ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing branches/development/src/rnemd/RNEMD.cpp (file contents):
Revision 1773 by gezelter, Tue Aug 7 18:26:40 2012 UTC vs.
Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   #include <cmath>
43 + #include <sstream>
44 + #include <string>
45 +
46   #include "rnemd/RNEMD.hpp"
47   #include "math/Vector3.hpp"
48   #include "math/Vector.hpp"
# Line 49 | Line 52
52   #include "primitives/StuntDouble.hpp"
53   #include "utils/PhysicalConstants.hpp"
54   #include "utils/Tuple.hpp"
55 + #include "brains/Thermo.hpp"
56 + #include "math/ConvexHull.hpp"
57   #ifdef IS_MPI
58   #include <mpi.h>
59   #endif
60  
61 + #ifdef _MSC_VER
62 + #define isnan(x) _isnan((x))
63 + #define isinf(x) (!_finite(x) && !_isnan(x))
64 + #endif
65 +
66   #define HONKING_LARGE_VALUE 1.0e10
67  
68   using namespace std;
69   namespace OpenMD {
70    
71    RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 +                                evaluatorA_(info), seleManA_(info),
73 +                                commonA_(info), evaluatorB_(info),
74 +                                seleManB_(info), commonB_(info),
75 +                                hasData_(false), hasDividingArea_(false),
76                                  usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
77  
78      trialCount_ = 0;
79      failTrialCount_ = 0;
80      failRootCount_ = 0;
81  
82 <    int seedValue;
69 <    Globals * simParams = info->getSimParams();
82 >    Globals* simParams = info->getSimParams();
83      RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
84  
85 +    doRNEMD_ = rnemdParams->getUseRNEMD();
86 +    if (!doRNEMD_) return;
87 +
88      stringToMethod_["Swap"]  = rnemdSwap;
89      stringToMethod_["NIVS"]  = rnemdNIVS;
90      stringToMethod_["VSS"]   = rnemdVSS;
# Line 77 | Line 93 | namespace OpenMD {
93      stringToFluxType_["Px"]  = rnemdPx;
94      stringToFluxType_["Py"]  = rnemdPy;
95      stringToFluxType_["Pz"]  = rnemdPz;
96 +    stringToFluxType_["Pvector"]  = rnemdPvector;
97 +    stringToFluxType_["Lx"]  = rnemdLx;
98 +    stringToFluxType_["Ly"]  = rnemdLy;
99 +    stringToFluxType_["Lz"]  = rnemdLz;
100 +    stringToFluxType_["Lvector"]  = rnemdLvector;
101      stringToFluxType_["KE+Px"]  = rnemdKePx;
102      stringToFluxType_["KE+Py"]  = rnemdKePy;
103      stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
104 +    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
105 +    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
106 +    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
107 +    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
108  
109      runTime_ = simParams->getRunTime();
110      statusTime_ = simParams->getStatusTime();
111  
87    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
88    evaluator_.loadScriptString(rnemdObjectSelection_);
89    seleMan_.setSelectionSet(evaluator_.evaluate());
90
112      const string methStr = rnemdParams->getMethod();
113      bool hasFluxType = rnemdParams->haveFluxType();
114  
115 +    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
116 +
117      string fluxStr;
118      if (hasFluxType) {
119        fluxStr = rnemdParams->getFluxType();
# Line 98 | Line 121 | namespace OpenMD {
121        sprintf(painCave.errMsg,
122                "RNEMD: No fluxType was set in the md file.  This parameter,\n"
123                "\twhich must be one of the following values:\n"
124 <              "\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n"
125 <              "\tuse RNEMD\n");
124 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
125 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
126 >              "\tmust be set to use RNEMD\n");
127        painCave.isFatal = 1;
128        painCave.severity = OPENMD_ERROR;
129        simError();
# Line 108 | Line 132 | namespace OpenMD {
132      bool hasKineticFlux = rnemdParams->haveKineticFlux();
133      bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
134      bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
135 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
136 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
137 +    hasSelectionA_ = rnemdParams->haveSelectionA();
138 +    hasSelectionB_ = rnemdParams->haveSelectionB();
139      bool hasSlabWidth = rnemdParams->haveSlabWidth();
140      bool hasSlabACenter = rnemdParams->haveSlabACenter();
141      bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
142 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
143 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
144 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
145      bool hasOutputFileName = rnemdParams->haveOutputFileName();
146      bool hasOutputFields = rnemdParams->haveOutputFields();
147      
# Line 195 | Line 226 | namespace OpenMD {
226        case rnemdPz:
227          hasCorrectFlux = hasMomentumFlux;
228          break;
229 +      case rnemdLx:
230 +      case rnemdLy:
231 +      case rnemdLz:
232 +        hasCorrectFlux = hasAngularMomentumFlux;
233 +        break;
234        case rnemdPvector:
235          hasCorrectFlux = hasMomentumFluxVector;
236 +        break;
237 +      case rnemdLvector:
238 +        hasCorrectFlux = hasAngularMomentumFluxVector;
239 +        break;
240        case rnemdKePx:
241        case rnemdKePy:
242          hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
243          break;
244 +      case rnemdKeLx:
245 +      case rnemdKeLy:
246 +      case rnemdKeLz:
247 +        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
248 +        break;
249        case rnemdKePvector:
250          hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
251          break;
252 +      case rnemdKeLvector:
253 +        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
254 +        break;
255        default:
256          methodFluxMismatch = true;
257          break;
# Line 224 | Line 272 | namespace OpenMD {
272      }
273      if (!hasCorrectFlux) {
274        sprintf(painCave.errMsg,
275 <              "RNEMD: The current method,\n"
228 <              "\t%s, and flux type %s\n"
275 >              "RNEMD: The current method, %s, and flux type, %s,\n"
276                "\tdid not have the correct flux value specified. Options\n"
277 <              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
277 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
278 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
279                methStr.c_str(), fluxStr.c_str());
280        painCave.isFatal = 1;
281        painCave.severity = OPENMD_ERROR;
# Line 235 | Line 283 | namespace OpenMD {
283      }
284  
285      if (hasKineticFlux) {
286 <      kineticFlux_ = rnemdParams->getKineticFlux();
286 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
287 >      // into  amu / fs^3:
288 >      kineticFlux_ = rnemdParams->getKineticFlux()
289 >        * PhysicalConstants::energyConvert;
290      } else {
291        kineticFlux_ = 0.0;
292      }
# Line 264 | Line 315 | namespace OpenMD {
315          default:
316            break;
317          }
318 <      }    
319 <    }
318 >      }
319 >      if (hasAngularMomentumFluxVector) {
320 >        angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector();
321 >      } else {
322 >        angularMomentumFluxVector_ = V3Zero;
323 >        if (hasAngularMomentumFlux) {
324 >          RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
325 >          switch (rnemdFluxType_) {
326 >          case rnemdLx:
327 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
328 >            break;
329 >          case rnemdLy:
330 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
331 >            break;
332 >          case rnemdLz:
333 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
334 >            break;
335 >          case rnemdKeLx:
336 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
337 >            break;
338 >          case rnemdKeLy:
339 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
340 >            break;
341 >          case rnemdKeLz:
342 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
343 >            break;
344 >          default:
345 >            break;
346 >          }
347 >        }        
348 >      }
349  
350 <    // do some sanity checking
350 >      if (hasCoordinateOrigin) {
351 >        coordinateOrigin_ = rnemdParams->getCoordinateOrigin();
352 >      } else {
353 >        coordinateOrigin_ = V3Zero;
354 >      }
355  
356 <    int selectionCount = seleMan_.getSelectionCount();
273 <    int nIntegrable = info->getNGlobalIntegrableObjects();
356 >      // do some sanity checking
357  
358 <    if (selectionCount > nIntegrable) {
276 <      sprintf(painCave.errMsg,
277 <              "RNEMD: The current objectSelection,\n"
278 <              "\t\t%s\n"
279 <              "\thas resulted in %d selected objects.  However,\n"
280 <              "\tthe total number of integrable objects in the system\n"
281 <              "\tis only %d.  This is almost certainly not what you want\n"
282 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
283 <              "\tselector in the selection script!\n",
284 <              rnemdObjectSelection_.c_str(),
285 <              selectionCount, nIntegrable);
286 <      painCave.isFatal = 0;
287 <      painCave.severity = OPENMD_WARNING;
288 <      simError();
289 <    }
358 >      int selectionCount = seleMan_.getSelectionCount();
359  
360 <    nBins_ = rnemdParams->getOutputBins();
360 >      int nIntegrable = info->getNGlobalIntegrableObjects();
361  
362 <    data_.resize(RNEMD::ENDINDEX);
363 <    OutputData z;
364 <    z.units =  "Angstroms";
365 <    z.title =  "Z";
366 <    z.dataType = "RealType";
367 <    z.accumulator.reserve(nBins_);
368 <    for (unsigned int i = 0; i < nBins_; i++)
369 <      z.accumulator.push_back( new Accumulator() );
370 <    data_[Z] = z;
371 <    outputMap_["Z"] =  Z;
362 >      if (selectionCount > nIntegrable) {
363 >        sprintf(painCave.errMsg,
364 >                "RNEMD: The current objectSelection,\n"
365 >                "\t\t%s\n"
366 >                "\thas resulted in %d selected objects.  However,\n"
367 >                "\tthe total number of integrable objects in the system\n"
368 >                "\tis only %d.  This is almost certainly not what you want\n"
369 >                "\tto do.  A likely cause of this is forgetting the _RB_0\n"
370 >                "\tselector in the selection script!\n",
371 >                rnemdObjectSelection_.c_str(),
372 >                selectionCount, nIntegrable);
373 >        painCave.isFatal = 0;
374 >        painCave.severity = OPENMD_WARNING;
375 >        simError();
376 >      }
377  
378 <    OutputData temperature;
305 <    temperature.units =  "K";
306 <    temperature.title =  "Temperature";
307 <    temperature.dataType = "RealType";
308 <    temperature.accumulator.reserve(nBins_);
309 <    for (unsigned int i = 0; i < nBins_; i++)
310 <      temperature.accumulator.push_back( new Accumulator() );
311 <    data_[TEMPERATURE] = temperature;
312 <    outputMap_["TEMPERATURE"] =  TEMPERATURE;
378 >      areaAccumulator_ = new Accumulator();
379  
380 <    OutputData velocity;
381 <    velocity.units = "amu/fs";
316 <    velocity.title =  "Velocity";  
317 <    velocity.dataType = "Vector3d";
318 <    velocity.accumulator.reserve(nBins_);
319 <    for (unsigned int i = 0; i < nBins_; i++)
320 <      velocity.accumulator.push_back( new VectorAccumulator() );
321 <    data_[VELOCITY] = velocity;
322 <    outputMap_["VELOCITY"] = VELOCITY;
380 >      nBins_ = rnemdParams->getOutputBins();
381 >      binWidth_ = rnemdParams->getOutputBinWidth();
382  
383 <    OutputData density;
384 <    density.units =  "g cm^-3";
385 <    density.title =  "Density";
386 <    density.dataType = "RealType";
387 <    density.accumulator.reserve(nBins_);
388 <    for (unsigned int i = 0; i < nBins_; i++)
389 <      density.accumulator.push_back( new Accumulator() );
390 <    data_[DENSITY] = density;
391 <    outputMap_["DENSITY"] =  DENSITY;
383 >      data_.resize(RNEMD::ENDINDEX);
384 >      OutputData z;
385 >      z.units =  "Angstroms";
386 >      z.title =  "Z";
387 >      z.dataType = "RealType";
388 >      z.accumulator.reserve(nBins_);
389 >      for (int i = 0; i < nBins_; i++)
390 >        z.accumulator.push_back( new Accumulator() );
391 >      data_[Z] = z;
392 >      outputMap_["Z"] =  Z;
393  
394 <    if (hasOutputFields) {
395 <      parseOutputFileFormat(rnemdParams->getOutputFields());
396 <    } else {
397 <      outputMask_.set(Z);
398 <      switch (rnemdFluxType_) {
399 <      case rnemdKE:
400 <      case rnemdRotKE:
401 <      case rnemdFullKE:
402 <        outputMask_.set(TEMPERATURE);
343 <        break;
344 <      case rnemdPx:
345 <      case rnemdPy:
346 <        outputMask_.set(VELOCITY);
347 <        break;
348 <      case rnemdPz:        
349 <      case rnemdPvector:
350 <        outputMask_.set(VELOCITY);
351 <        outputMask_.set(DENSITY);
352 <        break;
353 <      case rnemdKePx:
354 <      case rnemdKePy:
355 <        outputMask_.set(TEMPERATURE);
356 <        outputMask_.set(VELOCITY);
357 <        break;
358 <      case rnemdKePvector:
359 <        outputMask_.set(TEMPERATURE);
360 <        outputMask_.set(VELOCITY);
361 <        outputMask_.set(DENSITY);        
362 <        break;
363 <      default:
364 <        break;
365 <      }
366 <    }
367 <      
368 <    if (hasOutputFileName) {
369 <      rnemdFileName_ = rnemdParams->getOutputFileName();
370 <    } else {
371 <      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
372 <    }          
394 >      OutputData r;
395 >      r.units =  "Angstroms";
396 >      r.title =  "R";
397 >      r.dataType = "RealType";
398 >      r.accumulator.reserve(nBins_);
399 >      for (int i = 0; i < nBins_; i++)
400 >        r.accumulator.push_back( new Accumulator() );
401 >      data_[R] = r;
402 >      outputMap_["R"] =  R;
403  
404 <    exchangeTime_ = rnemdParams->getExchangeTime();
404 >      OutputData temperature;
405 >      temperature.units =  "K";
406 >      temperature.title =  "Temperature";
407 >      temperature.dataType = "RealType";
408 >      temperature.accumulator.reserve(nBins_);
409 >      for (int i = 0; i < nBins_; i++)
410 >        temperature.accumulator.push_back( new Accumulator() );
411 >      data_[TEMPERATURE] = temperature;
412 >      outputMap_["TEMPERATURE"] =  TEMPERATURE;
413  
414 <    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
415 <    Mat3x3d hmat = currentSnap_->getHmat();
416 <  
417 <    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
418 <    // Lx, Ly = box dimensions in x & y
419 <    // dt = exchange time interval
420 <    // flux = target flux
414 >      OutputData velocity;
415 >      velocity.units = "angstroms/fs";
416 >      velocity.title =  "Velocity";  
417 >      velocity.dataType = "Vector3d";
418 >      velocity.accumulator.reserve(nBins_);
419 >      for (int i = 0; i < nBins_; i++)
420 >        velocity.accumulator.push_back( new VectorAccumulator() );
421 >      data_[VELOCITY] = velocity;
422 >      outputMap_["VELOCITY"] = VELOCITY;
423  
424 <    kineticTarget_ = 2.0*kineticFlux_*exchangeTime_*hmat(0,0)*hmat(1,1);
425 <    momentumTarget_ = 2.0*momentumFluxVector_*exchangeTime_*hmat(0,0)*hmat(1,1);
424 >      OutputData angularVelocity;
425 >      angularVelocity.units = "angstroms^2/fs";
426 >      angularVelocity.title =  "AngularVelocity";  
427 >      angularVelocity.dataType = "Vector3d";
428 >      angularVelocity.accumulator.reserve(nBins_);
429 >      for (int i = 0; i < nBins_; i++)
430 >        angularVelocity.accumulator.push_back( new VectorAccumulator() );
431 >      data_[ANGULARVELOCITY] = angularVelocity;
432 >      outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
433  
434 <    // total exchange sums are zeroed out at the beginning:
434 >      OutputData density;
435 >      density.units =  "g cm^-3";
436 >      density.title =  "Density";
437 >      density.dataType = "RealType";
438 >      density.accumulator.reserve(nBins_);
439 >      for (int i = 0; i < nBins_; i++)
440 >        density.accumulator.push_back( new Accumulator() );
441 >      data_[DENSITY] = density;
442 >      outputMap_["DENSITY"] =  DENSITY;
443  
444 <    kineticExchange_ = 0.0;
445 <    momentumExchange_ = V3Zero;
444 >      if (hasOutputFields) {
445 >        parseOutputFileFormat(rnemdParams->getOutputFields());
446 >      } else {
447 >        if (usePeriodicBoundaryConditions_)
448 >          outputMask_.set(Z);
449 >        else
450 >          outputMask_.set(R);
451 >        switch (rnemdFluxType_) {
452 >        case rnemdKE:
453 >        case rnemdRotKE:
454 >        case rnemdFullKE:
455 >          outputMask_.set(TEMPERATURE);
456 >          break;
457 >        case rnemdPx:
458 >        case rnemdPy:
459 >          outputMask_.set(VELOCITY);
460 >          break;
461 >        case rnemdPz:        
462 >        case rnemdPvector:
463 >          outputMask_.set(VELOCITY);
464 >          outputMask_.set(DENSITY);
465 >          break;
466 >        case rnemdLx:
467 >        case rnemdLy:
468 >        case rnemdLz:
469 >        case rnemdLvector:
470 >          outputMask_.set(ANGULARVELOCITY);
471 >          break;
472 >        case rnemdKeLx:
473 >        case rnemdKeLy:
474 >        case rnemdKeLz:
475 >        case rnemdKeLvector:
476 >          outputMask_.set(TEMPERATURE);
477 >          outputMask_.set(ANGULARVELOCITY);
478 >          break;
479 >        case rnemdKePx:
480 >        case rnemdKePy:
481 >          outputMask_.set(TEMPERATURE);
482 >          outputMask_.set(VELOCITY);
483 >          break;
484 >        case rnemdKePvector:
485 >          outputMask_.set(TEMPERATURE);
486 >          outputMask_.set(VELOCITY);
487 >          outputMask_.set(DENSITY);        
488 >          break;
489 >        default:
490 >          break;
491 >        }
492 >      }
493 >      
494 >      if (hasOutputFileName) {
495 >        rnemdFileName_ = rnemdParams->getOutputFileName();
496 >      } else {
497 >        rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
498 >      }          
499  
500 <    if (hasSlabWidth)
501 <      slabWidth_ = rnemdParams->getSlabWidth();
502 <    else
503 <      slabWidth_ = hmat(2,2) / 10.0;
504 <  
505 <    if (hasSlabACenter)
506 <      slabACenter_ = rnemdParams->getSlabACenter();
507 <    else
508 <      slabACenter_ = 0.0;
500 >      exchangeTime_ = rnemdParams->getExchangeTime();
501 >
502 >      Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
503 >      // total exchange sums are zeroed out at the beginning:
504 >
505 >      kineticExchange_ = 0.0;
506 >      momentumExchange_ = V3Zero;
507 >      angularMomentumExchange_ = V3Zero;
508 >
509 >      std::ostringstream selectionAstream;
510 >      std::ostringstream selectionBstream;
511      
512 <    if (hasSlabBCenter)
513 <      slabBCenter_ = rnemdParams->getSlabBCenter();
514 <    else
515 <      slabBCenter_ = hmat(2,2) / 2.0;
512 >      if (hasSelectionA_) {
513 >        selectionA_ = rnemdParams->getSelectionA();
514 >      } else {
515 >        if (usePeriodicBoundaryConditions_) {    
516 >          Mat3x3d hmat = currentSnap_->getHmat();
517 >        
518 >          if (hasSlabWidth)
519 >            slabWidth_ = rnemdParams->getSlabWidth();
520 >          else
521 >            slabWidth_ = hmat(2,2) / 10.0;
522 >        
523 >          if (hasSlabACenter)
524 >            slabACenter_ = rnemdParams->getSlabACenter();
525 >          else
526 >            slabACenter_ = 0.0;
527 >        
528 >          selectionAstream << "select wrappedz > "
529 >                           << slabACenter_ - 0.5*slabWidth_
530 >                           <<  " && wrappedz < "
531 >                           << slabACenter_ + 0.5*slabWidth_;
532 >          selectionA_ = selectionAstream.str();
533 >        } else {
534 >          if (hasSphereARadius)
535 >            sphereARadius_ = rnemdParams->getSphereARadius();
536 >          else {
537 >            // use an initial guess to the size of the inner slab to be 1/10 the
538 >            // radius of an approximately spherical hull:
539 >            Thermo thermo(info);
540 >            RealType hVol = thermo.getHullVolume();
541 >            sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
542 >          }
543 >          selectionAstream << "select r < " << sphereARadius_;
544 >          selectionA_ = selectionAstream.str();
545 >        }
546 >      }
547      
548 +      if (hasSelectionB_) {
549 +        selectionB_ = rnemdParams->getSelectionB();
550 +      } else {
551 +        if (usePeriodicBoundaryConditions_) {    
552 +          Mat3x3d hmat = currentSnap_->getHmat();
553 +        
554 +          if (hasSlabWidth)
555 +            slabWidth_ = rnemdParams->getSlabWidth();
556 +          else
557 +            slabWidth_ = hmat(2,2) / 10.0;
558 +        
559 +          if (hasSlabBCenter)
560 +            slabBCenter_ = rnemdParams->getSlabBCenter();
561 +          else
562 +            slabBCenter_ = hmat(2,2) / 2.0;
563 +        
564 +          selectionBstream << "select wrappedz > "
565 +                           << slabBCenter_ - 0.5*slabWidth_
566 +                           <<  " && wrappedz < "
567 +                           << slabBCenter_ + 0.5*slabWidth_;
568 +          selectionB_ = selectionBstream.str();
569 +        } else {
570 +          if (hasSphereBRadius_) {
571 +            sphereBRadius_ = rnemdParams->getSphereBRadius();
572 +            selectionBstream << "select r > " << sphereBRadius_;
573 +            selectionB_ = selectionBstream.str();
574 +          } else {
575 +            selectionB_ = "select hull";
576 +            hasSelectionB_ = true;
577 +          }
578 +        }
579 +      }
580 +    }
581 +
582 +    // object evaluator:
583 +    evaluator_.loadScriptString(rnemdObjectSelection_);
584 +    seleMan_.setSelectionSet(evaluator_.evaluate());
585 +    evaluatorA_.loadScriptString(selectionA_);
586 +    evaluatorB_.loadScriptString(selectionB_);
587 +    seleManA_.setSelectionSet(evaluatorA_.evaluate());
588 +    seleManB_.setSelectionSet(evaluatorB_.evaluate());
589 +    commonA_ = seleManA_ & seleMan_;
590 +    commonB_ = seleManB_ & seleMan_;  
591    }
592 <  
409 <  RNEMD::~RNEMD() {
592 >  
593      
594 +  RNEMD::~RNEMD() {
595 +    if (!doRNEMD_) return;
596   #ifdef IS_MPI
597      if (worldRank == 0) {
598   #endif
# Line 419 | Line 604 | namespace OpenMD {
604   #ifdef IS_MPI
605      }
606   #endif
607 +
608 +    // delete all of the objects we created:
609 +    delete areaAccumulator_;    
610 +    data_.clear();
611    }
612    
613 <  bool RNEMD::inSlabA(Vector3d pos) {
614 <    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
615 <  }
616 <  bool RNEMD::inSlabB(Vector3d pos) {
428 <    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
429 <  }
613 >  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
614 >    if (!doRNEMD_) return;
615 >    int selei;
616 >    int selej;
617  
431  void RNEMD::doSwap() {
432
618      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
619      Mat3x3d hmat = currentSnap_->getHmat();
620  
436    seleMan_.setSelectionSet(evaluator_.evaluate());
437
438    int selei;
621      StuntDouble* sd;
440    int idx;
622  
623      RealType min_val;
624      bool min_found = false;  
# Line 447 | Line 628 | namespace OpenMD {
628      bool max_found = false;
629      StuntDouble* max_sd;
630  
631 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
632 <         sd = seleMan_.nextSelected(selei)) {
631 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
632 >         sd = seleManA_.nextSelected(selei)) {
633  
453      idx = sd->getLocalIndex();
454
634        Vector3d pos = sd->getPos();
635 <
635 >      
636        // wrap the stuntdouble's position back into the box:
637 <
637 >      
638        if (usePeriodicBoundaryConditions_)
639          currentSnap_->wrapVector(pos);
640 <      bool inA = inSlabA(pos);
641 <      bool inB = inSlabB(pos);
642 <
643 <      if (inA || inB) {
640 >      
641 >      RealType mass = sd->getMass();
642 >      Vector3d vel = sd->getVel();
643 >      RealType value;
644 >      
645 >      switch(rnemdFluxType_) {
646 >      case rnemdKE :
647          
648 <        RealType mass = sd->getMass();
649 <        Vector3d vel = sd->getVel();
650 <        RealType value;
651 <        
652 <        switch(rnemdFluxType_) {
471 <        case rnemdKE :
648 >        value = mass * vel.lengthSquare();
649 >        
650 >        if (sd->isDirectional()) {
651 >          Vector3d angMom = sd->getJ();
652 >          Mat3x3d I = sd->getI();
653            
654 <          value = mass * vel.lengthSquare();
655 <          
656 <          if (sd->isDirectional()) {
657 <            Vector3d angMom = sd->getJ();
658 <            Mat3x3d I = sd->getI();
659 <            
660 <            if (sd->isLinear()) {
661 <              int i = sd->linearAxis();
662 <              int j = (i + 1) % 3;
663 <              int k = (i + 2) % 3;
664 <              value += angMom[j] * angMom[j] / I(j, j) +
665 <                angMom[k] * angMom[k] / I(k, k);
666 <            } else {                        
667 <              value += angMom[0]*angMom[0]/I(0, 0)
668 <                + angMom[1]*angMom[1]/I(1, 1)
669 <                + angMom[2]*angMom[2]/I(2, 2);
670 <            }
671 <          } //angular momenta exchange enabled
672 <          //energyConvert temporarily disabled
673 <          //make kineticExchange_ comparable between swap & scale
674 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
675 <          value *= 0.5;
676 <          break;
677 <        case rnemdPx :
678 <          value = mass * vel[0];
679 <          break;
680 <        case rnemdPy :
681 <          value = mass * vel[1];
682 <          break;
683 <        case rnemdPz :
684 <          value = mass * vel[2];
685 <          break;
686 <        default :
687 <          break;
654 >          if (sd->isLinear()) {
655 >            int i = sd->linearAxis();
656 >            int j = (i + 1) % 3;
657 >            int k = (i + 2) % 3;
658 >            value += angMom[j] * angMom[j] / I(j, j) +
659 >              angMom[k] * angMom[k] / I(k, k);
660 >          } else {                        
661 >            value += angMom[0]*angMom[0]/I(0, 0)
662 >              + angMom[1]*angMom[1]/I(1, 1)
663 >              + angMom[2]*angMom[2]/I(2, 2);
664 >          }
665 >        } //angular momenta exchange enabled
666 >        value *= 0.5;
667 >        break;
668 >      case rnemdPx :
669 >        value = mass * vel[0];
670 >        break;
671 >      case rnemdPy :
672 >        value = mass * vel[1];
673 >        break;
674 >      case rnemdPz :
675 >        value = mass * vel[2];
676 >        break;
677 >      default :
678 >        break;
679 >      }
680 >      if (!max_found) {
681 >        max_val = value;
682 >        max_sd = sd;
683 >        max_found = true;
684 >      } else {
685 >        if (max_val < value) {
686 >          max_val = value;
687 >          max_sd = sd;
688          }
689 +      }  
690 +    }
691          
692 <        if (inA == 0) {
693 <          if (!min_found) {
694 <            min_val = value;
695 <            min_sd = sd;
696 <            min_found = true;
697 <          } else {
698 <            if (min_val > value) {
699 <              min_val = value;
700 <              min_sd = sd;
701 <            }
702 <          }
703 <        } else {
704 <          if (!max_found) {
705 <            max_val = value;
706 <            max_sd = sd;
707 <            max_found = true;
708 <          } else {
709 <            if (max_val < value) {
710 <              max_val = value;
711 <              max_sd = sd;
712 <            }
713 <          }      
714 <        }
692 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
693 >         sd = seleManB_.nextSelected(selej)) {
694 >
695 >      Vector3d pos = sd->getPos();
696 >      
697 >      // wrap the stuntdouble's position back into the box:
698 >      
699 >      if (usePeriodicBoundaryConditions_)
700 >        currentSnap_->wrapVector(pos);
701 >      
702 >      RealType mass = sd->getMass();
703 >      Vector3d vel = sd->getVel();
704 >      RealType value;
705 >      
706 >      switch(rnemdFluxType_) {
707 >      case rnemdKE :
708 >        
709 >        value = mass * vel.lengthSquare();
710 >        
711 >        if (sd->isDirectional()) {
712 >          Vector3d angMom = sd->getJ();
713 >          Mat3x3d I = sd->getI();
714 >          
715 >          if (sd->isLinear()) {
716 >            int i = sd->linearAxis();
717 >            int j = (i + 1) % 3;
718 >            int k = (i + 2) % 3;
719 >            value += angMom[j] * angMom[j] / I(j, j) +
720 >              angMom[k] * angMom[k] / I(k, k);
721 >          } else {                        
722 >            value += angMom[0]*angMom[0]/I(0, 0)
723 >              + angMom[1]*angMom[1]/I(1, 1)
724 >              + angMom[2]*angMom[2]/I(2, 2);
725 >          }
726 >        } //angular momenta exchange enabled
727 >        value *= 0.5;
728 >        break;
729 >      case rnemdPx :
730 >        value = mass * vel[0];
731 >        break;
732 >      case rnemdPy :
733 >        value = mass * vel[1];
734 >        break;
735 >      case rnemdPz :
736 >        value = mass * vel[2];
737 >        break;
738 >      default :
739 >        break;
740        }
741 +      
742 +      if (!min_found) {
743 +        min_val = value;
744 +        min_sd = sd;
745 +        min_found = true;
746 +      } else {
747 +        if (min_val > value) {
748 +          min_val = value;
749 +          min_sd = sd;
750 +        }
751 +      }
752      }
753      
754 < #ifdef IS_MPI
755 <    int nProc, worldRank;
754 > #ifdef IS_MPI    
755 >    int worldRank = MPI::COMM_WORLD.Get_rank();
756      
538    nProc = MPI::COMM_WORLD.Get_size();
539    worldRank = MPI::COMM_WORLD.Get_rank();
540
757      bool my_min_found = min_found;
758      bool my_max_found = max_found;
759  
# Line 728 | Line 944 | namespace OpenMD {
944          
945          switch(rnemdFluxType_) {
946          case rnemdKE:
731          cerr << "KE\n";
947            kineticExchange_ += max_val - min_val;
948            break;
949          case rnemdPx:
# Line 741 | Line 956 | namespace OpenMD {
956            momentumExchange_.z() += max_val - min_val;
957            break;
958          default:
744          cerr << "default\n";
959            break;
960          }
961        } else {        
# Line 763 | Line 977 | namespace OpenMD {
977      }    
978    }
979    
980 <  void RNEMD::doNIVS() {
980 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
981 >    if (!doRNEMD_) return;
982 >    int selei;
983 >    int selej;
984  
985      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
986 +    RealType time = currentSnap_->getTime();    
987      Mat3x3d hmat = currentSnap_->getHmat();
988  
771    seleMan_.setSelectionSet(evaluator_.evaluate());
772
773    int selei;
989      StuntDouble* sd;
775    int idx;
990  
991      vector<StuntDouble*> hotBin, coldBin;
992  
# Line 791 | Line 1005 | namespace OpenMD {
1005      RealType Kcz = 0.0;
1006      RealType Kcw = 0.0;
1007  
1008 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1009 <         sd = seleMan_.nextSelected(selei)) {
1008 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1009 >         sd = smanA.nextSelected(selei)) {
1010  
797      idx = sd->getLocalIndex();
798
1011        Vector3d pos = sd->getPos();
1012 <
1012 >      
1013        // wrap the stuntdouble's position back into the box:
1014 <
1014 >      
1015        if (usePeriodicBoundaryConditions_)
1016          currentSnap_->wrapVector(pos);
1017 <
1018 <      // which bin is this stuntdouble in?
1019 <      bool inA = inSlabA(pos);
1020 <      bool inB = inSlabB(pos);
1017 >      
1018 >      
1019 >      RealType mass = sd->getMass();
1020 >      Vector3d vel = sd->getVel();
1021 >      
1022 >      hotBin.push_back(sd);
1023 >      Phx += mass * vel.x();
1024 >      Phy += mass * vel.y();
1025 >      Phz += mass * vel.z();
1026 >      Khx += mass * vel.x() * vel.x();
1027 >      Khy += mass * vel.y() * vel.y();
1028 >      Khz += mass * vel.z() * vel.z();
1029 >      if (sd->isDirectional()) {
1030 >        Vector3d angMom = sd->getJ();
1031 >        Mat3x3d I = sd->getI();
1032 >        if (sd->isLinear()) {
1033 >          int i = sd->linearAxis();
1034 >          int j = (i + 1) % 3;
1035 >          int k = (i + 2) % 3;
1036 >          Khw += angMom[j] * angMom[j] / I(j, j) +
1037 >            angMom[k] * angMom[k] / I(k, k);
1038 >        } else {
1039 >          Khw += angMom[0]*angMom[0]/I(0, 0)
1040 >            + angMom[1]*angMom[1]/I(1, 1)
1041 >            + angMom[2]*angMom[2]/I(2, 2);
1042 >        }
1043 >      }
1044 >    }
1045 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1046 >         sd = smanB.nextSelected(selej)) {
1047 >      Vector3d pos = sd->getPos();
1048 >      
1049 >      // wrap the stuntdouble's position back into the box:
1050 >      
1051 >      if (usePeriodicBoundaryConditions_)
1052 >        currentSnap_->wrapVector(pos);
1053 >            
1054 >      RealType mass = sd->getMass();
1055 >      Vector3d vel = sd->getVel();
1056  
1057 <      if (inA || inB) {
1058 <              
1059 <        RealType mass = sd->getMass();
1060 <        Vector3d vel = sd->getVel();
1061 <      
1062 <        if (inA) {
1063 <          hotBin.push_back(sd);
1064 <          Phx += mass * vel.x();
1065 <          Phy += mass * vel.y();
1066 <          Phz += mass * vel.z();
1067 <          Khx += mass * vel.x() * vel.x();
1068 <          Khy += mass * vel.y() * vel.y();
1069 <          Khz += mass * vel.z() * vel.z();
1070 <          if (sd->isDirectional()) {
1071 <            Vector3d angMom = sd->getJ();
1072 <            Mat3x3d I = sd->getI();
1073 <            if (sd->isLinear()) {
1074 <              int i = sd->linearAxis();
1075 <              int j = (i + 1) % 3;
1076 <              int k = (i + 2) % 3;
1077 <              Khw += angMom[j] * angMom[j] / I(j, j) +
831 <                angMom[k] * angMom[k] / I(k, k);
832 <            } else {
833 <              Khw += angMom[0]*angMom[0]/I(0, 0)
834 <                + angMom[1]*angMom[1]/I(1, 1)
835 <                + angMom[2]*angMom[2]/I(2, 2);
836 <            }
837 <          }
838 <        } else {
839 <          coldBin.push_back(sd);
840 <          Pcx += mass * vel.x();
841 <          Pcy += mass * vel.y();
842 <          Pcz += mass * vel.z();
843 <          Kcx += mass * vel.x() * vel.x();
844 <          Kcy += mass * vel.y() * vel.y();
845 <          Kcz += mass * vel.z() * vel.z();
846 <          if (sd->isDirectional()) {
847 <            Vector3d angMom = sd->getJ();
848 <            Mat3x3d I = sd->getI();
849 <            if (sd->isLinear()) {
850 <              int i = sd->linearAxis();
851 <              int j = (i + 1) % 3;
852 <              int k = (i + 2) % 3;
853 <              Kcw += angMom[j] * angMom[j] / I(j, j) +
854 <                angMom[k] * angMom[k] / I(k, k);
855 <            } else {
856 <              Kcw += angMom[0]*angMom[0]/I(0, 0)
857 <                + angMom[1]*angMom[1]/I(1, 1)
858 <                + angMom[2]*angMom[2]/I(2, 2);
859 <            }
860 <          }
861 <        }
1057 >      coldBin.push_back(sd);
1058 >      Pcx += mass * vel.x();
1059 >      Pcy += mass * vel.y();
1060 >      Pcz += mass * vel.z();
1061 >      Kcx += mass * vel.x() * vel.x();
1062 >      Kcy += mass * vel.y() * vel.y();
1063 >      Kcz += mass * vel.z() * vel.z();
1064 >      if (sd->isDirectional()) {
1065 >        Vector3d angMom = sd->getJ();
1066 >        Mat3x3d I = sd->getI();
1067 >        if (sd->isLinear()) {
1068 >          int i = sd->linearAxis();
1069 >          int j = (i + 1) % 3;
1070 >          int k = (i + 2) % 3;
1071 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1072 >            angMom[k] * angMom[k] / I(k, k);
1073 >        } else {
1074 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1075 >            + angMom[1]*angMom[1]/I(1, 1)
1076 >            + angMom[2]*angMom[2]/I(2, 2);
1077 >        }
1078        }
1079      }
1080      
# Line 908 | Line 1124 | namespace OpenMD {
1124  
1125        if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1126          c = sqrt(c);
1127 <        //std::cerr << "cold slab scaling coefficient: " << c << endl;
912 <        //now convert to hotBin coefficient
1127 >
1128          RealType w = 0.0;
1129          if (rnemdFluxType_ ==  rnemdFullKE) {
1130            x = 1.0 + px * (1.0 - c);
# Line 936 | Line 1151 | namespace OpenMD {
1151            //if w is in the right range, so should be x, y, z.
1152            vector<StuntDouble*>::iterator sdi;
1153            Vector3d vel;
1154 <          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1154 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1155              if (rnemdFluxType_ == rnemdFullKE) {
1156                vel = (*sdi)->getVel() * c;
1157                (*sdi)->setVel(vel);
# Line 947 | Line 1162 | namespace OpenMD {
1162              }
1163            }
1164            w = sqrt(w);
1165 <          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
951 <          //           << "\twh= " << w << endl;
952 <          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1165 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1166              if (rnemdFluxType_ == rnemdFullKE) {
1167                vel = (*sdi)->getVel();
1168                vel.x() *= x;
# Line 1068 | Line 1281 | namespace OpenMD {
1281        vector<RealType>::iterator ri;
1282        RealType r1, r2, alpha0;
1283        vector<pair<RealType,RealType> > rps;
1284 <      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1284 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) {
1285          r2 = *ri;
1286          //check if FindRealRoots() give the right answer
1287          if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
# Line 1100 | Line 1313 | namespace OpenMD {
1313          RealType diff;
1314          pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1315          vector<pair<RealType,RealType> >::iterator rpi;
1316 <        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1316 >        for (rpi = rps.begin(); rpi != rps.end(); ++rpi) {
1317            r1 = (*rpi).first;
1318            r2 = (*rpi).second;
1319            switch(rnemdFluxType_) {
# Line 1167 | Line 1380 | namespace OpenMD {
1380          }
1381          vector<StuntDouble*>::iterator sdi;
1382          Vector3d vel;
1383 <        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1383 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1384            vel = (*sdi)->getVel();
1385            vel.x() *= x;
1386            vel.y() *= y;
# Line 1178 | Line 1391 | namespace OpenMD {
1391          x = 1.0 + px * (1.0 - x);
1392          y = 1.0 + py * (1.0 - y);
1393          z = 1.0 + pz * (1.0 - z);
1394 <        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1394 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1395            vel = (*sdi)->getVel();
1396            vel.x() *= x;
1397            vel.y() *= y;
# Line 1211 | Line 1424 | namespace OpenMD {
1424        failTrialCount_++;
1425      }
1426    }
1427 +  
1428 +  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1429 +    if (!doRNEMD_) return;
1430 +    int selei;
1431 +    int selej;
1432  
1215  void RNEMD::doVSS() {
1216
1433      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1434      RealType time = currentSnap_->getTime();    
1435      Mat3x3d hmat = currentSnap_->getHmat();
1436  
1221    seleMan_.setSelectionSet(evaluator_.evaluate());
1222
1223    int selei;
1437      StuntDouble* sd;
1225    int idx;
1438  
1439      vector<StuntDouble*> hotBin, coldBin;
1440  
1441      Vector3d Ph(V3Zero);
1442 +    Vector3d Lh(V3Zero);
1443      RealType Mh = 0.0;
1444 +    Mat3x3d Ih(0.0);
1445      RealType Kh = 0.0;
1446      Vector3d Pc(V3Zero);
1447 +    Vector3d Lc(V3Zero);
1448      RealType Mc = 0.0;
1449 +    Mat3x3d Ic(0.0);
1450      RealType Kc = 0.0;
1235    
1451  
1452 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1453 <         sd = seleMan_.nextSelected(selei)) {
1452 >    // Constraints can be on only the linear or angular momentum, but
1453 >    // not both.  Usually, the user will specify which they want, but
1454 >    // in case they don't, the use of periodic boundaries should make
1455 >    // the choice for us.
1456 >    bool doLinearPart = false;
1457 >    bool doAngularPart = false;
1458  
1459 <      idx = sd->getLocalIndex();
1459 >    switch (rnemdFluxType_) {
1460 >    case rnemdPx:
1461 >    case rnemdPy:
1462 >    case rnemdPz:
1463 >    case rnemdPvector:
1464 >    case rnemdKePx:
1465 >    case rnemdKePy:
1466 >    case rnemdKePvector:
1467 >      doLinearPart = true;
1468 >      break;
1469 >    case rnemdLx:
1470 >    case rnemdLy:
1471 >    case rnemdLz:
1472 >    case rnemdLvector:
1473 >    case rnemdKeLx:
1474 >    case rnemdKeLy:
1475 >    case rnemdKeLz:
1476 >    case rnemdKeLvector:
1477 >      doAngularPart = true;
1478 >      break;
1479 >    case rnemdKE:
1480 >    case rnemdRotKE:
1481 >    case rnemdFullKE:
1482 >    default:
1483 >      if (usePeriodicBoundaryConditions_)
1484 >        doLinearPart = true;
1485 >      else
1486 >        doAngularPart = true;
1487 >      break;
1488 >    }
1489 >    
1490 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1491 >         sd = smanA.nextSelected(selei)) {
1492  
1493        Vector3d pos = sd->getPos();
1494  
1495        // wrap the stuntdouble's position back into the box:
1496 +      
1497 +      if (usePeriodicBoundaryConditions_)
1498 +        currentSnap_->wrapVector(pos);
1499 +      
1500 +      RealType mass = sd->getMass();
1501 +      Vector3d vel = sd->getVel();
1502 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1503 +      RealType r2;
1504 +      
1505 +      hotBin.push_back(sd);
1506 +      Ph += mass * vel;
1507 +      Mh += mass;
1508 +      Kh += mass * vel.lengthSquare();
1509 +      Lh += mass * cross(rPos, vel);
1510 +      Ih -= outProduct(rPos, rPos) * mass;
1511 +      r2 = rPos.lengthSquare();
1512 +      Ih(0, 0) += mass * r2;
1513 +      Ih(1, 1) += mass * r2;
1514 +      Ih(2, 2) += mass * r2;
1515 +      
1516 +      if (rnemdFluxType_ == rnemdFullKE) {
1517 +        if (sd->isDirectional()) {
1518 +          Vector3d angMom = sd->getJ();
1519 +          Mat3x3d I = sd->getI();
1520 +          if (sd->isLinear()) {
1521 +            int i = sd->linearAxis();
1522 +            int j = (i + 1) % 3;
1523 +            int k = (i + 2) % 3;
1524 +            Kh += angMom[j] * angMom[j] / I(j, j) +
1525 +              angMom[k] * angMom[k] / I(k, k);
1526 +          } else {
1527 +            Kh += angMom[0] * angMom[0] / I(0, 0) +
1528 +              angMom[1] * angMom[1] / I(1, 1) +
1529 +              angMom[2] * angMom[2] / I(2, 2);
1530 +          }
1531 +        }
1532 +      }
1533 +    }
1534 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1535 +         sd = smanB.nextSelected(selej)) {
1536  
1537 +      Vector3d pos = sd->getPos();
1538 +      
1539 +      // wrap the stuntdouble's position back into the box:
1540 +      
1541        if (usePeriodicBoundaryConditions_)
1542          currentSnap_->wrapVector(pos);
1543 +      
1544 +      RealType mass = sd->getMass();
1545 +      Vector3d vel = sd->getVel();
1546 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1547 +      RealType r2;
1548  
1549 <      // which bin is this stuntdouble in?
1550 <      bool inA = inSlabA(pos);
1551 <      bool inB = inSlabB(pos);
1549 >      coldBin.push_back(sd);
1550 >      Pc += mass * vel;
1551 >      Mc += mass;
1552 >      Kc += mass * vel.lengthSquare();
1553 >      Lc += mass * cross(rPos, vel);
1554 >      Ic -= outProduct(rPos, rPos) * mass;
1555 >      r2 = rPos.lengthSquare();
1556 >      Ic(0, 0) += mass * r2;
1557 >      Ic(1, 1) += mass * r2;
1558 >      Ic(2, 2) += mass * r2;
1559        
1560 <      if (inA || inB) {
1561 <        
1562 <        RealType mass = sd->getMass();
1563 <        Vector3d vel = sd->getVel();
1564 <      
1565 <        if (inA) {
1566 <          hotBin.push_back(sd);
1567 <          //std::cerr << "before, velocity = " << vel << endl;
1568 <          Ph += mass * vel;
1569 <          //std::cerr << "after, velocity = " << vel << endl;
1570 <          Mh += mass;
1571 <          Kh += mass * vel.lengthSquare();
1572 <          if (rnemdFluxType_ == rnemdFullKE) {
1573 <            if (sd->isDirectional()) {
1574 <              Vector3d angMom = sd->getJ();
1575 <              Mat3x3d I = sd->getI();
1269 <              if (sd->isLinear()) {
1270 <                int i = sd->linearAxis();
1271 <                int j = (i + 1) % 3;
1272 <                int k = (i + 2) % 3;
1273 <                Kh += angMom[j] * angMom[j] / I(j, j) +
1274 <                  angMom[k] * angMom[k] / I(k, k);
1275 <              } else {
1276 <                Kh += angMom[0] * angMom[0] / I(0, 0) +
1277 <                  angMom[1] * angMom[1] / I(1, 1) +
1278 <                  angMom[2] * angMom[2] / I(2, 2);
1279 <              }
1280 <            }
1281 <          }
1282 <        } else { //midBin_
1283 <          coldBin.push_back(sd);
1284 <          Pc += mass * vel;
1285 <          Mc += mass;
1286 <          Kc += mass * vel.lengthSquare();
1287 <          if (rnemdFluxType_ == rnemdFullKE) {
1288 <            if (sd->isDirectional()) {
1289 <              Vector3d angMom = sd->getJ();
1290 <              Mat3x3d I = sd->getI();
1291 <              if (sd->isLinear()) {
1292 <                int i = sd->linearAxis();
1293 <                int j = (i + 1) % 3;
1294 <                int k = (i + 2) % 3;
1295 <                Kc += angMom[j] * angMom[j] / I(j, j) +
1296 <                  angMom[k] * angMom[k] / I(k, k);
1297 <              } else {
1298 <                Kc += angMom[0] * angMom[0] / I(0, 0) +
1299 <                  angMom[1] * angMom[1] / I(1, 1) +
1300 <                  angMom[2] * angMom[2] / I(2, 2);
1301 <              }
1302 <            }
1303 <          }
1304 <        }
1560 >      if (rnemdFluxType_ == rnemdFullKE) {
1561 >        if (sd->isDirectional()) {
1562 >          Vector3d angMom = sd->getJ();
1563 >          Mat3x3d I = sd->getI();
1564 >          if (sd->isLinear()) {
1565 >            int i = sd->linearAxis();
1566 >            int j = (i + 1) % 3;
1567 >            int k = (i + 2) % 3;
1568 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1569 >              angMom[k] * angMom[k] / I(k, k);
1570 >          } else {
1571 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1572 >              angMom[1] * angMom[1] / I(1, 1) +
1573 >              angMom[2] * angMom[2] / I(2, 2);
1574 >          }
1575 >        }
1576        }
1577      }
1578      
1579      Kh *= 0.5;
1580      Kc *= 0.5;
1310
1311    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1312    //        << "\tKc= " << Kc << endl;
1313    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1581      
1582   #ifdef IS_MPI
1583      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1584      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1585 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM);
1586 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM);
1587      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1588      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1589      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1590      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1591 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9,
1592 +                              MPI::REALTYPE, MPI::SUM);
1593 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9,
1594 +                              MPI::REALTYPE, MPI::SUM);
1595   #endif
1596 +    
1597  
1598 +    Vector3d ac, acrec, bc, bcrec;
1599 +    Vector3d ah, ahrec, bh, bhrec;
1600 +    RealType cNumerator, cDenominator;
1601 +    RealType hNumerator, hDenominator;
1602 +
1603 +
1604      bool successfulExchange = false;
1605      if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1606        Vector3d vc = Pc / Mc;
1607 <      Vector3d ac = -momentumTarget_ / Mc + vc;
1608 <      Vector3d acrec = -momentumTarget_ / Mc;
1609 <      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1607 >      ac = -momentumTarget_ / Mc + vc;
1608 >      acrec = -momentumTarget_ / Mc;
1609 >      
1610 >      // We now need the inverse of the inertia tensor to calculate the
1611 >      // angular velocity of the cold slab;
1612 >      Mat3x3d Ici = Ic.inverse();
1613 >      Vector3d omegac = Ici * Lc;
1614 >      bc  = -(Ici * angularMomentumTarget_) + omegac;
1615 >      bcrec = bc - omegac;
1616 >      
1617 >      cNumerator = Kc - kineticTarget_;
1618 >      if (doLinearPart)
1619 >        cNumerator -= 0.5 * Mc * ac.lengthSquare();
1620 >      
1621 >      if (doAngularPart)
1622 >        cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1623 >
1624        if (cNumerator > 0.0) {
1625 <        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1625 >        
1626 >        cDenominator = Kc;
1627 >
1628 >        if (doLinearPart)
1629 >          cDenominator -= 0.5 * Mc * vc.lengthSquare();
1630 >
1631 >        if (doAngularPart)
1632 >          cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1633 >        
1634          if (cDenominator > 0.0) {
1635            RealType c = sqrt(cNumerator / cDenominator);
1636            if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1637 +            
1638              Vector3d vh = Ph / Mh;
1639 <            Vector3d ah = momentumTarget_ / Mh + vh;
1640 <            Vector3d ahrec = momentumTarget_ / Mh;
1641 <            RealType hNumerator = Kh + kineticTarget_
1642 <              - 0.5 * Mh * ah.lengthSquare();
1643 <            if (hNumerator > 0.0) {
1644 <              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1639 >            ah = momentumTarget_ / Mh + vh;
1640 >            ahrec = momentumTarget_ / Mh;
1641 >            
1642 >            // We now need the inverse of the inertia tensor to
1643 >            // calculate the angular velocity of the hot slab;
1644 >            Mat3x3d Ihi = Ih.inverse();
1645 >            Vector3d omegah = Ihi * Lh;
1646 >            bh  = (Ihi * angularMomentumTarget_) + omegah;
1647 >            bhrec = bh - omegah;
1648 >            
1649 >            hNumerator = Kh + kineticTarget_;
1650 >            if (doLinearPart)
1651 >              hNumerator -= 0.5 * Mh * ah.lengthSquare();
1652 >            
1653 >            if (doAngularPart)
1654 >              hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1655 >              
1656 >            if (hNumerator > 0.0) {
1657 >              
1658 >              hDenominator = Kh;
1659 >              if (doLinearPart)
1660 >                hDenominator -= 0.5 * Mh * vh.lengthSquare();
1661 >              if (doAngularPart)
1662 >                hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1663 >              
1664                if (hDenominator > 0.0) {
1665                  RealType h = sqrt(hNumerator / hDenominator);
1666                  if ((h > 0.9) && (h < 1.1)) {
1667 <                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1346 <                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1667 >                  
1668                    vector<StuntDouble*>::iterator sdi;
1669                    Vector3d vel;
1670 <                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1670 >                  Vector3d rPos;
1671 >                  
1672 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) {
1673                      //vel = (*sdi)->getVel();
1674 <                    vel = ((*sdi)->getVel() - vc) * c + ac;
1674 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1675 >                    if (doLinearPart)
1676 >                      vel = ((*sdi)->getVel() - vc) * c + ac;
1677 >                    if (doAngularPart)
1678 >                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1679 >
1680                      (*sdi)->setVel(vel);
1681                      if (rnemdFluxType_ == rnemdFullKE) {
1682                        if ((*sdi)->isDirectional()) {
# Line 1357 | Line 1685 | namespace OpenMD {
1685                        }
1686                      }
1687                    }
1688 <                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1688 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) {
1689                      //vel = (*sdi)->getVel();
1690 <                    vel = ((*sdi)->getVel() - vh) * h + ah;
1690 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1691 >                    if (doLinearPart)
1692 >                      vel = ((*sdi)->getVel() - vh) * h + ah;    
1693 >                    if (doAngularPart)
1694 >                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);    
1695 >
1696                      (*sdi)->setVel(vel);
1697                      if (rnemdFluxType_ == rnemdFullKE) {
1698                        if ((*sdi)->isDirectional()) {
# Line 1371 | Line 1704 | namespace OpenMD {
1704                    successfulExchange = true;
1705                    kineticExchange_ += kineticTarget_;
1706                    momentumExchange_ += momentumTarget_;
1707 +                  angularMomentumExchange_ += angularMomentumTarget_;
1708                  }
1709                }
1710              }
# Line 1390 | Line 1724 | namespace OpenMD {
1724      }
1725    }
1726  
1727 <  void RNEMD::doRNEMD() {
1727 >  RealType RNEMD::getDividingArea() {
1728  
1729 +    if (hasDividingArea_) return dividingArea_;
1730 +
1731 +    RealType areaA, areaB;
1732 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1733 +
1734 +    if (hasSelectionA_) {
1735 +      int isd;
1736 +      StuntDouble* sd;
1737 +      vector<StuntDouble*> aSites;
1738 +      seleManA_.setSelectionSet(evaluatorA_.evaluate());
1739 +      for (sd = seleManA_.beginSelected(isd); sd != NULL;
1740 +           sd = seleManA_.nextSelected(isd)) {
1741 +        aSites.push_back(sd);
1742 +      }
1743 +      ConvexHull* surfaceMeshA = new ConvexHull();
1744 +      surfaceMeshA->computeHull(aSites);
1745 +      areaA = surfaceMeshA->getArea();
1746 +      delete surfaceMeshA;
1747 +
1748 +    } else {
1749 +      if (usePeriodicBoundaryConditions_) {
1750 +        // in periodic boundaries, the surface area is twice the x-y
1751 +        // area of the current box:
1752 +        areaA = 2.0 * snap->getXYarea();
1753 +      } else {
1754 +        // in non-periodic simulations, without explicitly setting
1755 +        // selections, the sphere radius sets the surface area of the
1756 +        // dividing surface:
1757 +        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1758 +      }
1759 +    }
1760 +
1761 +
1762 +
1763 +    if (hasSelectionB_) {
1764 +      int isd;
1765 +      StuntDouble* sd;
1766 +      vector<StuntDouble*> bSites;
1767 +      seleManB_.setSelectionSet(evaluatorB_.evaluate());
1768 +      for (sd = seleManB_.beginSelected(isd); sd != NULL;
1769 +           sd = seleManB_.nextSelected(isd)) {
1770 +        bSites.push_back(sd);
1771 +      }
1772 +      ConvexHull* surfaceMeshB = new ConvexHull();    
1773 +      surfaceMeshB->computeHull(bSites);
1774 +      areaB = surfaceMeshB->getArea();
1775 +      delete surfaceMeshB;
1776 +
1777 +    } else {
1778 +      if (usePeriodicBoundaryConditions_) {
1779 +        // in periodic boundaries, the surface area is twice the x-y
1780 +        // area of the current box:
1781 +        areaB = 2.0 * snap->getXYarea();
1782 +      } else {
1783 +        // in non-periodic simulations, without explicitly setting
1784 +        // selections, but if a sphereBradius has been set, just use that:
1785 +        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1786 +      }
1787 +    }
1788 +    
1789 +    dividingArea_ = min(areaA, areaB);
1790 +    hasDividingArea_ = true;
1791 +    return dividingArea_;
1792 +  }
1793 +  
1794 +  void RNEMD::doRNEMD() {
1795 +    if (!doRNEMD_) return;
1796      trialCount_++;
1797 +
1798 +    // object evaluator:
1799 +    evaluator_.loadScriptString(rnemdObjectSelection_);
1800 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1801 +
1802 +    evaluatorA_.loadScriptString(selectionA_);
1803 +    evaluatorB_.loadScriptString(selectionB_);
1804 +
1805 +    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1806 +    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1807 +
1808 +    commonA_ = seleManA_ & seleMan_;
1809 +    commonB_ = seleManB_ & seleMan_;
1810 +
1811 +    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1812 +    // dt = exchange time interval
1813 +    // flux = target flux
1814 +    // dividingArea = smallest dividing surface between the two regions
1815 +
1816 +    hasDividingArea_ = false;
1817 +    RealType area = getDividingArea();
1818 +
1819 +    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1820 +    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1821 +    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1822 +
1823      switch(rnemdMethod_) {
1824      case rnemdSwap:
1825 <      doSwap();
1825 >      doSwap(commonA_, commonB_);
1826        break;
1827      case rnemdNIVS:
1828 <      doNIVS();
1828 >      doNIVS(commonA_, commonB_);
1829        break;
1830      case rnemdVSS:
1831 <      doVSS();
1831 >      doVSS(commonA_, commonB_);
1832        break;
1833      case rnemdUnkownMethod:
1834      default :
# Line 1410 | Line 1837 | namespace OpenMD {
1837    }
1838  
1839    void RNEMD::collectData() {
1840 <
1840 >    if (!doRNEMD_) return;
1841      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1842 +    
1843 +    // collectData can be called more frequently than the doRNEMD, so use the
1844 +    // computed area from the last exchange time:
1845 +    RealType area = getDividingArea();
1846 +    areaAccumulator_->add(area);
1847      Mat3x3d hmat = currentSnap_->getHmat();
1416
1848      seleMan_.setSelectionSet(evaluator_.evaluate());
1849  
1850 <    int selei;
1850 >    int selei(0);
1851      StuntDouble* sd;
1852 <    int idx;
1852 >    int binNo;
1853  
1854      vector<RealType> binMass(nBins_, 0.0);
1855      vector<RealType> binPx(nBins_, 0.0);
1856      vector<RealType> binPy(nBins_, 0.0);
1857      vector<RealType> binPz(nBins_, 0.0);
1858 +    vector<RealType> binOmegax(nBins_, 0.0);
1859 +    vector<RealType> binOmegay(nBins_, 0.0);
1860 +    vector<RealType> binOmegaz(nBins_, 0.0);
1861      vector<RealType> binKE(nBins_, 0.0);
1862      vector<int> binDOF(nBins_, 0);
1863      vector<int> binCount(nBins_, 0);
# Line 1431 | Line 1865 | namespace OpenMD {
1865      // alternative approach, track all molecules instead of only those
1866      // selected for scaling/swapping:
1867      /*
1868 <    SimInfo::MoleculeIterator miter;
1869 <    vector<StuntDouble*>::iterator iiter;
1870 <    Molecule* mol;
1871 <    StuntDouble* sd;
1872 <    for (mol = info_->beginMolecule(miter); mol != NULL;
1868 >      SimInfo::MoleculeIterator miter;
1869 >      vector<StuntDouble*>::iterator iiter;
1870 >      Molecule* mol;
1871 >      StuntDouble* sd;
1872 >      for (mol = info_->beginMolecule(miter); mol != NULL;
1873        mol = info_->nextMolecule(miter))
1874        sd is essentially sd
1875 <        for (sd = mol->beginIntegrableObject(iiter);
1876 <             sd != NULL;
1877 <             sd = mol->nextIntegrableObject(iiter))
1875 >      for (sd = mol->beginIntegrableObject(iiter);
1876 >      sd != NULL;
1877 >      sd = mol->nextIntegrableObject(iiter))
1878      */
1879 +
1880      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1881 <         sd = seleMan_.nextSelected(selei)) {
1882 <      
1448 <      idx = sd->getLocalIndex();
1449 <      
1881 >         sd = seleMan_.nextSelected(selei)) {    
1882 >    
1883        Vector3d pos = sd->getPos();
1884  
1885        // wrap the stuntdouble's position back into the box:
1886        
1887 <      if (usePeriodicBoundaryConditions_)
1887 >      if (usePeriodicBoundaryConditions_) {
1888          currentSnap_->wrapVector(pos);
1889 +        // which bin is this stuntdouble in?
1890 +        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1891 +        // Shift molecules by half a box to have bins start at 0
1892 +        // The modulo operator is used to wrap the case when we are
1893 +        // beyond the end of the bins back to the beginning.
1894 +        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1895 +      } else {
1896 +        Vector3d rPos = pos - coordinateOrigin_;
1897 +        binNo = int(rPos.length() / binWidth_);
1898 +      }
1899  
1457      // which bin is this stuntdouble in?
1458      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1459      // Shift molecules by half a box to have bins start at 0
1460      // The modulo operator is used to wrap the case when we are
1461      // beyond the end of the bins back to the beginning.
1462      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1463    
1900        RealType mass = sd->getMass();
1901        Vector3d vel = sd->getVel();
1902 <
1903 <      binCount[binNo]++;
1904 <      binMass[binNo] += mass;
1905 <      binPx[binNo] += mass*vel.x();
1906 <      binPy[binNo] += mass*vel.y();
1907 <      binPz[binNo] += mass*vel.z();
1908 <      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1909 <      binDOF[binNo] += 3;
1910 <
1911 <      if (sd->isDirectional()) {
1912 <        Vector3d angMom = sd->getJ();
1913 <        Mat3x3d I = sd->getI();
1914 <        if (sd->isLinear()) {
1915 <          int i = sd->linearAxis();
1916 <          int j = (i + 1) % 3;
1917 <          int k = (i + 2) % 3;
1918 <          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1919 <                                 angMom[k] * angMom[k] / I(k, k));
1920 <          binDOF[binNo] += 2;
1921 <        } else {
1922 <          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1923 <                                 angMom[1] * angMom[1] / I(1, 1) +
1924 <                                 angMom[2] * angMom[2] / I(2, 2));
1925 <          binDOF[binNo] += 3;
1902 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1903 >      Vector3d aVel = cross(rPos, vel);
1904 >      
1905 >      if (binNo >= 0 && binNo < nBins_)  {
1906 >        binCount[binNo]++;
1907 >        binMass[binNo] += mass;
1908 >        binPx[binNo] += mass*vel.x();
1909 >        binPy[binNo] += mass*vel.y();
1910 >        binPz[binNo] += mass*vel.z();
1911 >        binOmegax[binNo] += aVel.x();
1912 >        binOmegay[binNo] += aVel.y();
1913 >        binOmegaz[binNo] += aVel.z();
1914 >        binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1915 >        binDOF[binNo] += 3;
1916 >        
1917 >        if (sd->isDirectional()) {
1918 >          Vector3d angMom = sd->getJ();
1919 >          Mat3x3d I = sd->getI();
1920 >          if (sd->isLinear()) {
1921 >            int i = sd->linearAxis();
1922 >            int j = (i + 1) % 3;
1923 >            int k = (i + 2) % 3;
1924 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1925 >                                   angMom[k] * angMom[k] / I(k, k));
1926 >            binDOF[binNo] += 2;
1927 >          } else {
1928 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1929 >                                   angMom[1] * angMom[1] / I(1, 1) +
1930 >                                   angMom[2] * angMom[2] / I(2, 2));
1931 >            binDOF[binNo] += 3;
1932 >          }
1933          }
1934        }
1935      }
1936      
1494
1937   #ifdef IS_MPI
1938      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1939                                nBins_, MPI::INT, MPI::SUM);
# Line 1503 | Line 1945 | namespace OpenMD {
1945                                nBins_, MPI::REALTYPE, MPI::SUM);
1946      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1947                                nBins_, MPI::REALTYPE, MPI::SUM);
1948 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0],
1949 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1950 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0],
1951 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1952 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0],
1953 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1954      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1955                                nBins_, MPI::REALTYPE, MPI::SUM);
1956      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
# Line 1510 | Line 1958 | namespace OpenMD {
1958   #endif
1959  
1960      Vector3d vel;
1961 +    Vector3d aVel;
1962      RealType den;
1963      RealType temp;
1964      RealType z;
1965 +    RealType r;
1966      for (int i = 0; i < nBins_; i++) {
1967 <      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1967 >      if (usePeriodicBoundaryConditions_) {
1968 >        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1969 >        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1970 >          / currentSnap_->getVolume() ;
1971 >      } else {
1972 >        r = (((RealType)i + 0.5) * binWidth_);
1973 >        RealType rinner = (RealType)i * binWidth_;
1974 >        RealType router = (RealType)(i+1) * binWidth_;
1975 >        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
1976 >          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
1977 >      }
1978        vel.x() = binPx[i] / binMass[i];
1979        vel.y() = binPy[i] / binMass[i];
1980        vel.z() = binPz[i] / binMass[i];
1981 <      den = binCount[i] * nBins_ / (hmat(0,0) * hmat(1,1) * hmat(2,2));
1982 <      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1983 <                               PhysicalConstants::energyConvert);
1981 >      aVel.x() = binOmegax[i] / binCount[i];
1982 >      aVel.y() = binOmegay[i] / binCount[i];
1983 >      aVel.z() = binOmegaz[i] / binCount[i];
1984  
1985 <      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1986 <        if(outputMask_[j]) {
1987 <          switch(j) {
1988 <          case Z:
1989 <            (data_[j].accumulator[i])->add(z);
1990 <            break;
1991 <          case TEMPERATURE:
1992 <            data_[j].accumulator[i]->add(temp);
1993 <            break;
1994 <          case VELOCITY:
1995 <            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1996 <            break;
1997 <          case DENSITY:
1998 <            data_[j].accumulator[i]->add(den);
1999 <            break;
1985 >      if (binCount[i] > 0) {
1986 >        // only add values if there are things to add
1987 >        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1988 >                                 PhysicalConstants::energyConvert);
1989 >        
1990 >        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1991 >          if(outputMask_[j]) {
1992 >            switch(j) {
1993 >            case Z:
1994 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
1995 >              break;
1996 >            case R:
1997 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
1998 >              break;
1999 >            case TEMPERATURE:
2000 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2001 >              break;
2002 >            case VELOCITY:
2003 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2004 >              break;
2005 >            case ANGULARVELOCITY:  
2006 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel);
2007 >              break;
2008 >            case DENSITY:
2009 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2010 >              break;
2011 >            }
2012            }
2013          }
2014        }
2015      }
2016 +    hasData_ = true;
2017    }
2018  
2019    void RNEMD::getStarted() {
2020 +    if (!doRNEMD_) return;
2021 +    hasDividingArea_ = false;
2022      collectData();
2023      writeOutputFile();
2024    }
2025  
2026    void RNEMD::parseOutputFileFormat(const std::string& format) {
2027 +    if (!doRNEMD_) return;
2028      StringTokenizer tokenizer(format, " ,;|\t\n\r");
2029      
2030      while(tokenizer.hasMoreTokens()) {
# Line 1569 | Line 2045 | namespace OpenMD {
2045    }
2046    
2047    void RNEMD::writeOutputFile() {
2048 +    if (!doRNEMD_) return;
2049 +    if (!hasData_) return;
2050      
2051   #ifdef IS_MPI
2052      // If we're the root node, should we print out the results
# Line 1588 | Line 2066 | namespace OpenMD {
2066        Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2067  
2068        RealType time = currentSnap_->getTime();
2069 <      
2070 <      
2069 >      RealType avgArea;
2070 >      areaAccumulator_->getAverage(avgArea);
2071 >
2072 >      RealType Jz(0.0);
2073 >      Vector3d JzP(V3Zero);
2074 >      Vector3d JzL(V3Zero);
2075 >      if (time >= info_->getSimParams()->getDt()) {
2076 >        Jz = kineticExchange_ / (time * avgArea)
2077 >          / PhysicalConstants::energyConvert;
2078 >        JzP = momentumExchange_ / (time * avgArea);
2079 >        JzL = angularMomentumExchange_ / (time * avgArea);
2080 >      }
2081 >
2082        rnemdFile_ << "#######################################################\n";
2083        rnemdFile_ << "# RNEMD {\n";
2084  
2085        map<string, RNEMDMethod>::iterator mi;
2086        for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2087          if ( (*mi).second == rnemdMethod_)
2088 <          rnemdFile_ << "#    exchangeMethod  = " << (*mi).first << "\n";
2088 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2089        }
2090        map<string, RNEMDFluxType>::iterator fi;
2091        for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2092          if ( (*fi).second == rnemdFluxType_)
2093 <          rnemdFile_ << "#    fluxType  = " << (*fi).first << "\n";
2093 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2094        }
2095        
2096 <      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << " fs\n";
2096 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2097  
2098        rnemdFile_ << "#    objectSelection = \""
2099 <                 << rnemdObjectSelection_ << "\"\n";
2100 <      rnemdFile_ << "#    slabWidth = " << slabWidth_ << " angstroms\n";
2101 <      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << " angstroms\n";
1613 <      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << " angstroms\n";
2099 >                 << rnemdObjectSelection_ << "\";\n";
2100 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2101 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2102        rnemdFile_ << "# }\n";
2103        rnemdFile_ << "#######################################################\n";
2104 <      
2105 <      rnemdFile_ << "# running time = " << time << " fs\n";
2106 <      rnemdFile_ << "# target kinetic flux = " << kineticFlux_ << "\n";
2107 <      rnemdFile_ << "# target momentum flux = " << momentumFluxVector_ << "\n";
2108 <      
2109 <      rnemdFile_ << "# target one-time kinetic exchange = " << kineticTarget_
2110 <                 << "\n";
2111 <      rnemdFile_ << "# target one-time momentum exchange = " << momentumTarget_
2112 <                 << "\n";
2113 <      
2114 <      rnemdFile_ << "# actual kinetic exchange = " << kineticExchange_ << "\n";
2115 <      rnemdFile_ << "# actual momentum exchange = " << momentumExchange_
2116 <                 << "\n";
2117 <      
2118 <      rnemdFile_ << "# attempted exchanges: " << trialCount_ << "\n";
2119 <      rnemdFile_ << "# failed exchanges: " << failTrialCount_ << "\n";
2120 <
2121 <      
2104 >      rnemdFile_ << "# RNEMD report:\n";      
2105 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2106 >      rnemdFile_ << "# Target flux:\n";
2107 >      rnemdFile_ << "#           kinetic = "
2108 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2109 >                 << " (kcal/mol/A^2/fs)\n";
2110 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2111 >                 << " (amu/A/fs^2)\n";
2112 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2113 >                 << " (amu/A^2/fs^2)\n";
2114 >      rnemdFile_ << "# Target one-time exchanges:\n";
2115 >      rnemdFile_ << "#          kinetic = "
2116 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2117 >                 << " (kcal/mol)\n";
2118 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2119 >                 << " (amu*A/fs)\n";
2120 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2121 >                 << " (amu*A^2/fs)\n";
2122 >      rnemdFile_ << "# Actual exchange totals:\n";
2123 >      rnemdFile_ << "#          kinetic = "
2124 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2125 >                 << " (kcal/mol)\n";
2126 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2127 >                 << " (amu*A/fs)\n";      
2128 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2129 >                 << " (amu*A^2/fs)\n";      
2130 >      rnemdFile_ << "# Actual flux:\n";
2131 >      rnemdFile_ << "#          kinetic = " << Jz
2132 >                 << " (kcal/mol/A^2/fs)\n";
2133 >      rnemdFile_ << "#          momentum = " << JzP
2134 >                 << " (amu/A/fs^2)\n";
2135 >      rnemdFile_ << "#  angular momentum = " << JzL
2136 >                 << " (amu/A^2/fs^2)\n";
2137 >      rnemdFile_ << "# Exchange statistics:\n";
2138 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2139 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2140        if (rnemdMethod_ == rnemdNIVS) {
2141 <        rnemdFile_ << "# NIVS root-check warnings: " << failRootCount_ << "\n";
2141 >        rnemdFile_ << "#  NIVS root-check errors = "
2142 >                   << failRootCount_ << "\n";
2143        }
1637
2144        rnemdFile_ << "#######################################################\n";
2145        
2146        
# Line 1645 | Line 2151 | namespace OpenMD {
2151          if (outputMask_[i]) {
2152            rnemdFile_ << "\t" << data_[i].title <<
2153              "(" << data_[i].units << ")";
2154 +          // add some extra tabs for column alignment
2155 +          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2156          }
2157        }
2158        rnemdFile_ << std::endl;
2159        
2160        rnemdFile_.precision(8);
2161        
2162 <      for (unsigned int j = 0; j < nBins_; j++) {        
2162 >      for (int j = 0; j < nBins_; j++) {        
2163          
2164          for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2165            if (outputMask_[i]) {
2166              if (data_[i].dataType == "RealType")
2167                writeReal(i,j);
2168 <            else if (data_[i].dataType == "Vector3d")
2168 >            else if (data_[i].dataType == "Vector3d")
2169                writeVector(i,j);
2170              else {
2171                sprintf( painCave.errMsg,
# Line 1671 | Line 2179 | namespace OpenMD {
2179          rnemdFile_ << std::endl;
2180          
2181        }        
2182 +
2183 +      rnemdFile_ << "#######################################################\n";
2184 +      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
2185 +      rnemdFile_ << "#######################################################\n";
2186 +
2187 +
2188 +      for (int j = 0; j < nBins_; j++) {        
2189 +        rnemdFile_ << "#";
2190 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2191 +          if (outputMask_[i]) {
2192 +            if (data_[i].dataType == "RealType")
2193 +              writeRealStdDev(i,j);
2194 +            else if (data_[i].dataType == "Vector3d")
2195 +              writeVectorStdDev(i,j);
2196 +            else {
2197 +              sprintf( painCave.errMsg,
2198 +                       "RNEMD found an unknown data type for: %s ",
2199 +                       data_[i].title.c_str());
2200 +              painCave.isFatal = 1;
2201 +              simError();
2202 +            }
2203 +          }
2204 +        }
2205 +        rnemdFile_ << std::endl;
2206 +        
2207 +      }        
2208        
2209        rnemdFile_.flush();
2210        rnemdFile_.close();
# Line 1682 | Line 2216 | namespace OpenMD {
2216    }
2217    
2218    void RNEMD::writeReal(int index, unsigned int bin) {
2219 +    if (!doRNEMD_) return;
2220      assert(index >=0 && index < ENDINDEX);
2221 <    assert(bin >=0 && bin < nBins_);
2221 >    assert(int(bin) < nBins_);
2222      RealType s;
2223 +    int count;
2224      
2225 <    data_[index].accumulator[bin]->getAverage(s);
2225 >    count = data_[index].accumulator[bin]->count();
2226 >    if (count == 0) return;
2227      
2228 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2229 +    
2230      if (! isinf(s) && ! isnan(s)) {
2231        rnemdFile_ << "\t" << s;
2232      } else{
2233        sprintf( painCave.errMsg,
2234 <               "RNEMD detected a numerical error writing: %s for bin %d",
2234 >               "RNEMD detected a numerical error writing: %s for bin %u",
2235                 data_[index].title.c_str(), bin);
2236        painCave.isFatal = 1;
2237        simError();
# Line 1700 | Line 2239 | namespace OpenMD {
2239    }
2240    
2241    void RNEMD::writeVector(int index, unsigned int bin) {
2242 +    if (!doRNEMD_) return;
2243      assert(index >=0 && index < ENDINDEX);
2244 <    assert(bin >=0 && bin < nBins_);
2244 >    assert(int(bin) < nBins_);
2245      Vector3d s;
2246 +    int count;
2247 +    
2248 +    count = data_[index].accumulator[bin]->count();
2249 +
2250 +    if (count == 0) return;
2251 +
2252      dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2253      if (isinf(s[0]) || isnan(s[0]) ||
2254          isinf(s[1]) || isnan(s[1]) ||
2255          isinf(s[2]) || isnan(s[2]) ) {      
2256        sprintf( painCave.errMsg,
2257 <               "RNEMD detected a numerical error writing: %s for bin %d",
2257 >               "RNEMD detected a numerical error writing: %s for bin %u",
2258                 data_[index].title.c_str(), bin);
2259        painCave.isFatal = 1;
2260        simError();
# Line 1716 | Line 2262 | namespace OpenMD {
2262        rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2263      }
2264    }  
2265 +
2266 +  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
2267 +    if (!doRNEMD_) return;
2268 +    assert(index >=0 && index < ENDINDEX);
2269 +    assert(int(bin) < nBins_);
2270 +    RealType s;
2271 +    int count;
2272 +    
2273 +    count = data_[index].accumulator[bin]->count();
2274 +    if (count == 0) return;
2275 +    
2276 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
2277 +    
2278 +    if (! isinf(s) && ! isnan(s)) {
2279 +      rnemdFile_ << "\t" << s;
2280 +    } else{
2281 +      sprintf( painCave.errMsg,
2282 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2283 +               data_[index].title.c_str(), bin);
2284 +      painCave.isFatal = 1;
2285 +      simError();
2286 +    }    
2287 +  }
2288 +  
2289 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
2290 +    if (!doRNEMD_) return;
2291 +    assert(index >=0 && index < ENDINDEX);
2292 +    assert(int(bin) < nBins_);
2293 +    Vector3d s;
2294 +    int count;
2295 +    
2296 +    count = data_[index].accumulator[bin]->count();
2297 +    if (count == 0) return;
2298 +
2299 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
2300 +    if (isinf(s[0]) || isnan(s[0]) ||
2301 +        isinf(s[1]) || isnan(s[1]) ||
2302 +        isinf(s[2]) || isnan(s[2]) ) {      
2303 +      sprintf( painCave.errMsg,
2304 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %u",
2305 +               data_[index].title.c_str(), bin);
2306 +      painCave.isFatal = 1;
2307 +      simError();
2308 +    } else {
2309 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2310 +    }
2311 +  }  
2312   }
2313  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines