ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 < #include "integrators/RNEMD.hpp"
42 > #include <cmath>
43 > #include <sstream>
44 > #include <string>
45 >
46 > #include "rnemd/RNEMD.hpp"
47   #include "math/Vector3.hpp"
48 + #include "math/Vector.hpp"
49   #include "math/SquareMatrix3.hpp"
50 + #include "math/Polynomial.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "primitives/StuntDouble.hpp"
53 < #include "utils/OOPSEConstant.hpp"
53 > #include "utils/PhysicalConstants.hpp"
54   #include "utils/Tuple.hpp"
55 + #include "brains/Thermo.hpp"
56 + #include "math/ConvexHull.hpp"
57 + #ifdef IS_MPI
58 + #include <mpi.h>
59 + #endif
60  
61 < #ifndef IS_MPI
62 < #include "math/SeqRandNumGen.hpp"
63 < #else
53 < #include "math/ParallelRandNumGen.hpp"
61 > #ifdef _MSC_VER
62 > #define isnan(x) _isnan((x))
63 > #define isinf(x) (!_finite(x) && !_isnan(x))
64   #endif
65  
66   #define HONKING_LARGE_VALUE 1.0e10
67  
68 < namespace oopse {
68 > using namespace std;
69 > namespace OpenMD {
70    
71 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
72 <    
73 <    int seedValue;
74 <    Globals * simParams = info->getSimParams();
71 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 >                                evaluatorA_(info), seleManA_(info),
73 >                                commonA_(info), evaluatorB_(info),
74 >                                seleManB_(info), commonB_(info),
75 >                                hasData_(false), hasDividingArea_(false),
76 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
77  
78 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
79 <    stringToEnumMap_["Px"] = rnemdPx;
80 <    stringToEnumMap_["Py"] = rnemdPy;
68 <    stringToEnumMap_["Pz"] = rnemdPz;
69 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
78 >    trialCount_ = 0;
79 >    failTrialCount_ = 0;
80 >    failRootCount_ = 0;
81  
82 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
83 <    evaluator_.loadScriptString(rnemdObjectSelection_);
73 <    seleMan_.setSelectionSet(evaluator_.evaluate());
82 >    Globals* simParams = info->getSimParams();
83 >    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
84  
85 +    doRNEMD_ = rnemdParams->getUseRNEMD();
86 +    if (!doRNEMD_) return;
87  
88 <    // do some sanity checking
88 >    stringToMethod_["Swap"]  = rnemdSwap;
89 >    stringToMethod_["NIVS"]  = rnemdNIVS;
90 >    stringToMethod_["VSS"]   = rnemdVSS;
91  
92 <    int selectionCount = seleMan_.getSelectionCount();
93 <    int nIntegrable = info->getNGlobalIntegrableObjects();
92 >    stringToFluxType_["KE"]  = rnemdKE;
93 >    stringToFluxType_["Px"]  = rnemdPx;
94 >    stringToFluxType_["Py"]  = rnemdPy;
95 >    stringToFluxType_["Pz"]  = rnemdPz;
96 >    stringToFluxType_["Pvector"]  = rnemdPvector;
97 >    stringToFluxType_["Lx"]  = rnemdLx;
98 >    stringToFluxType_["Ly"]  = rnemdLy;
99 >    stringToFluxType_["Lz"]  = rnemdLz;
100 >    stringToFluxType_["Lvector"]  = rnemdLvector;
101 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
102 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
103 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
104 >    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
105 >    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
106 >    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
107 >    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
108  
109 <    if (selectionCount > nIntegrable) {
109 >    runTime_ = simParams->getRunTime();
110 >    statusTime_ = simParams->getStatusTime();
111 >
112 >    const string methStr = rnemdParams->getMethod();
113 >    bool hasFluxType = rnemdParams->haveFluxType();
114 >
115 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
116 >
117 >    string fluxStr;
118 >    if (hasFluxType) {
119 >      fluxStr = rnemdParams->getFluxType();
120 >    } else {
121        sprintf(painCave.errMsg,
122 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
123 <              "\t\t%s\n"
124 <              "\thas resulted in %d selected objects.  However,\n"
125 <              "\tthe total number of integrable objects in the system\n"
126 <              "\tis only %d.  This is almost certainly not what you want\n"
127 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
128 <              "\tselector in the selection script!\n",
90 <              rnemdObjectSelection_.c_str(),
91 <              selectionCount, nIntegrable);
92 <      painCave.isFatal = 0;
122 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
123 >              "\twhich must be one of the following values:\n"
124 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
125 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
126 >              "\tmust be set to use RNEMD\n");
127 >      painCave.isFatal = 1;
128 >      painCave.severity = OPENMD_ERROR;
129        simError();
94
130      }
131 +
132 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
133 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
134 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
135 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
136 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
137 +    hasSelectionA_ = rnemdParams->haveSelectionA();
138 +    hasSelectionB_ = rnemdParams->haveSelectionB();
139 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
140 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
141 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
142 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
143 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
144 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
145 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
146 +    bool hasOutputFields = rnemdParams->haveOutputFields();
147      
148 <    const std::string st = simParams->getRNEMD_swapType();
148 >    map<string, RNEMDMethod>::iterator i;
149 >    i = stringToMethod_.find(methStr);
150 >    if (i != stringToMethod_.end())
151 >      rnemdMethod_ = i->second;
152 >    else {
153 >      sprintf(painCave.errMsg,
154 >              "RNEMD: The current method,\n"
155 >              "\t\t%s is not one of the recognized\n"
156 >              "\texchange methods: Swap, NIVS, or VSS\n",
157 >              methStr.c_str());
158 >      painCave.isFatal = 1;
159 >      painCave.severity = OPENMD_ERROR;
160 >      simError();
161 >    }
162  
163 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
164 <    i = stringToEnumMap_.find(st);
165 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
163 >    map<string, RNEMDFluxType>::iterator j;
164 >    j = stringToFluxType_.find(fluxStr);
165 >    if (j != stringToFluxType_.end())
166 >      rnemdFluxType_ = j->second;
167 >    else {
168 >      sprintf(painCave.errMsg,
169 >              "RNEMD: The current fluxType,\n"
170 >              "\t\t%s\n"
171 >              "\tis not one of the recognized flux types.\n",
172 >              fluxStr.c_str());
173 >      painCave.isFatal = 1;
174 >      painCave.severity = OPENMD_ERROR;
175 >      simError();
176 >    }
177  
178 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
179 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
180 <    exchangeSum_ = 0.0;
178 >    bool methodFluxMismatch = false;
179 >    bool hasCorrectFlux = false;
180 >    switch(rnemdMethod_) {
181 >    case rnemdSwap:
182 >      switch (rnemdFluxType_) {
183 >      case rnemdKE:
184 >        hasCorrectFlux = hasKineticFlux;
185 >        break;
186 >      case rnemdPx:
187 >      case rnemdPy:
188 >      case rnemdPz:
189 >        hasCorrectFlux = hasMomentumFlux;
190 >        break;
191 >      default :
192 >        methodFluxMismatch = true;
193 >        break;
194 >      }
195 >      break;
196 >    case rnemdNIVS:
197 >      switch (rnemdFluxType_) {
198 >      case rnemdKE:
199 >      case rnemdRotKE:
200 >      case rnemdFullKE:
201 >        hasCorrectFlux = hasKineticFlux;
202 >        break;
203 >      case rnemdPx:
204 >      case rnemdPy:
205 >      case rnemdPz:
206 >        hasCorrectFlux = hasMomentumFlux;
207 >        break;
208 >      case rnemdKePx:
209 >      case rnemdKePy:
210 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
211 >        break;
212 >      default:
213 >        methodFluxMismatch = true;
214 >        break;
215 >      }
216 >      break;
217 >    case rnemdVSS:
218 >      switch (rnemdFluxType_) {
219 >      case rnemdKE:
220 >      case rnemdRotKE:
221 >      case rnemdFullKE:
222 >        hasCorrectFlux = hasKineticFlux;
223 >        break;
224 >      case rnemdPx:
225 >      case rnemdPy:
226 >      case rnemdPz:
227 >        hasCorrectFlux = hasMomentumFlux;
228 >        break;
229 >      case rnemdLx:
230 >      case rnemdLy:
231 >      case rnemdLz:
232 >        hasCorrectFlux = hasAngularMomentumFlux;
233 >        break;
234 >      case rnemdPvector:
235 >        hasCorrectFlux = hasMomentumFluxVector;
236 >        break;
237 >      case rnemdLvector:
238 >        hasCorrectFlux = hasAngularMomentumFluxVector;
239 >        break;
240 >      case rnemdKePx:
241 >      case rnemdKePy:
242 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
243 >        break;
244 >      case rnemdKeLx:
245 >      case rnemdKeLy:
246 >      case rnemdKeLz:
247 >        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
248 >        break;
249 >      case rnemdKePvector:
250 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
251 >        break;
252 >      case rnemdKeLvector:
253 >        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
254 >        break;
255 >      default:
256 >        methodFluxMismatch = true;
257 >        break;
258 >      }
259 >    default:
260 >      break;
261 >    }
262  
263 < #ifndef IS_MPI
264 <    if (simParams->haveSeed()) {
265 <      seedValue = simParams->getSeed();
266 <      randNumGen_ = new SeqRandNumGen(seedValue);
267 <    }else {
268 <      randNumGen_ = new SeqRandNumGen();
269 <    }    
270 < #else
271 <    if (simParams->haveSeed()) {
272 <      seedValue = simParams->getSeed();
273 <      randNumGen_ = new ParallelRandNumGen(seedValue);
274 <    }else {
275 <      randNumGen_ = new ParallelRandNumGen();
276 <    }    
277 < #endif
263 >    if (methodFluxMismatch) {
264 >      sprintf(painCave.errMsg,
265 >              "RNEMD: The current method,\n"
266 >              "\t\t%s\n"
267 >              "\tcannot be used with the current flux type, %s\n",
268 >              methStr.c_str(), fluxStr.c_str());
269 >      painCave.isFatal = 1;
270 >      painCave.severity = OPENMD_ERROR;
271 >      simError();        
272 >    }
273 >    if (!hasCorrectFlux) {
274 >      sprintf(painCave.errMsg,
275 >              "RNEMD: The current method, %s, and flux type, %s,\n"
276 >              "\tdid not have the correct flux value specified. Options\n"
277 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
278 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
279 >              methStr.c_str(), fluxStr.c_str());
280 >      painCave.isFatal = 1;
281 >      painCave.severity = OPENMD_ERROR;
282 >      simError();        
283 >    }
284 >
285 >    if (hasKineticFlux) {
286 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
287 >      // into  amu / fs^3:
288 >      kineticFlux_ = rnemdParams->getKineticFlux()
289 >        * PhysicalConstants::energyConvert;
290 >    } else {
291 >      kineticFlux_ = 0.0;
292 >    }
293 >    if (hasMomentumFluxVector) {
294 >      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
295 >    } else {
296 >      momentumFluxVector_ = V3Zero;
297 >      if (hasMomentumFlux) {
298 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
299 >        switch (rnemdFluxType_) {
300 >        case rnemdPx:
301 >          momentumFluxVector_.x() = momentumFlux;
302 >          break;
303 >        case rnemdPy:
304 >          momentumFluxVector_.y() = momentumFlux;
305 >          break;
306 >        case rnemdPz:
307 >          momentumFluxVector_.z() = momentumFlux;
308 >          break;
309 >        case rnemdKePx:
310 >          momentumFluxVector_.x() = momentumFlux;
311 >          break;
312 >        case rnemdKePy:
313 >          momentumFluxVector_.y() = momentumFlux;
314 >          break;
315 >        default:
316 >          break;
317 >        }
318 >      }
319 >      if (hasAngularMomentumFluxVector) {
320 >        angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector();
321 >      } else {
322 >        angularMomentumFluxVector_ = V3Zero;
323 >        if (hasAngularMomentumFlux) {
324 >          RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
325 >          switch (rnemdFluxType_) {
326 >          case rnemdLx:
327 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
328 >            break;
329 >          case rnemdLy:
330 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
331 >            break;
332 >          case rnemdLz:
333 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
334 >            break;
335 >          case rnemdKeLx:
336 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
337 >            break;
338 >          case rnemdKeLy:
339 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
340 >            break;
341 >          case rnemdKeLz:
342 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
343 >            break;
344 >          default:
345 >            break;
346 >          }
347 >        }        
348 >      }
349 >
350 >      if (hasCoordinateOrigin) {
351 >        coordinateOrigin_ = rnemdParams->getCoordinateOrigin();
352 >      } else {
353 >        coordinateOrigin_ = V3Zero;
354 >      }
355 >
356 >      // do some sanity checking
357 >
358 >      int selectionCount = seleMan_.getSelectionCount();
359 >
360 >      int nIntegrable = info->getNGlobalIntegrableObjects();
361 >
362 >      if (selectionCount > nIntegrable) {
363 >        sprintf(painCave.errMsg,
364 >                "RNEMD: The current objectSelection,\n"
365 >                "\t\t%s\n"
366 >                "\thas resulted in %d selected objects.  However,\n"
367 >                "\tthe total number of integrable objects in the system\n"
368 >                "\tis only %d.  This is almost certainly not what you want\n"
369 >                "\tto do.  A likely cause of this is forgetting the _RB_0\n"
370 >                "\tselector in the selection script!\n",
371 >                rnemdObjectSelection_.c_str(),
372 >                selectionCount, nIntegrable);
373 >        painCave.isFatal = 0;
374 >        painCave.severity = OPENMD_WARNING;
375 >        simError();
376 >      }
377 >
378 >      areaAccumulator_ = new Accumulator();
379 >
380 >      nBins_ = rnemdParams->getOutputBins();
381 >      binWidth_ = rnemdParams->getOutputBinWidth();
382 >
383 >      data_.resize(RNEMD::ENDINDEX);
384 >      OutputData z;
385 >      z.units =  "Angstroms";
386 >      z.title =  "Z";
387 >      z.dataType = "RealType";
388 >      z.accumulator.reserve(nBins_);
389 >      for (int i = 0; i < nBins_; i++)
390 >        z.accumulator.push_back( new Accumulator() );
391 >      data_[Z] = z;
392 >      outputMap_["Z"] =  Z;
393 >
394 >      OutputData r;
395 >      r.units =  "Angstroms";
396 >      r.title =  "R";
397 >      r.dataType = "RealType";
398 >      r.accumulator.reserve(nBins_);
399 >      for (int i = 0; i < nBins_; i++)
400 >        r.accumulator.push_back( new Accumulator() );
401 >      data_[R] = r;
402 >      outputMap_["R"] =  R;
403 >
404 >      OutputData temperature;
405 >      temperature.units =  "K";
406 >      temperature.title =  "Temperature";
407 >      temperature.dataType = "RealType";
408 >      temperature.accumulator.reserve(nBins_);
409 >      for (int i = 0; i < nBins_; i++)
410 >        temperature.accumulator.push_back( new Accumulator() );
411 >      data_[TEMPERATURE] = temperature;
412 >      outputMap_["TEMPERATURE"] =  TEMPERATURE;
413 >
414 >      OutputData velocity;
415 >      velocity.units = "angstroms/fs";
416 >      velocity.title =  "Velocity";  
417 >      velocity.dataType = "Vector3d";
418 >      velocity.accumulator.reserve(nBins_);
419 >      for (int i = 0; i < nBins_; i++)
420 >        velocity.accumulator.push_back( new VectorAccumulator() );
421 >      data_[VELOCITY] = velocity;
422 >      outputMap_["VELOCITY"] = VELOCITY;
423 >
424 >      OutputData angularVelocity;
425 >      angularVelocity.units = "angstroms^2/fs";
426 >      angularVelocity.title =  "AngularVelocity";  
427 >      angularVelocity.dataType = "Vector3d";
428 >      angularVelocity.accumulator.reserve(nBins_);
429 >      for (int i = 0; i < nBins_; i++)
430 >        angularVelocity.accumulator.push_back( new VectorAccumulator() );
431 >      data_[ANGULARVELOCITY] = angularVelocity;
432 >      outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
433 >
434 >      OutputData density;
435 >      density.units =  "g cm^-3";
436 >      density.title =  "Density";
437 >      density.dataType = "RealType";
438 >      density.accumulator.reserve(nBins_);
439 >      for (int i = 0; i < nBins_; i++)
440 >        density.accumulator.push_back( new Accumulator() );
441 >      data_[DENSITY] = density;
442 >      outputMap_["DENSITY"] =  DENSITY;
443 >
444 >      if (hasOutputFields) {
445 >        parseOutputFileFormat(rnemdParams->getOutputFields());
446 >      } else {
447 >        if (usePeriodicBoundaryConditions_)
448 >          outputMask_.set(Z);
449 >        else
450 >          outputMask_.set(R);
451 >        switch (rnemdFluxType_) {
452 >        case rnemdKE:
453 >        case rnemdRotKE:
454 >        case rnemdFullKE:
455 >          outputMask_.set(TEMPERATURE);
456 >          break;
457 >        case rnemdPx:
458 >        case rnemdPy:
459 >          outputMask_.set(VELOCITY);
460 >          break;
461 >        case rnemdPz:        
462 >        case rnemdPvector:
463 >          outputMask_.set(VELOCITY);
464 >          outputMask_.set(DENSITY);
465 >          break;
466 >        case rnemdLx:
467 >        case rnemdLy:
468 >        case rnemdLz:
469 >        case rnemdLvector:
470 >          outputMask_.set(ANGULARVELOCITY);
471 >          break;
472 >        case rnemdKeLx:
473 >        case rnemdKeLy:
474 >        case rnemdKeLz:
475 >        case rnemdKeLvector:
476 >          outputMask_.set(TEMPERATURE);
477 >          outputMask_.set(ANGULARVELOCITY);
478 >          break;
479 >        case rnemdKePx:
480 >        case rnemdKePy:
481 >          outputMask_.set(TEMPERATURE);
482 >          outputMask_.set(VELOCITY);
483 >          break;
484 >        case rnemdKePvector:
485 >          outputMask_.set(TEMPERATURE);
486 >          outputMask_.set(VELOCITY);
487 >          outputMask_.set(DENSITY);        
488 >          break;
489 >        default:
490 >          break;
491 >        }
492 >      }
493 >      
494 >      if (hasOutputFileName) {
495 >        rnemdFileName_ = rnemdParams->getOutputFileName();
496 >      } else {
497 >        rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
498 >      }          
499 >
500 >      exchangeTime_ = rnemdParams->getExchangeTime();
501 >
502 >      Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
503 >      // total exchange sums are zeroed out at the beginning:
504 >
505 >      kineticExchange_ = 0.0;
506 >      momentumExchange_ = V3Zero;
507 >      angularMomentumExchange_ = V3Zero;
508 >
509 >      std::ostringstream selectionAstream;
510 >      std::ostringstream selectionBstream;
511 >    
512 >      if (hasSelectionA_) {
513 >        selectionA_ = rnemdParams->getSelectionA();
514 >      } else {
515 >        if (usePeriodicBoundaryConditions_) {    
516 >          Mat3x3d hmat = currentSnap_->getHmat();
517 >        
518 >          if (hasSlabWidth)
519 >            slabWidth_ = rnemdParams->getSlabWidth();
520 >          else
521 >            slabWidth_ = hmat(2,2) / 10.0;
522 >        
523 >          if (hasSlabACenter)
524 >            slabACenter_ = rnemdParams->getSlabACenter();
525 >          else
526 >            slabACenter_ = 0.0;
527 >        
528 >          selectionAstream << "select wrappedz > "
529 >                           << slabACenter_ - 0.5*slabWidth_
530 >                           <<  " && wrappedz < "
531 >                           << slabACenter_ + 0.5*slabWidth_;
532 >          selectionA_ = selectionAstream.str();
533 >        } else {
534 >          if (hasSphereARadius)
535 >            sphereARadius_ = rnemdParams->getSphereARadius();
536 >          else {
537 >            // use an initial guess to the size of the inner slab to be 1/10 the
538 >            // radius of an approximately spherical hull:
539 >            Thermo thermo(info);
540 >            RealType hVol = thermo.getHullVolume();
541 >            sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
542 >          }
543 >          selectionAstream << "select r < " << sphereARadius_;
544 >          selectionA_ = selectionAstream.str();
545 >        }
546 >      }
547 >    
548 >      if (hasSelectionB_) {
549 >        selectionB_ = rnemdParams->getSelectionB();
550 >      } else {
551 >        if (usePeriodicBoundaryConditions_) {    
552 >          Mat3x3d hmat = currentSnap_->getHmat();
553 >        
554 >          if (hasSlabWidth)
555 >            slabWidth_ = rnemdParams->getSlabWidth();
556 >          else
557 >            slabWidth_ = hmat(2,2) / 10.0;
558 >        
559 >          if (hasSlabBCenter)
560 >            slabBCenter_ = rnemdParams->getSlabBCenter();
561 >          else
562 >            slabBCenter_ = hmat(2,2) / 2.0;
563 >        
564 >          selectionBstream << "select wrappedz > "
565 >                           << slabBCenter_ - 0.5*slabWidth_
566 >                           <<  " && wrappedz < "
567 >                           << slabBCenter_ + 0.5*slabWidth_;
568 >          selectionB_ = selectionBstream.str();
569 >        } else {
570 >          if (hasSphereBRadius_) {
571 >            sphereBRadius_ = rnemdParams->getSphereBRadius();
572 >            selectionBstream << "select r > " << sphereBRadius_;
573 >            selectionB_ = selectionBstream.str();
574 >          } else {
575 >            selectionB_ = "select hull";
576 >            hasSelectionB_ = true;
577 >          }
578 >        }
579 >      }
580 >    }
581 >
582 >    // object evaluator:
583 >    evaluator_.loadScriptString(rnemdObjectSelection_);
584 >    seleMan_.setSelectionSet(evaluator_.evaluate());
585 >    evaluatorA_.loadScriptString(selectionA_);
586 >    evaluatorB_.loadScriptString(selectionB_);
587 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
588 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
589 >    commonA_ = seleManA_ & seleMan_;
590 >    commonB_ = seleManB_ & seleMan_;  
591    }
592    
593 +    
594    RNEMD::~RNEMD() {
595 <    delete randNumGen_;
596 <  }
595 >    if (!doRNEMD_) return;
596 > #ifdef IS_MPI
597 >    if (worldRank == 0) {
598 > #endif
599  
600 <  void RNEMD::doSwap() {
129 <    int midBin = nBins_ / 2;
600 >      writeOutputFile();
601  
602 +      rnemdFile_.close();
603 +      
604 + #ifdef IS_MPI
605 +    }
606 + #endif
607 +
608 +    // delete all of the objects we created:
609 +    delete areaAccumulator_;    
610 +    data_.clear();
611 +  }
612 +  
613 +  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
614 +    if (!doRNEMD_) return;
615 +    int selei;
616 +    int selej;
617 +
618      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
619      Mat3x3d hmat = currentSnap_->getHmat();
620  
134    seleMan_.setSelectionSet(evaluator_.evaluate());
135
136    int selei;
621      StuntDouble* sd;
138    int idx;
622  
623      RealType min_val;
624      bool min_found = false;  
# Line 145 | Line 628 | namespace oopse {
628      bool max_found = false;
629      StuntDouble* max_sd;
630  
631 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
632 <         sd = seleMan_.nextSelected(selei)) {
631 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
632 >         sd = seleManA_.nextSelected(selei)) {
633  
151      idx = sd->getLocalIndex();
152
634        Vector3d pos = sd->getPos();
635 <
635 >      
636        // wrap the stuntdouble's position back into the box:
637 <
637 >      
638        if (usePeriodicBoundaryConditions_)
639          currentSnap_->wrapVector(pos);
640 <
641 <      // which bin is this stuntdouble in?
642 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
643 <
644 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
645 <
646 <
166 <      // if we're in bin 0 or the middleBin
167 <      if (binNo == 0 || binNo == midBin) {
640 >      
641 >      RealType mass = sd->getMass();
642 >      Vector3d vel = sd->getVel();
643 >      RealType value;
644 >      
645 >      switch(rnemdFluxType_) {
646 >      case rnemdKE :
647          
648 <        RealType mass = sd->getMass();
649 <        Vector3d vel = sd->getVel();
650 <        RealType value;
651 <
652 <        switch(rnemdType_) {
174 <        case rnemdKinetic :
648 >        value = mass * vel.lengthSquare();
649 >        
650 >        if (sd->isDirectional()) {
651 >          Vector3d angMom = sd->getJ();
652 >          Mat3x3d I = sd->getI();
653            
654 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
655 <                          vel[2]*vel[2]);
656 <          if (sd->isDirectional()) {
657 <            Vector3d angMom = sd->getJ();
658 <            Mat3x3d I = sd->getI();
659 <            
660 <            if (sd->isLinear()) {
661 <              int i = sd->linearAxis();
662 <              int j = (i + 1) % 3;
663 <              int k = (i + 2) % 3;
186 <              value += angMom[j] * angMom[j] / I(j, j) +
187 <                angMom[k] * angMom[k] / I(k, k);
188 <            } else {                        
189 <              value += angMom[0]*angMom[0]/I(0, 0)
190 <                + angMom[1]*angMom[1]/I(1, 1)
191 <                + angMom[2]*angMom[2]/I(2, 2);
192 <            }
654 >          if (sd->isLinear()) {
655 >            int i = sd->linearAxis();
656 >            int j = (i + 1) % 3;
657 >            int k = (i + 2) % 3;
658 >            value += angMom[j] * angMom[j] / I(j, j) +
659 >              angMom[k] * angMom[k] / I(k, k);
660 >          } else {                        
661 >            value += angMom[0]*angMom[0]/I(0, 0)
662 >              + angMom[1]*angMom[1]/I(1, 1)
663 >              + angMom[2]*angMom[2]/I(2, 2);
664            }
665 <          value = value * 0.5 / OOPSEConstant::energyConvert;
666 <          break;
667 <        case rnemdPx :
668 <          value = mass * vel[0];
669 <          break;
670 <        case rnemdPy :
671 <          value = mass * vel[1];
672 <          break;
673 <        case rnemdPz :
674 <          value = mass * vel[2];
675 <          break;
676 <        case rnemdUnknown :
677 <        default :
678 <          break;
665 >        } //angular momenta exchange enabled
666 >        value *= 0.5;
667 >        break;
668 >      case rnemdPx :
669 >        value = mass * vel[0];
670 >        break;
671 >      case rnemdPy :
672 >        value = mass * vel[1];
673 >        break;
674 >      case rnemdPz :
675 >        value = mass * vel[2];
676 >        break;
677 >      default :
678 >        break;
679 >      }
680 >      if (!max_found) {
681 >        max_val = value;
682 >        max_sd = sd;
683 >        max_found = true;
684 >      } else {
685 >        if (max_val < value) {
686 >          max_val = value;
687 >          max_sd = sd;
688          }
689 +      }  
690 +    }
691          
692 <        if (binNo == 0) {
693 <          if (!min_found) {
694 <            min_val = value;
695 <            min_sd = sd;
696 <            min_found = true;
697 <          } else {
698 <            if (min_val > value) {
699 <              min_val = value;
700 <              min_sd = sd;
701 <            }
702 <          }
703 <        } else {
704 <          if (!max_found) {
705 <            max_val = value;
706 <            max_sd = sd;
707 <            max_found = true;
708 <          } else {
709 <            if (max_val < value) {
710 <              max_val = value;
711 <              max_sd = sd;
712 <            }
713 <          }      
714 <        }
692 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
693 >         sd = seleManB_.nextSelected(selej)) {
694 >
695 >      Vector3d pos = sd->getPos();
696 >      
697 >      // wrap the stuntdouble's position back into the box:
698 >      
699 >      if (usePeriodicBoundaryConditions_)
700 >        currentSnap_->wrapVector(pos);
701 >      
702 >      RealType mass = sd->getMass();
703 >      Vector3d vel = sd->getVel();
704 >      RealType value;
705 >      
706 >      switch(rnemdFluxType_) {
707 >      case rnemdKE :
708 >        
709 >        value = mass * vel.lengthSquare();
710 >        
711 >        if (sd->isDirectional()) {
712 >          Vector3d angMom = sd->getJ();
713 >          Mat3x3d I = sd->getI();
714 >          
715 >          if (sd->isLinear()) {
716 >            int i = sd->linearAxis();
717 >            int j = (i + 1) % 3;
718 >            int k = (i + 2) % 3;
719 >            value += angMom[j] * angMom[j] / I(j, j) +
720 >              angMom[k] * angMom[k] / I(k, k);
721 >          } else {                        
722 >            value += angMom[0]*angMom[0]/I(0, 0)
723 >              + angMom[1]*angMom[1]/I(1, 1)
724 >              + angMom[2]*angMom[2]/I(2, 2);
725 >          }
726 >        } //angular momenta exchange enabled
727 >        value *= 0.5;
728 >        break;
729 >      case rnemdPx :
730 >        value = mass * vel[0];
731 >        break;
732 >      case rnemdPy :
733 >        value = mass * vel[1];
734 >        break;
735 >      case rnemdPz :
736 >        value = mass * vel[2];
737 >        break;
738 >      default :
739 >        break;
740        }
741 +      
742 +      if (!min_found) {
743 +        min_val = value;
744 +        min_sd = sd;
745 +        min_found = true;
746 +      } else {
747 +        if (min_val > value) {
748 +          min_val = value;
749 +          min_sd = sd;
750 +        }
751 +      }
752      }
753 <
754 < #ifdef IS_MPI
755 <    int nProc, worldRank;
756 <
239 <    nProc = MPI::COMM_WORLD.Get_size();
240 <    worldRank = MPI::COMM_WORLD.Get_rank();
241 <
753 >    
754 > #ifdef IS_MPI    
755 >    int worldRank = MPI::COMM_WORLD.Get_rank();
756 >    
757      bool my_min_found = min_found;
758      bool my_max_found = max_found;
759  
760      // Even if we didn't find a minimum, did someone else?
761 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
247 <                              1, MPI::BOOL, MPI::LAND);
248 <    
761 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
762      // Even if we didn't find a maximum, did someone else?
763 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
764 <                              1, MPI::BOOL, MPI::LAND);
765 <    
766 <    struct {
767 <      RealType val;
768 <      int rank;
769 <    } max_vals, min_vals;
770 <    
771 <    if (min_found) {
772 <      if (my_min_found)
763 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
764 > #endif
765 >
766 >    if (max_found && min_found) {
767 >
768 > #ifdef IS_MPI
769 >      struct {
770 >        RealType val;
771 >        int rank;
772 >      } max_vals, min_vals;
773 >      
774 >      if (my_min_found) {
775          min_vals.val = min_val;
776 <      else
776 >      } else {
777          min_vals.val = HONKING_LARGE_VALUE;
778 <      
778 >      }
779        min_vals.rank = worldRank;    
780        
781        // Who had the minimum?
782        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
783                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
784        min_val = min_vals.val;
270    }
785        
786 <    if (max_found) {
273 <      if (my_max_found)
786 >      if (my_max_found) {
787          max_vals.val = max_val;
788 <      else
788 >      } else {
789          max_vals.val = -HONKING_LARGE_VALUE;
790 <      
790 >      }
791        max_vals.rank = worldRank;    
792        
793        // Who had the maximum?
794        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
795                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
796        max_val = max_vals.val;
284    }
797   #endif
798 <
799 <    if (max_found && min_found) {
800 <      if (min_val< max_val) {
289 <
798 >      
799 >      if (min_val < max_val) {
800 >        
801   #ifdef IS_MPI      
802          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
803            // I have both maximum and minimum, so proceed like a single
804            // processor version:
805   #endif
806 <          // objects to be swapped: velocity & angular velocity
806 >
807            Vector3d min_vel = min_sd->getVel();
808            Vector3d max_vel = max_sd->getVel();
809            RealType temp_vel;
810            
811 <          switch(rnemdType_) {
812 <          case rnemdKinetic :
811 >          switch(rnemdFluxType_) {
812 >          case rnemdKE :
813              min_sd->setVel(max_vel);
814              max_sd->setVel(min_vel);
815 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
815 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
816                Vector3d min_angMom = min_sd->getJ();
817                Vector3d max_angMom = max_sd->getJ();
818                min_sd->setJ(max_angMom);
819                max_sd->setJ(min_angMom);
820 <            }
820 >            }//angular momenta exchange enabled
821 >            //assumes same rigid body identity
822              break;
823            case rnemdPx :
824              temp_vel = min_vel.x();
# Line 329 | Line 841 | namespace oopse {
841              min_sd->setVel(min_vel);
842              max_sd->setVel(max_vel);
843              break;
332          case rnemdUnknown :
844            default :
845              break;
846            }
847 +
848   #ifdef IS_MPI
849            // the rest of the cases only apply in parallel simulations:
850          } else if (max_vals.rank == worldRank) {
# Line 348 | Line 860 | namespace oopse {
860                                     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
861                                     min_vals.rank, 0, status);
862            
863 <          switch(rnemdType_) {
864 <          case rnemdKinetic :
863 >          switch(rnemdFluxType_) {
864 >          case rnemdKE :
865              max_sd->setVel(min_vel);
866 <            
866 >            //angular momenta exchange enabled
867              if (max_sd->isDirectional()) {
868                Vector3d min_angMom;
869                Vector3d max_angMom = max_sd->getJ();
870 <
870 >              
871                // point-to-point swap of the angular momentum vector
872                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
873                                         MPI::REALTYPE, min_vals.rank, 1,
874                                         min_angMom.getArrayPointer(), 3,
875                                         MPI::REALTYPE, min_vals.rank, 1,
876                                         status);
877 <
877 >              
878                max_sd->setJ(min_angMom);
879 <            }
879 >            }
880              break;
881            case rnemdPx :
882              max_vel.x() = min_vel.x();
# Line 378 | Line 890 | namespace oopse {
890              max_vel.z() = min_vel.z();
891              max_sd->setVel(max_vel);
892              break;
381          case rnemdUnknown :
893            default :
894              break;
895            }
# Line 395 | Line 906 | namespace oopse {
906                                     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
907                                     max_vals.rank, 0, status);
908            
909 <          switch(rnemdType_) {
910 <          case rnemdKinetic :
909 >          switch(rnemdFluxType_) {
910 >          case rnemdKE :
911              min_sd->setVel(max_vel);
912 <            
912 >            //angular momenta exchange enabled
913              if (min_sd->isDirectional()) {
914                Vector3d min_angMom = min_sd->getJ();
915                Vector3d max_angMom;
916 <
916 >              
917                // point-to-point swap of the angular momentum vector
918                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
919                                         MPI::REALTYPE, max_vals.rank, 1,
920                                         max_angMom.getArrayPointer(), 3,
921                                         MPI::REALTYPE, max_vals.rank, 1,
922                                         status);
923 <
923 >              
924                min_sd->setJ(max_angMom);
925              }
926              break;
# Line 425 | Line 936 | namespace oopse {
936              min_vel.z() = max_vel.z();
937              min_sd->setVel(min_vel);
938              break;
428          case rnemdUnknown :
939            default :
940              break;
941            }
942          }
943   #endif
944 <        exchangeSum_ += max_val - min_val;
945 <      } else {
946 <        std::cerr << "exchange NOT performed.\nmin_val > max_val.\n";
944 >        
945 >        switch(rnemdFluxType_) {
946 >        case rnemdKE:
947 >          kineticExchange_ += max_val - min_val;
948 >          break;
949 >        case rnemdPx:
950 >          momentumExchange_.x() += max_val - min_val;
951 >          break;
952 >        case rnemdPy:
953 >          momentumExchange_.y() += max_val - min_val;
954 >          break;
955 >        case rnemdPz:
956 >          momentumExchange_.z() += max_val - min_val;
957 >          break;
958 >        default:
959 >          break;
960 >        }
961 >      } else {        
962 >        sprintf(painCave.errMsg,
963 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
964 >        painCave.isFatal = 0;
965 >        painCave.severity = OPENMD_INFO;
966 >        simError();        
967 >        failTrialCount_++;
968        }
969      } else {
970 <      std::cerr << "exchange NOT performed.\none of the two slabs empty.\n";
971 <    }
972 <    
970 >      sprintf(painCave.errMsg,
971 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
972 >              "\twas not present in at least one of the two slabs.\n");
973 >      painCave.isFatal = 0;
974 >      painCave.severity = OPENMD_INFO;
975 >      simError();        
976 >      failTrialCount_++;
977 >    }    
978    }
979    
980 <  void RNEMD::getStatus() {
980 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
981 >    if (!doRNEMD_) return;
982 >    int selei;
983 >    int selej;
984  
985      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
986 +    RealType time = currentSnap_->getTime();    
987      Mat3x3d hmat = currentSnap_->getHmat();
448    Stats& stat = currentSnap_->statData;
449    RealType time = currentSnap_->getTime();
988  
989 <    stat[Stats::RNEMD_SWAP_TOTAL] = exchangeSum_;
989 >    StuntDouble* sd;
990  
991 <    seleMan_.setSelectionSet(evaluator_.evaluate());
991 >    vector<StuntDouble*> hotBin, coldBin;
992  
993 <    int selei;
994 <    StuntDouble* sd;
995 <    int idx;
993 >    RealType Phx = 0.0;
994 >    RealType Phy = 0.0;
995 >    RealType Phz = 0.0;
996 >    RealType Khx = 0.0;
997 >    RealType Khy = 0.0;
998 >    RealType Khz = 0.0;
999 >    RealType Khw = 0.0;
1000 >    RealType Pcx = 0.0;
1001 >    RealType Pcy = 0.0;
1002 >    RealType Pcz = 0.0;
1003 >    RealType Kcx = 0.0;
1004 >    RealType Kcy = 0.0;
1005 >    RealType Kcz = 0.0;
1006 >    RealType Kcw = 0.0;
1007  
1008 <    std::vector<RealType> valueHist(nBins_, 0.0); // keeps track of what's
1009 <                                                  // being averaged
461 <    std::vector<int> valueCount(nBins_, 0);       // keeps track of the
462 <                                                  // number of degrees of
463 <                                                  // freedom being averaged
1008 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1009 >         sd = smanA.nextSelected(selei)) {
1010  
465    for (sd = seleMan_.beginSelected(selei); sd != NULL;
466         sd = seleMan_.nextSelected(selei)) {
467      
468      idx = sd->getLocalIndex();
469      
1011        Vector3d pos = sd->getPos();
1012 <
1012 >      
1013        // wrap the stuntdouble's position back into the box:
1014        
1015        if (usePeriodicBoundaryConditions_)
1016          currentSnap_->wrapVector(pos);
1017        
477      // which bin is this stuntdouble in?
478      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1018        
480      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;    
481      
1019        RealType mass = sd->getMass();
1020        Vector3d vel = sd->getVel();
1021 <      RealType value;
1022 <
1023 <      switch(rnemdType_) {
1024 <      case rnemdKinetic :
1025 <        
1026 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
1027 <                        vel[2]*vel[2]);
1028 <        
1029 <        valueCount[binNo] += 3;
1030 <        if (sd->isDirectional()) {
1031 <          Vector3d angMom = sd->getJ();
1032 <          Mat3x3d I = sd->getI();
1033 <          
1034 <          if (sd->isLinear()) {
1035 <            int i = sd->linearAxis();
1036 <            int j = (i + 1) % 3;
1037 <            int k = (i + 2) % 3;
1038 <            value += angMom[j] * angMom[j] / I(j, j) +
1039 <              angMom[k] * angMom[k] / I(k, k);
1040 <
1041 <            valueCount[binNo] +=2;
1042 <
1043 <          } else {
1044 <            value += angMom[0]*angMom[0]/I(0, 0)
1045 <              + angMom[1]*angMom[1]/I(1, 1)
1046 <              + angMom[2]*angMom[2]/I(2, 2);
1047 <            valueCount[binNo] +=3;
1048 <          }
1049 <        }
1050 <        value = value / OOPSEConstant::energyConvert / OOPSEConstant::kb;
1021 >      
1022 >      hotBin.push_back(sd);
1023 >      Phx += mass * vel.x();
1024 >      Phy += mass * vel.y();
1025 >      Phz += mass * vel.z();
1026 >      Khx += mass * vel.x() * vel.x();
1027 >      Khy += mass * vel.y() * vel.y();
1028 >      Khz += mass * vel.z() * vel.z();
1029 >      if (sd->isDirectional()) {
1030 >        Vector3d angMom = sd->getJ();
1031 >        Mat3x3d I = sd->getI();
1032 >        if (sd->isLinear()) {
1033 >          int i = sd->linearAxis();
1034 >          int j = (i + 1) % 3;
1035 >          int k = (i + 2) % 3;
1036 >          Khw += angMom[j] * angMom[j] / I(j, j) +
1037 >            angMom[k] * angMom[k] / I(k, k);
1038 >        } else {
1039 >          Khw += angMom[0]*angMom[0]/I(0, 0)
1040 >            + angMom[1]*angMom[1]/I(1, 1)
1041 >            + angMom[2]*angMom[2]/I(2, 2);
1042 >        }
1043 >      }
1044 >    }
1045 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1046 >         sd = smanB.nextSelected(selej)) {
1047 >      Vector3d pos = sd->getPos();
1048 >      
1049 >      // wrap the stuntdouble's position back into the box:
1050 >      
1051 >      if (usePeriodicBoundaryConditions_)
1052 >        currentSnap_->wrapVector(pos);
1053 >            
1054 >      RealType mass = sd->getMass();
1055 >      Vector3d vel = sd->getVel();
1056  
1057 +      coldBin.push_back(sd);
1058 +      Pcx += mass * vel.x();
1059 +      Pcy += mass * vel.y();
1060 +      Pcz += mass * vel.z();
1061 +      Kcx += mass * vel.x() * vel.x();
1062 +      Kcy += mass * vel.y() * vel.y();
1063 +      Kcz += mass * vel.z() * vel.z();
1064 +      if (sd->isDirectional()) {
1065 +        Vector3d angMom = sd->getJ();
1066 +        Mat3x3d I = sd->getI();
1067 +        if (sd->isLinear()) {
1068 +          int i = sd->linearAxis();
1069 +          int j = (i + 1) % 3;
1070 +          int k = (i + 2) % 3;
1071 +          Kcw += angMom[j] * angMom[j] / I(j, j) +
1072 +            angMom[k] * angMom[k] / I(k, k);
1073 +        } else {
1074 +          Kcw += angMom[0]*angMom[0]/I(0, 0)
1075 +            + angMom[1]*angMom[1]/I(1, 1)
1076 +            + angMom[2]*angMom[2]/I(2, 2);
1077 +        }
1078 +      }
1079 +    }
1080 +    
1081 +    Khx *= 0.5;
1082 +    Khy *= 0.5;
1083 +    Khz *= 0.5;
1084 +    Khw *= 0.5;
1085 +    Kcx *= 0.5;
1086 +    Kcy *= 0.5;
1087 +    Kcz *= 0.5;
1088 +    Kcw *= 0.5;
1089 +
1090 + #ifdef IS_MPI
1091 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
1092 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
1093 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
1094 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
1095 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
1096 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
1097 +
1098 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
1099 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
1100 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
1101 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
1102 +
1103 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
1104 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
1105 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
1106 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
1107 + #endif
1108 +
1109 +    //solve coldBin coeff's first
1110 +    RealType px = Pcx / Phx;
1111 +    RealType py = Pcy / Phy;
1112 +    RealType pz = Pcz / Phz;
1113 +    RealType c, x, y, z;
1114 +    bool successfulScale = false;
1115 +    if ((rnemdFluxType_ == rnemdFullKE) ||
1116 +        (rnemdFluxType_ == rnemdRotKE)) {
1117 +      //may need sanity check Khw & Kcw > 0
1118 +
1119 +      if (rnemdFluxType_ == rnemdFullKE) {
1120 +        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1121 +      } else {
1122 +        c = 1.0 - kineticTarget_ / Kcw;
1123 +      }
1124 +
1125 +      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1126 +        c = sqrt(c);
1127 +
1128 +        RealType w = 0.0;
1129 +        if (rnemdFluxType_ ==  rnemdFullKE) {
1130 +          x = 1.0 + px * (1.0 - c);
1131 +          y = 1.0 + py * (1.0 - c);
1132 +          z = 1.0 + pz * (1.0 - c);
1133 +          /* more complicated way
1134 +             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
1135 +             + Khx * px * px + Khy * py * py + Khz * pz * pz)
1136 +             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
1137 +             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
1138 +             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1139 +             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
1140 +          */
1141 +          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1142 +              (fabs(z - 1.0) < 0.1)) {
1143 +            w = 1.0 + (kineticTarget_
1144 +                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1145 +                       + Khz * (1.0 - z * z)) / Khw;
1146 +          }//no need to calculate w if x, y or z is out of range
1147 +        } else {
1148 +          w = 1.0 + kineticTarget_ / Khw;
1149 +        }
1150 +        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1151 +          //if w is in the right range, so should be x, y, z.
1152 +          vector<StuntDouble*>::iterator sdi;
1153 +          Vector3d vel;
1154 +          for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1155 +            if (rnemdFluxType_ == rnemdFullKE) {
1156 +              vel = (*sdi)->getVel() * c;
1157 +              (*sdi)->setVel(vel);
1158 +            }
1159 +            if ((*sdi)->isDirectional()) {
1160 +              Vector3d angMom = (*sdi)->getJ() * c;
1161 +              (*sdi)->setJ(angMom);
1162 +            }
1163 +          }
1164 +          w = sqrt(w);
1165 +          for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1166 +            if (rnemdFluxType_ == rnemdFullKE) {
1167 +              vel = (*sdi)->getVel();
1168 +              vel.x() *= x;
1169 +              vel.y() *= y;
1170 +              vel.z() *= z;
1171 +              (*sdi)->setVel(vel);
1172 +            }
1173 +            if ((*sdi)->isDirectional()) {
1174 +              Vector3d angMom = (*sdi)->getJ() * w;
1175 +              (*sdi)->setJ(angMom);
1176 +            }
1177 +          }
1178 +          successfulScale = true;
1179 +          kineticExchange_ += kineticTarget_;
1180 +        }
1181 +      }
1182 +    } else {
1183 +      RealType a000, a110, c0, a001, a111, b01, b11, c1;
1184 +      switch(rnemdFluxType_) {
1185 +      case rnemdKE :
1186 +        /* used hotBin coeff's & only scale x & y dimensions
1187 +           RealType px = Phx / Pcx;
1188 +           RealType py = Phy / Pcy;
1189 +           a110 = Khy;
1190 +           c0 = - Khx - Khy - kineticTarget_;
1191 +           a000 = Khx;
1192 +           a111 = Kcy * py * py;
1193 +           b11 = -2.0 * Kcy * py * (1.0 + py);
1194 +           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1195 +           b01 = -2.0 * Kcx * px * (1.0 + px);
1196 +           a001 = Kcx * px * px;
1197 +        */
1198 +        //scale all three dimensions, let c_x = c_y
1199 +        a000 = Kcx + Kcy;
1200 +        a110 = Kcz;
1201 +        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1202 +        a001 = Khx * px * px + Khy * py * py;
1203 +        a111 = Khz * pz * pz;
1204 +        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1205 +        b11 = -2.0 * Khz * pz * (1.0 + pz);
1206 +        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1207 +          + Khz * pz * (2.0 + pz) - kineticTarget_;
1208          break;
1209        case rnemdPx :
1210 <        value = mass * vel[0];
1211 <        valueCount[binNo]++;
1210 >        c = 1 - momentumTarget_.x() / Pcx;
1211 >        a000 = Kcy;
1212 >        a110 = Kcz;
1213 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1214 >        a001 = py * py * Khy;
1215 >        a111 = pz * pz * Khz;
1216 >        b01 = -2.0 * Khy * py * (1.0 + py);
1217 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1218 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1219 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1220          break;
1221        case rnemdPy :
1222 <        value = mass * vel[1];
1223 <        valueCount[binNo]++;
1222 >        c = 1 - momentumTarget_.y() / Pcy;
1223 >        a000 = Kcx;
1224 >        a110 = Kcz;
1225 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1226 >        a001 = px * px * Khx;
1227 >        a111 = pz * pz * Khz;
1228 >        b01 = -2.0 * Khx * px * (1.0 + px);
1229 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1230 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1231 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1232          break;
1233 <      case rnemdPz :
1234 <        value = mass * vel[2];
1235 <        valueCount[binNo]++;
1233 >      case rnemdPz ://we don't really do this, do we?
1234 >        c = 1 - momentumTarget_.z() / Pcz;
1235 >        a000 = Kcx;
1236 >        a110 = Kcy;
1237 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1238 >        a001 = px * px * Khx;
1239 >        a111 = py * py * Khy;
1240 >        b01 = -2.0 * Khx * px * (1.0 + px);
1241 >        b11 = -2.0 * Khy * py * (1.0 + py);
1242 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1243 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1244          break;
528      case rnemdUnknown :
1245        default :
1246          break;
1247        }
1248 <      valueHist[binNo] += value;
1248 >      
1249 >      RealType v1 = a000 * a111 - a001 * a110;
1250 >      RealType v2 = a000 * b01;
1251 >      RealType v3 = a000 * b11;
1252 >      RealType v4 = a000 * c1 - a001 * c0;
1253 >      RealType v8 = a110 * b01;
1254 >      RealType v10 = - b01 * c0;
1255 >      
1256 >      RealType u0 = v2 * v10 - v4 * v4;
1257 >      RealType u1 = -2.0 * v3 * v4;
1258 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1259 >      RealType u3 = -2.0 * v1 * v3;
1260 >      RealType u4 = - v1 * v1;
1261 >      //rescale coefficients
1262 >      RealType maxAbs = fabs(u0);
1263 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1264 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1265 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1266 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1267 >      u0 /= maxAbs;
1268 >      u1 /= maxAbs;
1269 >      u2 /= maxAbs;
1270 >      u3 /= maxAbs;
1271 >      u4 /= maxAbs;
1272 >      //max_element(start, end) is also available.
1273 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1274 >      poly.setCoefficient(4, u4);
1275 >      poly.setCoefficient(3, u3);
1276 >      poly.setCoefficient(2, u2);
1277 >      poly.setCoefficient(1, u1);
1278 >      poly.setCoefficient(0, u0);
1279 >      vector<RealType> realRoots = poly.FindRealRoots();
1280 >      
1281 >      vector<RealType>::iterator ri;
1282 >      RealType r1, r2, alpha0;
1283 >      vector<pair<RealType,RealType> > rps;
1284 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1285 >        r2 = *ri;
1286 >        //check if FindRealRoots() give the right answer
1287 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1288 >          sprintf(painCave.errMsg,
1289 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1290 >          painCave.isFatal = 0;
1291 >          simError();
1292 >          failRootCount_++;
1293 >        }
1294 >        //might not be useful w/o rescaling coefficients
1295 >        alpha0 = -c0 - a110 * r2 * r2;
1296 >        if (alpha0 >= 0.0) {
1297 >          r1 = sqrt(alpha0 / a000);
1298 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1299 >              < 1e-6)
1300 >            { rps.push_back(make_pair(r1, r2)); }
1301 >          if (r1 > 1e-6) { //r1 non-negative
1302 >            r1 = -r1;
1303 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1304 >                < 1e-6)
1305 >              { rps.push_back(make_pair(r1, r2)); }
1306 >          }
1307 >        }
1308 >      }
1309 >      // Consider combining together the solving pair part w/ the searching
1310 >      // best solution part so that we don't need the pairs vector
1311 >      if (!rps.empty()) {
1312 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1313 >        RealType diff;
1314 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1315 >        vector<pair<RealType,RealType> >::iterator rpi;
1316 >        for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1317 >          r1 = (*rpi).first;
1318 >          r2 = (*rpi).second;
1319 >          switch(rnemdFluxType_) {
1320 >          case rnemdKE :
1321 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1322 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1323 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1324 >            break;
1325 >          case rnemdPx :
1326 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1327 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1328 >            break;
1329 >          case rnemdPy :
1330 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1331 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1332 >            break;
1333 >          case rnemdPz :
1334 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1335 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1336 >          default :
1337 >            break;
1338 >          }
1339 >          if (diff < smallestDiff) {
1340 >            smallestDiff = diff;
1341 >            bestPair = *rpi;
1342 >          }
1343 >        }
1344 > #ifdef IS_MPI
1345 >        if (worldRank == 0) {
1346 > #endif
1347 >          // sprintf(painCave.errMsg,
1348 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1349 >          //         bestPair.first, bestPair.second);
1350 >          // painCave.isFatal = 0;
1351 >          // painCave.severity = OPENMD_INFO;
1352 >          // simError();
1353 > #ifdef IS_MPI
1354 >        }
1355 > #endif
1356 >        
1357 >        switch(rnemdFluxType_) {
1358 >        case rnemdKE :
1359 >          x = bestPair.first;
1360 >          y = bestPair.first;
1361 >          z = bestPair.second;
1362 >          break;
1363 >        case rnemdPx :
1364 >          x = c;
1365 >          y = bestPair.first;
1366 >          z = bestPair.second;
1367 >          break;
1368 >        case rnemdPy :
1369 >          x = bestPair.first;
1370 >          y = c;
1371 >          z = bestPair.second;
1372 >          break;
1373 >        case rnemdPz :
1374 >          x = bestPair.first;
1375 >          y = bestPair.second;
1376 >          z = c;
1377 >          break;          
1378 >        default :
1379 >          break;
1380 >        }
1381 >        vector<StuntDouble*>::iterator sdi;
1382 >        Vector3d vel;
1383 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1384 >          vel = (*sdi)->getVel();
1385 >          vel.x() *= x;
1386 >          vel.y() *= y;
1387 >          vel.z() *= z;
1388 >          (*sdi)->setVel(vel);
1389 >        }
1390 >        //convert to hotBin coefficient
1391 >        x = 1.0 + px * (1.0 - x);
1392 >        y = 1.0 + py * (1.0 - y);
1393 >        z = 1.0 + pz * (1.0 - z);
1394 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1395 >          vel = (*sdi)->getVel();
1396 >          vel.x() *= x;
1397 >          vel.y() *= y;
1398 >          vel.z() *= z;
1399 >          (*sdi)->setVel(vel);
1400 >        }
1401 >        successfulScale = true;
1402 >        switch(rnemdFluxType_) {
1403 >        case rnemdKE :
1404 >          kineticExchange_ += kineticTarget_;
1405 >          break;
1406 >        case rnemdPx :
1407 >        case rnemdPy :
1408 >        case rnemdPz :
1409 >          momentumExchange_ += momentumTarget_;
1410 >          break;          
1411 >        default :
1412 >          break;
1413 >        }      
1414 >      }
1415      }
1416 +    if (successfulScale != true) {
1417 +      sprintf(painCave.errMsg,
1418 +              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1419 +              "\tthe constraint equations may not exist or there may be\n"
1420 +              "\tno selected objects in one or both slabs.\n");
1421 +      painCave.isFatal = 0;
1422 +      painCave.severity = OPENMD_INFO;
1423 +      simError();        
1424 +      failTrialCount_++;
1425 +    }
1426 +  }
1427 +  
1428 +  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1429 +    if (!doRNEMD_) return;
1430 +    int selei;
1431 +    int selej;
1432  
1433 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1434 +    RealType time = currentSnap_->getTime();    
1435 +    Mat3x3d hmat = currentSnap_->getHmat();
1436 +
1437 +    StuntDouble* sd;
1438 +
1439 +    vector<StuntDouble*> hotBin, coldBin;
1440 +
1441 +    Vector3d Ph(V3Zero);
1442 +    Vector3d Lh(V3Zero);
1443 +    RealType Mh = 0.0;
1444 +    Mat3x3d Ih(0.0);
1445 +    RealType Kh = 0.0;
1446 +    Vector3d Pc(V3Zero);
1447 +    Vector3d Lc(V3Zero);
1448 +    RealType Mc = 0.0;
1449 +    Mat3x3d Ic(0.0);
1450 +    RealType Kc = 0.0;
1451 +
1452 +    // Constraints can be on only the linear or angular momentum, but
1453 +    // not both.  Usually, the user will specify which they want, but
1454 +    // in case they don't, the use of periodic boundaries should make
1455 +    // the choice for us.
1456 +    bool doLinearPart = false;
1457 +    bool doAngularPart = false;
1458 +
1459 +    switch (rnemdFluxType_) {
1460 +    case rnemdPx:
1461 +    case rnemdPy:
1462 +    case rnemdPz:
1463 +    case rnemdPvector:
1464 +    case rnemdKePx:
1465 +    case rnemdKePy:
1466 +    case rnemdKePvector:
1467 +      doLinearPart = true;
1468 +      break;
1469 +    case rnemdLx:
1470 +    case rnemdLy:
1471 +    case rnemdLz:
1472 +    case rnemdLvector:
1473 +    case rnemdKeLx:
1474 +    case rnemdKeLy:
1475 +    case rnemdKeLz:
1476 +    case rnemdKeLvector:
1477 +      doAngularPart = true;
1478 +      break;
1479 +    case rnemdKE:
1480 +    case rnemdRotKE:
1481 +    case rnemdFullKE:
1482 +    default:
1483 +      if (usePeriodicBoundaryConditions_)
1484 +        doLinearPart = true;
1485 +      else
1486 +        doAngularPart = true;
1487 +      break;
1488 +    }
1489 +    
1490 +    for (sd = smanA.beginSelected(selei); sd != NULL;
1491 +         sd = smanA.nextSelected(selei)) {
1492 +
1493 +      Vector3d pos = sd->getPos();
1494 +
1495 +      // wrap the stuntdouble's position back into the box:
1496 +      
1497 +      if (usePeriodicBoundaryConditions_)
1498 +        currentSnap_->wrapVector(pos);
1499 +      
1500 +      RealType mass = sd->getMass();
1501 +      Vector3d vel = sd->getVel();
1502 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1503 +      RealType r2;
1504 +      
1505 +      hotBin.push_back(sd);
1506 +      Ph += mass * vel;
1507 +      Mh += mass;
1508 +      Kh += mass * vel.lengthSquare();
1509 +      Lh += mass * cross(rPos, vel);
1510 +      Ih -= outProduct(rPos, rPos) * mass;
1511 +      r2 = rPos.lengthSquare();
1512 +      Ih(0, 0) += mass * r2;
1513 +      Ih(1, 1) += mass * r2;
1514 +      Ih(2, 2) += mass * r2;
1515 +      
1516 +      if (rnemdFluxType_ == rnemdFullKE) {
1517 +        if (sd->isDirectional()) {
1518 +          Vector3d angMom = sd->getJ();
1519 +          Mat3x3d I = sd->getI();
1520 +          if (sd->isLinear()) {
1521 +            int i = sd->linearAxis();
1522 +            int j = (i + 1) % 3;
1523 +            int k = (i + 2) % 3;
1524 +            Kh += angMom[j] * angMom[j] / I(j, j) +
1525 +              angMom[k] * angMom[k] / I(k, k);
1526 +          } else {
1527 +            Kh += angMom[0] * angMom[0] / I(0, 0) +
1528 +              angMom[1] * angMom[1] / I(1, 1) +
1529 +              angMom[2] * angMom[2] / I(2, 2);
1530 +          }
1531 +        }
1532 +      }
1533 +    }
1534 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1535 +         sd = smanB.nextSelected(selej)) {
1536 +
1537 +      Vector3d pos = sd->getPos();
1538 +      
1539 +      // wrap the stuntdouble's position back into the box:
1540 +      
1541 +      if (usePeriodicBoundaryConditions_)
1542 +        currentSnap_->wrapVector(pos);
1543 +      
1544 +      RealType mass = sd->getMass();
1545 +      Vector3d vel = sd->getVel();
1546 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1547 +      RealType r2;
1548 +
1549 +      coldBin.push_back(sd);
1550 +      Pc += mass * vel;
1551 +      Mc += mass;
1552 +      Kc += mass * vel.lengthSquare();
1553 +      Lc += mass * cross(rPos, vel);
1554 +      Ic -= outProduct(rPos, rPos) * mass;
1555 +      r2 = rPos.lengthSquare();
1556 +      Ic(0, 0) += mass * r2;
1557 +      Ic(1, 1) += mass * r2;
1558 +      Ic(2, 2) += mass * r2;
1559 +      
1560 +      if (rnemdFluxType_ == rnemdFullKE) {
1561 +        if (sd->isDirectional()) {
1562 +          Vector3d angMom = sd->getJ();
1563 +          Mat3x3d I = sd->getI();
1564 +          if (sd->isLinear()) {
1565 +            int i = sd->linearAxis();
1566 +            int j = (i + 1) % 3;
1567 +            int k = (i + 2) % 3;
1568 +            Kc += angMom[j] * angMom[j] / I(j, j) +
1569 +              angMom[k] * angMom[k] / I(k, k);
1570 +          } else {
1571 +            Kc += angMom[0] * angMom[0] / I(0, 0) +
1572 +              angMom[1] * angMom[1] / I(1, 1) +
1573 +              angMom[2] * angMom[2] / I(2, 2);
1574 +          }
1575 +        }
1576 +      }
1577 +    }
1578 +    
1579 +    Kh *= 0.5;
1580 +    Kc *= 0.5;
1581 +    
1582   #ifdef IS_MPI
1583 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1584 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1585 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM);
1586 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM);
1587 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1588 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1589 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1590 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1591 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9,
1592 +                              MPI::REALTYPE, MPI::SUM);
1593 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9,
1594 +                              MPI::REALTYPE, MPI::SUM);
1595 + #endif
1596 +    
1597  
1598 <    // all processors have the same number of bins, and STL vectors pack their
1599 <    // arrays, so in theory, this should be safe:
1598 >    Vector3d ac, acrec, bc, bcrec;
1599 >    Vector3d ah, ahrec, bh, bhrec;
1600 >    RealType cNumerator, cDenominator;
1601 >    RealType hNumerator, hDenominator;
1602  
540    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist[0],
541                              nBins_, MPI::REALTYPE, MPI::SUM);
542    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount[0],
543                              nBins_, MPI::INT, MPI::SUM);
1603  
1604 +    bool successfulExchange = false;
1605 +    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1606 +      Vector3d vc = Pc / Mc;
1607 +      ac = -momentumTarget_ / Mc + vc;
1608 +      acrec = -momentumTarget_ / Mc;
1609 +      
1610 +      // We now need the inverse of the inertia tensor to calculate the
1611 +      // angular velocity of the cold slab;
1612 +      Mat3x3d Ici = Ic.inverse();
1613 +      Vector3d omegac = Ici * Lc;
1614 +      bc  = -(Ici * angularMomentumTarget_) + omegac;
1615 +      bcrec = bc - omegac;
1616 +      
1617 +      cNumerator = Kc - kineticTarget_;
1618 +      if (doLinearPart)
1619 +        cNumerator -= 0.5 * Mc * ac.lengthSquare();
1620 +      
1621 +      if (doAngularPart)
1622 +        cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1623 +
1624 +      if (cNumerator > 0.0) {
1625 +        
1626 +        cDenominator = Kc;
1627 +
1628 +        if (doLinearPart)
1629 +          cDenominator -= 0.5 * Mc * vc.lengthSquare();
1630 +
1631 +        if (doAngularPart)
1632 +          cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1633 +        
1634 +        if (cDenominator > 0.0) {
1635 +          RealType c = sqrt(cNumerator / cDenominator);
1636 +          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1637 +            
1638 +            Vector3d vh = Ph / Mh;
1639 +            ah = momentumTarget_ / Mh + vh;
1640 +            ahrec = momentumTarget_ / Mh;
1641 +            
1642 +            // We now need the inverse of the inertia tensor to
1643 +            // calculate the angular velocity of the hot slab;
1644 +            Mat3x3d Ihi = Ih.inverse();
1645 +            Vector3d omegah = Ihi * Lh;
1646 +            bh  = (Ihi * angularMomentumTarget_) + omegah;
1647 +            bhrec = bh - omegah;
1648 +            
1649 +            hNumerator = Kh + kineticTarget_;
1650 +            if (doLinearPart)
1651 +              hNumerator -= 0.5 * Mh * ah.lengthSquare();
1652 +            
1653 +            if (doAngularPart)
1654 +              hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1655 +              
1656 +            if (hNumerator > 0.0) {
1657 +              
1658 +              hDenominator = Kh;
1659 +              if (doLinearPart)
1660 +                hDenominator -= 0.5 * Mh * vh.lengthSquare();
1661 +              if (doAngularPart)
1662 +                hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1663 +              
1664 +              if (hDenominator > 0.0) {
1665 +                RealType h = sqrt(hNumerator / hDenominator);
1666 +                if ((h > 0.9) && (h < 1.1)) {
1667 +                  
1668 +                  vector<StuntDouble*>::iterator sdi;
1669 +                  Vector3d vel;
1670 +                  Vector3d rPos;
1671 +                  
1672 +                  for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1673 +                    //vel = (*sdi)->getVel();
1674 +                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1675 +                    if (doLinearPart)
1676 +                      vel = ((*sdi)->getVel() - vc) * c + ac;
1677 +                    if (doAngularPart)
1678 +                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1679 +
1680 +                    (*sdi)->setVel(vel);
1681 +                    if (rnemdFluxType_ == rnemdFullKE) {
1682 +                      if ((*sdi)->isDirectional()) {
1683 +                        Vector3d angMom = (*sdi)->getJ() * c;
1684 +                        (*sdi)->setJ(angMom);
1685 +                      }
1686 +                    }
1687 +                  }
1688 +                  for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1689 +                    //vel = (*sdi)->getVel();
1690 +                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1691 +                    if (doLinearPart)
1692 +                      vel = ((*sdi)->getVel() - vh) * h + ah;    
1693 +                    if (doAngularPart)
1694 +                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);    
1695 +
1696 +                    (*sdi)->setVel(vel);
1697 +                    if (rnemdFluxType_ == rnemdFullKE) {
1698 +                      if ((*sdi)->isDirectional()) {
1699 +                        Vector3d angMom = (*sdi)->getJ() * h;
1700 +                        (*sdi)->setJ(angMom);
1701 +                      }
1702 +                    }
1703 +                  }
1704 +                  successfulExchange = true;
1705 +                  kineticExchange_ += kineticTarget_;
1706 +                  momentumExchange_ += momentumTarget_;
1707 +                  angularMomentumExchange_ += angularMomentumTarget_;
1708 +                }
1709 +              }
1710 +            }
1711 +          }
1712 +        }
1713 +      }
1714 +    }
1715 +    if (successfulExchange != true) {
1716 +      sprintf(painCave.errMsg,
1717 +              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1718 +              "\tthe constraint equations may not exist or there may be\n"
1719 +              "\tno selected objects in one or both slabs.\n");
1720 +      painCave.isFatal = 0;
1721 +      painCave.severity = OPENMD_INFO;
1722 +      simError();        
1723 +      failTrialCount_++;
1724 +    }
1725 +  }
1726 +
1727 +  RealType RNEMD::getDividingArea() {
1728 +
1729 +    if (hasDividingArea_) return dividingArea_;
1730 +
1731 +    RealType areaA, areaB;
1732 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1733 +
1734 +    if (hasSelectionA_) {
1735 +      int isd;
1736 +      StuntDouble* sd;
1737 +      vector<StuntDouble*> aSites;
1738 +      seleManA_.setSelectionSet(evaluatorA_.evaluate());
1739 +      for (sd = seleManA_.beginSelected(isd); sd != NULL;
1740 +           sd = seleManA_.nextSelected(isd)) {
1741 +        aSites.push_back(sd);
1742 +      }
1743 +      ConvexHull* surfaceMeshA = new ConvexHull();
1744 +      surfaceMeshA->computeHull(aSites);
1745 +      areaA = surfaceMeshA->getArea();
1746 +      delete surfaceMeshA;
1747 +
1748 +    } else {
1749 +      if (usePeriodicBoundaryConditions_) {
1750 +        // in periodic boundaries, the surface area is twice the x-y
1751 +        // area of the current box:
1752 +        areaA = 2.0 * snap->getXYarea();
1753 +      } else {
1754 +        // in non-periodic simulations, without explicitly setting
1755 +        // selections, the sphere radius sets the surface area of the
1756 +        // dividing surface:
1757 +        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1758 +      }
1759 +    }
1760 +
1761 +
1762 +
1763 +    if (hasSelectionB_) {
1764 +      int isd;
1765 +      StuntDouble* sd;
1766 +      vector<StuntDouble*> bSites;
1767 +      seleManB_.setSelectionSet(evaluatorB_.evaluate());
1768 +      for (sd = seleManB_.beginSelected(isd); sd != NULL;
1769 +           sd = seleManB_.nextSelected(isd)) {
1770 +        bSites.push_back(sd);
1771 +      }
1772 +      ConvexHull* surfaceMeshB = new ConvexHull();    
1773 +      surfaceMeshB->computeHull(bSites);
1774 +      areaB = surfaceMeshB->getArea();
1775 +      delete surfaceMeshB;
1776 +
1777 +    } else {
1778 +      if (usePeriodicBoundaryConditions_) {
1779 +        // in periodic boundaries, the surface area is twice the x-y
1780 +        // area of the current box:
1781 +        areaB = 2.0 * snap->getXYarea();
1782 +      } else {
1783 +        // in non-periodic simulations, without explicitly setting
1784 +        // selections, but if a sphereBradius has been set, just use that:
1785 +        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1786 +      }
1787 +    }
1788 +    
1789 +    dividingArea_ = min(areaA, areaB);
1790 +    hasDividingArea_ = true;
1791 +    return dividingArea_;
1792 +  }
1793 +  
1794 +  void RNEMD::doRNEMD() {
1795 +    if (!doRNEMD_) return;
1796 +    trialCount_++;
1797 +
1798 +    // object evaluator:
1799 +    evaluator_.loadScriptString(rnemdObjectSelection_);
1800 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1801 +
1802 +    evaluatorA_.loadScriptString(selectionA_);
1803 +    evaluatorB_.loadScriptString(selectionB_);
1804 +
1805 +    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1806 +    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1807 +
1808 +    commonA_ = seleManA_ & seleMan_;
1809 +    commonB_ = seleManB_ & seleMan_;
1810 +
1811 +    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1812 +    // dt = exchange time interval
1813 +    // flux = target flux
1814 +    // dividingArea = smallest dividing surface between the two regions
1815 +
1816 +    hasDividingArea_ = false;
1817 +    RealType area = getDividingArea();
1818 +
1819 +    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1820 +    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1821 +    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1822 +
1823 +    switch(rnemdMethod_) {
1824 +    case rnemdSwap:
1825 +      doSwap(commonA_, commonB_);
1826 +      break;
1827 +    case rnemdNIVS:
1828 +      doNIVS(commonA_, commonB_);
1829 +      break;
1830 +    case rnemdVSS:
1831 +      doVSS(commonA_, commonB_);
1832 +      break;
1833 +    case rnemdUnkownMethod:
1834 +    default :
1835 +      break;
1836 +    }
1837 +  }
1838 +
1839 +  void RNEMD::collectData() {
1840 +    if (!doRNEMD_) return;
1841 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1842 +    
1843 +    // collectData can be called more frequently than the doRNEMD, so use the
1844 +    // computed area from the last exchange time:
1845 +    RealType area = getDividingArea();
1846 +    areaAccumulator_->add(area);
1847 +    Mat3x3d hmat = currentSnap_->getHmat();
1848 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1849 +
1850 +    int selei(0);
1851 +    StuntDouble* sd;
1852 +    int binNo;
1853 +
1854 +    vector<RealType> binMass(nBins_, 0.0);
1855 +    vector<RealType> binPx(nBins_, 0.0);
1856 +    vector<RealType> binPy(nBins_, 0.0);
1857 +    vector<RealType> binPz(nBins_, 0.0);
1858 +    vector<RealType> binOmegax(nBins_, 0.0);
1859 +    vector<RealType> binOmegay(nBins_, 0.0);
1860 +    vector<RealType> binOmegaz(nBins_, 0.0);
1861 +    vector<RealType> binKE(nBins_, 0.0);
1862 +    vector<int> binDOF(nBins_, 0);
1863 +    vector<int> binCount(nBins_, 0);
1864 +
1865 +    // alternative approach, track all molecules instead of only those
1866 +    // selected for scaling/swapping:
1867 +    /*
1868 +      SimInfo::MoleculeIterator miter;
1869 +      vector<StuntDouble*>::iterator iiter;
1870 +      Molecule* mol;
1871 +      StuntDouble* sd;
1872 +      for (mol = info_->beginMolecule(miter); mol != NULL;
1873 +      mol = info_->nextMolecule(miter))
1874 +      sd is essentially sd
1875 +      for (sd = mol->beginIntegrableObject(iiter);
1876 +      sd != NULL;
1877 +      sd = mol->nextIntegrableObject(iiter))
1878 +    */
1879 +
1880 +    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1881 +         sd = seleMan_.nextSelected(selei)) {    
1882 +    
1883 +      Vector3d pos = sd->getPos();
1884 +
1885 +      // wrap the stuntdouble's position back into the box:
1886 +      
1887 +      if (usePeriodicBoundaryConditions_) {
1888 +        currentSnap_->wrapVector(pos);
1889 +        // which bin is this stuntdouble in?
1890 +        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1891 +        // Shift molecules by half a box to have bins start at 0
1892 +        // The modulo operator is used to wrap the case when we are
1893 +        // beyond the end of the bins back to the beginning.
1894 +        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1895 +      } else {
1896 +        Vector3d rPos = pos - coordinateOrigin_;
1897 +        binNo = int(rPos.length() / binWidth_);
1898 +      }
1899 +
1900 +      RealType mass = sd->getMass();
1901 +      Vector3d vel = sd->getVel();
1902 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1903 +      Vector3d aVel = cross(rPos, vel);
1904 +      
1905 +      if (binNo >= 0 && binNo < nBins_)  {
1906 +        binCount[binNo]++;
1907 +        binMass[binNo] += mass;
1908 +        binPx[binNo] += mass*vel.x();
1909 +        binPy[binNo] += mass*vel.y();
1910 +        binPz[binNo] += mass*vel.z();
1911 +        binOmegax[binNo] += aVel.x();
1912 +        binOmegay[binNo] += aVel.y();
1913 +        binOmegaz[binNo] += aVel.z();
1914 +        binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1915 +        binDOF[binNo] += 3;
1916 +        
1917 +        if (sd->isDirectional()) {
1918 +          Vector3d angMom = sd->getJ();
1919 +          Mat3x3d I = sd->getI();
1920 +          if (sd->isLinear()) {
1921 +            int i = sd->linearAxis();
1922 +            int j = (i + 1) % 3;
1923 +            int k = (i + 2) % 3;
1924 +            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1925 +                                   angMom[k] * angMom[k] / I(k, k));
1926 +            binDOF[binNo] += 2;
1927 +          } else {
1928 +            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1929 +                                   angMom[1] * angMom[1] / I(1, 1) +
1930 +                                   angMom[2] * angMom[2] / I(2, 2));
1931 +            binDOF[binNo] += 3;
1932 +          }
1933 +        }
1934 +      }
1935 +    }
1936 +    
1937 + #ifdef IS_MPI
1938 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1939 +                              nBins_, MPI::INT, MPI::SUM);
1940 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1941 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1942 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1943 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1944 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1945 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1946 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1947 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1948 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0],
1949 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1950 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0],
1951 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1952 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0],
1953 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1954 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1955 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1956 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1957 +                              nBins_, MPI::INT, MPI::SUM);
1958 + #endif
1959 +
1960 +    Vector3d vel;
1961 +    Vector3d aVel;
1962 +    RealType den;
1963 +    RealType temp;
1964 +    RealType z;
1965 +    RealType r;
1966 +    for (int i = 0; i < nBins_; i++) {
1967 +      if (usePeriodicBoundaryConditions_) {
1968 +        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1969 +        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1970 +          / currentSnap_->getVolume() ;
1971 +      } else {
1972 +        r = (((RealType)i + 0.5) * binWidth_);
1973 +        RealType rinner = (RealType)i * binWidth_;
1974 +        RealType router = (RealType)(i+1) * binWidth_;
1975 +        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
1976 +          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
1977 +      }
1978 +      vel.x() = binPx[i] / binMass[i];
1979 +      vel.y() = binPy[i] / binMass[i];
1980 +      vel.z() = binPz[i] / binMass[i];
1981 +      aVel.x() = binOmegax[i] / binCount[i];
1982 +      aVel.y() = binOmegay[i] / binCount[i];
1983 +      aVel.z() = binOmegaz[i] / binCount[i];
1984 +
1985 +      if (binCount[i] > 0) {
1986 +        // only add values if there are things to add
1987 +        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1988 +                                 PhysicalConstants::energyConvert);
1989 +        
1990 +        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1991 +          if(outputMask_[j]) {
1992 +            switch(j) {
1993 +            case Z:
1994 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
1995 +              break;
1996 +            case R:
1997 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
1998 +              break;
1999 +            case TEMPERATURE:
2000 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2001 +              break;
2002 +            case VELOCITY:
2003 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2004 +              break;
2005 +            case ANGULARVELOCITY:  
2006 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel);
2007 +              break;
2008 +            case DENSITY:
2009 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2010 +              break;
2011 +            }
2012 +          }
2013 +        }
2014 +      }
2015 +    }
2016 +    hasData_ = true;
2017 +  }
2018 +
2019 +  void RNEMD::getStarted() {
2020 +    if (!doRNEMD_) return;
2021 +    hasDividingArea_ = false;
2022 +    collectData();
2023 +    writeOutputFile();
2024 +  }
2025 +
2026 +  void RNEMD::parseOutputFileFormat(const std::string& format) {
2027 +    if (!doRNEMD_) return;
2028 +    StringTokenizer tokenizer(format, " ,;|\t\n\r");
2029 +    
2030 +    while(tokenizer.hasMoreTokens()) {
2031 +      std::string token(tokenizer.nextToken());
2032 +      toUpper(token);
2033 +      OutputMapType::iterator i = outputMap_.find(token);
2034 +      if (i != outputMap_.end()) {
2035 +        outputMask_.set(i->second);
2036 +      } else {
2037 +        sprintf( painCave.errMsg,
2038 +                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
2039 +                 "\toutputFileFormat keyword.\n", token.c_str() );
2040 +        painCave.isFatal = 0;
2041 +        painCave.severity = OPENMD_ERROR;
2042 +        simError();            
2043 +      }
2044 +    }  
2045 +  }
2046 +  
2047 +  void RNEMD::writeOutputFile() {
2048 +    if (!doRNEMD_) return;
2049 +    if (!hasData_) return;
2050 +    
2051 + #ifdef IS_MPI
2052      // If we're the root node, should we print out the results
2053      int worldRank = MPI::COMM_WORLD.Get_rank();
2054      if (worldRank == 0) {
2055   #endif
2056 <      
550 <      std::cout << time;
551 <      for (int j = 0; j < nBins_; j++)
552 <        std::cout << "\t" << valueHist[j] / (RealType)valueCount[j];
553 <      std::cout << "\n";
2056 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
2057        
2058 +      if( !rnemdFile_ ){        
2059 +        sprintf( painCave.errMsg,
2060 +                 "Could not open \"%s\" for RNEMD output.\n",
2061 +                 rnemdFileName_.c_str());
2062 +        painCave.isFatal = 1;
2063 +        simError();
2064 +      }
2065 +
2066 +      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2067 +
2068 +      RealType time = currentSnap_->getTime();
2069 +      RealType avgArea;
2070 +      areaAccumulator_->getAverage(avgArea);
2071 +
2072 +      RealType Jz(0.0);
2073 +      Vector3d JzP(V3Zero);
2074 +      Vector3d JzL(V3Zero);
2075 +      if (time >= info_->getSimParams()->getDt()) {
2076 +        Jz = kineticExchange_ / (time * avgArea)
2077 +          / PhysicalConstants::energyConvert;
2078 +        JzP = momentumExchange_ / (time * avgArea);
2079 +        JzL = angularMomentumExchange_ / (time * avgArea);
2080 +      }
2081 +
2082 +      rnemdFile_ << "#######################################################\n";
2083 +      rnemdFile_ << "# RNEMD {\n";
2084 +
2085 +      map<string, RNEMDMethod>::iterator mi;
2086 +      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2087 +        if ( (*mi).second == rnemdMethod_)
2088 +          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2089 +      }
2090 +      map<string, RNEMDFluxType>::iterator fi;
2091 +      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2092 +        if ( (*fi).second == rnemdFluxType_)
2093 +          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2094 +      }
2095 +      
2096 +      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2097 +
2098 +      rnemdFile_ << "#    objectSelection = \""
2099 +                 << rnemdObjectSelection_ << "\";\n";
2100 +      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2101 +      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2102 +      rnemdFile_ << "# }\n";
2103 +      rnemdFile_ << "#######################################################\n";
2104 +      rnemdFile_ << "# RNEMD report:\n";      
2105 +      rnemdFile_ << "#      running time = " << time << " fs\n";
2106 +      rnemdFile_ << "# Target flux:\n";
2107 +      rnemdFile_ << "#           kinetic = "
2108 +                 << kineticFlux_ / PhysicalConstants::energyConvert
2109 +                 << " (kcal/mol/A^2/fs)\n";
2110 +      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2111 +                 << " (amu/A/fs^2)\n";
2112 +      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2113 +                 << " (amu/A^2/fs^2)\n";
2114 +      rnemdFile_ << "# Target one-time exchanges:\n";
2115 +      rnemdFile_ << "#          kinetic = "
2116 +                 << kineticTarget_ / PhysicalConstants::energyConvert
2117 +                 << " (kcal/mol)\n";
2118 +      rnemdFile_ << "#          momentum = " << momentumTarget_
2119 +                 << " (amu*A/fs)\n";
2120 +      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2121 +                 << " (amu*A^2/fs)\n";
2122 +      rnemdFile_ << "# Actual exchange totals:\n";
2123 +      rnemdFile_ << "#          kinetic = "
2124 +                 << kineticExchange_ / PhysicalConstants::energyConvert
2125 +                 << " (kcal/mol)\n";
2126 +      rnemdFile_ << "#          momentum = " << momentumExchange_
2127 +                 << " (amu*A/fs)\n";      
2128 +      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2129 +                 << " (amu*A^2/fs)\n";      
2130 +      rnemdFile_ << "# Actual flux:\n";
2131 +      rnemdFile_ << "#          kinetic = " << Jz
2132 +                 << " (kcal/mol/A^2/fs)\n";
2133 +      rnemdFile_ << "#          momentum = " << JzP
2134 +                 << " (amu/A/fs^2)\n";
2135 +      rnemdFile_ << "#  angular momentum = " << JzL
2136 +                 << " (amu/A^2/fs^2)\n";
2137 +      rnemdFile_ << "# Exchange statistics:\n";
2138 +      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2139 +      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2140 +      if (rnemdMethod_ == rnemdNIVS) {
2141 +        rnemdFile_ << "#  NIVS root-check errors = "
2142 +                   << failRootCount_ << "\n";
2143 +      }
2144 +      rnemdFile_ << "#######################################################\n";
2145 +      
2146 +      
2147 +      
2148 +      //write title
2149 +      rnemdFile_ << "#";
2150 +      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2151 +        if (outputMask_[i]) {
2152 +          rnemdFile_ << "\t" << data_[i].title <<
2153 +            "(" << data_[i].units << ")";
2154 +          // add some extra tabs for column alignment
2155 +          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2156 +        }
2157 +      }
2158 +      rnemdFile_ << std::endl;
2159 +      
2160 +      rnemdFile_.precision(8);
2161 +      
2162 +      for (int j = 0; j < nBins_; j++) {        
2163 +        
2164 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2165 +          if (outputMask_[i]) {
2166 +            if (data_[i].dataType == "RealType")
2167 +              writeReal(i,j);
2168 +            else if (data_[i].dataType == "Vector3d")
2169 +              writeVector(i,j);
2170 +            else {
2171 +              sprintf( painCave.errMsg,
2172 +                       "RNEMD found an unknown data type for: %s ",
2173 +                       data_[i].title.c_str());
2174 +              painCave.isFatal = 1;
2175 +              simError();
2176 +            }
2177 +          }
2178 +        }
2179 +        rnemdFile_ << std::endl;
2180 +        
2181 +      }        
2182 +
2183 +      rnemdFile_ << "#######################################################\n";
2184 +      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
2185 +      rnemdFile_ << "#######################################################\n";
2186 +
2187 +
2188 +      for (int j = 0; j < nBins_; j++) {        
2189 +        rnemdFile_ << "#";
2190 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2191 +          if (outputMask_[i]) {
2192 +            if (data_[i].dataType == "RealType")
2193 +              writeRealStdDev(i,j);
2194 +            else if (data_[i].dataType == "Vector3d")
2195 +              writeVectorStdDev(i,j);
2196 +            else {
2197 +              sprintf( painCave.errMsg,
2198 +                       "RNEMD found an unknown data type for: %s ",
2199 +                       data_[i].title.c_str());
2200 +              painCave.isFatal = 1;
2201 +              simError();
2202 +            }
2203 +          }
2204 +        }
2205 +        rnemdFile_ << std::endl;
2206 +        
2207 +      }        
2208 +      
2209 +      rnemdFile_.flush();
2210 +      rnemdFile_.close();
2211 +      
2212   #ifdef IS_MPI
2213      }
2214   #endif
2215 +    
2216    }
2217 +  
2218 +  void RNEMD::writeReal(int index, unsigned int bin) {
2219 +    if (!doRNEMD_) return;
2220 +    assert(index >=0 && index < ENDINDEX);
2221 +    assert(int(bin) < nBins_);
2222 +    RealType s;
2223 +    int count;
2224 +    
2225 +    count = data_[index].accumulator[bin]->count();
2226 +    if (count == 0) return;
2227 +    
2228 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2229 +    
2230 +    if (! isinf(s) && ! isnan(s)) {
2231 +      rnemdFile_ << "\t" << s;
2232 +    } else{
2233 +      sprintf( painCave.errMsg,
2234 +               "RNEMD detected a numerical error writing: %s for bin %u",
2235 +               data_[index].title.c_str(), bin);
2236 +      painCave.isFatal = 1;
2237 +      simError();
2238 +    }    
2239 +  }
2240 +  
2241 +  void RNEMD::writeVector(int index, unsigned int bin) {
2242 +    if (!doRNEMD_) return;
2243 +    assert(index >=0 && index < ENDINDEX);
2244 +    assert(int(bin) < nBins_);
2245 +    Vector3d s;
2246 +    int count;
2247 +    
2248 +    count = data_[index].accumulator[bin]->count();
2249 +
2250 +    if (count == 0) return;
2251 +
2252 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2253 +    if (isinf(s[0]) || isnan(s[0]) ||
2254 +        isinf(s[1]) || isnan(s[1]) ||
2255 +        isinf(s[2]) || isnan(s[2]) ) {      
2256 +      sprintf( painCave.errMsg,
2257 +               "RNEMD detected a numerical error writing: %s for bin %u",
2258 +               data_[index].title.c_str(), bin);
2259 +      painCave.isFatal = 1;
2260 +      simError();
2261 +    } else {
2262 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2263 +    }
2264 +  }  
2265 +
2266 +  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
2267 +    if (!doRNEMD_) return;
2268 +    assert(index >=0 && index < ENDINDEX);
2269 +    assert(int(bin) < nBins_);
2270 +    RealType s;
2271 +    int count;
2272 +    
2273 +    count = data_[index].accumulator[bin]->count();
2274 +    if (count == 0) return;
2275 +    
2276 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
2277 +    
2278 +    if (! isinf(s) && ! isnan(s)) {
2279 +      rnemdFile_ << "\t" << s;
2280 +    } else{
2281 +      sprintf( painCave.errMsg,
2282 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2283 +               data_[index].title.c_str(), bin);
2284 +      painCave.isFatal = 1;
2285 +      simError();
2286 +    }    
2287 +  }
2288 +  
2289 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
2290 +    if (!doRNEMD_) return;
2291 +    assert(index >=0 && index < ENDINDEX);
2292 +    assert(int(bin) < nBins_);
2293 +    Vector3d s;
2294 +    int count;
2295 +    
2296 +    count = data_[index].accumulator[bin]->count();
2297 +    if (count == 0) return;
2298 +
2299 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
2300 +    if (isinf(s[0]) || isnan(s[0]) ||
2301 +        isinf(s[1]) || isnan(s[1]) ||
2302 +        isinf(s[2]) || isnan(s[2]) ) {      
2303 +      sprintf( painCave.errMsg,
2304 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2305 +               data_[index].title.c_str(), bin);
2306 +      painCave.isFatal = 1;
2307 +      simError();
2308 +    } else {
2309 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2310 +    }
2311 +  }  
2312   }
2313 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (property svn:keywords), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines