ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1627 by gezelter, Tue Sep 13 22:05:04 2011 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1855 by gezelter, Tue Apr 2 18:31:51 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   #include <cmath>
43 < #include "integrators/RNEMD.hpp"
43 > #include <sstream>
44 > #include <string>
45 >
46 > #include "rnemd/RNEMD.hpp"
47   #include "math/Vector3.hpp"
48 + #include "math/Vector.hpp"
49   #include "math/SquareMatrix3.hpp"
50   #include "math/Polynomial.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "primitives/StuntDouble.hpp"
53   #include "utils/PhysicalConstants.hpp"
54   #include "utils/Tuple.hpp"
55 <
56 < #ifndef IS_MPI
57 < #include "math/SeqRandNumGen.hpp"
54 < #else
55 > #include "brains/Thermo.hpp"
56 > #include "math/ConvexHull.hpp"
57 > #ifdef IS_MPI
58   #include <mpi.h>
56 #include "math/ParallelRandNumGen.hpp"
59   #endif
60  
61 + #ifdef _MSC_VER
62 + #define isnan(x) _isnan((x))
63 + #define isinf(x) (!_finite(x) && !_isnan(x))
64 + #endif
65 +
66   #define HONKING_LARGE_VALUE 1.0e10
67  
68 + using namespace std;
69   namespace OpenMD {
70    
71 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
71 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 >                                evaluatorA_(info), seleManA_(info),
73 >                                commonA_(info), evaluatorB_(info),
74 >                                seleManB_(info), commonB_(info),
75 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
76  
77 +    trialCount_ = 0;
78      failTrialCount_ = 0;
79      failRootCount_ = 0;
80  
81 <    int seedValue;
82 <    Globals * simParams = info->getSimParams();
81 >    Globals* simParams = info->getSimParams();
82 >    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
83  
84 <    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
85 <    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
73 <    stringToEnumMap_["PxScale"] = rnemdPxScale;
74 <    stringToEnumMap_["PyScale"] = rnemdPyScale;
75 <    stringToEnumMap_["PzScale"] = rnemdPzScale;
76 <    stringToEnumMap_["Px"] = rnemdPx;
77 <    stringToEnumMap_["Py"] = rnemdPy;
78 <    stringToEnumMap_["Pz"] = rnemdPz;
79 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
84 >    doRNEMD_ = rnemdParams->getUseRNEMD();
85 >    if (!doRNEMD_) return;
86  
87 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
88 <    evaluator_.loadScriptString(rnemdObjectSelection_);
89 <    seleMan_.setSelectionSet(evaluator_.evaluate());
87 >    stringToMethod_["Swap"]  = rnemdSwap;
88 >    stringToMethod_["NIVS"]  = rnemdNIVS;
89 >    stringToMethod_["VSS"]   = rnemdVSS;
90  
91 <    // do some sanity checking
91 >    stringToFluxType_["KE"]  = rnemdKE;
92 >    stringToFluxType_["Px"]  = rnemdPx;
93 >    stringToFluxType_["Py"]  = rnemdPy;
94 >    stringToFluxType_["Pz"]  = rnemdPz;
95 >    stringToFluxType_["Pvector"]  = rnemdPvector;
96 >    stringToFluxType_["Lx"]  = rnemdLx;
97 >    stringToFluxType_["Ly"]  = rnemdLy;
98 >    stringToFluxType_["Lz"]  = rnemdLz;
99 >    stringToFluxType_["Lvector"]  = rnemdLvector;
100 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
101 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
102 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
103 >    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
104 >    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
105 >    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
106 >    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
107  
108 <    int selectionCount = seleMan_.getSelectionCount();
109 <    int nIntegrable = info->getNGlobalIntegrableObjects();
108 >    runTime_ = simParams->getRunTime();
109 >    statusTime_ = simParams->getStatusTime();
110  
111 <    if (selectionCount > nIntegrable) {
111 >    const string methStr = rnemdParams->getMethod();
112 >    bool hasFluxType = rnemdParams->haveFluxType();
113 >
114 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
115 >
116 >    string fluxStr;
117 >    if (hasFluxType) {
118 >      fluxStr = rnemdParams->getFluxType();
119 >    } else {
120        sprintf(painCave.errMsg,
121 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
122 <              "\t\t%s\n"
123 <              "\thas resulted in %d selected objects.  However,\n"
124 <              "\tthe total number of integrable objects in the system\n"
125 <              "\tis only %d.  This is almost certainly not what you want\n"
126 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
127 <              "\tselector in the selection script!\n",
99 <              rnemdObjectSelection_.c_str(),
100 <              selectionCount, nIntegrable);
101 <      painCave.isFatal = 0;
121 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
122 >              "\twhich must be one of the following values:\n"
123 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
124 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
125 >              "\tmust be set to use RNEMD\n");
126 >      painCave.isFatal = 1;
127 >      painCave.severity = OPENMD_ERROR;
128        simError();
103
129      }
130 +
131 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
132 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
133 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
134 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
135 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
136 +    hasSelectionA_ = rnemdParams->haveSelectionA();
137 +    hasSelectionB_ = rnemdParams->haveSelectionB();
138 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
139 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
140 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
141 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
142 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
143 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
144 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
145 +    bool hasOutputFields = rnemdParams->haveOutputFields();
146      
147 <    const std::string st = simParams->getRNEMD_exchangeType();
147 >    map<string, RNEMDMethod>::iterator i;
148 >    i = stringToMethod_.find(methStr);
149 >    if (i != stringToMethod_.end())
150 >      rnemdMethod_ = i->second;
151 >    else {
152 >      sprintf(painCave.errMsg,
153 >              "RNEMD: The current method,\n"
154 >              "\t\t%s is not one of the recognized\n"
155 >              "\texchange methods: Swap, NIVS, or VSS\n",
156 >              methStr.c_str());
157 >      painCave.isFatal = 1;
158 >      painCave.severity = OPENMD_ERROR;
159 >      simError();
160 >    }
161  
162 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
163 <    i = stringToEnumMap_.find(st);
164 <    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
165 <    if (rnemdType_ == rnemdUnknown) {
166 <      std::cerr << "WARNING! RNEMD Type Unknown!\n";
162 >    map<string, RNEMDFluxType>::iterator j;
163 >    j = stringToFluxType_.find(fluxStr);
164 >    if (j != stringToFluxType_.end())
165 >      rnemdFluxType_ = j->second;
166 >    else {
167 >      sprintf(painCave.errMsg,
168 >              "RNEMD: The current fluxType,\n"
169 >              "\t\t%s\n"
170 >              "\tis not one of the recognized flux types.\n",
171 >              fluxStr.c_str());
172 >      painCave.isFatal = 1;
173 >      painCave.severity = OPENMD_ERROR;
174 >      simError();
175      }
176  
177 < #ifdef IS_MPI
178 <    if (worldRank == 0) {
179 < #endif
180 <
181 <      std::string rnemdFileName;
182 <      std::string xTempFileName;
183 <      std::string yTempFileName;
122 <      std::string zTempFileName;
123 <      switch(rnemdType_) {
124 <      case rnemdKineticSwap :
125 <      case rnemdKineticScale :
126 <        rnemdFileName = "temperature.log";
177 >    bool methodFluxMismatch = false;
178 >    bool hasCorrectFlux = false;
179 >    switch(rnemdMethod_) {
180 >    case rnemdSwap:
181 >      switch (rnemdFluxType_) {
182 >      case rnemdKE:
183 >        hasCorrectFlux = hasKineticFlux;
184          break;
185 <      case rnemdPx :
186 <      case rnemdPxScale :
187 <      case rnemdPy :
188 <      case rnemdPyScale :
132 <        rnemdFileName = "momemtum.log";
133 <        xTempFileName = "temperatureX.log";
134 <        yTempFileName = "temperatureY.log";
135 <        zTempFileName = "temperatureZ.log";
136 <        xTempLog_.open(xTempFileName.c_str());
137 <        yTempLog_.open(yTempFileName.c_str());
138 <        zTempLog_.open(zTempFileName.c_str());
185 >      case rnemdPx:
186 >      case rnemdPy:
187 >      case rnemdPz:
188 >        hasCorrectFlux = hasMomentumFlux;
189          break;
140      case rnemdPz :
141      case rnemdPzScale :
142      case rnemdUnknown :
190        default :
191 <        rnemdFileName = "rnemd.log";
191 >        methodFluxMismatch = true;
192          break;
193        }
194 <      rnemdLog_.open(rnemdFileName.c_str());
195 <
196 < #ifdef IS_MPI
194 >      break;
195 >    case rnemdNIVS:
196 >      switch (rnemdFluxType_) {
197 >      case rnemdKE:
198 >      case rnemdRotKE:
199 >      case rnemdFullKE:
200 >        hasCorrectFlux = hasKineticFlux;
201 >        break;
202 >      case rnemdPx:
203 >      case rnemdPy:
204 >      case rnemdPz:
205 >        hasCorrectFlux = hasMomentumFlux;
206 >        break;
207 >      case rnemdKePx:
208 >      case rnemdKePy:
209 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
210 >        break;
211 >      default:
212 >        methodFluxMismatch = true;
213 >        break;
214 >      }
215 >      break;
216 >    case rnemdVSS:
217 >      switch (rnemdFluxType_) {
218 >      case rnemdKE:
219 >      case rnemdRotKE:
220 >      case rnemdFullKE:
221 >        hasCorrectFlux = hasKineticFlux;
222 >        break;
223 >      case rnemdPx:
224 >      case rnemdPy:
225 >      case rnemdPz:
226 >        hasCorrectFlux = hasMomentumFlux;
227 >        break;
228 >      case rnemdLx:
229 >      case rnemdLy:
230 >      case rnemdLz:
231 >        hasCorrectFlux = hasAngularMomentumFlux;
232 >        break;
233 >      case rnemdPvector:
234 >        hasCorrectFlux = hasMomentumFluxVector;
235 >        break;
236 >      case rnemdLvector:
237 >        hasCorrectFlux = hasAngularMomentumFluxVector;
238 >        break;
239 >      case rnemdKePx:
240 >      case rnemdKePy:
241 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
242 >        break;
243 >      case rnemdKeLx:
244 >      case rnemdKeLy:
245 >      case rnemdKeLz:
246 >        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
247 >        break;
248 >      case rnemdKePvector:
249 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
250 >        break;
251 >      case rnemdKeLvector:
252 >        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
253 >        break;
254 >      default:
255 >        methodFluxMismatch = true;
256 >        break;
257 >      }
258 >    default:
259 >      break;
260      }
151 #endif
261  
262 <    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
263 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
264 <    midBin_ = nBins_ / 2;
265 <    if (simParams->haveRNEMD_logWidth()) {
266 <      rnemdLogWidth_ = simParams->getRNEMD_logWidth();
267 <      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
268 <        std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
269 <        std::cerr << "Automaically set back to default.\n";
270 <        rnemdLogWidth_ = nBins_;
271 <      }
272 <    } else {
273 <      rnemdLogWidth_ = nBins_;
274 <    }
275 <    valueHist_.resize(rnemdLogWidth_, 0.0);
276 <    valueCount_.resize(rnemdLogWidth_, 0);
277 <    xTempHist_.resize(rnemdLogWidth_, 0.0);
278 <    yTempHist_.resize(rnemdLogWidth_, 0.0);
279 <    zTempHist_.resize(rnemdLogWidth_, 0.0);
262 >    if (methodFluxMismatch) {
263 >      sprintf(painCave.errMsg,
264 >              "RNEMD: The current method,\n"
265 >              "\t\t%s\n"
266 >              "\tcannot be used with the current flux type, %s\n",
267 >              methStr.c_str(), fluxStr.c_str());
268 >      painCave.isFatal = 1;
269 >      painCave.severity = OPENMD_ERROR;
270 >      simError();        
271 >    }
272 >    if (!hasCorrectFlux) {
273 >      sprintf(painCave.errMsg,
274 >              "RNEMD: The current method, %s, and flux type, %s,\n"
275 >              "\tdid not have the correct flux value specified. Options\n"
276 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
277 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
278 >              methStr.c_str(), fluxStr.c_str());
279 >      painCave.isFatal = 1;
280 >      painCave.severity = OPENMD_ERROR;
281 >      simError();        
282 >    }
283  
284 <    set_RNEMD_exchange_total(0.0);
285 <    if (simParams->haveRNEMD_targetFlux()) {
286 <      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
284 >    if (hasKineticFlux) {
285 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
286 >      // into  amu / fs^3:
287 >      kineticFlux_ = rnemdParams->getKineticFlux()
288 >        * PhysicalConstants::energyConvert;
289      } else {
290 <      set_RNEMD_target_flux(0.0);
290 >      kineticFlux_ = 0.0;
291      }
292 +    if (hasMomentumFluxVector) {
293 +      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
294 +    } else {
295 +      momentumFluxVector_ = V3Zero;
296 +      if (hasMomentumFlux) {
297 +        RealType momentumFlux = rnemdParams->getMomentumFlux();
298 +        switch (rnemdFluxType_) {
299 +        case rnemdPx:
300 +          momentumFluxVector_.x() = momentumFlux;
301 +          break;
302 +        case rnemdPy:
303 +          momentumFluxVector_.y() = momentumFlux;
304 +          break;
305 +        case rnemdPz:
306 +          momentumFluxVector_.z() = momentumFlux;
307 +          break;
308 +        case rnemdKePx:
309 +          momentumFluxVector_.x() = momentumFlux;
310 +          break;
311 +        case rnemdKePy:
312 +          momentumFluxVector_.y() = momentumFlux;
313 +          break;
314 +        default:
315 +          break;
316 +        }
317 +      }
318 +      if (hasAngularMomentumFluxVector) {
319 +        angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector();
320 +      } else {
321 +        angularMomentumFluxVector_ = V3Zero;
322 +        if (hasAngularMomentumFlux) {
323 +          RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
324 +          switch (rnemdFluxType_) {
325 +          case rnemdLx:
326 +            angularMomentumFluxVector_.x() = angularMomentumFlux;
327 +            break;
328 +          case rnemdLy:
329 +            angularMomentumFluxVector_.y() = angularMomentumFlux;
330 +            break;
331 +          case rnemdLz:
332 +            angularMomentumFluxVector_.z() = angularMomentumFlux;
333 +            break;
334 +          case rnemdKeLx:
335 +            angularMomentumFluxVector_.x() = angularMomentumFlux;
336 +            break;
337 +          case rnemdKeLy:
338 +            angularMomentumFluxVector_.y() = angularMomentumFlux;
339 +            break;
340 +          case rnemdKeLz:
341 +            angularMomentumFluxVector_.z() = angularMomentumFlux;
342 +            break;
343 +          default:
344 +            break;
345 +          }
346 +        }        
347 +      }
348  
349 < #ifndef IS_MPI
350 <    if (simParams->haveSeed()) {
351 <      seedValue = simParams->getSeed();
352 <      randNumGen_ = new SeqRandNumGen(seedValue);
353 <    }else {
354 <      randNumGen_ = new SeqRandNumGen();
355 <    }    
356 < #else
357 <    if (simParams->haveSeed()) {
358 <      seedValue = simParams->getSeed();
359 <      randNumGen_ = new ParallelRandNumGen(seedValue);
360 <    }else {
361 <      randNumGen_ = new ParallelRandNumGen();
362 <    }    
363 < #endif
349 >      if (hasCoordinateOrigin) {
350 >        coordinateOrigin_ = rnemdParams->getCoordinateOrigin();
351 >      } else {
352 >        coordinateOrigin_ = V3Zero;
353 >      }
354 >
355 >      // do some sanity checking
356 >
357 >      int selectionCount = seleMan_.getSelectionCount();
358 >
359 >      int nIntegrable = info->getNGlobalIntegrableObjects();
360 >
361 >      if (selectionCount > nIntegrable) {
362 >        sprintf(painCave.errMsg,
363 >                "RNEMD: The current objectSelection,\n"
364 >                "\t\t%s\n"
365 >                "\thas resulted in %d selected objects.  However,\n"
366 >                "\tthe total number of integrable objects in the system\n"
367 >                "\tis only %d.  This is almost certainly not what you want\n"
368 >                "\tto do.  A likely cause of this is forgetting the _RB_0\n"
369 >                "\tselector in the selection script!\n",
370 >                rnemdObjectSelection_.c_str(),
371 >                selectionCount, nIntegrable);
372 >        painCave.isFatal = 0;
373 >        painCave.severity = OPENMD_WARNING;
374 >        simError();
375 >      }
376 >
377 >      areaAccumulator_ = new Accumulator();
378 >
379 >      nBins_ = rnemdParams->getOutputBins();
380 >      binWidth_ = rnemdParams->getOutputBinWidth();
381 >
382 >      data_.resize(RNEMD::ENDINDEX);
383 >      OutputData z;
384 >      z.units =  "Angstroms";
385 >      z.title =  "Z";
386 >      z.dataType = "RealType";
387 >      z.accumulator.reserve(nBins_);
388 >      for (int i = 0; i < nBins_; i++)
389 >        z.accumulator.push_back( new Accumulator() );
390 >      data_[Z] = z;
391 >      outputMap_["Z"] =  Z;
392 >
393 >      OutputData r;
394 >      r.units =  "Angstroms";
395 >      r.title =  "R";
396 >      r.dataType = "RealType";
397 >      r.accumulator.reserve(nBins_);
398 >      for (int i = 0; i < nBins_; i++)
399 >        r.accumulator.push_back( new Accumulator() );
400 >      data_[R] = r;
401 >      outputMap_["R"] =  R;
402 >
403 >      OutputData temperature;
404 >      temperature.units =  "K";
405 >      temperature.title =  "Temperature";
406 >      temperature.dataType = "RealType";
407 >      temperature.accumulator.reserve(nBins_);
408 >      for (int i = 0; i < nBins_; i++)
409 >        temperature.accumulator.push_back( new Accumulator() );
410 >      data_[TEMPERATURE] = temperature;
411 >      outputMap_["TEMPERATURE"] =  TEMPERATURE;
412 >
413 >      OutputData velocity;
414 >      velocity.units = "angstroms/fs";
415 >      velocity.title =  "Velocity";  
416 >      velocity.dataType = "Vector3d";
417 >      velocity.accumulator.reserve(nBins_);
418 >      for (int i = 0; i < nBins_; i++)
419 >        velocity.accumulator.push_back( new VectorAccumulator() );
420 >      data_[VELOCITY] = velocity;
421 >      outputMap_["VELOCITY"] = VELOCITY;
422 >
423 >      OutputData angularVelocity;
424 >      angularVelocity.units = "angstroms^2/fs";
425 >      angularVelocity.title =  "AngularVelocity";  
426 >      angularVelocity.dataType = "Vector3d";
427 >      angularVelocity.accumulator.reserve(nBins_);
428 >      for (int i = 0; i < nBins_; i++)
429 >        angularVelocity.accumulator.push_back( new VectorAccumulator() );
430 >      data_[ANGULARVELOCITY] = angularVelocity;
431 >      outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
432 >
433 >      OutputData density;
434 >      density.units =  "g cm^-3";
435 >      density.title =  "Density";
436 >      density.dataType = "RealType";
437 >      density.accumulator.reserve(nBins_);
438 >      for (int i = 0; i < nBins_; i++)
439 >        density.accumulator.push_back( new Accumulator() );
440 >      data_[DENSITY] = density;
441 >      outputMap_["DENSITY"] =  DENSITY;
442 >
443 >      if (hasOutputFields) {
444 >        parseOutputFileFormat(rnemdParams->getOutputFields());
445 >      } else {
446 >        if (usePeriodicBoundaryConditions_)
447 >          outputMask_.set(Z);
448 >        else
449 >          outputMask_.set(R);
450 >        switch (rnemdFluxType_) {
451 >        case rnemdKE:
452 >        case rnemdRotKE:
453 >        case rnemdFullKE:
454 >          outputMask_.set(TEMPERATURE);
455 >          break;
456 >        case rnemdPx:
457 >        case rnemdPy:
458 >          outputMask_.set(VELOCITY);
459 >          break;
460 >        case rnemdPz:        
461 >        case rnemdPvector:
462 >          outputMask_.set(VELOCITY);
463 >          outputMask_.set(DENSITY);
464 >          break;
465 >        case rnemdLx:
466 >        case rnemdLy:
467 >        case rnemdLz:
468 >        case rnemdLvector:
469 >          outputMask_.set(ANGULARVELOCITY);
470 >          break;
471 >        case rnemdKeLx:
472 >        case rnemdKeLy:
473 >        case rnemdKeLz:
474 >        case rnemdKeLvector:
475 >          outputMask_.set(TEMPERATURE);
476 >          outputMask_.set(ANGULARVELOCITY);
477 >          break;
478 >        case rnemdKePx:
479 >        case rnemdKePy:
480 >          outputMask_.set(TEMPERATURE);
481 >          outputMask_.set(VELOCITY);
482 >          break;
483 >        case rnemdKePvector:
484 >          outputMask_.set(TEMPERATURE);
485 >          outputMask_.set(VELOCITY);
486 >          outputMask_.set(DENSITY);        
487 >          break;
488 >        default:
489 >          break;
490 >        }
491 >      }
492 >      
493 >      if (hasOutputFileName) {
494 >        rnemdFileName_ = rnemdParams->getOutputFileName();
495 >      } else {
496 >        rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
497 >      }          
498 >
499 >      exchangeTime_ = rnemdParams->getExchangeTime();
500 >
501 >      Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
502 >      // total exchange sums are zeroed out at the beginning:
503 >
504 >      kineticExchange_ = 0.0;
505 >      momentumExchange_ = V3Zero;
506 >      angularMomentumExchange_ = V3Zero;
507 >
508 >      std::ostringstream selectionAstream;
509 >      std::ostringstream selectionBstream;
510 >    
511 >      if (hasSelectionA_) {
512 >        selectionA_ = rnemdParams->getSelectionA();
513 >      } else {
514 >        if (usePeriodicBoundaryConditions_) {    
515 >          Mat3x3d hmat = currentSnap_->getHmat();
516 >        
517 >          if (hasSlabWidth)
518 >            slabWidth_ = rnemdParams->getSlabWidth();
519 >          else
520 >            slabWidth_ = hmat(2,2) / 10.0;
521 >        
522 >          if (hasSlabACenter)
523 >            slabACenter_ = rnemdParams->getSlabACenter();
524 >          else
525 >            slabACenter_ = 0.0;
526 >        
527 >          selectionAstream << "select wrappedz > "
528 >                           << slabACenter_ - 0.5*slabWidth_
529 >                           <<  " && wrappedz < "
530 >                           << slabACenter_ + 0.5*slabWidth_;
531 >          selectionA_ = selectionAstream.str();
532 >        } else {
533 >          if (hasSphereARadius)
534 >            sphereARadius_ = rnemdParams->getSphereARadius();
535 >          else {
536 >            // use an initial guess to the size of the inner slab to be 1/10 the
537 >            // radius of an approximately spherical hull:
538 >            Thermo thermo(info);
539 >            RealType hVol = thermo.getHullVolume();
540 >            sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
541 >          }
542 >          selectionAstream << "select r < " << sphereARadius_;
543 >          selectionA_ = selectionAstream.str();
544 >        }
545 >      }
546 >    
547 >      if (hasSelectionB_) {
548 >        selectionB_ = rnemdParams->getSelectionB();
549 >      } else {
550 >        if (usePeriodicBoundaryConditions_) {    
551 >          Mat3x3d hmat = currentSnap_->getHmat();
552 >        
553 >          if (hasSlabWidth)
554 >            slabWidth_ = rnemdParams->getSlabWidth();
555 >          else
556 >            slabWidth_ = hmat(2,2) / 10.0;
557 >        
558 >          if (hasSlabBCenter)
559 >            slabBCenter_ = rnemdParams->getSlabACenter();
560 >          else
561 >            slabBCenter_ = hmat(2,2) / 2.0;
562 >        
563 >          selectionBstream << "select wrappedz > "
564 >                           << slabBCenter_ - 0.5*slabWidth_
565 >                           <<  " && wrappedz < "
566 >                           << slabBCenter_ + 0.5*slabWidth_;
567 >          selectionB_ = selectionBstream.str();
568 >        } else {
569 >          if (hasSphereBRadius_) {
570 >            sphereBRadius_ = rnemdParams->getSphereBRadius();
571 >            selectionBstream << "select r > " << sphereBRadius_;
572 >            selectionB_ = selectionBstream.str();
573 >          } else {
574 >            selectionB_ = "select hull";
575 >            hasSelectionB_ = true;
576 >          }
577 >        }
578 >      }
579 >    }
580 >    // object evaluator:
581 >    evaluator_.loadScriptString(rnemdObjectSelection_);
582 >    seleMan_.setSelectionSet(evaluator_.evaluate());
583 >    
584 >    evaluatorA_.loadScriptString(selectionA_);
585 >    evaluatorB_.loadScriptString(selectionB_);
586 >    
587 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
588 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
589 >    
590 >    commonA_ = seleManA_ & seleMan_;
591 >    commonB_ = seleManB_ & seleMan_;    
592    }
593    
196  RNEMD::~RNEMD() {
197    delete randNumGen_;
594      
595 +  RNEMD::~RNEMD() {
596 +    if (!doRNEMD_) return;
597   #ifdef IS_MPI
598      if (worldRank == 0) {
599   #endif
600 <      std::cerr << "total fail trials: " << failTrialCount_ << "\n";
601 <      rnemdLog_.close();
602 <      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
603 <        std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
604 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) {
207 <        xTempLog_.close();
208 <        yTempLog_.close();
209 <        zTempLog_.close();
210 <      }
600 >
601 >      writeOutputFile();
602 >
603 >      rnemdFile_.close();
604 >      
605   #ifdef IS_MPI
606      }
607   #endif
608    }
609 +  
610 +  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
611 +    if (!doRNEMD_) return;
612 +    int selei;
613 +    int selej;
614  
216  void RNEMD::doSwap() {
217
615      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
616      Mat3x3d hmat = currentSnap_->getHmat();
617  
221    seleMan_.setSelectionSet(evaluator_.evaluate());
222
223    int selei;
618      StuntDouble* sd;
225    int idx;
619  
620      RealType min_val;
621      bool min_found = false;  
# Line 232 | Line 625 | namespace OpenMD {
625      bool max_found = false;
626      StuntDouble* max_sd;
627  
628 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
629 <         sd = seleMan_.nextSelected(selei)) {
628 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
629 >         sd = seleManA_.nextSelected(selei)) {
630  
238      idx = sd->getLocalIndex();
239
631        Vector3d pos = sd->getPos();
632 <
632 >      
633        // wrap the stuntdouble's position back into the box:
634 <
634 >      
635        if (usePeriodicBoundaryConditions_)
636          currentSnap_->wrapVector(pos);
637 <
638 <      // which bin is this stuntdouble in?
639 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
640 <
641 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
642 <
643 <
253 <      // if we're in bin 0 or the middleBin
254 <      if (binNo == 0 || binNo == midBin_) {
637 >      
638 >      RealType mass = sd->getMass();
639 >      Vector3d vel = sd->getVel();
640 >      RealType value;
641 >      
642 >      switch(rnemdFluxType_) {
643 >      case rnemdKE :
644          
645 <        RealType mass = sd->getMass();
646 <        Vector3d vel = sd->getVel();
647 <        RealType value;
648 <
649 <        switch(rnemdType_) {
261 <        case rnemdKineticSwap :
645 >        value = mass * vel.lengthSquare();
646 >        
647 >        if (sd->isDirectional()) {
648 >          Vector3d angMom = sd->getJ();
649 >          Mat3x3d I = sd->getI();
650            
651 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
652 <                          vel[2]*vel[2]);
653 <          if (sd->isDirectional()) {
654 <            Vector3d angMom = sd->getJ();
655 <            Mat3x3d I = sd->getI();
656 <            
657 <            if (sd->isLinear()) {
658 <              int i = sd->linearAxis();
659 <              int j = (i + 1) % 3;
660 <              int k = (i + 2) % 3;
273 <              value += angMom[j] * angMom[j] / I(j, j) +
274 <                angMom[k] * angMom[k] / I(k, k);
275 <            } else {                        
276 <              value += angMom[0]*angMom[0]/I(0, 0)
277 <                + angMom[1]*angMom[1]/I(1, 1)
278 <                + angMom[2]*angMom[2]/I(2, 2);
279 <            }
651 >          if (sd->isLinear()) {
652 >            int i = sd->linearAxis();
653 >            int j = (i + 1) % 3;
654 >            int k = (i + 2) % 3;
655 >            value += angMom[j] * angMom[j] / I(j, j) +
656 >              angMom[k] * angMom[k] / I(k, k);
657 >          } else {                        
658 >            value += angMom[0]*angMom[0]/I(0, 0)
659 >              + angMom[1]*angMom[1]/I(1, 1)
660 >              + angMom[2]*angMom[2]/I(2, 2);
661            }
662 <          //make exchangeSum_ comparable between swap & scale
663 <          //temporarily without using energyConvert
664 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
665 <          value *= 0.5;
666 <          break;
667 <        case rnemdPx :
668 <          value = mass * vel[0];
669 <          break;
670 <        case rnemdPy :
671 <          value = mass * vel[1];
672 <          break;
673 <        case rnemdPz :
674 <          value = mass * vel[2];
675 <          break;
676 <        default :
677 <          break;
662 >        } //angular momenta exchange enabled
663 >        value *= 0.5;
664 >        break;
665 >      case rnemdPx :
666 >        value = mass * vel[0];
667 >        break;
668 >      case rnemdPy :
669 >        value = mass * vel[1];
670 >        break;
671 >      case rnemdPz :
672 >        value = mass * vel[2];
673 >        break;
674 >      default :
675 >        break;
676 >      }
677 >      if (!max_found) {
678 >        max_val = value;
679 >        max_sd = sd;
680 >        max_found = true;
681 >      } else {
682 >        if (max_val < value) {
683 >          max_val = value;
684 >          max_sd = sd;
685          }
686 +      }  
687 +    }
688          
689 <        if (binNo == 0) {
690 <          if (!min_found) {
691 <            min_val = value;
692 <            min_sd = sd;
693 <            min_found = true;
694 <          } else {
695 <            if (min_val > value) {
696 <              min_val = value;
697 <              min_sd = sd;
698 <            }
699 <          }
700 <        } else { //midBin_
701 <          if (!max_found) {
702 <            max_val = value;
703 <            max_sd = sd;
704 <            max_found = true;
705 <          } else {
706 <            if (max_val < value) {
707 <              max_val = value;
708 <              max_sd = sd;
709 <            }
710 <          }      
711 <        }
689 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
690 >         sd = seleManB_.nextSelected(selej)) {
691 >
692 >      Vector3d pos = sd->getPos();
693 >      
694 >      // wrap the stuntdouble's position back into the box:
695 >      
696 >      if (usePeriodicBoundaryConditions_)
697 >        currentSnap_->wrapVector(pos);
698 >      
699 >      RealType mass = sd->getMass();
700 >      Vector3d vel = sd->getVel();
701 >      RealType value;
702 >      
703 >      switch(rnemdFluxType_) {
704 >      case rnemdKE :
705 >        
706 >        value = mass * vel.lengthSquare();
707 >        
708 >        if (sd->isDirectional()) {
709 >          Vector3d angMom = sd->getJ();
710 >          Mat3x3d I = sd->getI();
711 >          
712 >          if (sd->isLinear()) {
713 >            int i = sd->linearAxis();
714 >            int j = (i + 1) % 3;
715 >            int k = (i + 2) % 3;
716 >            value += angMom[j] * angMom[j] / I(j, j) +
717 >              angMom[k] * angMom[k] / I(k, k);
718 >          } else {                        
719 >            value += angMom[0]*angMom[0]/I(0, 0)
720 >              + angMom[1]*angMom[1]/I(1, 1)
721 >              + angMom[2]*angMom[2]/I(2, 2);
722 >          }
723 >        } //angular momenta exchange enabled
724 >        value *= 0.5;
725 >        break;
726 >      case rnemdPx :
727 >        value = mass * vel[0];
728 >        break;
729 >      case rnemdPy :
730 >        value = mass * vel[1];
731 >        break;
732 >      case rnemdPz :
733 >        value = mass * vel[2];
734 >        break;
735 >      default :
736 >        break;
737        }
738 +      
739 +      if (!min_found) {
740 +        min_val = value;
741 +        min_sd = sd;
742 +        min_found = true;
743 +      } else {
744 +        if (min_val > value) {
745 +          min_val = value;
746 +          min_sd = sd;
747 +        }
748 +      }
749      }
750 <
751 < #ifdef IS_MPI
752 <    int nProc, worldRank;
753 <
328 <    nProc = MPI::COMM_WORLD.Get_size();
329 <    worldRank = MPI::COMM_WORLD.Get_rank();
330 <
750 >    
751 > #ifdef IS_MPI    
752 >    int worldRank = MPI::COMM_WORLD.Get_rank();
753 >    
754      bool my_min_found = min_found;
755      bool my_max_found = max_found;
756  
757      // Even if we didn't find a minimum, did someone else?
758 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
336 <                              1, MPI::BOOL, MPI::LAND);
337 <    
758 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
759      // Even if we didn't find a maximum, did someone else?
760 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
761 <                              1, MPI::BOOL, MPI::LAND);
762 <    
763 <    struct {
764 <      RealType val;
765 <      int rank;
766 <    } max_vals, min_vals;
767 <    
768 <    if (min_found) {
769 <      if (my_min_found)
760 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
761 > #endif
762 >
763 >    if (max_found && min_found) {
764 >
765 > #ifdef IS_MPI
766 >      struct {
767 >        RealType val;
768 >        int rank;
769 >      } max_vals, min_vals;
770 >      
771 >      if (my_min_found) {
772          min_vals.val = min_val;
773 <      else
773 >      } else {
774          min_vals.val = HONKING_LARGE_VALUE;
775 <      
775 >      }
776        min_vals.rank = worldRank;    
777        
778        // Who had the minimum?
779        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
780                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
781        min_val = min_vals.val;
359    }
782        
783 <    if (max_found) {
362 <      if (my_max_found)
783 >      if (my_max_found) {
784          max_vals.val = max_val;
785 <      else
785 >      } else {
786          max_vals.val = -HONKING_LARGE_VALUE;
787 <      
787 >      }
788        max_vals.rank = worldRank;    
789        
790        // Who had the maximum?
791        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
792                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
793        max_val = max_vals.val;
373    }
794   #endif
795 <
796 <    if (max_found && min_found) {
797 <      if (min_val< max_val) {
378 <
795 >      
796 >      if (min_val < max_val) {
797 >        
798   #ifdef IS_MPI      
799          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
800            // I have both maximum and minimum, so proceed like a single
801            // processor version:
802   #endif
803 <          // objects to be swapped: velocity & angular velocity
803 >
804            Vector3d min_vel = min_sd->getVel();
805            Vector3d max_vel = max_sd->getVel();
806            RealType temp_vel;
807            
808 <          switch(rnemdType_) {
809 <          case rnemdKineticSwap :
808 >          switch(rnemdFluxType_) {
809 >          case rnemdKE :
810              min_sd->setVel(max_vel);
811              max_sd->setVel(min_vel);
812 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
812 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
813                Vector3d min_angMom = min_sd->getJ();
814                Vector3d max_angMom = max_sd->getJ();
815                min_sd->setJ(max_angMom);
816                max_sd->setJ(min_angMom);
817 <            }
817 >            }//angular momenta exchange enabled
818 >            //assumes same rigid body identity
819              break;
820            case rnemdPx :
821              temp_vel = min_vel.x();
# Line 421 | Line 841 | namespace OpenMD {
841            default :
842              break;
843            }
844 +
845   #ifdef IS_MPI
846            // the rest of the cases only apply in parallel simulations:
847          } else if (max_vals.rank == worldRank) {
# Line 436 | Line 857 | namespace OpenMD {
857                                     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
858                                     min_vals.rank, 0, status);
859            
860 <          switch(rnemdType_) {
861 <          case rnemdKineticSwap :
860 >          switch(rnemdFluxType_) {
861 >          case rnemdKE :
862              max_sd->setVel(min_vel);
863 <            
863 >            //angular momenta exchange enabled
864              if (max_sd->isDirectional()) {
865                Vector3d min_angMom;
866                Vector3d max_angMom = max_sd->getJ();
867 <
867 >              
868                // point-to-point swap of the angular momentum vector
869                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
870                                         MPI::REALTYPE, min_vals.rank, 1,
871                                         min_angMom.getArrayPointer(), 3,
872                                         MPI::REALTYPE, min_vals.rank, 1,
873                                         status);
874 <
874 >              
875                max_sd->setJ(min_angMom);
876 <            }
876 >            }
877              break;
878            case rnemdPx :
879              max_vel.x() = min_vel.x();
# Line 482 | Line 903 | namespace OpenMD {
903                                     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
904                                     max_vals.rank, 0, status);
905            
906 <          switch(rnemdType_) {
907 <          case rnemdKineticSwap :
906 >          switch(rnemdFluxType_) {
907 >          case rnemdKE :
908              min_sd->setVel(max_vel);
909 <            
909 >            //angular momenta exchange enabled
910              if (min_sd->isDirectional()) {
911                Vector3d min_angMom = min_sd->getJ();
912                Vector3d max_angMom;
913 <
913 >              
914                // point-to-point swap of the angular momentum vector
915                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
916                                         MPI::REALTYPE, max_vals.rank, 1,
917                                         max_angMom.getArrayPointer(), 3,
918                                         MPI::REALTYPE, max_vals.rank, 1,
919                                         status);
920 <
920 >              
921                min_sd->setJ(max_angMom);
922              }
923              break;
# Line 517 | Line 938 | namespace OpenMD {
938            }
939          }
940   #endif
941 <        exchangeSum_ += max_val - min_val;
942 <      } else {
943 <        std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
941 >        
942 >        switch(rnemdFluxType_) {
943 >        case rnemdKE:
944 >          kineticExchange_ += max_val - min_val;
945 >          break;
946 >        case rnemdPx:
947 >          momentumExchange_.x() += max_val - min_val;
948 >          break;
949 >        case rnemdPy:
950 >          momentumExchange_.y() += max_val - min_val;
951 >          break;
952 >        case rnemdPz:
953 >          momentumExchange_.z() += max_val - min_val;
954 >          break;
955 >        default:
956 >          break;
957 >        }
958 >      } else {        
959 >        sprintf(painCave.errMsg,
960 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
961 >        painCave.isFatal = 0;
962 >        painCave.severity = OPENMD_INFO;
963 >        simError();        
964          failTrialCount_++;
965        }
966      } else {
967 <      std::cerr << "exchange NOT performed!\n";
968 <      std::cerr << "at least one of the two slabs empty.\n";
967 >      sprintf(painCave.errMsg,
968 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
969 >              "\twas not present in at least one of the two slabs.\n");
970 >      painCave.isFatal = 0;
971 >      painCave.severity = OPENMD_INFO;
972 >      simError();        
973        failTrialCount_++;
974 <    }
530 <    
974 >    }    
975    }
976    
977 <  void RNEMD::doScale() {
977 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
978 >    if (!doRNEMD_) return;
979 >    int selei;
980 >    int selej;
981  
982      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
983 +    RealType time = currentSnap_->getTime();    
984      Mat3x3d hmat = currentSnap_->getHmat();
985  
538    seleMan_.setSelectionSet(evaluator_.evaluate());
539
540    int selei;
986      StuntDouble* sd;
542    int idx;
987  
988 <    std::vector<StuntDouble*> hotBin, coldBin;
988 >    vector<StuntDouble*> hotBin, coldBin;
989  
990      RealType Phx = 0.0;
991      RealType Phy = 0.0;
# Line 549 | Line 993 | namespace OpenMD {
993      RealType Khx = 0.0;
994      RealType Khy = 0.0;
995      RealType Khz = 0.0;
996 +    RealType Khw = 0.0;
997      RealType Pcx = 0.0;
998      RealType Pcy = 0.0;
999      RealType Pcz = 0.0;
1000      RealType Kcx = 0.0;
1001      RealType Kcy = 0.0;
1002      RealType Kcz = 0.0;
1003 +    RealType Kcw = 0.0;
1004  
1005 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1006 <         sd = seleMan_.nextSelected(selei)) {
1005 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1006 >         sd = smanA.nextSelected(selei)) {
1007  
562      idx = sd->getLocalIndex();
563
1008        Vector3d pos = sd->getPos();
1009 <
1009 >      
1010        // wrap the stuntdouble's position back into the box:
1011 <
1011 >      
1012        if (usePeriodicBoundaryConditions_)
1013          currentSnap_->wrapVector(pos);
1014 <
1015 <      // which bin is this stuntdouble in?
1016 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1017 <
1018 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1019 <
1020 <      // if we're in bin 0 or the middleBin
1021 <      if (binNo == 0 || binNo == midBin_) {
1022 <        
1023 <        RealType mass = sd->getMass();
1024 <        Vector3d vel = sd->getVel();
1025 <      
1026 <        if (binNo == 0) {
1027 <          hotBin.push_back(sd);
1028 <          Phx += mass * vel.x();
1029 <          Phy += mass * vel.y();
1030 <          Phz += mass * vel.z();
1031 <          Khx += mass * vel.x() * vel.x();
1032 <          Khy += mass * vel.y() * vel.y();
1033 <          Khz += mass * vel.z() * vel.z();
1034 <        } else { //midBin_
1035 <          coldBin.push_back(sd);
1036 <          Pcx += mass * vel.x();
1037 <          Pcy += mass * vel.y();
1038 <          Pcz += mass * vel.z();
1039 <          Kcx += mass * vel.x() * vel.x();
1040 <          Kcy += mass * vel.y() * vel.y();
1041 <          Kcz += mass * vel.z() * vel.z();
1042 <        }
1043 <      }
1044 <    }
1045 <
1046 <    Khx *= 0.5;
1047 <    Khy *= 0.5;
1048 <    Khz *= 0.5;
1049 <    Kcx *= 0.5;
1050 <    Kcy *= 0.5;
1014 >      
1015 >      
1016 >      RealType mass = sd->getMass();
1017 >      Vector3d vel = sd->getVel();
1018 >      
1019 >      hotBin.push_back(sd);
1020 >      Phx += mass * vel.x();
1021 >      Phy += mass * vel.y();
1022 >      Phz += mass * vel.z();
1023 >      Khx += mass * vel.x() * vel.x();
1024 >      Khy += mass * vel.y() * vel.y();
1025 >      Khz += mass * vel.z() * vel.z();
1026 >      if (sd->isDirectional()) {
1027 >        Vector3d angMom = sd->getJ();
1028 >        Mat3x3d I = sd->getI();
1029 >        if (sd->isLinear()) {
1030 >          int i = sd->linearAxis();
1031 >          int j = (i + 1) % 3;
1032 >          int k = (i + 2) % 3;
1033 >          Khw += angMom[j] * angMom[j] / I(j, j) +
1034 >            angMom[k] * angMom[k] / I(k, k);
1035 >        } else {
1036 >          Khw += angMom[0]*angMom[0]/I(0, 0)
1037 >            + angMom[1]*angMom[1]/I(1, 1)
1038 >            + angMom[2]*angMom[2]/I(2, 2);
1039 >        }
1040 >      }
1041 >    }
1042 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1043 >         sd = smanB.nextSelected(selej)) {
1044 >      Vector3d pos = sd->getPos();
1045 >      
1046 >      // wrap the stuntdouble's position back into the box:
1047 >      
1048 >      if (usePeriodicBoundaryConditions_)
1049 >        currentSnap_->wrapVector(pos);
1050 >            
1051 >      RealType mass = sd->getMass();
1052 >      Vector3d vel = sd->getVel();
1053 >
1054 >      coldBin.push_back(sd);
1055 >      Pcx += mass * vel.x();
1056 >      Pcy += mass * vel.y();
1057 >      Pcz += mass * vel.z();
1058 >      Kcx += mass * vel.x() * vel.x();
1059 >      Kcy += mass * vel.y() * vel.y();
1060 >      Kcz += mass * vel.z() * vel.z();
1061 >      if (sd->isDirectional()) {
1062 >        Vector3d angMom = sd->getJ();
1063 >        Mat3x3d I = sd->getI();
1064 >        if (sd->isLinear()) {
1065 >          int i = sd->linearAxis();
1066 >          int j = (i + 1) % 3;
1067 >          int k = (i + 2) % 3;
1068 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1069 >            angMom[k] * angMom[k] / I(k, k);
1070 >        } else {
1071 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1072 >            + angMom[1]*angMom[1]/I(1, 1)
1073 >            + angMom[2]*angMom[2]/I(2, 2);
1074 >        }
1075 >      }
1076 >    }
1077 >    
1078 >    Khx *= 0.5;
1079 >    Khy *= 0.5;
1080 >    Khz *= 0.5;
1081 >    Khw *= 0.5;
1082 >    Kcx *= 0.5;
1083 >    Kcy *= 0.5;
1084      Kcz *= 0.5;
1085 +    Kcw *= 0.5;
1086  
1087   #ifdef IS_MPI
1088      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
# Line 617 | Line 1095 | namespace OpenMD {
1095      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
1096      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
1097      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
1098 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
1099 +
1100      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
1101      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
1102      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
1103 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
1104   #endif
1105  
1106 <    //use coldBin coeff's
1106 >    //solve coldBin coeff's first
1107      RealType px = Pcx / Phx;
1108      RealType py = Pcy / Phy;
1109      RealType pz = Pcz / Phz;
1110 +    RealType c, x, y, z;
1111 +    bool successfulScale = false;
1112 +    if ((rnemdFluxType_ == rnemdFullKE) ||
1113 +        (rnemdFluxType_ == rnemdRotKE)) {
1114 +      //may need sanity check Khw & Kcw > 0
1115  
1116 <    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
1117 <    switch(rnemdType_) {
1118 <    case rnemdKineticScale :
1119 <    /*used hotBin coeff's & only scale x & y dimensions
1120 <      RealType px = Phx / Pcx;
635 <      RealType py = Phy / Pcy;
636 <      a110 = Khy;
637 <      c0 = - Khx - Khy - targetFlux_;
638 <      a000 = Khx;
639 <      a111 = Kcy * py * py
640 <      b11 = -2.0 * Kcy * py * (1.0 + py);
641 <      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
642 <      b01 = -2.0 * Kcx * px * (1.0 + px);
643 <      a001 = Kcx * px * px;
644 <    */
1116 >      if (rnemdFluxType_ == rnemdFullKE) {
1117 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1118 >      } else {
1119 >        c = 1.0 - kineticTarget_ / Kcw;
1120 >      }
1121  
1122 <      //scale all three dimensions, let c_x = c_y
1123 <      a000 = Kcx + Kcy;
648 <      a110 = Kcz;
649 <      c0 = targetFlux_ - Kcx - Kcy - Kcz;
650 <      a001 = Khx * px * px + Khy * py * py;
651 <      a111 = Khz * pz * pz;
652 <      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
653 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
654 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
655 <         + Khz * pz * (2.0 + pz) - targetFlux_;
656 <      break;
657 <    case rnemdPxScale :
658 <      c = 1 - targetFlux_ / Pcx;
659 <      a000 = Kcy;
660 <      a110 = Kcz;
661 <      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
662 <      a001 = py * py * Khy;
663 <      a111 = pz * pz * Khz;
664 <      b01 = -2.0 * Khy * py * (1.0 + py);
665 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
666 <      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
667 <         + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
668 <      break;
669 <    case rnemdPyScale :
670 <      c = 1 - targetFlux_ / Pcy;
671 <      a000 = Kcx;
672 <      a110 = Kcz;
673 <      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
674 <      a001 = px * px * Khx;
675 <      a111 = pz * pz * Khz;
676 <      b01 = -2.0 * Khx * px * (1.0 + px);
677 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
678 <      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
679 <         + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
680 <      break;
681 <    case rnemdPzScale ://we don't really do this, do we?
682 <      c = 1 - targetFlux_ / Pcz;
683 <      a000 = Kcx;
684 <      a110 = Kcy;
685 <      c0 = Kcz * c * c - Kcx - Kcy - Kcz;
686 <      a001 = px * px * Khx;
687 <      a111 = py * py * Khy;
688 <      b01 = -2.0 * Khx * px * (1.0 + px);
689 <      b11 = -2.0 * Khy * py * (1.0 + py);
690 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
691 <        + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
692 <      break;      
693 <    default :
694 <      break;
695 <    }
1122 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1123 >        c = sqrt(c);
1124  
1125 <    RealType v1 = a000 * a111 - a001 * a110;
1126 <    RealType v2 = a000 * b01;
1127 <    RealType v3 = a000 * b11;
1128 <    RealType v4 = a000 * c1 - a001 * c0;
1129 <    RealType v8 = a110 * b01;
1130 <    RealType v10 = - b01 * c0;
1131 <
1132 <    RealType u0 = v2 * v10 - v4 * v4;
1133 <    RealType u1 = -2.0 * v3 * v4;
1134 <    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1135 <    RealType u3 = -2.0 * v1 * v3;
1136 <    RealType u4 = - v1 * v1;
1137 <    //rescale coefficients
1138 <    RealType maxAbs = fabs(u0);
1139 <    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1140 <    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1141 <    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1142 <    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1143 <    u0 /= maxAbs;
1144 <    u1 /= maxAbs;
1145 <    u2 /= maxAbs;
1146 <    u3 /= maxAbs;
1147 <    u4 /= maxAbs;
1148 <    //max_element(start, end) is also available.
1149 <    Polynomial<RealType> poly; //same as DoublePolynomial poly;
1150 <    poly.setCoefficient(4, u4);
1151 <    poly.setCoefficient(3, u3);
1152 <    poly.setCoefficient(2, u2);
1153 <    poly.setCoefficient(1, u1);
1154 <    poly.setCoefficient(0, u0);
1155 <    std::vector<RealType> realRoots = poly.FindRealRoots();
1156 <
1157 <    std::vector<RealType>::iterator ri;
1158 <    RealType r1, r2, alpha0;
1159 <    std::vector<std::pair<RealType,RealType> > rps;
1160 <    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1161 <      r2 = *ri;
1162 <      //check if FindRealRoots() give the right answer
1163 <      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1164 <        sprintf(painCave.errMsg,
1165 <                "RNEMD Warning: polynomial solve seems to have an error!");
1166 <        painCave.isFatal = 0;
1167 <        simError();
1168 <        failRootCount_++;
1125 >        RealType w = 0.0;
1126 >        if (rnemdFluxType_ ==  rnemdFullKE) {
1127 >          x = 1.0 + px * (1.0 - c);
1128 >          y = 1.0 + py * (1.0 - c);
1129 >          z = 1.0 + pz * (1.0 - c);
1130 >          /* more complicated way
1131 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
1132 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
1133 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
1134 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
1135 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1136 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
1137 >          */
1138 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1139 >              (fabs(z - 1.0) < 0.1)) {
1140 >            w = 1.0 + (kineticTarget_
1141 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1142 >                       + Khz * (1.0 - z * z)) / Khw;
1143 >          }//no need to calculate w if x, y or z is out of range
1144 >        } else {
1145 >          w = 1.0 + kineticTarget_ / Khw;
1146 >        }
1147 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1148 >          //if w is in the right range, so should be x, y, z.
1149 >          vector<StuntDouble*>::iterator sdi;
1150 >          Vector3d vel;
1151 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1152 >            if (rnemdFluxType_ == rnemdFullKE) {
1153 >              vel = (*sdi)->getVel() * c;
1154 >              (*sdi)->setVel(vel);
1155 >            }
1156 >            if ((*sdi)->isDirectional()) {
1157 >              Vector3d angMom = (*sdi)->getJ() * c;
1158 >              (*sdi)->setJ(angMom);
1159 >            }
1160 >          }
1161 >          w = sqrt(w);
1162 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1163 >            if (rnemdFluxType_ == rnemdFullKE) {
1164 >              vel = (*sdi)->getVel();
1165 >              vel.x() *= x;
1166 >              vel.y() *= y;
1167 >              vel.z() *= z;
1168 >              (*sdi)->setVel(vel);
1169 >            }
1170 >            if ((*sdi)->isDirectional()) {
1171 >              Vector3d angMom = (*sdi)->getJ() * w;
1172 >              (*sdi)->setJ(angMom);
1173 >            }
1174 >          }
1175 >          successfulScale = true;
1176 >          kineticExchange_ += kineticTarget_;
1177 >        }
1178        }
1179 <      //might not be useful w/o rescaling coefficients
1180 <      alpha0 = -c0 - a110 * r2 * r2;
1181 <      if (alpha0 >= 0.0) {
1182 <        r1 = sqrt(alpha0 / a000);
1183 <        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
1184 <          { rps.push_back(std::make_pair(r1, r2)); }
1185 <        if (r1 > 1e-6) { //r1 non-negative
1186 <          r1 = -r1;
1187 <          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
1188 <            { rps.push_back(std::make_pair(r1, r2)); }
1189 <        }
1179 >    } else {
1180 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
1181 >      switch(rnemdFluxType_) {
1182 >      case rnemdKE :
1183 >        /* used hotBin coeff's & only scale x & y dimensions
1184 >           RealType px = Phx / Pcx;
1185 >           RealType py = Phy / Pcy;
1186 >           a110 = Khy;
1187 >           c0 = - Khx - Khy - kineticTarget_;
1188 >           a000 = Khx;
1189 >           a111 = Kcy * py * py;
1190 >           b11 = -2.0 * Kcy * py * (1.0 + py);
1191 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1192 >           b01 = -2.0 * Kcx * px * (1.0 + px);
1193 >           a001 = Kcx * px * px;
1194 >        */
1195 >        //scale all three dimensions, let c_x = c_y
1196 >        a000 = Kcx + Kcy;
1197 >        a110 = Kcz;
1198 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1199 >        a001 = Khx * px * px + Khy * py * py;
1200 >        a111 = Khz * pz * pz;
1201 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1202 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1203 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1204 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1205 >        break;
1206 >      case rnemdPx :
1207 >        c = 1 - momentumTarget_.x() / Pcx;
1208 >        a000 = Kcy;
1209 >        a110 = Kcz;
1210 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1211 >        a001 = py * py * Khy;
1212 >        a111 = pz * pz * Khz;
1213 >        b01 = -2.0 * Khy * py * (1.0 + py);
1214 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1215 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1216 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1217 >        break;
1218 >      case rnemdPy :
1219 >        c = 1 - momentumTarget_.y() / Pcy;
1220 >        a000 = Kcx;
1221 >        a110 = Kcz;
1222 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1223 >        a001 = px * px * Khx;
1224 >        a111 = pz * pz * Khz;
1225 >        b01 = -2.0 * Khx * px * (1.0 + px);
1226 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1227 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1228 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1229 >        break;
1230 >      case rnemdPz ://we don't really do this, do we?
1231 >        c = 1 - momentumTarget_.z() / Pcz;
1232 >        a000 = Kcx;
1233 >        a110 = Kcy;
1234 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1235 >        a001 = px * px * Khx;
1236 >        a111 = py * py * Khy;
1237 >        b01 = -2.0 * Khx * px * (1.0 + px);
1238 >        b11 = -2.0 * Khy * py * (1.0 + py);
1239 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1240 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1241 >        break;
1242 >      default :
1243 >        break;
1244 >      }
1245 >      
1246 >      RealType v1 = a000 * a111 - a001 * a110;
1247 >      RealType v2 = a000 * b01;
1248 >      RealType v3 = a000 * b11;
1249 >      RealType v4 = a000 * c1 - a001 * c0;
1250 >      RealType v8 = a110 * b01;
1251 >      RealType v10 = - b01 * c0;
1252 >      
1253 >      RealType u0 = v2 * v10 - v4 * v4;
1254 >      RealType u1 = -2.0 * v3 * v4;
1255 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1256 >      RealType u3 = -2.0 * v1 * v3;
1257 >      RealType u4 = - v1 * v1;
1258 >      //rescale coefficients
1259 >      RealType maxAbs = fabs(u0);
1260 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1261 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1262 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1263 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1264 >      u0 /= maxAbs;
1265 >      u1 /= maxAbs;
1266 >      u2 /= maxAbs;
1267 >      u3 /= maxAbs;
1268 >      u4 /= maxAbs;
1269 >      //max_element(start, end) is also available.
1270 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1271 >      poly.setCoefficient(4, u4);
1272 >      poly.setCoefficient(3, u3);
1273 >      poly.setCoefficient(2, u2);
1274 >      poly.setCoefficient(1, u1);
1275 >      poly.setCoefficient(0, u0);
1276 >      vector<RealType> realRoots = poly.FindRealRoots();
1277 >      
1278 >      vector<RealType>::iterator ri;
1279 >      RealType r1, r2, alpha0;
1280 >      vector<pair<RealType,RealType> > rps;
1281 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1282 >        r2 = *ri;
1283 >        //check if FindRealRoots() give the right answer
1284 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1285 >          sprintf(painCave.errMsg,
1286 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1287 >          painCave.isFatal = 0;
1288 >          simError();
1289 >          failRootCount_++;
1290 >        }
1291 >        //might not be useful w/o rescaling coefficients
1292 >        alpha0 = -c0 - a110 * r2 * r2;
1293 >        if (alpha0 >= 0.0) {
1294 >          r1 = sqrt(alpha0 / a000);
1295 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1296 >              < 1e-6)
1297 >            { rps.push_back(make_pair(r1, r2)); }
1298 >          if (r1 > 1e-6) { //r1 non-negative
1299 >            r1 = -r1;
1300 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1301 >                < 1e-6)
1302 >              { rps.push_back(make_pair(r1, r2)); }
1303 >          }
1304 >        }
1305        }
1306 <    }
1307 <    // Consider combininig together the solving pair part w/ the searching
1308 <    // best solution part so that we don't need the pairs vector
1309 <    if (!rps.empty()) {
1310 <      RealType smallestDiff = HONKING_LARGE_VALUE;
1311 <      RealType diff;
1312 <      std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
1313 <      std::vector<std::pair<RealType,RealType> >::iterator rpi;
1314 <      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1315 <        r1 = (*rpi).first;
1316 <        r2 = (*rpi).second;
1317 <        switch(rnemdType_) {
1318 <        case rnemdKineticScale :
1319 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1320 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1321 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1322 <          break;
1323 <        case rnemdPxScale :
1324 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1325 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1326 <          break;
1327 <        case rnemdPyScale :
1328 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1329 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1330 <          break;
1331 <        case rnemdPzScale :
1332 <        default :
1333 <          break;
1334 <        }
1335 <        if (diff < smallestDiff) {
1336 <          smallestDiff = diff;
1337 <          bestPair = *rpi;
1338 <        }
1339 <      }
1306 >      // Consider combining together the solving pair part w/ the searching
1307 >      // best solution part so that we don't need the pairs vector
1308 >      if (!rps.empty()) {
1309 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1310 >        RealType diff;
1311 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1312 >        vector<pair<RealType,RealType> >::iterator rpi;
1313 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1314 >          r1 = (*rpi).first;
1315 >          r2 = (*rpi).second;
1316 >          switch(rnemdFluxType_) {
1317 >          case rnemdKE :
1318 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1319 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1320 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1321 >            break;
1322 >          case rnemdPx :
1323 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1324 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1325 >            break;
1326 >          case rnemdPy :
1327 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1328 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1329 >            break;
1330 >          case rnemdPz :
1331 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1332 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1333 >          default :
1334 >            break;
1335 >          }
1336 >          if (diff < smallestDiff) {
1337 >            smallestDiff = diff;
1338 >            bestPair = *rpi;
1339 >          }
1340 >        }
1341   #ifdef IS_MPI
1342 <      if (worldRank == 0) {
1342 >        if (worldRank == 0) {
1343   #endif
1344 <        std::cerr << "we choose r1 = " << bestPair.first
1345 <                  << " and r2 = " << bestPair.second << "\n";
1344 >          // sprintf(painCave.errMsg,
1345 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1346 >          //         bestPair.first, bestPair.second);
1347 >          // painCave.isFatal = 0;
1348 >          // painCave.severity = OPENMD_INFO;
1349 >          // simError();
1350   #ifdef IS_MPI
1351 <      }
1351 >        }
1352   #endif
1353 +        
1354 +        switch(rnemdFluxType_) {
1355 +        case rnemdKE :
1356 +          x = bestPair.first;
1357 +          y = bestPair.first;
1358 +          z = bestPair.second;
1359 +          break;
1360 +        case rnemdPx :
1361 +          x = c;
1362 +          y = bestPair.first;
1363 +          z = bestPair.second;
1364 +          break;
1365 +        case rnemdPy :
1366 +          x = bestPair.first;
1367 +          y = c;
1368 +          z = bestPair.second;
1369 +          break;
1370 +        case rnemdPz :
1371 +          x = bestPair.first;
1372 +          y = bestPair.second;
1373 +          z = c;
1374 +          break;          
1375 +        default :
1376 +          break;
1377 +        }
1378 +        vector<StuntDouble*>::iterator sdi;
1379 +        Vector3d vel;
1380 +        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1381 +          vel = (*sdi)->getVel();
1382 +          vel.x() *= x;
1383 +          vel.y() *= y;
1384 +          vel.z() *= z;
1385 +          (*sdi)->setVel(vel);
1386 +        }
1387 +        //convert to hotBin coefficient
1388 +        x = 1.0 + px * (1.0 - x);
1389 +        y = 1.0 + py * (1.0 - y);
1390 +        z = 1.0 + pz * (1.0 - z);
1391 +        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1392 +          vel = (*sdi)->getVel();
1393 +          vel.x() *= x;
1394 +          vel.y() *= y;
1395 +          vel.z() *= z;
1396 +          (*sdi)->setVel(vel);
1397 +        }
1398 +        successfulScale = true;
1399 +        switch(rnemdFluxType_) {
1400 +        case rnemdKE :
1401 +          kineticExchange_ += kineticTarget_;
1402 +          break;
1403 +        case rnemdPx :
1404 +        case rnemdPy :
1405 +        case rnemdPz :
1406 +          momentumExchange_ += momentumTarget_;
1407 +          break;          
1408 +        default :
1409 +          break;
1410 +        }      
1411 +      }
1412 +    }
1413 +    if (successfulScale != true) {
1414 +      sprintf(painCave.errMsg,
1415 +              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1416 +              "\tthe constraint equations may not exist or there may be\n"
1417 +              "\tno selected objects in one or both slabs.\n");
1418 +      painCave.isFatal = 0;
1419 +      painCave.severity = OPENMD_INFO;
1420 +      simError();        
1421 +      failTrialCount_++;
1422 +    }
1423 +  }
1424 +  
1425 +  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1426 +    if (!doRNEMD_) return;
1427 +    int selei;
1428 +    int selej;
1429  
1430 <      RealType x, y, z;
1431 <        switch(rnemdType_) {
1432 <        case rnemdKineticScale :
1433 <          x = bestPair.first;
1434 <          y = bestPair.first;
1435 <          z = bestPair.second;
1436 <          break;
1437 <        case rnemdPxScale :
1438 <          x = c;
1439 <          y = bestPair.first;
1440 <          z = bestPair.second;
1441 <          break;
1442 <        case rnemdPyScale :
1443 <          x = bestPair.first;
1444 <          y = c;
1445 <          z = bestPair.second;
1446 <          break;
1447 <        case rnemdPzScale :
1448 <          x = bestPair.first;
1449 <          y = bestPair.second;
1450 <          z = c;
1451 <          break;          
1452 <        default :
1453 <          break;
1430 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1431 >    RealType time = currentSnap_->getTime();    
1432 >    Mat3x3d hmat = currentSnap_->getHmat();
1433 >
1434 >    StuntDouble* sd;
1435 >
1436 >    vector<StuntDouble*> hotBin, coldBin;
1437 >
1438 >    Vector3d Ph(V3Zero);
1439 >    Vector3d Lh(V3Zero);
1440 >    RealType Mh = 0.0;
1441 >    Mat3x3d Ih(0.0);
1442 >    RealType Kh = 0.0;
1443 >    Vector3d Pc(V3Zero);
1444 >    Vector3d Lc(V3Zero);
1445 >    RealType Mc = 0.0;
1446 >    Mat3x3d Ic(0.0);
1447 >    RealType Kc = 0.0;
1448 >    
1449 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1450 >         sd = smanA.nextSelected(selei)) {
1451 >
1452 >      Vector3d pos = sd->getPos();
1453 >
1454 >      // wrap the stuntdouble's position back into the box:
1455 >      
1456 >      if (usePeriodicBoundaryConditions_)
1457 >        currentSnap_->wrapVector(pos);
1458 >      
1459 >      RealType mass = sd->getMass();
1460 >      Vector3d vel = sd->getVel();
1461 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1462 >      RealType r2;
1463 >      
1464 >      hotBin.push_back(sd);
1465 >      Ph += mass * vel;
1466 >      Mh += mass;
1467 >      Kh += mass * vel.lengthSquare();
1468 >      Lh += mass * cross(rPos, vel);
1469 >      Ih -= outProduct(rPos, rPos) * mass;
1470 >      r2 = rPos.lengthSquare();
1471 >      Ih(0, 0) += mass * r2;
1472 >      Ih(1, 1) += mass * r2;
1473 >      Ih(2, 2) += mass * r2;
1474 >      
1475 >      if (rnemdFluxType_ == rnemdFullKE) {
1476 >        if (sd->isDirectional()) {
1477 >          Vector3d angMom = sd->getJ();
1478 >          Mat3x3d I = sd->getI();
1479 >          if (sd->isLinear()) {
1480 >            int i = sd->linearAxis();
1481 >            int j = (i + 1) % 3;
1482 >            int k = (i + 2) % 3;
1483 >            Kh += angMom[j] * angMom[j] / I(j, j) +
1484 >              angMom[k] * angMom[k] / I(k, k);
1485 >          } else {
1486 >            Kh += angMom[0] * angMom[0] / I(0, 0) +
1487 >              angMom[1] * angMom[1] / I(1, 1) +
1488 >              angMom[2] * angMom[2] / I(2, 2);
1489 >          }
1490          }
822      std::vector<StuntDouble*>::iterator sdi;
823      Vector3d vel;
824      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
825        vel = (*sdi)->getVel();
826        vel.x() *= x;
827        vel.y() *= y;
828        vel.z() *= z;
829        (*sdi)->setVel(vel);
1491        }
1492 <      //convert to hotBin coefficient
1493 <      x = 1.0 + px * (1.0 - x);
1494 <      y = 1.0 + py * (1.0 - y);
1495 <      z = 1.0 + pz * (1.0 - z);
1496 <      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1497 <        vel = (*sdi)->getVel();
1498 <        vel.x() *= x;
1499 <        vel.y() *= y;
1500 <        vel.z() *= z;
1501 <        (*sdi)->setVel(vel);
1492 >    }
1493 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1494 >         sd = smanB.nextSelected(selej)) {
1495 >
1496 >      Vector3d pos = sd->getPos();
1497 >      
1498 >      // wrap the stuntdouble's position back into the box:
1499 >      
1500 >      if (usePeriodicBoundaryConditions_)
1501 >        currentSnap_->wrapVector(pos);
1502 >      
1503 >      RealType mass = sd->getMass();
1504 >      Vector3d vel = sd->getVel();
1505 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1506 >      RealType r2;
1507 >
1508 >      coldBin.push_back(sd);
1509 >      Pc += mass * vel;
1510 >      Mc += mass;
1511 >      Kc += mass * vel.lengthSquare();
1512 >      Lc += mass * cross(rPos, vel);
1513 >      Ic -= outProduct(rPos, rPos) * mass;
1514 >      r2 = rPos.lengthSquare();
1515 >      Ic(0, 0) += mass * r2;
1516 >      Ic(1, 1) += mass * r2;
1517 >      Ic(2, 2) += mass * r2;
1518 >      
1519 >      if (rnemdFluxType_ == rnemdFullKE) {
1520 >        if (sd->isDirectional()) {
1521 >          Vector3d angMom = sd->getJ();
1522 >          Mat3x3d I = sd->getI();
1523 >          if (sd->isLinear()) {
1524 >            int i = sd->linearAxis();
1525 >            int j = (i + 1) % 3;
1526 >            int k = (i + 2) % 3;
1527 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1528 >              angMom[k] * angMom[k] / I(k, k);
1529 >          } else {
1530 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1531 >              angMom[1] * angMom[1] / I(1, 1) +
1532 >              angMom[2] * angMom[2] / I(2, 2);
1533 >          }
1534 >        }
1535        }
1536 <      exchangeSum_ += targetFlux_;
1537 <      //we may want to check whether the exchange has been successful
1538 <    } else {
1539 <      std::cerr << "exchange NOT performed!\n";//MPI incompatible
1536 >    }
1537 >    
1538 >    Kh *= 0.5;
1539 >    Kc *= 0.5;
1540 >    
1541 > #ifdef IS_MPI
1542 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1543 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1544 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM);
1545 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM);
1546 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1547 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1548 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1549 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1550 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9,
1551 >                              MPI::REALTYPE, MPI::SUM);
1552 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9,
1553 >                              MPI::REALTYPE, MPI::SUM);
1554 > #endif
1555 >    
1556 >    bool successfulExchange = false;
1557 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1558 >      Vector3d vc = Pc / Mc;
1559 >      Vector3d ac = -momentumTarget_ / Mc + vc;
1560 >      Vector3d acrec = -momentumTarget_ / Mc;
1561 >      
1562 >      // We now need the inverse of the inertia tensor to calculate the
1563 >      // angular velocity of the cold slab;
1564 >      Mat3x3d Ici = Ic.inverse();
1565 >      Vector3d omegac = Ici * Lc;
1566 >      Vector3d bc  = -(Ici * angularMomentumTarget_) + omegac;
1567 >      Vector3d bcrec = bc - omegac;
1568 >      
1569 >      RealType cNumerator = Kc - kineticTarget_
1570 >        - 0.5 * Mc * ac.lengthSquare() - 0.5 * ( dot(bc, Ic * bc));
1571 >      if (cNumerator > 0.0) {
1572 >        
1573 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare()
1574 >          - 0.5*(dot(omegac, Ic * omegac));
1575 >        
1576 >        if (cDenominator > 0.0) {
1577 >          RealType c = sqrt(cNumerator / cDenominator);
1578 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1579 >            
1580 >            Vector3d vh = Ph / Mh;
1581 >            Vector3d ah = momentumTarget_ / Mh + vh;
1582 >            Vector3d ahrec = momentumTarget_ / Mh;
1583 >            
1584 >            // We now need the inverse of the inertia tensor to
1585 >            // calculate the angular velocity of the hot slab;
1586 >            Mat3x3d Ihi = Ih.inverse();
1587 >            Vector3d omegah = Ihi * Lh;
1588 >            Vector3d bh  = (Ihi * angularMomentumTarget_) + omegah;
1589 >            Vector3d bhrec = bh - omegah;
1590 >            
1591 >            RealType hNumerator = Kh + kineticTarget_
1592 >              - 0.5 * Mh * ah.lengthSquare() - 0.5 * ( dot(bh, Ih * bh));;
1593 >            if (hNumerator > 0.0) {
1594 >              
1595 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare()
1596 >                - 0.5*(dot(omegah, Ih * omegah));
1597 >              
1598 >              if (hDenominator > 0.0) {
1599 >                RealType h = sqrt(hNumerator / hDenominator);
1600 >                if ((h > 0.9) && (h < 1.1)) {
1601 >                  
1602 >                  vector<StuntDouble*>::iterator sdi;
1603 >                  Vector3d vel;
1604 >                  Vector3d rPos;
1605 >                  
1606 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1607 >                    //vel = (*sdi)->getVel();
1608 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1609 >                    vel = ((*sdi)->getVel() - vc - cross(omegac, rPos)) * c
1610 >                      + ac + cross(bc, rPos);
1611 >                    (*sdi)->setVel(vel);
1612 >                    if (rnemdFluxType_ == rnemdFullKE) {
1613 >                      if ((*sdi)->isDirectional()) {
1614 >                        Vector3d angMom = (*sdi)->getJ() * c;
1615 >                        (*sdi)->setJ(angMom);
1616 >                      }
1617 >                    }
1618 >                  }
1619 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1620 >                    //vel = (*sdi)->getVel();
1621 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1622 >                    vel = ((*sdi)->getVel() - vh - cross(omegah, rPos)) * h
1623 >                      + ah + cross(bh, rPos);    
1624 >                    cerr << "setting vel to " << vel << "\n";
1625 >                    (*sdi)->setVel(vel);
1626 >                    if (rnemdFluxType_ == rnemdFullKE) {
1627 >                      if ((*sdi)->isDirectional()) {
1628 >                        Vector3d angMom = (*sdi)->getJ() * h;
1629 >                        (*sdi)->setJ(angMom);
1630 >                      }
1631 >                    }
1632 >                  }
1633 >                  successfulExchange = true;
1634 >                  kineticExchange_ += kineticTarget_;
1635 >                  momentumExchange_ += momentumTarget_;
1636 >                  angularMomentumExchange_ += angularMomentumTarget_;
1637 >                }
1638 >              }
1639 >            }
1640 >          }
1641 >        }
1642 >      }
1643 >    }
1644 >    if (successfulExchange != true) {
1645 >      sprintf(painCave.errMsg,
1646 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1647 >              "\tthe constraint equations may not exist or there may be\n"
1648 >              "\tno selected objects in one or both slabs.\n");
1649 >      painCave.isFatal = 0;
1650 >      painCave.severity = OPENMD_INFO;
1651 >      simError();        
1652        failTrialCount_++;
1653      }
848
1654    }
1655  
1656 +  RealType RNEMD::getDividingArea() {
1657 +
1658 +    if (hasDividingArea_) return dividingArea_;
1659 +
1660 +    RealType areaA, areaB;
1661 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1662 +
1663 +    if (hasSelectionA_) {
1664 +      int isd;
1665 +      StuntDouble* sd;
1666 +      vector<StuntDouble*> aSites;
1667 +      ConvexHull* surfaceMeshA = new ConvexHull();
1668 +      seleManA_.setSelectionSet(evaluatorA_.evaluate());
1669 +      for (sd = seleManA_.beginSelected(isd); sd != NULL;
1670 +           sd = seleManA_.nextSelected(isd)) {
1671 +        aSites.push_back(sd);
1672 +      }
1673 +      surfaceMeshA->computeHull(aSites);
1674 +      areaA = surfaceMeshA->getArea();
1675 +    } else {
1676 +      if (usePeriodicBoundaryConditions_) {
1677 +        // in periodic boundaries, the surface area is twice the x-y
1678 +        // area of the current box:
1679 +        areaA = 2.0 * snap->getXYarea();
1680 +      } else {
1681 +        // in non-periodic simulations, without explicitly setting
1682 +        // selections, the sphere radius sets the surface area of the
1683 +        // dividing surface:
1684 +        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1685 +      }
1686 +    }
1687 +
1688 +    if (hasSelectionB_) {
1689 +      int isd;
1690 +      StuntDouble* sd;
1691 +      vector<StuntDouble*> bSites;
1692 +      ConvexHull* surfaceMeshB = new ConvexHull();
1693 +      seleManB_.setSelectionSet(evaluatorB_.evaluate());
1694 +      for (sd = seleManB_.beginSelected(isd); sd != NULL;
1695 +           sd = seleManB_.nextSelected(isd)) {
1696 +        bSites.push_back(sd);
1697 +      }
1698 +      surfaceMeshB->computeHull(bSites);
1699 +      areaB = surfaceMeshB->getArea();
1700 +    } else {
1701 +      if (usePeriodicBoundaryConditions_) {
1702 +        // in periodic boundaries, the surface area is twice the x-y
1703 +        // area of the current box:
1704 +        areaB = 2.0 * snap->getXYarea();
1705 +      } else {
1706 +        // in non-periodic simulations, without explicitly setting
1707 +        // selections, but if a sphereBradius has been set, just use that:
1708 +        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1709 +      }
1710 +    }
1711 +    
1712 +    dividingArea_ = min(areaA, areaB);
1713 +    hasDividingArea_ = true;
1714 +    return dividingArea_;
1715 +  }
1716 +  
1717    void RNEMD::doRNEMD() {
1718 +    if (!doRNEMD_) return;
1719 +    trialCount_++;
1720  
1721 <    switch(rnemdType_) {
1722 <    case rnemdKineticScale :
1723 <    case rnemdPxScale :
1724 <    case rnemdPyScale :
1725 <    case rnemdPzScale :
1726 <      doScale();
1721 >    cerr << "trialCount = " << trialCount_ << "\n";
1722 >    // object evaluator:
1723 >    evaluator_.loadScriptString(rnemdObjectSelection_);
1724 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1725 >
1726 >    evaluatorA_.loadScriptString(selectionA_);
1727 >    evaluatorB_.loadScriptString(selectionB_);
1728 >
1729 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1730 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1731 >
1732 >    commonA_ = seleManA_ & seleMan_;
1733 >    commonB_ = seleManB_ & seleMan_;
1734 >
1735 >    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1736 >    // dt = exchange time interval
1737 >    // flux = target flux
1738 >    // dividingArea = smallest dividing surface between the two regions
1739 >
1740 >    hasDividingArea_ = false;
1741 >    RealType area = getDividingArea();
1742 >
1743 >    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1744 >    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1745 >    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1746 >
1747 >    switch(rnemdMethod_) {
1748 >    case rnemdSwap:
1749 >      doSwap(commonA_, commonB_);
1750        break;
1751 <    case rnemdKineticSwap :
1752 <    case rnemdPx :
862 <    case rnemdPy :
863 <    case rnemdPz :
864 <      doSwap();
1751 >    case rnemdNIVS:
1752 >      doNIVS(commonA_, commonB_);
1753        break;
1754 <    case rnemdUnknown :
1754 >    case rnemdVSS:
1755 >      doVSS(commonA_, commonB_);
1756 >      break;
1757 >    case rnemdUnkownMethod:
1758      default :
1759        break;
1760      }
1761    }
1762  
1763    void RNEMD::collectData() {
1764 <
1764 >    if (!doRNEMD_) return;
1765      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1766 +    
1767 +    cerr << "collecting data\n";
1768 +    // collectData can be called more frequently than the doRNEMD, so use the
1769 +    // computed area from the last exchange time:
1770 +    RealType area = getDividingArea();
1771 +    areaAccumulator_->add(area);
1772      Mat3x3d hmat = currentSnap_->getHmat();
876
1773      seleMan_.setSelectionSet(evaluator_.evaluate());
1774  
1775 <    int selei;
1775 >    int selei(0);
1776      StuntDouble* sd;
1777 <    int idx;
1777 >    int binNo;
1778  
1779 +    vector<RealType> binMass(nBins_, 0.0);
1780 +    vector<RealType> binPx(nBins_, 0.0);
1781 +    vector<RealType> binPy(nBins_, 0.0);
1782 +    vector<RealType> binPz(nBins_, 0.0);
1783 +    vector<RealType> binOmegax(nBins_, 0.0);
1784 +    vector<RealType> binOmegay(nBins_, 0.0);
1785 +    vector<RealType> binOmegaz(nBins_, 0.0);
1786 +    vector<RealType> binKE(nBins_, 0.0);
1787 +    vector<int> binDOF(nBins_, 0);
1788 +    vector<int> binCount(nBins_, 0);
1789 +
1790 +    // alternative approach, track all molecules instead of only those
1791 +    // selected for scaling/swapping:
1792 +    /*
1793 +      SimInfo::MoleculeIterator miter;
1794 +      vector<StuntDouble*>::iterator iiter;
1795 +      Molecule* mol;
1796 +      StuntDouble* sd;
1797 +      for (mol = info_->beginMolecule(miter); mol != NULL;
1798 +      mol = info_->nextMolecule(miter))
1799 +      sd is essentially sd
1800 +      for (sd = mol->beginIntegrableObject(iiter);
1801 +      sd != NULL;
1802 +      sd = mol->nextIntegrableObject(iiter))
1803 +    */
1804 +
1805      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1806 <         sd = seleMan_.nextSelected(selei)) {
1807 <      
886 <      idx = sd->getLocalIndex();
887 <      
1806 >         sd = seleMan_.nextSelected(selei)) {    
1807 >    
1808        Vector3d pos = sd->getPos();
1809  
1810        // wrap the stuntdouble's position back into the box:
1811        
1812 <      if (usePeriodicBoundaryConditions_)
1812 >      if (usePeriodicBoundaryConditions_) {
1813          currentSnap_->wrapVector(pos);
1814 <      
1815 <      // which bin is this stuntdouble in?
1816 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1817 <      
1818 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1814 >        // which bin is this stuntdouble in?
1815 >        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1816 >        // Shift molecules by half a box to have bins start at 0
1817 >        // The modulo operator is used to wrap the case when we are
1818 >        // beyond the end of the bins back to the beginning.
1819 >        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1820 >      } else {
1821 >        Vector3d rPos = pos - coordinateOrigin_;
1822 >        binNo = int(rPos.length() / binWidth_);
1823 >      }
1824  
900      if (rnemdLogWidth_ == midBin_ + 1)
901        if (binNo > midBin_)
902          binNo = nBins_ - binNo;
903
1825        RealType mass = sd->getMass();
1826        Vector3d vel = sd->getVel();
1827 <      RealType value;
1828 <      RealType xVal, yVal, zVal;
1827 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1828 >      Vector3d aVel = cross(rPos, vel);
1829 >      
1830 >      if (binNo >= 0 && binNo < nBins_)  {
1831 >        binCount[binNo]++;
1832 >        binMass[binNo] += mass;
1833 >        binPx[binNo] += mass*vel.x();
1834 >        binPy[binNo] += mass*vel.y();
1835 >        binPz[binNo] += mass*vel.z();
1836 >        binOmegax[binNo] += aVel.x();
1837 >        binOmegay[binNo] += aVel.y();
1838 >        binOmegaz[binNo] += aVel.z();
1839 >        binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1840 >        binDOF[binNo] += 3;
1841 >        
1842 >        if (sd->isDirectional()) {
1843 >          Vector3d angMom = sd->getJ();
1844 >          Mat3x3d I = sd->getI();
1845 >          if (sd->isLinear()) {
1846 >            int i = sd->linearAxis();
1847 >            int j = (i + 1) % 3;
1848 >            int k = (i + 2) % 3;
1849 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1850 >                                   angMom[k] * angMom[k] / I(k, k));
1851 >            binDOF[binNo] += 2;
1852 >          } else {
1853 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1854 >                                   angMom[1] * angMom[1] / I(1, 1) +
1855 >                                   angMom[2] * angMom[2] / I(2, 2));
1856 >            binDOF[binNo] += 3;
1857 >          }
1858 >        }
1859 >      }
1860 >    }
1861 >    
1862 > #ifdef IS_MPI
1863 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1864 >                              nBins_, MPI::INT, MPI::SUM);
1865 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1866 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1867 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1868 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1869 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1870 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1871 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1872 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1873 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0],
1874 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1875 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0],
1876 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1877 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0],
1878 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1879 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1880 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1881 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1882 >                              nBins_, MPI::INT, MPI::SUM);
1883 > #endif
1884  
1885 <      switch(rnemdType_) {
1886 <      case rnemdKineticSwap :
1887 <      case rnemdKineticScale :
1888 <        
1889 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
1890 <                        vel[2]*vel[2]);
1891 <        
1892 <        valueCount_[binNo] += 3;
1893 <        if (sd->isDirectional()) {
1894 <          Vector3d angMom = sd->getJ();
1895 <          Mat3x3d I = sd->getI();
1896 <          
1897 <          if (sd->isLinear()) {
1898 <            int i = sd->linearAxis();
1899 <            int j = (i + 1) % 3;
1900 <            int k = (i + 2) % 3;
1901 <            value += angMom[j] * angMom[j] / I(j, j) +
1902 <              angMom[k] * angMom[k] / I(k, k);
1885 >    Vector3d vel;
1886 >    Vector3d aVel;
1887 >    RealType den;
1888 >    RealType temp;
1889 >    RealType z;
1890 >    RealType r;
1891 >    for (int i = 0; i < nBins_; i++) {
1892 >      if (usePeriodicBoundaryConditions_) {
1893 >        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1894 >        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1895 >          / currentSnap_->getVolume() ;
1896 >      } else {
1897 >        r = (((RealType)i + 0.5) * binWidth_);
1898 >        RealType rinner = (RealType)i * binWidth_;
1899 >        RealType router = (RealType)(i+1) * binWidth_;
1900 >        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
1901 >          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
1902 >      }
1903 >      vel.x() = binPx[i] / binMass[i];
1904 >      vel.y() = binPy[i] / binMass[i];
1905 >      vel.z() = binPz[i] / binMass[i];
1906 >      aVel.x() = binOmegax[i];
1907 >      aVel.y() = binOmegay[i];
1908 >      aVel.z() = binOmegaz[i];
1909  
1910 <            valueCount_[binNo] +=2;
1911 <
1912 <          } else {
1913 <            value += angMom[0]*angMom[0]/I(0, 0)
1914 <              + angMom[1]*angMom[1]/I(1, 1)
1915 <              + angMom[2]*angMom[2]/I(2, 2);
1916 <            valueCount_[binNo] +=3;
1917 <          }
1918 <        }
1919 <        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1920 <
1921 <        break;
1922 <      case rnemdPx :
1923 <      case rnemdPxScale :
1924 <        value = mass * vel[0];
1925 <        valueCount_[binNo]++;
1926 <        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
1927 <          / PhysicalConstants::kb;
1928 <        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1929 <          / PhysicalConstants::kb;
1930 <        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1931 <          / PhysicalConstants::kb;
1932 <        xTempHist_[binNo] += xVal;
1933 <        yTempHist_[binNo] += yVal;
1934 <        zTempHist_[binNo] += zVal;
1935 <        break;
1936 <      case rnemdPy :
1937 <      case rnemdPyScale :
1938 <        value = mass * vel[1];
957 <        valueCount_[binNo]++;
958 <        break;
959 <      case rnemdPz :
960 <      case rnemdPzScale :
961 <        value = mass * vel[2];
962 <        valueCount_[binNo]++;
963 <        break;
964 <      case rnemdUnknown :
965 <      default :
966 <        break;
1910 >      if (binCount[i] > 0) {
1911 >        // only add values if there are things to add
1912 >        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1913 >                                 PhysicalConstants::energyConvert);
1914 >        
1915 >        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1916 >          if(outputMask_[j]) {
1917 >            switch(j) {
1918 >            case Z:
1919 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
1920 >              break;
1921 >            case R:
1922 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
1923 >              break;
1924 >            case TEMPERATURE:
1925 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
1926 >              break;
1927 >            case VELOCITY:
1928 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1929 >              break;
1930 >            case ANGULARVELOCITY:  
1931 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel);
1932 >              break;
1933 >            case DENSITY:
1934 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
1935 >              break;
1936 >            }
1937 >          }
1938 >        }
1939        }
968      valueHist_[binNo] += value;
1940      }
970
1941    }
1942  
1943    void RNEMD::getStarted() {
1944 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1945 <    Stats& stat = currentSnap_->statData;
1946 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1944 >    if (!doRNEMD_) return;
1945 >    hasDividingArea_ = false;
1946 >    collectData();
1947 >    writeOutputFile();
1948    }
1949  
1950 <  void RNEMD::getStatus() {
1951 <
1952 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1953 <    Stats& stat = currentSnap_->statData;
1954 <    RealType time = currentSnap_->getTime();
1955 <
1956 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1957 <    //or to be more meaningful, define another item as exchangeSum_ / time
1958 <    int j;
1959 <
1950 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
1951 >    if (!doRNEMD_) return;
1952 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1953 >    
1954 >    while(tokenizer.hasMoreTokens()) {
1955 >      std::string token(tokenizer.nextToken());
1956 >      toUpper(token);
1957 >      OutputMapType::iterator i = outputMap_.find(token);
1958 >      if (i != outputMap_.end()) {
1959 >        outputMask_.set(i->second);
1960 >      } else {
1961 >        sprintf( painCave.errMsg,
1962 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1963 >                 "\toutputFileFormat keyword.\n", token.c_str() );
1964 >        painCave.isFatal = 0;
1965 >        painCave.severity = OPENMD_ERROR;
1966 >        simError();            
1967 >      }
1968 >    }  
1969 >  }
1970 >  
1971 >  void RNEMD::writeOutputFile() {
1972 >    if (!doRNEMD_) return;
1973 >    
1974   #ifdef IS_MPI
990
991    // all processors have the same number of bins, and STL vectors pack their
992    // arrays, so in theory, this should be safe:
993
994    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
995                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
996    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
997                              rnemdLogWidth_, MPI::INT, MPI::SUM);
998    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) {
999      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1000                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1001      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1002                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1003      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1004                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1005    }
1975      // If we're the root node, should we print out the results
1976      int worldRank = MPI::COMM_WORLD.Get_rank();
1977      if (worldRank == 0) {
1978   #endif
1979 <      rnemdLog_ << time;
1980 <      for (j = 0; j < rnemdLogWidth_; j++) {
1981 <        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
1979 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1980 >      
1981 >      if( !rnemdFile_ ){        
1982 >        sprintf( painCave.errMsg,
1983 >                 "Could not open \"%s\" for RNEMD output.\n",
1984 >                 rnemdFileName_.c_str());
1985 >        painCave.isFatal = 1;
1986 >        simError();
1987        }
1988 <      rnemdLog_ << "\n";
1989 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) {
1990 <        xTempLog_ << time;      
1991 <        for (j = 0; j < rnemdLogWidth_; j++) {
1992 <          xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j];
1988 >
1989 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1990 >
1991 >      RealType time = currentSnap_->getTime();
1992 >      RealType avgArea;
1993 >      areaAccumulator_->getAverage(avgArea);
1994 >      RealType Jz = kineticExchange_ / (time * avgArea)
1995 >        / PhysicalConstants::energyConvert;
1996 >      Vector3d JzP = momentumExchange_ / (time * avgArea);      
1997 >      Vector3d JzL = angularMomentumExchange_ / (time * avgArea);      
1998 >
1999 >      rnemdFile_ << "#######################################################\n";
2000 >      rnemdFile_ << "# RNEMD {\n";
2001 >
2002 >      map<string, RNEMDMethod>::iterator mi;
2003 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2004 >        if ( (*mi).second == rnemdMethod_)
2005 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2006 >      }
2007 >      map<string, RNEMDFluxType>::iterator fi;
2008 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2009 >        if ( (*fi).second == rnemdFluxType_)
2010 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2011 >      }
2012 >      
2013 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2014 >
2015 >      rnemdFile_ << "#    objectSelection = \""
2016 >                 << rnemdObjectSelection_ << "\";\n";
2017 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2018 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2019 >      rnemdFile_ << "# }\n";
2020 >      rnemdFile_ << "#######################################################\n";
2021 >      rnemdFile_ << "# RNEMD report:\n";      
2022 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2023 >      rnemdFile_ << "# Target flux:\n";
2024 >      rnemdFile_ << "#           kinetic = "
2025 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2026 >                 << " (kcal/mol/A^2/fs)\n";
2027 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2028 >                 << " (amu/A/fs^2)\n";
2029 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2030 >                 << " (amu/A^2/fs^2)\n";
2031 >      rnemdFile_ << "# Target one-time exchanges:\n";
2032 >      rnemdFile_ << "#          kinetic = "
2033 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2034 >                 << " (kcal/mol)\n";
2035 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2036 >                 << " (amu*A/fs)\n";
2037 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2038 >                 << " (amu*A^2/fs)\n";
2039 >      rnemdFile_ << "# Actual exchange totals:\n";
2040 >      rnemdFile_ << "#          kinetic = "
2041 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2042 >                 << " (kcal/mol)\n";
2043 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2044 >                 << " (amu*A/fs)\n";      
2045 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2046 >                 << " (amu*A^2/fs)\n";      
2047 >      rnemdFile_ << "# Actual flux:\n";
2048 >      rnemdFile_ << "#          kinetic = " << Jz
2049 >                 << " (kcal/mol/A^2/fs)\n";
2050 >      rnemdFile_ << "#          momentum = " << JzP
2051 >                 << " (amu/A/fs^2)\n";
2052 >      rnemdFile_ << "#  angular momentum = " << JzL
2053 >                 << " (amu/A^2/fs^2)\n";
2054 >      rnemdFile_ << "# Exchange statistics:\n";
2055 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2056 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2057 >      if (rnemdMethod_ == rnemdNIVS) {
2058 >        rnemdFile_ << "#  NIVS root-check errors = "
2059 >                   << failRootCount_ << "\n";
2060 >      }
2061 >      rnemdFile_ << "#######################################################\n";
2062 >      
2063 >      
2064 >      
2065 >      //write title
2066 >      rnemdFile_ << "#";
2067 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2068 >        if (outputMask_[i]) {
2069 >          rnemdFile_ << "\t" << data_[i].title <<
2070 >            "(" << data_[i].units << ")";
2071 >          // add some extra tabs for column alignment
2072 >          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2073          }
2074 <        xTempLog_ << "\n";
2075 <        yTempLog_ << time;
2076 <        for (j = 0; j < rnemdLogWidth_; j++) {
2077 <          yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j];
2074 >      }
2075 >      rnemdFile_ << std::endl;
2076 >      
2077 >      rnemdFile_.precision(8);
2078 >      
2079 >      for (int j = 0; j < nBins_; j++) {        
2080 >        
2081 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2082 >          if (outputMask_[i]) {
2083 >            if (data_[i].dataType == "RealType")
2084 >              writeReal(i,j);
2085 >            else if (data_[i].dataType == "Vector3d")
2086 >              writeVector(i,j);
2087 >            else {
2088 >              sprintf( painCave.errMsg,
2089 >                       "RNEMD found an unknown data type for: %s ",
2090 >                       data_[i].title.c_str());
2091 >              painCave.isFatal = 1;
2092 >              simError();
2093 >            }
2094 >          }
2095          }
2096 <        yTempLog_ << "\n";
2097 <        zTempLog_ << time;
2098 <        for (j = 0; j < rnemdLogWidth_; j++) {
2099 <          zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j];
2096 >        rnemdFile_ << std::endl;
2097 >        
2098 >      }        
2099 >
2100 >      rnemdFile_ << "#######################################################\n";
2101 >      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
2102 >      rnemdFile_ << "#######################################################\n";
2103 >
2104 >
2105 >      for (int j = 0; j < nBins_; j++) {        
2106 >        rnemdFile_ << "#";
2107 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2108 >          if (outputMask_[i]) {
2109 >            if (data_[i].dataType == "RealType")
2110 >              writeRealStdDev(i,j);
2111 >            else if (data_[i].dataType == "Vector3d")
2112 >              writeVectorStdDev(i,j);
2113 >            else {
2114 >              sprintf( painCave.errMsg,
2115 >                       "RNEMD found an unknown data type for: %s ",
2116 >                       data_[i].title.c_str());
2117 >              painCave.isFatal = 1;
2118 >              simError();
2119 >            }
2120 >          }
2121          }
2122 <        zTempLog_ << "\n";
2123 <      }
2122 >        rnemdFile_ << std::endl;
2123 >        
2124 >      }        
2125 >      
2126 >      rnemdFile_.flush();
2127 >      rnemdFile_.close();
2128 >      
2129   #ifdef IS_MPI
2130      }
2131   #endif
2132 <    for (j = 0; j < rnemdLogWidth_; j++) {
2133 <      valueCount_[j] = 0;
2134 <      valueHist_[j] = 0.0;
2132 >    
2133 >  }
2134 >  
2135 >  void RNEMD::writeReal(int index, unsigned int bin) {
2136 >    if (!doRNEMD_) return;
2137 >    assert(index >=0 && index < ENDINDEX);
2138 >    assert(int(bin) < nBins_);
2139 >    RealType s;
2140 >    int count;
2141 >    
2142 >    count = data_[index].accumulator[bin]->count();
2143 >    if (count == 0) return;
2144 >    
2145 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2146 >    
2147 >    if (! isinf(s) && ! isnan(s)) {
2148 >      rnemdFile_ << "\t" << s;
2149 >    } else{
2150 >      sprintf( painCave.errMsg,
2151 >               "RNEMD detected a numerical error writing: %s for bin %d",
2152 >               data_[index].title.c_str(), bin);
2153 >      painCave.isFatal = 1;
2154 >      simError();
2155 >    }    
2156 >  }
2157 >  
2158 >  void RNEMD::writeVector(int index, unsigned int bin) {
2159 >    if (!doRNEMD_) return;
2160 >    assert(index >=0 && index < ENDINDEX);
2161 >    assert(int(bin) < nBins_);
2162 >    Vector3d s;
2163 >    int count;
2164 >    
2165 >    count = data_[index].accumulator[bin]->count();
2166 >
2167 >    if (count == 0) return;
2168 >
2169 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2170 >    if (isinf(s[0]) || isnan(s[0]) ||
2171 >        isinf(s[1]) || isnan(s[1]) ||
2172 >        isinf(s[2]) || isnan(s[2]) ) {      
2173 >      sprintf( painCave.errMsg,
2174 >               "RNEMD detected a numerical error writing: %s for bin %d",
2175 >               data_[index].title.c_str(), bin);
2176 >      painCave.isFatal = 1;
2177 >      simError();
2178 >    } else {
2179 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2180      }
2181 <    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale)
2182 <      for (j = 0; j < rnemdLogWidth_; j++) {
2183 <        xTempHist_[j] = 0.0;
2184 <        yTempHist_[j] = 0.0;
2185 <        zTempHist_[j] = 0.0;
2186 <      }
2181 >  }  
2182 >
2183 >  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
2184 >    if (!doRNEMD_) return;
2185 >    assert(index >=0 && index < ENDINDEX);
2186 >    assert(int(bin) < nBins_);
2187 >    RealType s;
2188 >    int count;
2189 >    
2190 >    count = data_[index].accumulator[bin]->count();
2191 >    if (count == 0) return;
2192 >    
2193 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
2194 >    
2195 >    if (! isinf(s) && ! isnan(s)) {
2196 >      rnemdFile_ << "\t" << s;
2197 >    } else{
2198 >      sprintf( painCave.errMsg,
2199 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
2200 >               data_[index].title.c_str(), bin);
2201 >      painCave.isFatal = 1;
2202 >      simError();
2203 >    }    
2204    }
2205 +  
2206 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
2207 +    if (!doRNEMD_) return;
2208 +    assert(index >=0 && index < ENDINDEX);
2209 +    assert(int(bin) < nBins_);
2210 +    Vector3d s;
2211 +    int count;
2212 +    
2213 +    count = data_[index].accumulator[bin]->count();
2214 +    if (count == 0) return;
2215 +
2216 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
2217 +    if (isinf(s[0]) || isnan(s[0]) ||
2218 +        isinf(s[1]) || isnan(s[1]) ||
2219 +        isinf(s[2]) || isnan(s[2]) ) {      
2220 +      sprintf( painCave.errMsg,
2221 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
2222 +               data_[index].title.c_str(), bin);
2223 +      painCave.isFatal = 1;
2224 +      simError();
2225 +    } else {
2226 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2227 +    }
2228 +  }  
2229   }
2230 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines