ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing branches/development/src/rnemd/RNEMD.cpp (file contents):
Revision 1773 by gezelter, Tue Aug 7 18:26:40 2012 UTC vs.
Revision 1867 by gezelter, Mon Apr 29 17:53:48 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   #include <cmath>
43 + #include <sstream>
44 + #include <string>
45 +
46   #include "rnemd/RNEMD.hpp"
47   #include "math/Vector3.hpp"
48   #include "math/Vector.hpp"
# Line 49 | Line 52
52   #include "primitives/StuntDouble.hpp"
53   #include "utils/PhysicalConstants.hpp"
54   #include "utils/Tuple.hpp"
55 + #include "brains/Thermo.hpp"
56 + #include "math/ConvexHull.hpp"
57   #ifdef IS_MPI
58   #include <mpi.h>
59   #endif
60  
61 + #ifdef _MSC_VER
62 + #define isnan(x) _isnan((x))
63 + #define isinf(x) (!_finite(x) && !_isnan(x))
64 + #endif
65 +
66   #define HONKING_LARGE_VALUE 1.0e10
67  
68   using namespace std;
69   namespace OpenMD {
70    
71    RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 +                                evaluatorA_(info), seleManA_(info),
73 +                                commonA_(info), evaluatorB_(info),
74 +                                seleManB_(info), commonB_(info),
75                                  usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
76  
77      trialCount_ = 0;
78      failTrialCount_ = 0;
79      failRootCount_ = 0;
80  
81 <    int seedValue;
69 <    Globals * simParams = info->getSimParams();
81 >    Globals* simParams = info->getSimParams();
82      RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
83  
84 +    doRNEMD_ = rnemdParams->getUseRNEMD();
85 +    if (!doRNEMD_) return;
86 +
87      stringToMethod_["Swap"]  = rnemdSwap;
88      stringToMethod_["NIVS"]  = rnemdNIVS;
89      stringToMethod_["VSS"]   = rnemdVSS;
# Line 77 | Line 92 | namespace OpenMD {
92      stringToFluxType_["Px"]  = rnemdPx;
93      stringToFluxType_["Py"]  = rnemdPy;
94      stringToFluxType_["Pz"]  = rnemdPz;
95 +    stringToFluxType_["Pvector"]  = rnemdPvector;
96 +    stringToFluxType_["Lx"]  = rnemdLx;
97 +    stringToFluxType_["Ly"]  = rnemdLy;
98 +    stringToFluxType_["Lz"]  = rnemdLz;
99 +    stringToFluxType_["Lvector"]  = rnemdLvector;
100      stringToFluxType_["KE+Px"]  = rnemdKePx;
101      stringToFluxType_["KE+Py"]  = rnemdKePy;
102      stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
103 +    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
104 +    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
105 +    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
106 +    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
107  
108      runTime_ = simParams->getRunTime();
109      statusTime_ = simParams->getStatusTime();
110  
87    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
88    evaluator_.loadScriptString(rnemdObjectSelection_);
89    seleMan_.setSelectionSet(evaluator_.evaluate());
90
111      const string methStr = rnemdParams->getMethod();
112      bool hasFluxType = rnemdParams->haveFluxType();
113  
114 +    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
115 +
116      string fluxStr;
117      if (hasFluxType) {
118        fluxStr = rnemdParams->getFluxType();
# Line 98 | Line 120 | namespace OpenMD {
120        sprintf(painCave.errMsg,
121                "RNEMD: No fluxType was set in the md file.  This parameter,\n"
122                "\twhich must be one of the following values:\n"
123 <              "\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n"
124 <              "\tuse RNEMD\n");
123 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
124 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
125 >              "\tmust be set to use RNEMD\n");
126        painCave.isFatal = 1;
127        painCave.severity = OPENMD_ERROR;
128        simError();
# Line 108 | Line 131 | namespace OpenMD {
131      bool hasKineticFlux = rnemdParams->haveKineticFlux();
132      bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
133      bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
134 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
135 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
136 +    hasSelectionA_ = rnemdParams->haveSelectionA();
137 +    hasSelectionB_ = rnemdParams->haveSelectionB();
138      bool hasSlabWidth = rnemdParams->haveSlabWidth();
139      bool hasSlabACenter = rnemdParams->haveSlabACenter();
140      bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
141 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
142 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
143 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
144      bool hasOutputFileName = rnemdParams->haveOutputFileName();
145      bool hasOutputFields = rnemdParams->haveOutputFields();
146      
# Line 195 | Line 225 | namespace OpenMD {
225        case rnemdPz:
226          hasCorrectFlux = hasMomentumFlux;
227          break;
228 +      case rnemdLx:
229 +      case rnemdLy:
230 +      case rnemdLz:
231 +        hasCorrectFlux = hasAngularMomentumFlux;
232 +        break;
233        case rnemdPvector:
234          hasCorrectFlux = hasMomentumFluxVector;
235 +        break;
236 +      case rnemdLvector:
237 +        hasCorrectFlux = hasAngularMomentumFluxVector;
238 +        break;
239        case rnemdKePx:
240        case rnemdKePy:
241          hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
242          break;
243 +      case rnemdKeLx:
244 +      case rnemdKeLy:
245 +      case rnemdKeLz:
246 +        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
247 +        break;
248        case rnemdKePvector:
249          hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
250          break;
251 +      case rnemdKeLvector:
252 +        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
253 +        break;
254        default:
255          methodFluxMismatch = true;
256          break;
# Line 224 | Line 271 | namespace OpenMD {
271      }
272      if (!hasCorrectFlux) {
273        sprintf(painCave.errMsg,
274 <              "RNEMD: The current method,\n"
228 <              "\t%s, and flux type %s\n"
274 >              "RNEMD: The current method, %s, and flux type, %s,\n"
275                "\tdid not have the correct flux value specified. Options\n"
276 <              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
276 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
277 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
278                methStr.c_str(), fluxStr.c_str());
279        painCave.isFatal = 1;
280        painCave.severity = OPENMD_ERROR;
# Line 235 | Line 282 | namespace OpenMD {
282      }
283  
284      if (hasKineticFlux) {
285 <      kineticFlux_ = rnemdParams->getKineticFlux();
285 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
286 >      // into  amu / fs^3:
287 >      kineticFlux_ = rnemdParams->getKineticFlux()
288 >        * PhysicalConstants::energyConvert;
289      } else {
290        kineticFlux_ = 0.0;
291      }
# Line 264 | Line 314 | namespace OpenMD {
314          default:
315            break;
316          }
317 <      }    
318 <    }
319 <
320 <    // do some sanity checking
321 <
322 <    int selectionCount = seleMan_.getSelectionCount();
323 <    int nIntegrable = info->getNGlobalIntegrableObjects();
324 <
325 <    if (selectionCount > nIntegrable) {
326 <      sprintf(painCave.errMsg,
327 <              "RNEMD: The current objectSelection,\n"
328 <              "\t\t%s\n"
329 <              "\thas resulted in %d selected objects.  However,\n"
330 <              "\tthe total number of integrable objects in the system\n"
331 <              "\tis only %d.  This is almost certainly not what you want\n"
332 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
333 <              "\tselector in the selection script!\n",
334 <              rnemdObjectSelection_.c_str(),
335 <              selectionCount, nIntegrable);
336 <      painCave.isFatal = 0;
337 <      painCave.severity = OPENMD_WARNING;
338 <      simError();
339 <    }
340 <
341 <    nBins_ = rnemdParams->getOutputBins();
317 >      }
318 >      if (hasAngularMomentumFluxVector) {
319 >        angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector();
320 >      } else {
321 >        angularMomentumFluxVector_ = V3Zero;
322 >        if (hasAngularMomentumFlux) {
323 >          RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
324 >          switch (rnemdFluxType_) {
325 >          case rnemdLx:
326 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
327 >            break;
328 >          case rnemdLy:
329 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
330 >            break;
331 >          case rnemdLz:
332 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
333 >            break;
334 >          case rnemdKeLx:
335 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
336 >            break;
337 >          case rnemdKeLy:
338 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
339 >            break;
340 >          case rnemdKeLz:
341 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
342 >            break;
343 >          default:
344 >            break;
345 >          }
346 >        }        
347 >      }
348  
349 <    data_.resize(RNEMD::ENDINDEX);
350 <    OutputData z;
351 <    z.units =  "Angstroms";
352 <    z.title =  "Z";
353 <    z.dataType = "RealType";
298 <    z.accumulator.reserve(nBins_);
299 <    for (unsigned int i = 0; i < nBins_; i++)
300 <      z.accumulator.push_back( new Accumulator() );
301 <    data_[Z] = z;
302 <    outputMap_["Z"] =  Z;
349 >      if (hasCoordinateOrigin) {
350 >        coordinateOrigin_ = rnemdParams->getCoordinateOrigin();
351 >      } else {
352 >        coordinateOrigin_ = V3Zero;
353 >      }
354  
355 <    OutputData temperature;
305 <    temperature.units =  "K";
306 <    temperature.title =  "Temperature";
307 <    temperature.dataType = "RealType";
308 <    temperature.accumulator.reserve(nBins_);
309 <    for (unsigned int i = 0; i < nBins_; i++)
310 <      temperature.accumulator.push_back( new Accumulator() );
311 <    data_[TEMPERATURE] = temperature;
312 <    outputMap_["TEMPERATURE"] =  TEMPERATURE;
355 >      // do some sanity checking
356  
357 <    OutputData velocity;
315 <    velocity.units = "amu/fs";
316 <    velocity.title =  "Velocity";  
317 <    velocity.dataType = "Vector3d";
318 <    velocity.accumulator.reserve(nBins_);
319 <    for (unsigned int i = 0; i < nBins_; i++)
320 <      velocity.accumulator.push_back( new VectorAccumulator() );
321 <    data_[VELOCITY] = velocity;
322 <    outputMap_["VELOCITY"] = VELOCITY;
357 >      int selectionCount = seleMan_.getSelectionCount();
358  
359 <    OutputData density;
325 <    density.units =  "g cm^-3";
326 <    density.title =  "Density";
327 <    density.dataType = "RealType";
328 <    density.accumulator.reserve(nBins_);
329 <    for (unsigned int i = 0; i < nBins_; i++)
330 <      density.accumulator.push_back( new Accumulator() );
331 <    data_[DENSITY] = density;
332 <    outputMap_["DENSITY"] =  DENSITY;
359 >      int nIntegrable = info->getNGlobalIntegrableObjects();
360  
361 <    if (hasOutputFields) {
362 <      parseOutputFileFormat(rnemdParams->getOutputFields());
363 <    } else {
364 <      outputMask_.set(Z);
365 <      switch (rnemdFluxType_) {
366 <      case rnemdKE:
367 <      case rnemdRotKE:
368 <      case rnemdFullKE:
369 <        outputMask_.set(TEMPERATURE);
370 <        break;
371 <      case rnemdPx:
372 <      case rnemdPy:
373 <        outputMask_.set(VELOCITY);
374 <        break;
375 <      case rnemdPz:        
376 <      case rnemdPvector:
377 <        outputMask_.set(VELOCITY);
378 <        outputMask_.set(DENSITY);
379 <        break;
380 <      case rnemdKePx:
381 <      case rnemdKePy:
382 <        outputMask_.set(TEMPERATURE);
383 <        outputMask_.set(VELOCITY);
384 <        break;
385 <      case rnemdKePvector:
386 <        outputMask_.set(TEMPERATURE);
387 <        outputMask_.set(VELOCITY);
388 <        outputMask_.set(DENSITY);        
389 <        break;
390 <      default:
391 <        break;
392 <      }
393 <    }
394 <      
395 <    if (hasOutputFileName) {
396 <      rnemdFileName_ = rnemdParams->getOutputFileName();
397 <    } else {
398 <      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
399 <    }          
361 >      if (selectionCount > nIntegrable) {
362 >        sprintf(painCave.errMsg,
363 >                "RNEMD: The current objectSelection,\n"
364 >                "\t\t%s\n"
365 >                "\thas resulted in %d selected objects.  However,\n"
366 >                "\tthe total number of integrable objects in the system\n"
367 >                "\tis only %d.  This is almost certainly not what you want\n"
368 >                "\tto do.  A likely cause of this is forgetting the _RB_0\n"
369 >                "\tselector in the selection script!\n",
370 >                rnemdObjectSelection_.c_str(),
371 >                selectionCount, nIntegrable);
372 >        painCave.isFatal = 0;
373 >        painCave.severity = OPENMD_WARNING;
374 >        simError();
375 >      }
376 >
377 >      areaAccumulator_ = new Accumulator();
378 >
379 >      nBins_ = rnemdParams->getOutputBins();
380 >      binWidth_ = rnemdParams->getOutputBinWidth();
381 >
382 >      data_.resize(RNEMD::ENDINDEX);
383 >      OutputData z;
384 >      z.units =  "Angstroms";
385 >      z.title =  "Z";
386 >      z.dataType = "RealType";
387 >      z.accumulator.reserve(nBins_);
388 >      for (int i = 0; i < nBins_; i++)
389 >        z.accumulator.push_back( new Accumulator() );
390 >      data_[Z] = z;
391 >      outputMap_["Z"] =  Z;
392 >
393 >      OutputData r;
394 >      r.units =  "Angstroms";
395 >      r.title =  "R";
396 >      r.dataType = "RealType";
397 >      r.accumulator.reserve(nBins_);
398 >      for (int i = 0; i < nBins_; i++)
399 >        r.accumulator.push_back( new Accumulator() );
400 >      data_[R] = r;
401 >      outputMap_["R"] =  R;
402  
403 <    exchangeTime_ = rnemdParams->getExchangeTime();
403 >      OutputData temperature;
404 >      temperature.units =  "K";
405 >      temperature.title =  "Temperature";
406 >      temperature.dataType = "RealType";
407 >      temperature.accumulator.reserve(nBins_);
408 >      for (int i = 0; i < nBins_; i++)
409 >        temperature.accumulator.push_back( new Accumulator() );
410 >      data_[TEMPERATURE] = temperature;
411 >      outputMap_["TEMPERATURE"] =  TEMPERATURE;
412  
413 <    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
414 <    Mat3x3d hmat = currentSnap_->getHmat();
415 <  
416 <    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
417 <    // Lx, Ly = box dimensions in x & y
418 <    // dt = exchange time interval
419 <    // flux = target flux
413 >      OutputData velocity;
414 >      velocity.units = "angstroms/fs";
415 >      velocity.title =  "Velocity";  
416 >      velocity.dataType = "Vector3d";
417 >      velocity.accumulator.reserve(nBins_);
418 >      for (int i = 0; i < nBins_; i++)
419 >        velocity.accumulator.push_back( new VectorAccumulator() );
420 >      data_[VELOCITY] = velocity;
421 >      outputMap_["VELOCITY"] = VELOCITY;
422  
423 <    kineticTarget_ = 2.0*kineticFlux_*exchangeTime_*hmat(0,0)*hmat(1,1);
424 <    momentumTarget_ = 2.0*momentumFluxVector_*exchangeTime_*hmat(0,0)*hmat(1,1);
423 >      OutputData angularVelocity;
424 >      angularVelocity.units = "angstroms^2/fs";
425 >      angularVelocity.title =  "AngularVelocity";  
426 >      angularVelocity.dataType = "Vector3d";
427 >      angularVelocity.accumulator.reserve(nBins_);
428 >      for (int i = 0; i < nBins_; i++)
429 >        angularVelocity.accumulator.push_back( new VectorAccumulator() );
430 >      data_[ANGULARVELOCITY] = angularVelocity;
431 >      outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
432  
433 <    // total exchange sums are zeroed out at the beginning:
433 >      OutputData density;
434 >      density.units =  "g cm^-3";
435 >      density.title =  "Density";
436 >      density.dataType = "RealType";
437 >      density.accumulator.reserve(nBins_);
438 >      for (int i = 0; i < nBins_; i++)
439 >        density.accumulator.push_back( new Accumulator() );
440 >      data_[DENSITY] = density;
441 >      outputMap_["DENSITY"] =  DENSITY;
442  
443 <    kineticExchange_ = 0.0;
444 <    momentumExchange_ = V3Zero;
443 >      if (hasOutputFields) {
444 >        parseOutputFileFormat(rnemdParams->getOutputFields());
445 >      } else {
446 >        if (usePeriodicBoundaryConditions_)
447 >          outputMask_.set(Z);
448 >        else
449 >          outputMask_.set(R);
450 >        switch (rnemdFluxType_) {
451 >        case rnemdKE:
452 >        case rnemdRotKE:
453 >        case rnemdFullKE:
454 >          outputMask_.set(TEMPERATURE);
455 >          break;
456 >        case rnemdPx:
457 >        case rnemdPy:
458 >          outputMask_.set(VELOCITY);
459 >          break;
460 >        case rnemdPz:        
461 >        case rnemdPvector:
462 >          outputMask_.set(VELOCITY);
463 >          outputMask_.set(DENSITY);
464 >          break;
465 >        case rnemdLx:
466 >        case rnemdLy:
467 >        case rnemdLz:
468 >        case rnemdLvector:
469 >          outputMask_.set(ANGULARVELOCITY);
470 >          break;
471 >        case rnemdKeLx:
472 >        case rnemdKeLy:
473 >        case rnemdKeLz:
474 >        case rnemdKeLvector:
475 >          outputMask_.set(TEMPERATURE);
476 >          outputMask_.set(ANGULARVELOCITY);
477 >          break;
478 >        case rnemdKePx:
479 >        case rnemdKePy:
480 >          outputMask_.set(TEMPERATURE);
481 >          outputMask_.set(VELOCITY);
482 >          break;
483 >        case rnemdKePvector:
484 >          outputMask_.set(TEMPERATURE);
485 >          outputMask_.set(VELOCITY);
486 >          outputMask_.set(DENSITY);        
487 >          break;
488 >        default:
489 >          break;
490 >        }
491 >      }
492 >      
493 >      if (hasOutputFileName) {
494 >        rnemdFileName_ = rnemdParams->getOutputFileName();
495 >      } else {
496 >        rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
497 >      }          
498  
499 <    if (hasSlabWidth)
500 <      slabWidth_ = rnemdParams->getSlabWidth();
501 <    else
502 <      slabWidth_ = hmat(2,2) / 10.0;
503 <  
504 <    if (hasSlabACenter)
505 <      slabACenter_ = rnemdParams->getSlabACenter();
506 <    else
507 <      slabACenter_ = 0.0;
499 >      exchangeTime_ = rnemdParams->getExchangeTime();
500 >
501 >      Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
502 >      // total exchange sums are zeroed out at the beginning:
503 >
504 >      kineticExchange_ = 0.0;
505 >      momentumExchange_ = V3Zero;
506 >      angularMomentumExchange_ = V3Zero;
507 >
508 >      std::ostringstream selectionAstream;
509 >      std::ostringstream selectionBstream;
510      
511 <    if (hasSlabBCenter)
512 <      slabBCenter_ = rnemdParams->getSlabBCenter();
513 <    else
514 <      slabBCenter_ = hmat(2,2) / 2.0;
511 >      if (hasSelectionA_) {
512 >        selectionA_ = rnemdParams->getSelectionA();
513 >      } else {
514 >        if (usePeriodicBoundaryConditions_) {    
515 >          Mat3x3d hmat = currentSnap_->getHmat();
516 >        
517 >          if (hasSlabWidth)
518 >            slabWidth_ = rnemdParams->getSlabWidth();
519 >          else
520 >            slabWidth_ = hmat(2,2) / 10.0;
521 >        
522 >          if (hasSlabACenter)
523 >            slabACenter_ = rnemdParams->getSlabACenter();
524 >          else
525 >            slabACenter_ = 0.0;
526 >        
527 >          selectionAstream << "select wrappedz > "
528 >                           << slabACenter_ - 0.5*slabWidth_
529 >                           <<  " && wrappedz < "
530 >                           << slabACenter_ + 0.5*slabWidth_;
531 >          selectionA_ = selectionAstream.str();
532 >        } else {
533 >          if (hasSphereARadius)
534 >            sphereARadius_ = rnemdParams->getSphereARadius();
535 >          else {
536 >            // use an initial guess to the size of the inner slab to be 1/10 the
537 >            // radius of an approximately spherical hull:
538 >            Thermo thermo(info);
539 >            RealType hVol = thermo.getHullVolume();
540 >            sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
541 >          }
542 >          selectionAstream << "select r < " << sphereARadius_;
543 >          selectionA_ = selectionAstream.str();
544 >        }
545 >      }
546      
547 +      if (hasSelectionB_) {
548 +        selectionB_ = rnemdParams->getSelectionB();
549 +      } else {
550 +        if (usePeriodicBoundaryConditions_) {    
551 +          Mat3x3d hmat = currentSnap_->getHmat();
552 +        
553 +          if (hasSlabWidth)
554 +            slabWidth_ = rnemdParams->getSlabWidth();
555 +          else
556 +            slabWidth_ = hmat(2,2) / 10.0;
557 +        
558 +          if (hasSlabBCenter)
559 +            slabBCenter_ = rnemdParams->getSlabBCenter();
560 +          else
561 +            slabBCenter_ = hmat(2,2) / 2.0;
562 +        
563 +          selectionBstream << "select wrappedz > "
564 +                           << slabBCenter_ - 0.5*slabWidth_
565 +                           <<  " && wrappedz < "
566 +                           << slabBCenter_ + 0.5*slabWidth_;
567 +          selectionB_ = selectionBstream.str();
568 +        } else {
569 +          if (hasSphereBRadius_) {
570 +            sphereBRadius_ = rnemdParams->getSphereBRadius();
571 +            selectionBstream << "select r > " << sphereBRadius_;
572 +            selectionB_ = selectionBstream.str();
573 +          } else {
574 +            selectionB_ = "select hull";
575 +            hasSelectionB_ = true;
576 +          }
577 +        }
578 +      }
579 +    }
580 +
581 +    // object evaluator:
582 +    evaluator_.loadScriptString(rnemdObjectSelection_);
583 +    seleMan_.setSelectionSet(evaluator_.evaluate());
584 +    evaluatorA_.loadScriptString(selectionA_);
585 +    evaluatorB_.loadScriptString(selectionB_);
586 +    seleManA_.setSelectionSet(evaluatorA_.evaluate());
587 +    seleManB_.setSelectionSet(evaluatorB_.evaluate());
588 +    commonA_ = seleManA_ & seleMan_;
589 +    commonB_ = seleManB_ & seleMan_;  
590    }
591 <  
409 <  RNEMD::~RNEMD() {
591 >  
592      
593 +  RNEMD::~RNEMD() {
594 +    if (!doRNEMD_) return;
595   #ifdef IS_MPI
596      if (worldRank == 0) {
597   #endif
# Line 421 | Line 605 | namespace OpenMD {
605   #endif
606    }
607    
608 <  bool RNEMD::inSlabA(Vector3d pos) {
609 <    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
610 <  }
611 <  bool RNEMD::inSlabB(Vector3d pos) {
428 <    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
429 <  }
608 >  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
609 >    if (!doRNEMD_) return;
610 >    int selei;
611 >    int selej;
612  
431  void RNEMD::doSwap() {
432
613      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
614      Mat3x3d hmat = currentSnap_->getHmat();
615  
436    seleMan_.setSelectionSet(evaluator_.evaluate());
437
438    int selei;
616      StuntDouble* sd;
440    int idx;
617  
618      RealType min_val;
619      bool min_found = false;  
# Line 447 | Line 623 | namespace OpenMD {
623      bool max_found = false;
624      StuntDouble* max_sd;
625  
626 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
627 <         sd = seleMan_.nextSelected(selei)) {
626 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
627 >         sd = seleManA_.nextSelected(selei)) {
628  
453      idx = sd->getLocalIndex();
454
629        Vector3d pos = sd->getPos();
630 <
630 >      
631        // wrap the stuntdouble's position back into the box:
632 <
632 >      
633        if (usePeriodicBoundaryConditions_)
634          currentSnap_->wrapVector(pos);
635 <      bool inA = inSlabA(pos);
636 <      bool inB = inSlabB(pos);
637 <
638 <      if (inA || inB) {
635 >      
636 >      RealType mass = sd->getMass();
637 >      Vector3d vel = sd->getVel();
638 >      RealType value;
639 >      
640 >      switch(rnemdFluxType_) {
641 >      case rnemdKE :
642          
643 <        RealType mass = sd->getMass();
644 <        Vector3d vel = sd->getVel();
645 <        RealType value;
646 <        
647 <        switch(rnemdFluxType_) {
471 <        case rnemdKE :
643 >        value = mass * vel.lengthSquare();
644 >        
645 >        if (sd->isDirectional()) {
646 >          Vector3d angMom = sd->getJ();
647 >          Mat3x3d I = sd->getI();
648            
649 <          value = mass * vel.lengthSquare();
650 <          
651 <          if (sd->isDirectional()) {
652 <            Vector3d angMom = sd->getJ();
653 <            Mat3x3d I = sd->getI();
654 <            
655 <            if (sd->isLinear()) {
656 <              int i = sd->linearAxis();
657 <              int j = (i + 1) % 3;
658 <              int k = (i + 2) % 3;
659 <              value += angMom[j] * angMom[j] / I(j, j) +
660 <                angMom[k] * angMom[k] / I(k, k);
661 <            } else {                        
662 <              value += angMom[0]*angMom[0]/I(0, 0)
663 <                + angMom[1]*angMom[1]/I(1, 1)
664 <                + angMom[2]*angMom[2]/I(2, 2);
665 <            }
666 <          } //angular momenta exchange enabled
667 <          //energyConvert temporarily disabled
668 <          //make kineticExchange_ comparable between swap & scale
669 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
670 <          value *= 0.5;
671 <          break;
672 <        case rnemdPx :
673 <          value = mass * vel[0];
674 <          break;
675 <        case rnemdPy :
676 <          value = mass * vel[1];
677 <          break;
678 <        case rnemdPz :
679 <          value = mass * vel[2];
680 <          break;
681 <        default :
682 <          break;
649 >          if (sd->isLinear()) {
650 >            int i = sd->linearAxis();
651 >            int j = (i + 1) % 3;
652 >            int k = (i + 2) % 3;
653 >            value += angMom[j] * angMom[j] / I(j, j) +
654 >              angMom[k] * angMom[k] / I(k, k);
655 >          } else {                        
656 >            value += angMom[0]*angMom[0]/I(0, 0)
657 >              + angMom[1]*angMom[1]/I(1, 1)
658 >              + angMom[2]*angMom[2]/I(2, 2);
659 >          }
660 >        } //angular momenta exchange enabled
661 >        value *= 0.5;
662 >        break;
663 >      case rnemdPx :
664 >        value = mass * vel[0];
665 >        break;
666 >      case rnemdPy :
667 >        value = mass * vel[1];
668 >        break;
669 >      case rnemdPz :
670 >        value = mass * vel[2];
671 >        break;
672 >      default :
673 >        break;
674 >      }
675 >      if (!max_found) {
676 >        max_val = value;
677 >        max_sd = sd;
678 >        max_found = true;
679 >      } else {
680 >        if (max_val < value) {
681 >          max_val = value;
682 >          max_sd = sd;
683          }
684 +      }  
685 +    }
686          
687 <        if (inA == 0) {
688 <          if (!min_found) {
689 <            min_val = value;
690 <            min_sd = sd;
691 <            min_found = true;
692 <          } else {
693 <            if (min_val > value) {
694 <              min_val = value;
695 <              min_sd = sd;
696 <            }
697 <          }
698 <        } else {
699 <          if (!max_found) {
700 <            max_val = value;
701 <            max_sd = sd;
702 <            max_found = true;
703 <          } else {
704 <            if (max_val < value) {
705 <              max_val = value;
706 <              max_sd = sd;
707 <            }
708 <          }      
709 <        }
687 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
688 >         sd = seleManB_.nextSelected(selej)) {
689 >
690 >      Vector3d pos = sd->getPos();
691 >      
692 >      // wrap the stuntdouble's position back into the box:
693 >      
694 >      if (usePeriodicBoundaryConditions_)
695 >        currentSnap_->wrapVector(pos);
696 >      
697 >      RealType mass = sd->getMass();
698 >      Vector3d vel = sd->getVel();
699 >      RealType value;
700 >      
701 >      switch(rnemdFluxType_) {
702 >      case rnemdKE :
703 >        
704 >        value = mass * vel.lengthSquare();
705 >        
706 >        if (sd->isDirectional()) {
707 >          Vector3d angMom = sd->getJ();
708 >          Mat3x3d I = sd->getI();
709 >          
710 >          if (sd->isLinear()) {
711 >            int i = sd->linearAxis();
712 >            int j = (i + 1) % 3;
713 >            int k = (i + 2) % 3;
714 >            value += angMom[j] * angMom[j] / I(j, j) +
715 >              angMom[k] * angMom[k] / I(k, k);
716 >          } else {                        
717 >            value += angMom[0]*angMom[0]/I(0, 0)
718 >              + angMom[1]*angMom[1]/I(1, 1)
719 >              + angMom[2]*angMom[2]/I(2, 2);
720 >          }
721 >        } //angular momenta exchange enabled
722 >        value *= 0.5;
723 >        break;
724 >      case rnemdPx :
725 >        value = mass * vel[0];
726 >        break;
727 >      case rnemdPy :
728 >        value = mass * vel[1];
729 >        break;
730 >      case rnemdPz :
731 >        value = mass * vel[2];
732 >        break;
733 >      default :
734 >        break;
735        }
736 +      
737 +      if (!min_found) {
738 +        min_val = value;
739 +        min_sd = sd;
740 +        min_found = true;
741 +      } else {
742 +        if (min_val > value) {
743 +          min_val = value;
744 +          min_sd = sd;
745 +        }
746 +      }
747      }
748      
749 < #ifdef IS_MPI
750 <    int nProc, worldRank;
749 > #ifdef IS_MPI    
750 >    int worldRank = MPI::COMM_WORLD.Get_rank();
751      
538    nProc = MPI::COMM_WORLD.Get_size();
539    worldRank = MPI::COMM_WORLD.Get_rank();
540
752      bool my_min_found = min_found;
753      bool my_max_found = max_found;
754  
# Line 728 | Line 939 | namespace OpenMD {
939          
940          switch(rnemdFluxType_) {
941          case rnemdKE:
731          cerr << "KE\n";
942            kineticExchange_ += max_val - min_val;
943            break;
944          case rnemdPx:
# Line 741 | Line 951 | namespace OpenMD {
951            momentumExchange_.z() += max_val - min_val;
952            break;
953          default:
744          cerr << "default\n";
954            break;
955          }
956        } else {        
# Line 763 | Line 972 | namespace OpenMD {
972      }    
973    }
974    
975 <  void RNEMD::doNIVS() {
975 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
976 >    if (!doRNEMD_) return;
977 >    int selei;
978 >    int selej;
979  
980      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
981 +    RealType time = currentSnap_->getTime();    
982      Mat3x3d hmat = currentSnap_->getHmat();
983  
771    seleMan_.setSelectionSet(evaluator_.evaluate());
772
773    int selei;
984      StuntDouble* sd;
775    int idx;
985  
986      vector<StuntDouble*> hotBin, coldBin;
987  
# Line 791 | Line 1000 | namespace OpenMD {
1000      RealType Kcz = 0.0;
1001      RealType Kcw = 0.0;
1002  
1003 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1004 <         sd = seleMan_.nextSelected(selei)) {
1003 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1004 >         sd = smanA.nextSelected(selei)) {
1005  
797      idx = sd->getLocalIndex();
798
1006        Vector3d pos = sd->getPos();
1007 <
1007 >      
1008        // wrap the stuntdouble's position back into the box:
1009 <
1009 >      
1010        if (usePeriodicBoundaryConditions_)
1011          currentSnap_->wrapVector(pos);
1012 <
1013 <      // which bin is this stuntdouble in?
1014 <      bool inA = inSlabA(pos);
1015 <      bool inB = inSlabB(pos);
1012 >      
1013 >      
1014 >      RealType mass = sd->getMass();
1015 >      Vector3d vel = sd->getVel();
1016 >      
1017 >      hotBin.push_back(sd);
1018 >      Phx += mass * vel.x();
1019 >      Phy += mass * vel.y();
1020 >      Phz += mass * vel.z();
1021 >      Khx += mass * vel.x() * vel.x();
1022 >      Khy += mass * vel.y() * vel.y();
1023 >      Khz += mass * vel.z() * vel.z();
1024 >      if (sd->isDirectional()) {
1025 >        Vector3d angMom = sd->getJ();
1026 >        Mat3x3d I = sd->getI();
1027 >        if (sd->isLinear()) {
1028 >          int i = sd->linearAxis();
1029 >          int j = (i + 1) % 3;
1030 >          int k = (i + 2) % 3;
1031 >          Khw += angMom[j] * angMom[j] / I(j, j) +
1032 >            angMom[k] * angMom[k] / I(k, k);
1033 >        } else {
1034 >          Khw += angMom[0]*angMom[0]/I(0, 0)
1035 >            + angMom[1]*angMom[1]/I(1, 1)
1036 >            + angMom[2]*angMom[2]/I(2, 2);
1037 >        }
1038 >      }
1039 >    }
1040 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1041 >         sd = smanB.nextSelected(selej)) {
1042 >      Vector3d pos = sd->getPos();
1043 >      
1044 >      // wrap the stuntdouble's position back into the box:
1045 >      
1046 >      if (usePeriodicBoundaryConditions_)
1047 >        currentSnap_->wrapVector(pos);
1048 >            
1049 >      RealType mass = sd->getMass();
1050 >      Vector3d vel = sd->getVel();
1051  
1052 <      if (inA || inB) {
1053 <              
1054 <        RealType mass = sd->getMass();
1055 <        Vector3d vel = sd->getVel();
1056 <      
1057 <        if (inA) {
1058 <          hotBin.push_back(sd);
1059 <          Phx += mass * vel.x();
1060 <          Phy += mass * vel.y();
1061 <          Phz += mass * vel.z();
1062 <          Khx += mass * vel.x() * vel.x();
1063 <          Khy += mass * vel.y() * vel.y();
1064 <          Khz += mass * vel.z() * vel.z();
1065 <          if (sd->isDirectional()) {
1066 <            Vector3d angMom = sd->getJ();
1067 <            Mat3x3d I = sd->getI();
1068 <            if (sd->isLinear()) {
1069 <              int i = sd->linearAxis();
1070 <              int j = (i + 1) % 3;
1071 <              int k = (i + 2) % 3;
1072 <              Khw += angMom[j] * angMom[j] / I(j, j) +
831 <                angMom[k] * angMom[k] / I(k, k);
832 <            } else {
833 <              Khw += angMom[0]*angMom[0]/I(0, 0)
834 <                + angMom[1]*angMom[1]/I(1, 1)
835 <                + angMom[2]*angMom[2]/I(2, 2);
836 <            }
837 <          }
838 <        } else {
839 <          coldBin.push_back(sd);
840 <          Pcx += mass * vel.x();
841 <          Pcy += mass * vel.y();
842 <          Pcz += mass * vel.z();
843 <          Kcx += mass * vel.x() * vel.x();
844 <          Kcy += mass * vel.y() * vel.y();
845 <          Kcz += mass * vel.z() * vel.z();
846 <          if (sd->isDirectional()) {
847 <            Vector3d angMom = sd->getJ();
848 <            Mat3x3d I = sd->getI();
849 <            if (sd->isLinear()) {
850 <              int i = sd->linearAxis();
851 <              int j = (i + 1) % 3;
852 <              int k = (i + 2) % 3;
853 <              Kcw += angMom[j] * angMom[j] / I(j, j) +
854 <                angMom[k] * angMom[k] / I(k, k);
855 <            } else {
856 <              Kcw += angMom[0]*angMom[0]/I(0, 0)
857 <                + angMom[1]*angMom[1]/I(1, 1)
858 <                + angMom[2]*angMom[2]/I(2, 2);
859 <            }
860 <          }
861 <        }
1052 >      coldBin.push_back(sd);
1053 >      Pcx += mass * vel.x();
1054 >      Pcy += mass * vel.y();
1055 >      Pcz += mass * vel.z();
1056 >      Kcx += mass * vel.x() * vel.x();
1057 >      Kcy += mass * vel.y() * vel.y();
1058 >      Kcz += mass * vel.z() * vel.z();
1059 >      if (sd->isDirectional()) {
1060 >        Vector3d angMom = sd->getJ();
1061 >        Mat3x3d I = sd->getI();
1062 >        if (sd->isLinear()) {
1063 >          int i = sd->linearAxis();
1064 >          int j = (i + 1) % 3;
1065 >          int k = (i + 2) % 3;
1066 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1067 >            angMom[k] * angMom[k] / I(k, k);
1068 >        } else {
1069 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1070 >            + angMom[1]*angMom[1]/I(1, 1)
1071 >            + angMom[2]*angMom[2]/I(2, 2);
1072 >        }
1073        }
1074      }
1075      
# Line 908 | Line 1119 | namespace OpenMD {
1119  
1120        if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1121          c = sqrt(c);
1122 <        //std::cerr << "cold slab scaling coefficient: " << c << endl;
912 <        //now convert to hotBin coefficient
1122 >
1123          RealType w = 0.0;
1124          if (rnemdFluxType_ ==  rnemdFullKE) {
1125            x = 1.0 + px * (1.0 - c);
# Line 947 | Line 1157 | namespace OpenMD {
1157              }
1158            }
1159            w = sqrt(w);
950          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
951          //           << "\twh= " << w << endl;
1160            for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1161              if (rnemdFluxType_ == rnemdFullKE) {
1162                vel = (*sdi)->getVel();
# Line 1211 | Line 1419 | namespace OpenMD {
1419        failTrialCount_++;
1420      }
1421    }
1422 <
1423 <  void RNEMD::doVSS() {
1422 >  
1423 >  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1424 >    if (!doRNEMD_) return;
1425 >    int selei;
1426 >    int selej;
1427  
1428      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1429      RealType time = currentSnap_->getTime();    
1430      Mat3x3d hmat = currentSnap_->getHmat();
1431  
1221    seleMan_.setSelectionSet(evaluator_.evaluate());
1222
1223    int selei;
1432      StuntDouble* sd;
1225    int idx;
1433  
1434      vector<StuntDouble*> hotBin, coldBin;
1435  
1436      Vector3d Ph(V3Zero);
1437 +    Vector3d Lh(V3Zero);
1438      RealType Mh = 0.0;
1439 +    Mat3x3d Ih(0.0);
1440      RealType Kh = 0.0;
1441      Vector3d Pc(V3Zero);
1442 +    Vector3d Lc(V3Zero);
1443      RealType Mc = 0.0;
1444 +    Mat3x3d Ic(0.0);
1445      RealType Kc = 0.0;
1235    
1446  
1447 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1448 <         sd = seleMan_.nextSelected(selei)) {
1447 >    // Constraints can be on only the linear or angular momentum, but
1448 >    // not both.  Usually, the user will specify which they want, but
1449 >    // in case they don't, the use of periodic boundaries should make
1450 >    // the choice for us.
1451 >    bool doLinearPart = false;
1452 >    bool doAngularPart = false;
1453  
1454 <      idx = sd->getLocalIndex();
1454 >    switch (rnemdFluxType_) {
1455 >    case rnemdPx:
1456 >    case rnemdPy:
1457 >    case rnemdPz:
1458 >    case rnemdPvector:
1459 >    case rnemdKePx:
1460 >    case rnemdKePy:
1461 >    case rnemdKePvector:
1462 >      doLinearPart = true;
1463 >      break;
1464 >    case rnemdLx:
1465 >    case rnemdLy:
1466 >    case rnemdLz:
1467 >    case rnemdLvector:
1468 >    case rnemdKeLx:
1469 >    case rnemdKeLy:
1470 >    case rnemdKeLz:
1471 >    case rnemdKeLvector:
1472 >      doAngularPart = true;
1473 >      break;
1474 >    case rnemdKE:
1475 >    case rnemdRotKE:
1476 >    case rnemdFullKE:
1477 >    default:
1478 >      if (usePeriodicBoundaryConditions_)
1479 >        doLinearPart = true;
1480 >      else
1481 >        doAngularPart = true;
1482 >      break;
1483 >    }
1484 >    
1485 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1486 >         sd = smanA.nextSelected(selei)) {
1487  
1488        Vector3d pos = sd->getPos();
1489  
1490        // wrap the stuntdouble's position back into the box:
1491 +      
1492 +      if (usePeriodicBoundaryConditions_)
1493 +        currentSnap_->wrapVector(pos);
1494 +      
1495 +      RealType mass = sd->getMass();
1496 +      Vector3d vel = sd->getVel();
1497 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1498 +      RealType r2;
1499 +      
1500 +      hotBin.push_back(sd);
1501 +      Ph += mass * vel;
1502 +      Mh += mass;
1503 +      Kh += mass * vel.lengthSquare();
1504 +      Lh += mass * cross(rPos, vel);
1505 +      Ih -= outProduct(rPos, rPos) * mass;
1506 +      r2 = rPos.lengthSquare();
1507 +      Ih(0, 0) += mass * r2;
1508 +      Ih(1, 1) += mass * r2;
1509 +      Ih(2, 2) += mass * r2;
1510 +      
1511 +      if (rnemdFluxType_ == rnemdFullKE) {
1512 +        if (sd->isDirectional()) {
1513 +          Vector3d angMom = sd->getJ();
1514 +          Mat3x3d I = sd->getI();
1515 +          if (sd->isLinear()) {
1516 +            int i = sd->linearAxis();
1517 +            int j = (i + 1) % 3;
1518 +            int k = (i + 2) % 3;
1519 +            Kh += angMom[j] * angMom[j] / I(j, j) +
1520 +              angMom[k] * angMom[k] / I(k, k);
1521 +          } else {
1522 +            Kh += angMom[0] * angMom[0] / I(0, 0) +
1523 +              angMom[1] * angMom[1] / I(1, 1) +
1524 +              angMom[2] * angMom[2] / I(2, 2);
1525 +          }
1526 +        }
1527 +      }
1528 +    }
1529 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1530 +         sd = smanB.nextSelected(selej)) {
1531  
1532 +      Vector3d pos = sd->getPos();
1533 +      
1534 +      // wrap the stuntdouble's position back into the box:
1535 +      
1536        if (usePeriodicBoundaryConditions_)
1537          currentSnap_->wrapVector(pos);
1538 +      
1539 +      RealType mass = sd->getMass();
1540 +      Vector3d vel = sd->getVel();
1541 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1542 +      RealType r2;
1543  
1544 <      // which bin is this stuntdouble in?
1545 <      bool inA = inSlabA(pos);
1546 <      bool inB = inSlabB(pos);
1544 >      coldBin.push_back(sd);
1545 >      Pc += mass * vel;
1546 >      Mc += mass;
1547 >      Kc += mass * vel.lengthSquare();
1548 >      Lc += mass * cross(rPos, vel);
1549 >      Ic -= outProduct(rPos, rPos) * mass;
1550 >      r2 = rPos.lengthSquare();
1551 >      Ic(0, 0) += mass * r2;
1552 >      Ic(1, 1) += mass * r2;
1553 >      Ic(2, 2) += mass * r2;
1554        
1555 <      if (inA || inB) {
1556 <        
1557 <        RealType mass = sd->getMass();
1558 <        Vector3d vel = sd->getVel();
1559 <      
1560 <        if (inA) {
1561 <          hotBin.push_back(sd);
1562 <          //std::cerr << "before, velocity = " << vel << endl;
1563 <          Ph += mass * vel;
1564 <          //std::cerr << "after, velocity = " << vel << endl;
1565 <          Mh += mass;
1566 <          Kh += mass * vel.lengthSquare();
1567 <          if (rnemdFluxType_ == rnemdFullKE) {
1568 <            if (sd->isDirectional()) {
1569 <              Vector3d angMom = sd->getJ();
1570 <              Mat3x3d I = sd->getI();
1269 <              if (sd->isLinear()) {
1270 <                int i = sd->linearAxis();
1271 <                int j = (i + 1) % 3;
1272 <                int k = (i + 2) % 3;
1273 <                Kh += angMom[j] * angMom[j] / I(j, j) +
1274 <                  angMom[k] * angMom[k] / I(k, k);
1275 <              } else {
1276 <                Kh += angMom[0] * angMom[0] / I(0, 0) +
1277 <                  angMom[1] * angMom[1] / I(1, 1) +
1278 <                  angMom[2] * angMom[2] / I(2, 2);
1279 <              }
1280 <            }
1281 <          }
1282 <        } else { //midBin_
1283 <          coldBin.push_back(sd);
1284 <          Pc += mass * vel;
1285 <          Mc += mass;
1286 <          Kc += mass * vel.lengthSquare();
1287 <          if (rnemdFluxType_ == rnemdFullKE) {
1288 <            if (sd->isDirectional()) {
1289 <              Vector3d angMom = sd->getJ();
1290 <              Mat3x3d I = sd->getI();
1291 <              if (sd->isLinear()) {
1292 <                int i = sd->linearAxis();
1293 <                int j = (i + 1) % 3;
1294 <                int k = (i + 2) % 3;
1295 <                Kc += angMom[j] * angMom[j] / I(j, j) +
1296 <                  angMom[k] * angMom[k] / I(k, k);
1297 <              } else {
1298 <                Kc += angMom[0] * angMom[0] / I(0, 0) +
1299 <                  angMom[1] * angMom[1] / I(1, 1) +
1300 <                  angMom[2] * angMom[2] / I(2, 2);
1301 <              }
1302 <            }
1303 <          }
1304 <        }
1555 >      if (rnemdFluxType_ == rnemdFullKE) {
1556 >        if (sd->isDirectional()) {
1557 >          Vector3d angMom = sd->getJ();
1558 >          Mat3x3d I = sd->getI();
1559 >          if (sd->isLinear()) {
1560 >            int i = sd->linearAxis();
1561 >            int j = (i + 1) % 3;
1562 >            int k = (i + 2) % 3;
1563 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1564 >              angMom[k] * angMom[k] / I(k, k);
1565 >          } else {
1566 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1567 >              angMom[1] * angMom[1] / I(1, 1) +
1568 >              angMom[2] * angMom[2] / I(2, 2);
1569 >          }
1570 >        }
1571        }
1572      }
1573      
1574      Kh *= 0.5;
1575      Kc *= 0.5;
1310
1311    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1312    //        << "\tKc= " << Kc << endl;
1313    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1576      
1577   #ifdef IS_MPI
1578      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1579      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1580 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM);
1581 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM);
1582      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1583      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1584      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1585      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1586 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9,
1587 +                              MPI::REALTYPE, MPI::SUM);
1588 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9,
1589 +                              MPI::REALTYPE, MPI::SUM);
1590   #endif
1591 +    
1592  
1593 +    Vector3d ac, acrec, bc, bcrec;
1594 +    Vector3d ah, ahrec, bh, bhrec;
1595 +    RealType cNumerator, cDenominator;
1596 +    RealType hNumerator, hDenominator;
1597 +
1598 +
1599      bool successfulExchange = false;
1600      if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1601        Vector3d vc = Pc / Mc;
1602 <      Vector3d ac = -momentumTarget_ / Mc + vc;
1603 <      Vector3d acrec = -momentumTarget_ / Mc;
1604 <      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1602 >      ac = -momentumTarget_ / Mc + vc;
1603 >      acrec = -momentumTarget_ / Mc;
1604 >      
1605 >      // We now need the inverse of the inertia tensor to calculate the
1606 >      // angular velocity of the cold slab;
1607 >      Mat3x3d Ici = Ic.inverse();
1608 >      Vector3d omegac = Ici * Lc;
1609 >      bc  = -(Ici * angularMomentumTarget_) + omegac;
1610 >      bcrec = bc - omegac;
1611 >      
1612 >      cNumerator = Kc - kineticTarget_;
1613 >      if (doLinearPart)
1614 >        cNumerator -= 0.5 * Mc * ac.lengthSquare();
1615 >      
1616 >      if (doAngularPart)
1617 >        cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1618 >
1619        if (cNumerator > 0.0) {
1620 <        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1620 >        
1621 >        cDenominator = Kc;
1622 >
1623 >        if (doLinearPart)
1624 >          cDenominator -= 0.5 * Mc * vc.lengthSquare();
1625 >
1626 >        if (doAngularPart)
1627 >          cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1628 >        
1629          if (cDenominator > 0.0) {
1630            RealType c = sqrt(cNumerator / cDenominator);
1631            if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1632 +            
1633              Vector3d vh = Ph / Mh;
1634 <            Vector3d ah = momentumTarget_ / Mh + vh;
1635 <            Vector3d ahrec = momentumTarget_ / Mh;
1636 <            RealType hNumerator = Kh + kineticTarget_
1637 <              - 0.5 * Mh * ah.lengthSquare();
1638 <            if (hNumerator > 0.0) {
1639 <              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1634 >            ah = momentumTarget_ / Mh + vh;
1635 >            ahrec = momentumTarget_ / Mh;
1636 >            
1637 >            // We now need the inverse of the inertia tensor to
1638 >            // calculate the angular velocity of the hot slab;
1639 >            Mat3x3d Ihi = Ih.inverse();
1640 >            Vector3d omegah = Ihi * Lh;
1641 >            bh  = (Ihi * angularMomentumTarget_) + omegah;
1642 >            bhrec = bh - omegah;
1643 >            
1644 >            hNumerator = Kh + kineticTarget_;
1645 >            if (doLinearPart)
1646 >              hNumerator -= 0.5 * Mh * ah.lengthSquare();
1647 >            
1648 >            if (doAngularPart)
1649 >              hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1650 >              
1651 >            if (hNumerator > 0.0) {
1652 >              
1653 >              hDenominator = Kh;
1654 >              if (doLinearPart)
1655 >                hDenominator -= 0.5 * Mh * vh.lengthSquare();
1656 >              if (doAngularPart)
1657 >                hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1658 >              
1659                if (hDenominator > 0.0) {
1660                  RealType h = sqrt(hNumerator / hDenominator);
1661                  if ((h > 0.9) && (h < 1.1)) {
1662 <                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1346 <                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1662 >                  
1663                    vector<StuntDouble*>::iterator sdi;
1664                    Vector3d vel;
1665 +                  Vector3d rPos;
1666 +                  
1667                    for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1668                      //vel = (*sdi)->getVel();
1669 <                    vel = ((*sdi)->getVel() - vc) * c + ac;
1669 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1670 >                    if (doLinearPart)
1671 >                      vel = ((*sdi)->getVel() - vc) * c + ac;
1672 >                    if (doAngularPart)
1673 >                      vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1674 >
1675                      (*sdi)->setVel(vel);
1676                      if (rnemdFluxType_ == rnemdFullKE) {
1677                        if ((*sdi)->isDirectional()) {
# Line 1359 | Line 1682 | namespace OpenMD {
1682                    }
1683                    for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1684                      //vel = (*sdi)->getVel();
1685 <                    vel = ((*sdi)->getVel() - vh) * h + ah;
1685 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1686 >                    if (doLinearPart)
1687 >                      vel = ((*sdi)->getVel() - vh) * h + ah;    
1688 >                    if (doAngularPart)
1689 >                      vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);    
1690 >
1691                      (*sdi)->setVel(vel);
1692                      if (rnemdFluxType_ == rnemdFullKE) {
1693                        if ((*sdi)->isDirectional()) {
# Line 1371 | Line 1699 | namespace OpenMD {
1699                    successfulExchange = true;
1700                    kineticExchange_ += kineticTarget_;
1701                    momentumExchange_ += momentumTarget_;
1702 +                  angularMomentumExchange_ += angularMomentumTarget_;
1703                  }
1704                }
1705              }
# Line 1390 | Line 1719 | namespace OpenMD {
1719      }
1720    }
1721  
1722 <  void RNEMD::doRNEMD() {
1722 >  RealType RNEMD::getDividingArea() {
1723  
1724 +    if (hasDividingArea_) return dividingArea_;
1725 +
1726 +    RealType areaA, areaB;
1727 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1728 +
1729 +    if (hasSelectionA_) {
1730 +      int isd;
1731 +      StuntDouble* sd;
1732 +      vector<StuntDouble*> aSites;
1733 +      seleManA_.setSelectionSet(evaluatorA_.evaluate());
1734 +      for (sd = seleManA_.beginSelected(isd); sd != NULL;
1735 +           sd = seleManA_.nextSelected(isd)) {
1736 +        aSites.push_back(sd);
1737 +      }
1738 +      ConvexHull* surfaceMeshA = new ConvexHull();
1739 +      surfaceMeshA->computeHull(aSites);
1740 +      areaA = surfaceMeshA->getArea();
1741 +      delete surfaceMeshA;
1742 +
1743 +    } else {
1744 +      if (usePeriodicBoundaryConditions_) {
1745 +        // in periodic boundaries, the surface area is twice the x-y
1746 +        // area of the current box:
1747 +        areaA = 2.0 * snap->getXYarea();
1748 +      } else {
1749 +        // in non-periodic simulations, without explicitly setting
1750 +        // selections, the sphere radius sets the surface area of the
1751 +        // dividing surface:
1752 +        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1753 +      }
1754 +    }
1755 +
1756 +
1757 +
1758 +    if (hasSelectionB_) {
1759 +      int isd;
1760 +      StuntDouble* sd;
1761 +      vector<StuntDouble*> bSites;
1762 +      seleManB_.setSelectionSet(evaluatorB_.evaluate());
1763 +      for (sd = seleManB_.beginSelected(isd); sd != NULL;
1764 +           sd = seleManB_.nextSelected(isd)) {
1765 +        bSites.push_back(sd);
1766 +      }
1767 +      ConvexHull* surfaceMeshB = new ConvexHull();    
1768 +      surfaceMeshB->computeHull(bSites);
1769 +      areaB = surfaceMeshB->getArea();
1770 +      delete surfaceMeshB;
1771 +
1772 +    } else {
1773 +      if (usePeriodicBoundaryConditions_) {
1774 +        // in periodic boundaries, the surface area is twice the x-y
1775 +        // area of the current box:
1776 +        areaB = 2.0 * snap->getXYarea();
1777 +      } else {
1778 +        // in non-periodic simulations, without explicitly setting
1779 +        // selections, but if a sphereBradius has been set, just use that:
1780 +        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1781 +      }
1782 +    }
1783 +    
1784 +    dividingArea_ = min(areaA, areaB);
1785 +    hasDividingArea_ = true;
1786 +    return dividingArea_;
1787 +  }
1788 +  
1789 +  void RNEMD::doRNEMD() {
1790 +    if (!doRNEMD_) return;
1791      trialCount_++;
1792 +
1793 +    // object evaluator:
1794 +    evaluator_.loadScriptString(rnemdObjectSelection_);
1795 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1796 +
1797 +    evaluatorA_.loadScriptString(selectionA_);
1798 +    evaluatorB_.loadScriptString(selectionB_);
1799 +
1800 +    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1801 +    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1802 +
1803 +    commonA_ = seleManA_ & seleMan_;
1804 +    commonB_ = seleManB_ & seleMan_;
1805 +
1806 +    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1807 +    // dt = exchange time interval
1808 +    // flux = target flux
1809 +    // dividingArea = smallest dividing surface between the two regions
1810 +
1811 +    hasDividingArea_ = false;
1812 +    RealType area = getDividingArea();
1813 +
1814 +    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1815 +    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1816 +    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1817 +
1818      switch(rnemdMethod_) {
1819      case rnemdSwap:
1820 <      doSwap();
1820 >      doSwap(commonA_, commonB_);
1821        break;
1822      case rnemdNIVS:
1823 <      doNIVS();
1823 >      doNIVS(commonA_, commonB_);
1824        break;
1825      case rnemdVSS:
1826 <      doVSS();
1826 >      doVSS(commonA_, commonB_);
1827        break;
1828      case rnemdUnkownMethod:
1829      default :
# Line 1410 | Line 1832 | namespace OpenMD {
1832    }
1833  
1834    void RNEMD::collectData() {
1835 <
1835 >    if (!doRNEMD_) return;
1836      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1837 +    
1838 +    // collectData can be called more frequently than the doRNEMD, so use the
1839 +    // computed area from the last exchange time:
1840 +    RealType area = getDividingArea();
1841 +    areaAccumulator_->add(area);
1842      Mat3x3d hmat = currentSnap_->getHmat();
1416
1843      seleMan_.setSelectionSet(evaluator_.evaluate());
1844  
1845 <    int selei;
1845 >    int selei(0);
1846      StuntDouble* sd;
1847 <    int idx;
1847 >    int binNo;
1848  
1849      vector<RealType> binMass(nBins_, 0.0);
1850      vector<RealType> binPx(nBins_, 0.0);
1851      vector<RealType> binPy(nBins_, 0.0);
1852      vector<RealType> binPz(nBins_, 0.0);
1853 +    vector<RealType> binOmegax(nBins_, 0.0);
1854 +    vector<RealType> binOmegay(nBins_, 0.0);
1855 +    vector<RealType> binOmegaz(nBins_, 0.0);
1856      vector<RealType> binKE(nBins_, 0.0);
1857      vector<int> binDOF(nBins_, 0);
1858      vector<int> binCount(nBins_, 0);
# Line 1431 | Line 1860 | namespace OpenMD {
1860      // alternative approach, track all molecules instead of only those
1861      // selected for scaling/swapping:
1862      /*
1863 <    SimInfo::MoleculeIterator miter;
1864 <    vector<StuntDouble*>::iterator iiter;
1865 <    Molecule* mol;
1866 <    StuntDouble* sd;
1867 <    for (mol = info_->beginMolecule(miter); mol != NULL;
1863 >      SimInfo::MoleculeIterator miter;
1864 >      vector<StuntDouble*>::iterator iiter;
1865 >      Molecule* mol;
1866 >      StuntDouble* sd;
1867 >      for (mol = info_->beginMolecule(miter); mol != NULL;
1868        mol = info_->nextMolecule(miter))
1869        sd is essentially sd
1870 <        for (sd = mol->beginIntegrableObject(iiter);
1871 <             sd != NULL;
1872 <             sd = mol->nextIntegrableObject(iiter))
1870 >      for (sd = mol->beginIntegrableObject(iiter);
1871 >      sd != NULL;
1872 >      sd = mol->nextIntegrableObject(iiter))
1873      */
1874 +
1875      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1876 <         sd = seleMan_.nextSelected(selei)) {
1877 <      
1448 <      idx = sd->getLocalIndex();
1449 <      
1876 >         sd = seleMan_.nextSelected(selei)) {    
1877 >    
1878        Vector3d pos = sd->getPos();
1879  
1880        // wrap the stuntdouble's position back into the box:
1881        
1882 <      if (usePeriodicBoundaryConditions_)
1882 >      if (usePeriodicBoundaryConditions_) {
1883          currentSnap_->wrapVector(pos);
1884 +        // which bin is this stuntdouble in?
1885 +        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1886 +        // Shift molecules by half a box to have bins start at 0
1887 +        // The modulo operator is used to wrap the case when we are
1888 +        // beyond the end of the bins back to the beginning.
1889 +        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1890 +      } else {
1891 +        Vector3d rPos = pos - coordinateOrigin_;
1892 +        binNo = int(rPos.length() / binWidth_);
1893 +      }
1894  
1457      // which bin is this stuntdouble in?
1458      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1459      // Shift molecules by half a box to have bins start at 0
1460      // The modulo operator is used to wrap the case when we are
1461      // beyond the end of the bins back to the beginning.
1462      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1463    
1895        RealType mass = sd->getMass();
1896        Vector3d vel = sd->getVel();
1897 <
1898 <      binCount[binNo]++;
1899 <      binMass[binNo] += mass;
1900 <      binPx[binNo] += mass*vel.x();
1901 <      binPy[binNo] += mass*vel.y();
1902 <      binPz[binNo] += mass*vel.z();
1903 <      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1904 <      binDOF[binNo] += 3;
1905 <
1906 <      if (sd->isDirectional()) {
1907 <        Vector3d angMom = sd->getJ();
1908 <        Mat3x3d I = sd->getI();
1909 <        if (sd->isLinear()) {
1910 <          int i = sd->linearAxis();
1911 <          int j = (i + 1) % 3;
1912 <          int k = (i + 2) % 3;
1913 <          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1914 <                                 angMom[k] * angMom[k] / I(k, k));
1915 <          binDOF[binNo] += 2;
1916 <        } else {
1917 <          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1918 <                                 angMom[1] * angMom[1] / I(1, 1) +
1919 <                                 angMom[2] * angMom[2] / I(2, 2));
1920 <          binDOF[binNo] += 3;
1897 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1898 >      Vector3d aVel = cross(rPos, vel);
1899 >      
1900 >      if (binNo >= 0 && binNo < nBins_)  {
1901 >        binCount[binNo]++;
1902 >        binMass[binNo] += mass;
1903 >        binPx[binNo] += mass*vel.x();
1904 >        binPy[binNo] += mass*vel.y();
1905 >        binPz[binNo] += mass*vel.z();
1906 >        binOmegax[binNo] += aVel.x();
1907 >        binOmegay[binNo] += aVel.y();
1908 >        binOmegaz[binNo] += aVel.z();
1909 >        binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1910 >        binDOF[binNo] += 3;
1911 >        
1912 >        if (sd->isDirectional()) {
1913 >          Vector3d angMom = sd->getJ();
1914 >          Mat3x3d I = sd->getI();
1915 >          if (sd->isLinear()) {
1916 >            int i = sd->linearAxis();
1917 >            int j = (i + 1) % 3;
1918 >            int k = (i + 2) % 3;
1919 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1920 >                                   angMom[k] * angMom[k] / I(k, k));
1921 >            binDOF[binNo] += 2;
1922 >          } else {
1923 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1924 >                                   angMom[1] * angMom[1] / I(1, 1) +
1925 >                                   angMom[2] * angMom[2] / I(2, 2));
1926 >            binDOF[binNo] += 3;
1927 >          }
1928          }
1929        }
1930      }
1931      
1494
1932   #ifdef IS_MPI
1933      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1934                                nBins_, MPI::INT, MPI::SUM);
# Line 1503 | Line 1940 | namespace OpenMD {
1940                                nBins_, MPI::REALTYPE, MPI::SUM);
1941      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1942                                nBins_, MPI::REALTYPE, MPI::SUM);
1943 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0],
1944 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1945 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0],
1946 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1947 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0],
1948 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1949      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1950                                nBins_, MPI::REALTYPE, MPI::SUM);
1951      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
# Line 1510 | Line 1953 | namespace OpenMD {
1953   #endif
1954  
1955      Vector3d vel;
1956 +    Vector3d aVel;
1957      RealType den;
1958      RealType temp;
1959      RealType z;
1960 +    RealType r;
1961      for (int i = 0; i < nBins_; i++) {
1962 <      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1962 >      if (usePeriodicBoundaryConditions_) {
1963 >        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1964 >        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1965 >          / currentSnap_->getVolume() ;
1966 >      } else {
1967 >        r = (((RealType)i + 0.5) * binWidth_);
1968 >        RealType rinner = (RealType)i * binWidth_;
1969 >        RealType router = (RealType)(i+1) * binWidth_;
1970 >        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
1971 >          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
1972 >      }
1973        vel.x() = binPx[i] / binMass[i];
1974        vel.y() = binPy[i] / binMass[i];
1975        vel.z() = binPz[i] / binMass[i];
1976 <      den = binCount[i] * nBins_ / (hmat(0,0) * hmat(1,1) * hmat(2,2));
1977 <      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1978 <                               PhysicalConstants::energyConvert);
1976 >      aVel.x() = binOmegax[i] / binCount[i];
1977 >      aVel.y() = binOmegay[i] / binCount[i];
1978 >      aVel.z() = binOmegaz[i] / binCount[i];
1979  
1980 <      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1981 <        if(outputMask_[j]) {
1982 <          switch(j) {
1983 <          case Z:
1984 <            (data_[j].accumulator[i])->add(z);
1985 <            break;
1986 <          case TEMPERATURE:
1987 <            data_[j].accumulator[i]->add(temp);
1988 <            break;
1989 <          case VELOCITY:
1990 <            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1991 <            break;
1992 <          case DENSITY:
1993 <            data_[j].accumulator[i]->add(den);
1994 <            break;
1980 >      if (binCount[i] > 0) {
1981 >        // only add values if there are things to add
1982 >        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1983 >                                 PhysicalConstants::energyConvert);
1984 >        
1985 >        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1986 >          if(outputMask_[j]) {
1987 >            switch(j) {
1988 >            case Z:
1989 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
1990 >              break;
1991 >            case R:
1992 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
1993 >              break;
1994 >            case TEMPERATURE:
1995 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
1996 >              break;
1997 >            case VELOCITY:
1998 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1999 >              break;
2000 >            case ANGULARVELOCITY:  
2001 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel);
2002 >              break;
2003 >            case DENSITY:
2004 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2005 >              break;
2006 >            }
2007            }
2008          }
2009        }
# Line 1544 | Line 2011 | namespace OpenMD {
2011    }
2012  
2013    void RNEMD::getStarted() {
2014 +    if (!doRNEMD_) return;
2015 +    hasDividingArea_ = false;
2016      collectData();
2017      writeOutputFile();
2018    }
2019  
2020    void RNEMD::parseOutputFileFormat(const std::string& format) {
2021 +    if (!doRNEMD_) return;
2022      StringTokenizer tokenizer(format, " ,;|\t\n\r");
2023      
2024      while(tokenizer.hasMoreTokens()) {
# Line 1569 | Line 2039 | namespace OpenMD {
2039    }
2040    
2041    void RNEMD::writeOutputFile() {
2042 +    if (!doRNEMD_) return;
2043      
2044   #ifdef IS_MPI
2045      // If we're the root node, should we print out the results
# Line 1588 | Line 2059 | namespace OpenMD {
2059        Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2060  
2061        RealType time = currentSnap_->getTime();
2062 <      
2063 <      
2062 >      RealType avgArea;
2063 >      areaAccumulator_->getAverage(avgArea);
2064 >      RealType Jz = kineticExchange_ / (time * avgArea)
2065 >        / PhysicalConstants::energyConvert;
2066 >      Vector3d JzP = momentumExchange_ / (time * avgArea);      
2067 >      Vector3d JzL = angularMomentumExchange_ / (time * avgArea);      
2068 >
2069        rnemdFile_ << "#######################################################\n";
2070        rnemdFile_ << "# RNEMD {\n";
2071  
2072        map<string, RNEMDMethod>::iterator mi;
2073        for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2074          if ( (*mi).second == rnemdMethod_)
2075 <          rnemdFile_ << "#    exchangeMethod  = " << (*mi).first << "\n";
2075 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2076        }
2077        map<string, RNEMDFluxType>::iterator fi;
2078        for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2079          if ( (*fi).second == rnemdFluxType_)
2080 <          rnemdFile_ << "#    fluxType  = " << (*fi).first << "\n";
2080 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2081        }
2082        
2083 <      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << " fs\n";
2083 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2084  
2085        rnemdFile_ << "#    objectSelection = \""
2086 <                 << rnemdObjectSelection_ << "\"\n";
2087 <      rnemdFile_ << "#    slabWidth = " << slabWidth_ << " angstroms\n";
2088 <      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << " angstroms\n";
1613 <      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << " angstroms\n";
2086 >                 << rnemdObjectSelection_ << "\";\n";
2087 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2088 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2089        rnemdFile_ << "# }\n";
2090        rnemdFile_ << "#######################################################\n";
2091 <      
2092 <      rnemdFile_ << "# running time = " << time << " fs\n";
2093 <      rnemdFile_ << "# target kinetic flux = " << kineticFlux_ << "\n";
2094 <      rnemdFile_ << "# target momentum flux = " << momentumFluxVector_ << "\n";
2095 <      
2096 <      rnemdFile_ << "# target one-time kinetic exchange = " << kineticTarget_
2097 <                 << "\n";
2098 <      rnemdFile_ << "# target one-time momentum exchange = " << momentumTarget_
2099 <                 << "\n";
2100 <      
2101 <      rnemdFile_ << "# actual kinetic exchange = " << kineticExchange_ << "\n";
2102 <      rnemdFile_ << "# actual momentum exchange = " << momentumExchange_
2103 <                 << "\n";
2104 <      
2105 <      rnemdFile_ << "# attempted exchanges: " << trialCount_ << "\n";
2106 <      rnemdFile_ << "# failed exchanges: " << failTrialCount_ << "\n";
2107 <
2108 <      
2091 >      rnemdFile_ << "# RNEMD report:\n";      
2092 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2093 >      rnemdFile_ << "# Target flux:\n";
2094 >      rnemdFile_ << "#           kinetic = "
2095 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2096 >                 << " (kcal/mol/A^2/fs)\n";
2097 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2098 >                 << " (amu/A/fs^2)\n";
2099 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2100 >                 << " (amu/A^2/fs^2)\n";
2101 >      rnemdFile_ << "# Target one-time exchanges:\n";
2102 >      rnemdFile_ << "#          kinetic = "
2103 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2104 >                 << " (kcal/mol)\n";
2105 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2106 >                 << " (amu*A/fs)\n";
2107 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2108 >                 << " (amu*A^2/fs)\n";
2109 >      rnemdFile_ << "# Actual exchange totals:\n";
2110 >      rnemdFile_ << "#          kinetic = "
2111 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2112 >                 << " (kcal/mol)\n";
2113 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2114 >                 << " (amu*A/fs)\n";      
2115 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2116 >                 << " (amu*A^2/fs)\n";      
2117 >      rnemdFile_ << "# Actual flux:\n";
2118 >      rnemdFile_ << "#          kinetic = " << Jz
2119 >                 << " (kcal/mol/A^2/fs)\n";
2120 >      rnemdFile_ << "#          momentum = " << JzP
2121 >                 << " (amu/A/fs^2)\n";
2122 >      rnemdFile_ << "#  angular momentum = " << JzL
2123 >                 << " (amu/A^2/fs^2)\n";
2124 >      rnemdFile_ << "# Exchange statistics:\n";
2125 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2126 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2127        if (rnemdMethod_ == rnemdNIVS) {
2128 <        rnemdFile_ << "# NIVS root-check warnings: " << failRootCount_ << "\n";
2128 >        rnemdFile_ << "#  NIVS root-check errors = "
2129 >                   << failRootCount_ << "\n";
2130        }
1637
2131        rnemdFile_ << "#######################################################\n";
2132        
2133        
# Line 1645 | Line 2138 | namespace OpenMD {
2138          if (outputMask_[i]) {
2139            rnemdFile_ << "\t" << data_[i].title <<
2140              "(" << data_[i].units << ")";
2141 +          // add some extra tabs for column alignment
2142 +          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2143          }
2144        }
2145        rnemdFile_ << std::endl;
2146        
2147        rnemdFile_.precision(8);
2148        
2149 <      for (unsigned int j = 0; j < nBins_; j++) {        
2149 >      for (int j = 0; j < nBins_; j++) {        
2150          
2151          for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2152            if (outputMask_[i]) {
2153              if (data_[i].dataType == "RealType")
2154                writeReal(i,j);
2155 <            else if (data_[i].dataType == "Vector3d")
2155 >            else if (data_[i].dataType == "Vector3d")
2156                writeVector(i,j);
2157              else {
2158                sprintf( painCave.errMsg,
# Line 1671 | Line 2166 | namespace OpenMD {
2166          rnemdFile_ << std::endl;
2167          
2168        }        
2169 +
2170 +      rnemdFile_ << "#######################################################\n";
2171 +      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
2172 +      rnemdFile_ << "#######################################################\n";
2173 +
2174 +
2175 +      for (int j = 0; j < nBins_; j++) {        
2176 +        rnemdFile_ << "#";
2177 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2178 +          if (outputMask_[i]) {
2179 +            if (data_[i].dataType == "RealType")
2180 +              writeRealStdDev(i,j);
2181 +            else if (data_[i].dataType == "Vector3d")
2182 +              writeVectorStdDev(i,j);
2183 +            else {
2184 +              sprintf( painCave.errMsg,
2185 +                       "RNEMD found an unknown data type for: %s ",
2186 +                       data_[i].title.c_str());
2187 +              painCave.isFatal = 1;
2188 +              simError();
2189 +            }
2190 +          }
2191 +        }
2192 +        rnemdFile_ << std::endl;
2193 +        
2194 +      }        
2195        
2196        rnemdFile_.flush();
2197        rnemdFile_.close();
# Line 1682 | Line 2203 | namespace OpenMD {
2203    }
2204    
2205    void RNEMD::writeReal(int index, unsigned int bin) {
2206 +    if (!doRNEMD_) return;
2207      assert(index >=0 && index < ENDINDEX);
2208 <    assert(bin >=0 && bin < nBins_);
2208 >    assert(int(bin) < nBins_);
2209      RealType s;
2210 +    int count;
2211      
2212 <    data_[index].accumulator[bin]->getAverage(s);
2212 >    count = data_[index].accumulator[bin]->count();
2213 >    if (count == 0) return;
2214      
2215 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2216 +    
2217      if (! isinf(s) && ! isnan(s)) {
2218        rnemdFile_ << "\t" << s;
2219      } else{
# Line 1700 | Line 2226 | namespace OpenMD {
2226    }
2227    
2228    void RNEMD::writeVector(int index, unsigned int bin) {
2229 +    if (!doRNEMD_) return;
2230      assert(index >=0 && index < ENDINDEX);
2231 <    assert(bin >=0 && bin < nBins_);
2231 >    assert(int(bin) < nBins_);
2232      Vector3d s;
2233 +    int count;
2234 +    
2235 +    count = data_[index].accumulator[bin]->count();
2236 +
2237 +    if (count == 0) return;
2238 +
2239      dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2240      if (isinf(s[0]) || isnan(s[0]) ||
2241          isinf(s[1]) || isnan(s[1]) ||
# Line 1716 | Line 2249 | namespace OpenMD {
2249        rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2250      }
2251    }  
2252 +
2253 +  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
2254 +    if (!doRNEMD_) return;
2255 +    assert(index >=0 && index < ENDINDEX);
2256 +    assert(int(bin) < nBins_);
2257 +    RealType s;
2258 +    int count;
2259 +    
2260 +    count = data_[index].accumulator[bin]->count();
2261 +    if (count == 0) return;
2262 +    
2263 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
2264 +    
2265 +    if (! isinf(s) && ! isnan(s)) {
2266 +      rnemdFile_ << "\t" << s;
2267 +    } else{
2268 +      sprintf( painCave.errMsg,
2269 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
2270 +               data_[index].title.c_str(), bin);
2271 +      painCave.isFatal = 1;
2272 +      simError();
2273 +    }    
2274 +  }
2275 +  
2276 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
2277 +    if (!doRNEMD_) return;
2278 +    assert(index >=0 && index < ENDINDEX);
2279 +    assert(int(bin) < nBins_);
2280 +    Vector3d s;
2281 +    int count;
2282 +    
2283 +    count = data_[index].accumulator[bin]->count();
2284 +    if (count == 0) return;
2285 +
2286 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
2287 +    if (isinf(s[0]) || isnan(s[0]) ||
2288 +        isinf(s[1]) || isnan(s[1]) ||
2289 +        isinf(s[2]) || isnan(s[2]) ) {      
2290 +      sprintf( painCave.errMsg,
2291 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
2292 +               data_[index].title.c_str(), bin);
2293 +      painCave.isFatal = 1;
2294 +      simError();
2295 +    } else {
2296 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2297 +    }
2298 +  }  
2299   }
2300  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines