal = 1; |
2237 |
|
simError(); |
2241 |
|
void RNEMD::writeVector(int index, unsigned int bin) { |
2242 |
|
if (!doRNEMD_) return; |
2243 |
|
assert(index >=0 && index < ENDINDEX); |
2244 |
< |
assert(bin < nBins_); |
2244 |
> |
assert(int(bin) < nBins_); |
2245 |
|
Vector3d s; |
2246 |
+ |
int count; |
2247 |
+ |
|
2248 |
+ |
count = data_[index].accumulator[bin]->count(); |
2249 |
+ |
|
2250 |
+ |
if (count == 0) return; |
2251 |
+ |
|
2252 |
|
dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s); |
2253 |
|
if (isinf(s[0]) || isnan(s[0]) || |
2254 |
|
isinf(s[1]) || isnan(s[1]) || |
2255 |
|
isinf(s[2]) || isnan(s[2]) ) { |
2256 |
|
sprintf( painCave.errMsg, |
2257 |
< |
"RNEMD detected a numerical error writing: %s for bin %d", |
2257 |
> |
"RNEMD detected a numerical error writing: %s for bin %u", |
2258 |
|
data_[index].title.c_str(), bin); |
2259 |
|
painCave.isFatal = 1; |
2260 |
|
simError(); |
2266 |
|
void RNEMD::writeRealStdDev(int index, unsigned int bin) { |
2267 |
|
if (!doRNEMD_) return; |
2268 |
|
assert(index >=0 && index < ENDINDEX); |
2269 |
< |
assert(bin < nBins_); |
2269 |
> |
assert(int(bin) < nBins_); |
2270 |
|
RealType s; |
2271 |
+ |
int count; |
2272 |
|
|
2273 |
< |
data_[index].accumulator[bin]->getStdDev(s); |
2273 |
> |
count = data_[index].accumulator[bin]->count(); |
2274 |
> |
if (count == 0) return; |
2275 |
|
|
2276 |
+ |
dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s); |
2277 |
+ |
|
2278 |
|
if (! isinf(s) && ! isnan(s)) { |
2279 |
|
rnemdFile_ << "\t" << s; |
2280 |
|
} else{ |
2281 |
|
sprintf( painCave.errMsg, |
2282 |
< |
"RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2282 |
> |
"RNEMD detected a numerical error writing: %s std. dev. for bin %u", |
2283 |
|
data_[index].title.c_str(), bin); |
2284 |
|
painCave.isFatal = 1; |
2285 |
|
simError(); |
2289 |
|
void RNEMD::writeVectorStdDev(int index, unsigned int bin) { |
2290 |
|
if (!doRNEMD_) return; |
2291 |
|
assert(index >=0 && index < ENDINDEX); |
2292 |
< |
assert(bin < nBins_); |
2292 |
> |
assert(int(bin) < nBins_); |
2293 |
|
Vector3d s; |
2294 |
+ |
int count; |
2295 |
+ |
|
2296 |
+ |
count = data_[index].accumulator[bin]->count(); |
2297 |
+ |
if (count == 0) return; |
2298 |
+ |
|
2299 |
|
dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s); |
2300 |
|
if (isinf(s[0]) || isnan(s[0]) || |
2301 |
|
isinf(s[1]) || isnan(s[1]) || |
2302 |
|
isinf(s[2]) || isnan(s[2]) ) { |
2303 |
|
sprintf( painCave.errMsg, |
2304 |
< |
"RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2304 |
> |
"RNEMD detected a numerical error writing: %s std. dev. for bin %u", |
2305 |
|
data_[index].title.c_str(), bin); |
2306 |
|
painCave.isFatal = 1; |
2307 |
|
simError(); |