ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1856 by gezelter, Tue Apr 2 21:30:34 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
19 < *    notice, this list of conditions and the following disclaimer.
20 < *
21 < * 3. Redistributions in binary form must reproduce the above copyright
22 < *    notice, this list of conditions and the following disclaimer in the
23 < *    documentation and/or other materials provided with the
24 < *    distribution.
25 < *
26 < * This software is provided "AS IS," without a warranty of any
27 < * kind. All express or implied conditions, representations and
28 < * warranties, including any implied warranty of merchantability,
29 < * fitness for a particular purpose or non-infringement, are hereby
30 < * excluded.  The University of Notre Dame and its licensors shall not
31 < * be liable for any damages suffered by licensee as a result of
32 < * using, modifying or distributing the software or its
33 < * derivatives. In no event will the University of Notre Dame or its
34 < * licensors be liable for any lost revenue, profit or data, or for
35 < * direct, indirect, special, consequential, incidental or punitive
36 < * damages, however caused and regardless of the theory of liability,
37 < * arising out of the use of or inability to use software, even if the
38 < * University of Notre Dame has been advised of the possibility of
39 < * such damages.
40 < */
41 <
42 < #include "integrators/RNEMD.hpp"
43 < #include "math/SquareMatrix3.hpp"
44 < #include "primitives/Molecule.hpp"
45 < #include "primitives/StuntDouble.hpp"
46 <
47 < #ifndef IS_MPI
48 < #include "math/SeqRandNumGen.hpp"
49 < #else
50 < #include "math/ParallelRandNumGen.hpp"
51 < #endif
52 <
53 < /* Remove me after testing*/
54 < /*
55 < #include <cstdio>
56 < #include <iostream>
57 < */
58 < /*End remove me*/
59 <
60 < namespace oopse {
61 <  
62 <  RNEMD::RNEMD(SimInfo* info) : info_(info) {
63 <    
64 <    int seedValue;
65 <    Globals * simParams = info->getSimParams();
66 <
67 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
68 <    stringToEnumMap_["Px"] = rnemdPx;
69 <    stringToEnumMap_["Py"] = rnemdPy;
70 <    stringToEnumMap_["Pz"] = rnemdPz;
71 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
72 <
73 <    const std::string st = simParams->getRNEMD_swapType();
74 <
75 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
76 <    i = stringToEnumMap_.find(st);
77 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
78 <
79 <
80 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
81 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
82 <    exchangeSum_ = 0.0;
83 <    
84 < #ifndef IS_MPI
85 <    if (simParams->haveSeed()) {
86 <      seedValue = simParams->getSeed();
87 <      randNumGen_ = new SeqRandNumGen(seedValue);
88 <    }else {
89 <      randNumGen_ = new SeqRandNumGen();
90 <    }    
91 < #else
92 <    if (simParams->haveSeed()) {
93 <      seedValue = simParams->getSeed();
94 <      randNumGen_ = new ParallelRandNumGen(seedValue);
95 <    }else {
96 <      randNumGen_ = new ParallelRandNumGen();
97 <    }    
98 < #endif
99 <  }
100 <  
101 <  RNEMD::~RNEMD() {
102 <    delete randNumGen_;
103 <  }
104 <
105 <  void RNEMD::doSwap() {
106 <    std::cerr << "in RNEMD!\n";  
107 <    std::cerr << "nBins = " << nBins_ << "\n";
108 <    std::cerr << "swapTime = " << swapTime_ << "\n";
109 <    std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
110 <    std::cerr << "swapType = " << rnemdType_ << "\n";
111 <  }  
112 < }
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > #include <cmath>
43 > #include <sstream>
44 > #include <string>
45 >
46 > #include "rnemd/RNEMD.hpp"
47 > #include "math/Vector3.hpp"
48 > #include "math/Vector.hpp"
49 > #include "math/SquareMatrix3.hpp"
50 > #include "math/Polynomial.hpp"
51 > #include "primitives/Molecule.hpp"
52 > #include "primitives/StuntDouble.hpp"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "utils/Tuple.hpp"
55 > #include "brains/Thermo.hpp"
56 > #include "math/ConvexHull.hpp"
57 > #ifdef IS_MPI
58 > #include <mpi.h>
59 > #endif
60 >
61 > #ifdef _MSC_VER
62 > #define isnan(x) _isnan((x))
63 > #define isinf(x) (!_finite(x) && !_isnan(x))
64 > #endif
65 >
66 > #define HONKING_LARGE_VALUE 1.0e10
67 >
68 > using namespace std;
69 > namespace OpenMD {
70 >  
71 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 >                                evaluatorA_(info), seleManA_(info),
73 >                                commonA_(info), evaluatorB_(info),
74 >                                seleManB_(info), commonB_(info),
75 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
76 >
77 >    trialCount_ = 0;
78 >    failTrialCount_ = 0;
79 >    failRootCount_ = 0;
80 >
81 >    Globals* simParams = info->getSimParams();
82 >    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
83 >
84 >    doRNEMD_ = rnemdParams->getUseRNEMD();
85 >    if (!doRNEMD_) return;
86 >
87 >    stringToMethod_["Swap"]  = rnemdSwap;
88 >    stringToMethod_["NIVS"]  = rnemdNIVS;
89 >    stringToMethod_["VSS"]   = rnemdVSS;
90 >
91 >    stringToFluxType_["KE"]  = rnemdKE;
92 >    stringToFluxType_["Px"]  = rnemdPx;
93 >    stringToFluxType_["Py"]  = rnemdPy;
94 >    stringToFluxType_["Pz"]  = rnemdPz;
95 >    stringToFluxType_["Pvector"]  = rnemdPvector;
96 >    stringToFluxType_["Lx"]  = rnemdLx;
97 >    stringToFluxType_["Ly"]  = rnemdLy;
98 >    stringToFluxType_["Lz"]  = rnemdLz;
99 >    stringToFluxType_["Lvector"]  = rnemdLvector;
100 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
101 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
102 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
103 >    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
104 >    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
105 >    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
106 >    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
107 >
108 >    runTime_ = simParams->getRunTime();
109 >    statusTime_ = simParams->getStatusTime();
110 >
111 >    const string methStr = rnemdParams->getMethod();
112 >    bool hasFluxType = rnemdParams->haveFluxType();
113 >
114 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
115 >
116 >    string fluxStr;
117 >    if (hasFluxType) {
118 >      fluxStr = rnemdParams->getFluxType();
119 >    } else {
120 >      sprintf(painCave.errMsg,
121 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
122 >              "\twhich must be one of the following values:\n"
123 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
124 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
125 >              "\tmust be set to use RNEMD\n");
126 >      painCave.isFatal = 1;
127 >      painCave.severity = OPENMD_ERROR;
128 >      simError();
129 >    }
130 >
131 >    bool hasKineticFlux = rnemdParams->haveKineticFlux();
132 >    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
133 >    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
134 >    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
135 >    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
136 >    hasSelectionA_ = rnemdParams->haveSelectionA();
137 >    hasSelectionB_ = rnemdParams->haveSelectionB();
138 >    bool hasSlabWidth = rnemdParams->haveSlabWidth();
139 >    bool hasSlabACenter = rnemdParams->haveSlabACenter();
140 >    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
141 >    bool hasSphereARadius = rnemdParams->haveSphereARadius();
142 >    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
143 >    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
144 >    bool hasOutputFileName = rnemdParams->haveOutputFileName();
145 >    bool hasOutputFields = rnemdParams->haveOutputFields();
146 >    
147 >    map<string, RNEMDMethod>::iterator i;
148 >    i = stringToMethod_.find(methStr);
149 >    if (i != stringToMethod_.end())
150 >      rnemdMethod_ = i->second;
151 >    else {
152 >      sprintf(painCave.errMsg,
153 >              "RNEMD: The current method,\n"
154 >              "\t\t%s is not one of the recognized\n"
155 >              "\texchange methods: Swap, NIVS, or VSS\n",
156 >              methStr.c_str());
157 >      painCave.isFatal = 1;
158 >      painCave.severity = OPENMD_ERROR;
159 >      simError();
160 >    }
161 >
162 >    map<string, RNEMDFluxType>::iterator j;
163 >    j = stringToFluxType_.find(fluxStr);
164 >    if (j != stringToFluxType_.end())
165 >      rnemdFluxType_ = j->second;
166 >    else {
167 >      sprintf(painCave.errMsg,
168 >              "RNEMD: The current fluxType,\n"
169 >              "\t\t%s\n"
170 >              "\tis not one of the recognized flux types.\n",
171 >              fluxStr.c_str());
172 >      painCave.isFatal = 1;
173 >      painCave.severity = OPENMD_ERROR;
174 >      simError();
175 >    }
176 >
177 >    bool methodFluxMismatch = false;
178 >    bool hasCorrectFlux = false;
179 >    switch(rnemdMethod_) {
180 >    case rnemdSwap:
181 >      switch (rnemdFluxType_) {
182 >      case rnemdKE:
183 >        hasCorrectFlux = hasKineticFlux;
184 >        break;
185 >      case rnemdPx:
186 >      case rnemdPy:
187 >      case rnemdPz:
188 >        hasCorrectFlux = hasMomentumFlux;
189 >        break;
190 >      default :
191 >        methodFluxMismatch = true;
192 >        break;
193 >      }
194 >      break;
195 >    case rnemdNIVS:
196 >      switch (rnemdFluxType_) {
197 >      case rnemdKE:
198 >      case rnemdRotKE:
199 >      case rnemdFullKE:
200 >        hasCorrectFlux = hasKineticFlux;
201 >        break;
202 >      case rnemdPx:
203 >      case rnemdPy:
204 >      case rnemdPz:
205 >        hasCorrectFlux = hasMomentumFlux;
206 >        break;
207 >      case rnemdKePx:
208 >      case rnemdKePy:
209 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
210 >        break;
211 >      default:
212 >        methodFluxMismatch = true;
213 >        break;
214 >      }
215 >      break;
216 >    case rnemdVSS:
217 >      switch (rnemdFluxType_) {
218 >      case rnemdKE:
219 >      case rnemdRotKE:
220 >      case rnemdFullKE:
221 >        hasCorrectFlux = hasKineticFlux;
222 >        break;
223 >      case rnemdPx:
224 >      case rnemdPy:
225 >      case rnemdPz:
226 >        hasCorrectFlux = hasMomentumFlux;
227 >        break;
228 >      case rnemdLx:
229 >      case rnemdLy:
230 >      case rnemdLz:
231 >        hasCorrectFlux = hasAngularMomentumFlux;
232 >        break;
233 >      case rnemdPvector:
234 >        hasCorrectFlux = hasMomentumFluxVector;
235 >        break;
236 >      case rnemdLvector:
237 >        hasCorrectFlux = hasAngularMomentumFluxVector;
238 >        break;
239 >      case rnemdKePx:
240 >      case rnemdKePy:
241 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
242 >        break;
243 >      case rnemdKeLx:
244 >      case rnemdKeLy:
245 >      case rnemdKeLz:
246 >        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
247 >        break;
248 >      case rnemdKePvector:
249 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
250 >        break;
251 >      case rnemdKeLvector:
252 >        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
253 >        break;
254 >      default:
255 >        methodFluxMismatch = true;
256 >        break;
257 >      }
258 >    default:
259 >      break;
260 >    }
261 >
262 >    if (methodFluxMismatch) {
263 >      sprintf(painCave.errMsg,
264 >              "RNEMD: The current method,\n"
265 >              "\t\t%s\n"
266 >              "\tcannot be used with the current flux type, %s\n",
267 >              methStr.c_str(), fluxStr.c_str());
268 >      painCave.isFatal = 1;
269 >      painCave.severity = OPENMD_ERROR;
270 >      simError();        
271 >    }
272 >    if (!hasCorrectFlux) {
273 >      sprintf(painCave.errMsg,
274 >              "RNEMD: The current method, %s, and flux type, %s,\n"
275 >              "\tdid not have the correct flux value specified. Options\n"
276 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
277 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
278 >              methStr.c_str(), fluxStr.c_str());
279 >      painCave.isFatal = 1;
280 >      painCave.severity = OPENMD_ERROR;
281 >      simError();        
282 >    }
283 >
284 >    if (hasKineticFlux) {
285 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
286 >      // into  amu / fs^3:
287 >      kineticFlux_ = rnemdParams->getKineticFlux()
288 >        * PhysicalConstants::energyConvert;
289 >    } else {
290 >      kineticFlux_ = 0.0;
291 >    }
292 >    if (hasMomentumFluxVector) {
293 >      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
294 >    } else {
295 >      momentumFluxVector_ = V3Zero;
296 >      if (hasMomentumFlux) {
297 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
298 >        switch (rnemdFluxType_) {
299 >        case rnemdPx:
300 >          momentumFluxVector_.x() = momentumFlux;
301 >          break;
302 >        case rnemdPy:
303 >          momentumFluxVector_.y() = momentumFlux;
304 >          break;
305 >        case rnemdPz:
306 >          momentumFluxVector_.z() = momentumFlux;
307 >          break;
308 >        case rnemdKePx:
309 >          momentumFluxVector_.x() = momentumFlux;
310 >          break;
311 >        case rnemdKePy:
312 >          momentumFluxVector_.y() = momentumFlux;
313 >          break;
314 >        default:
315 >          break;
316 >        }
317 >      }
318 >      if (hasAngularMomentumFluxVector) {
319 >        angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector();
320 >      } else {
321 >        angularMomentumFluxVector_ = V3Zero;
322 >        if (hasAngularMomentumFlux) {
323 >          RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
324 >          switch (rnemdFluxType_) {
325 >          case rnemdLx:
326 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
327 >            break;
328 >          case rnemdLy:
329 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
330 >            break;
331 >          case rnemdLz:
332 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
333 >            break;
334 >          case rnemdKeLx:
335 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
336 >            break;
337 >          case rnemdKeLy:
338 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
339 >            break;
340 >          case rnemdKeLz:
341 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
342 >            break;
343 >          default:
344 >            break;
345 >          }
346 >        }        
347 >      }
348 >
349 >      if (hasCoordinateOrigin) {
350 >        coordinateOrigin_ = rnemdParams->getCoordinateOrigin();
351 >      } else {
352 >        coordinateOrigin_ = V3Zero;
353 >      }
354 >
355 >      // do some sanity checking
356 >
357 >      int selectionCount = seleMan_.getSelectionCount();
358 >
359 >      int nIntegrable = info->getNGlobalIntegrableObjects();
360 >
361 >      if (selectionCount > nIntegrable) {
362 >        sprintf(painCave.errMsg,
363 >                "RNEMD: The current objectSelection,\n"
364 >                "\t\t%s\n"
365 >                "\thas resulted in %d selected objects.  However,\n"
366 >                "\tthe total number of integrable objects in the system\n"
367 >                "\tis only %d.  This is almost certainly not what you want\n"
368 >                "\tto do.  A likely cause of this is forgetting the _RB_0\n"
369 >                "\tselector in the selection script!\n",
370 >                rnemdObjectSelection_.c_str(),
371 >                selectionCount, nIntegrable);
372 >        painCave.isFatal = 0;
373 >        painCave.severity = OPENMD_WARNING;
374 >        simError();
375 >      }
376 >
377 >      areaAccumulator_ = new Accumulator();
378 >
379 >      nBins_ = rnemdParams->getOutputBins();
380 >      binWidth_ = rnemdParams->getOutputBinWidth();
381 >
382 >      data_.resize(RNEMD::ENDINDEX);
383 >      OutputData z;
384 >      z.units =  "Angstroms";
385 >      z.title =  "Z";
386 >      z.dataType = "RealType";
387 >      z.accumulator.reserve(nBins_);
388 >      for (int i = 0; i < nBins_; i++)
389 >        z.accumulator.push_back( new Accumulator() );
390 >      data_[Z] = z;
391 >      outputMap_["Z"] =  Z;
392 >
393 >      OutputData r;
394 >      r.units =  "Angstroms";
395 >      r.title =  "R";
396 >      r.dataType = "RealType";
397 >      r.accumulator.reserve(nBins_);
398 >      for (int i = 0; i < nBins_; i++)
399 >        r.accumulator.push_back( new Accumulator() );
400 >      data_[R] = r;
401 >      outputMap_["R"] =  R;
402 >
403 >      OutputData temperature;
404 >      temperature.units =  "K";
405 >      temperature.title =  "Temperature";
406 >      temperature.dataType = "RealType";
407 >      temperature.accumulator.reserve(nBins_);
408 >      for (int i = 0; i < nBins_; i++)
409 >        temperature.accumulator.push_back( new Accumulator() );
410 >      data_[TEMPERATURE] = temperature;
411 >      outputMap_["TEMPERATURE"] =  TEMPERATURE;
412 >
413 >      OutputData velocity;
414 >      velocity.units = "angstroms/fs";
415 >      velocity.title =  "Velocity";  
416 >      velocity.dataType = "Vector3d";
417 >      velocity.accumulator.reserve(nBins_);
418 >      for (int i = 0; i < nBins_; i++)
419 >        velocity.accumulator.push_back( new VectorAccumulator() );
420 >      data_[VELOCITY] = velocity;
421 >      outputMap_["VELOCITY"] = VELOCITY;
422 >
423 >      OutputData angularVelocity;
424 >      angularVelocity.units = "angstroms^2/fs";
425 >      angularVelocity.title =  "AngularVelocity";  
426 >      angularVelocity.dataType = "Vector3d";
427 >      angularVelocity.accumulator.reserve(nBins_);
428 >      for (int i = 0; i < nBins_; i++)
429 >        angularVelocity.accumulator.push_back( new VectorAccumulator() );
430 >      data_[ANGULARVELOCITY] = angularVelocity;
431 >      outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
432 >
433 >      OutputData density;
434 >      density.units =  "g cm^-3";
435 >      density.title =  "Density";
436 >      density.dataType = "RealType";
437 >      density.accumulator.reserve(nBins_);
438 >      for (int i = 0; i < nBins_; i++)
439 >        density.accumulator.push_back( new Accumulator() );
440 >      data_[DENSITY] = density;
441 >      outputMap_["DENSITY"] =  DENSITY;
442 >
443 >      if (hasOutputFields) {
444 >        parseOutputFileFormat(rnemdParams->getOutputFields());
445 >      } else {
446 >        if (usePeriodicBoundaryConditions_)
447 >          outputMask_.set(Z);
448 >        else
449 >          outputMask_.set(R);
450 >        switch (rnemdFluxType_) {
451 >        case rnemdKE:
452 >        case rnemdRotKE:
453 >        case rnemdFullKE:
454 >          outputMask_.set(TEMPERATURE);
455 >          break;
456 >        case rnemdPx:
457 >        case rnemdPy:
458 >          outputMask_.set(VELOCITY);
459 >          break;
460 >        case rnemdPz:        
461 >        case rnemdPvector:
462 >          outputMask_.set(VELOCITY);
463 >          outputMask_.set(DENSITY);
464 >          break;
465 >        case rnemdLx:
466 >        case rnemdLy:
467 >        case rnemdLz:
468 >        case rnemdLvector:
469 >          outputMask_.set(ANGULARVELOCITY);
470 >          break;
471 >        case rnemdKeLx:
472 >        case rnemdKeLy:
473 >        case rnemdKeLz:
474 >        case rnemdKeLvector:
475 >          outputMask_.set(TEMPERATURE);
476 >          outputMask_.set(ANGULARVELOCITY);
477 >          break;
478 >        case rnemdKePx:
479 >        case rnemdKePy:
480 >          outputMask_.set(TEMPERATURE);
481 >          outputMask_.set(VELOCITY);
482 >          break;
483 >        case rnemdKePvector:
484 >          outputMask_.set(TEMPERATURE);
485 >          outputMask_.set(VELOCITY);
486 >          outputMask_.set(DENSITY);        
487 >          break;
488 >        default:
489 >          break;
490 >        }
491 >      }
492 >      
493 >      if (hasOutputFileName) {
494 >        rnemdFileName_ = rnemdParams->getOutputFileName();
495 >      } else {
496 >        rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
497 >      }          
498 >
499 >      exchangeTime_ = rnemdParams->getExchangeTime();
500 >
501 >      Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
502 >      // total exchange sums are zeroed out at the beginning:
503 >
504 >      kineticExchange_ = 0.0;
505 >      momentumExchange_ = V3Zero;
506 >      angularMomentumExchange_ = V3Zero;
507 >
508 >      std::ostringstream selectionAstream;
509 >      std::ostringstream selectionBstream;
510 >    
511 >      if (hasSelectionA_) {
512 >        selectionA_ = rnemdParams->getSelectionA();
513 >      } else {
514 >        if (usePeriodicBoundaryConditions_) {    
515 >          Mat3x3d hmat = currentSnap_->getHmat();
516 >        
517 >          if (hasSlabWidth)
518 >            slabWidth_ = rnemdParams->getSlabWidth();
519 >          else
520 >            slabWidth_ = hmat(2,2) / 10.0;
521 >        
522 >          if (hasSlabACenter)
523 >            slabACenter_ = rnemdParams->getSlabACenter();
524 >          else
525 >            slabACenter_ = 0.0;
526 >        
527 >          selectionAstream << "select wrappedz > "
528 >                           << slabACenter_ - 0.5*slabWidth_
529 >                           <<  " && wrappedz < "
530 >                           << slabACenter_ + 0.5*slabWidth_;
531 >          selectionA_ = selectionAstream.str();
532 >        } else {
533 >          if (hasSphereARadius)
534 >            sphereARadius_ = rnemdParams->getSphereARadius();
535 >          else {
536 >            // use an initial guess to the size of the inner slab to be 1/10 the
537 >            // radius of an approximately spherical hull:
538 >            Thermo thermo(info);
539 >            RealType hVol = thermo.getHullVolume();
540 >            sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
541 >          }
542 >          selectionAstream << "select r < " << sphereARadius_;
543 >          selectionA_ = selectionAstream.str();
544 >        }
545 >      }
546 >    
547 >      if (hasSelectionB_) {
548 >        selectionB_ = rnemdParams->getSelectionB();
549 >      } else {
550 >        if (usePeriodicBoundaryConditions_) {    
551 >          Mat3x3d hmat = currentSnap_->getHmat();
552 >        
553 >          if (hasSlabWidth)
554 >            slabWidth_ = rnemdParams->getSlabWidth();
555 >          else
556 >            slabWidth_ = hmat(2,2) / 10.0;
557 >        
558 >          if (hasSlabBCenter)
559 >            slabBCenter_ = rnemdParams->getSlabACenter();
560 >          else
561 >            slabBCenter_ = hmat(2,2) / 2.0;
562 >        
563 >          selectionBstream << "select wrappedz > "
564 >                           << slabBCenter_ - 0.5*slabWidth_
565 >                           <<  " && wrappedz < "
566 >                           << slabBCenter_ + 0.5*slabWidth_;
567 >          selectionB_ = selectionBstream.str();
568 >        } else {
569 >          if (hasSphereBRadius_) {
570 >            sphereBRadius_ = rnemdParams->getSphereBRadius();
571 >            selectionBstream << "select r > " << sphereBRadius_;
572 >            selectionB_ = selectionBstream.str();
573 >          } else {
574 >            selectionB_ = "select hull";
575 >            hasSelectionB_ = true;
576 >          }
577 >        }
578 >      }
579 >    }
580 >    // object evaluator:
581 >    evaluator_.loadScriptString(rnemdObjectSelection_);
582 >    seleMan_.setSelectionSet(evaluator_.evaluate());
583 >    
584 >    evaluatorA_.loadScriptString(selectionA_);
585 >    evaluatorB_.loadScriptString(selectionB_);
586 >    
587 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
588 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
589 >    
590 >    commonA_ = seleManA_ & seleMan_;
591 >    commonB_ = seleManB_ & seleMan_;    
592 >  }
593 >  
594 >    
595 >  RNEMD::~RNEMD() {
596 >    if (!doRNEMD_) return;
597 > #ifdef IS_MPI
598 >    if (worldRank == 0) {
599 > #endif
600 >
601 >      writeOutputFile();
602 >
603 >      rnemdFile_.close();
604 >      
605 > #ifdef IS_MPI
606 >    }
607 > #endif
608 >  }
609 >  
610 >  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
611 >    if (!doRNEMD_) return;
612 >    int selei;
613 >    int selej;
614 >
615 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
616 >    Mat3x3d hmat = currentSnap_->getHmat();
617 >
618 >    StuntDouble* sd;
619 >
620 >    RealType min_val;
621 >    bool min_found = false;  
622 >    StuntDouble* min_sd;
623 >
624 >    RealType max_val;
625 >    bool max_found = false;
626 >    StuntDouble* max_sd;
627 >
628 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
629 >         sd = seleManA_.nextSelected(selei)) {
630 >
631 >      Vector3d pos = sd->getPos();
632 >      
633 >      // wrap the stuntdouble's position back into the box:
634 >      
635 >      if (usePeriodicBoundaryConditions_)
636 >        currentSnap_->wrapVector(pos);
637 >      
638 >      RealType mass = sd->getMass();
639 >      Vector3d vel = sd->getVel();
640 >      RealType value;
641 >      
642 >      switch(rnemdFluxType_) {
643 >      case rnemdKE :
644 >        
645 >        value = mass * vel.lengthSquare();
646 >        
647 >        if (sd->isDirectional()) {
648 >          Vector3d angMom = sd->getJ();
649 >          Mat3x3d I = sd->getI();
650 >          
651 >          if (sd->isLinear()) {
652 >            int i = sd->linearAxis();
653 >            int j = (i + 1) % 3;
654 >            int k = (i + 2) % 3;
655 >            value += angMom[j] * angMom[j] / I(j, j) +
656 >              angMom[k] * angMom[k] / I(k, k);
657 >          } else {                        
658 >            value += angMom[0]*angMom[0]/I(0, 0)
659 >              + angMom[1]*angMom[1]/I(1, 1)
660 >              + angMom[2]*angMom[2]/I(2, 2);
661 >          }
662 >        } //angular momenta exchange enabled
663 >        value *= 0.5;
664 >        break;
665 >      case rnemdPx :
666 >        value = mass * vel[0];
667 >        break;
668 >      case rnemdPy :
669 >        value = mass * vel[1];
670 >        break;
671 >      case rnemdPz :
672 >        value = mass * vel[2];
673 >        break;
674 >      default :
675 >        break;
676 >      }
677 >      if (!max_found) {
678 >        max_val = value;
679 >        max_sd = sd;
680 >        max_found = true;
681 >      } else {
682 >        if (max_val < value) {
683 >          max_val = value;
684 >          max_sd = sd;
685 >        }
686 >      }  
687 >    }
688 >        
689 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
690 >         sd = seleManB_.nextSelected(selej)) {
691 >
692 >      Vector3d pos = sd->getPos();
693 >      
694 >      // wrap the stuntdouble's position back into the box:
695 >      
696 >      if (usePeriodicBoundaryConditions_)
697 >        currentSnap_->wrapVector(pos);
698 >      
699 >      RealType mass = sd->getMass();
700 >      Vector3d vel = sd->getVel();
701 >      RealType value;
702 >      
703 >      switch(rnemdFluxType_) {
704 >      case rnemdKE :
705 >        
706 >        value = mass * vel.lengthSquare();
707 >        
708 >        if (sd->isDirectional()) {
709 >          Vector3d angMom = sd->getJ();
710 >          Mat3x3d I = sd->getI();
711 >          
712 >          if (sd->isLinear()) {
713 >            int i = sd->linearAxis();
714 >            int j = (i + 1) % 3;
715 >            int k = (i + 2) % 3;
716 >            value += angMom[j] * angMom[j] / I(j, j) +
717 >              angMom[k] * angMom[k] / I(k, k);
718 >          } else {                        
719 >            value += angMom[0]*angMom[0]/I(0, 0)
720 >              + angMom[1]*angMom[1]/I(1, 1)
721 >              + angMom[2]*angMom[2]/I(2, 2);
722 >          }
723 >        } //angular momenta exchange enabled
724 >        value *= 0.5;
725 >        break;
726 >      case rnemdPx :
727 >        value = mass * vel[0];
728 >        break;
729 >      case rnemdPy :
730 >        value = mass * vel[1];
731 >        break;
732 >      case rnemdPz :
733 >        value = mass * vel[2];
734 >        break;
735 >      default :
736 >        break;
737 >      }
738 >      
739 >      if (!min_found) {
740 >        min_val = value;
741 >        min_sd = sd;
742 >        min_found = true;
743 >      } else {
744 >        if (min_val > value) {
745 >          min_val = value;
746 >          min_sd = sd;
747 >        }
748 >      }
749 >    }
750 >    
751 > #ifdef IS_MPI    
752 >    int worldRank = MPI::COMM_WORLD.Get_rank();
753 >    
754 >    bool my_min_found = min_found;
755 >    bool my_max_found = max_found;
756 >
757 >    // Even if we didn't find a minimum, did someone else?
758 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
759 >    // Even if we didn't find a maximum, did someone else?
760 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
761 > #endif
762 >
763 >    if (max_found && min_found) {
764 >
765 > #ifdef IS_MPI
766 >      struct {
767 >        RealType val;
768 >        int rank;
769 >      } max_vals, min_vals;
770 >      
771 >      if (my_min_found) {
772 >        min_vals.val = min_val;
773 >      } else {
774 >        min_vals.val = HONKING_LARGE_VALUE;
775 >      }
776 >      min_vals.rank = worldRank;    
777 >      
778 >      // Who had the minimum?
779 >      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
780 >                                1, MPI::REALTYPE_INT, MPI::MINLOC);
781 >      min_val = min_vals.val;
782 >      
783 >      if (my_max_found) {
784 >        max_vals.val = max_val;
785 >      } else {
786 >        max_vals.val = -HONKING_LARGE_VALUE;
787 >      }
788 >      max_vals.rank = worldRank;    
789 >      
790 >      // Who had the maximum?
791 >      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
792 >                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
793 >      max_val = max_vals.val;
794 > #endif
795 >      
796 >      if (min_val < max_val) {
797 >        
798 > #ifdef IS_MPI      
799 >        if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
800 >          // I have both maximum and minimum, so proceed like a single
801 >          // processor version:
802 > #endif
803 >
804 >          Vector3d min_vel = min_sd->getVel();
805 >          Vector3d max_vel = max_sd->getVel();
806 >          RealType temp_vel;
807 >          
808 >          switch(rnemdFluxType_) {
809 >          case rnemdKE :
810 >            min_sd->setVel(max_vel);
811 >            max_sd->setVel(min_vel);
812 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
813 >              Vector3d min_angMom = min_sd->getJ();
814 >              Vector3d max_angMom = max_sd->getJ();
815 >              min_sd->setJ(max_angMom);
816 >              max_sd->setJ(min_angMom);
817 >            }//angular momenta exchange enabled
818 >            //assumes same rigid body identity
819 >            break;
820 >          case rnemdPx :
821 >            temp_vel = min_vel.x();
822 >            min_vel.x() = max_vel.x();
823 >            max_vel.x() = temp_vel;
824 >            min_sd->setVel(min_vel);
825 >            max_sd->setVel(max_vel);
826 >            break;
827 >          case rnemdPy :
828 >            temp_vel = min_vel.y();
829 >            min_vel.y() = max_vel.y();
830 >            max_vel.y() = temp_vel;
831 >            min_sd->setVel(min_vel);
832 >            max_sd->setVel(max_vel);
833 >            break;
834 >          case rnemdPz :
835 >            temp_vel = min_vel.z();
836 >            min_vel.z() = max_vel.z();
837 >            max_vel.z() = temp_vel;
838 >            min_sd->setVel(min_vel);
839 >            max_sd->setVel(max_vel);
840 >            break;
841 >          default :
842 >            break;
843 >          }
844 >
845 > #ifdef IS_MPI
846 >          // the rest of the cases only apply in parallel simulations:
847 >        } else if (max_vals.rank == worldRank) {
848 >          // I had the max, but not the minimum
849 >          
850 >          Vector3d min_vel;
851 >          Vector3d max_vel = max_sd->getVel();
852 >          MPI::Status status;
853 >
854 >          // point-to-point swap of the velocity vector
855 >          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
856 >                                   min_vals.rank, 0,
857 >                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
858 >                                   min_vals.rank, 0, status);
859 >          
860 >          switch(rnemdFluxType_) {
861 >          case rnemdKE :
862 >            max_sd->setVel(min_vel);
863 >            //angular momenta exchange enabled
864 >            if (max_sd->isDirectional()) {
865 >              Vector3d min_angMom;
866 >              Vector3d max_angMom = max_sd->getJ();
867 >              
868 >              // point-to-point swap of the angular momentum vector
869 >              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
870 >                                       MPI::REALTYPE, min_vals.rank, 1,
871 >                                       min_angMom.getArrayPointer(), 3,
872 >                                       MPI::REALTYPE, min_vals.rank, 1,
873 >                                       status);
874 >              
875 >              max_sd->setJ(min_angMom);
876 >            }
877 >            break;
878 >          case rnemdPx :
879 >            max_vel.x() = min_vel.x();
880 >            max_sd->setVel(max_vel);
881 >            break;
882 >          case rnemdPy :
883 >            max_vel.y() = min_vel.y();
884 >            max_sd->setVel(max_vel);
885 >            break;
886 >          case rnemdPz :
887 >            max_vel.z() = min_vel.z();
888 >            max_sd->setVel(max_vel);
889 >            break;
890 >          default :
891 >            break;
892 >          }
893 >        } else if (min_vals.rank == worldRank) {
894 >          // I had the minimum but not the maximum:
895 >          
896 >          Vector3d max_vel;
897 >          Vector3d min_vel = min_sd->getVel();
898 >          MPI::Status status;
899 >          
900 >          // point-to-point swap of the velocity vector
901 >          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
902 >                                   max_vals.rank, 0,
903 >                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
904 >                                   max_vals.rank, 0, status);
905 >          
906 >          switch(rnemdFluxType_) {
907 >          case rnemdKE :
908 >            min_sd->setVel(max_vel);
909 >            //angular momenta exchange enabled
910 >            if (min_sd->isDirectional()) {
911 >              Vector3d min_angMom = min_sd->getJ();
912 >              Vector3d max_angMom;
913 >              
914 >              // point-to-point swap of the angular momentum vector
915 >              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
916 >                                       MPI::REALTYPE, max_vals.rank, 1,
917 >                                       max_angMom.getArrayPointer(), 3,
918 >                                       MPI::REALTYPE, max_vals.rank, 1,
919 >                                       status);
920 >              
921 >              min_sd->setJ(max_angMom);
922 >            }
923 >            break;
924 >          case rnemdPx :
925 >            min_vel.x() = max_vel.x();
926 >            min_sd->setVel(min_vel);
927 >            break;
928 >          case rnemdPy :
929 >            min_vel.y() = max_vel.y();
930 >            min_sd->setVel(min_vel);
931 >            break;
932 >          case rnemdPz :
933 >            min_vel.z() = max_vel.z();
934 >            min_sd->setVel(min_vel);
935 >            break;
936 >          default :
937 >            break;
938 >          }
939 >        }
940 > #endif
941 >        
942 >        switch(rnemdFluxType_) {
943 >        case rnemdKE:
944 >          kineticExchange_ += max_val - min_val;
945 >          break;
946 >        case rnemdPx:
947 >          momentumExchange_.x() += max_val - min_val;
948 >          break;
949 >        case rnemdPy:
950 >          momentumExchange_.y() += max_val - min_val;
951 >          break;
952 >        case rnemdPz:
953 >          momentumExchange_.z() += max_val - min_val;
954 >          break;
955 >        default:
956 >          break;
957 >        }
958 >      } else {        
959 >        sprintf(painCave.errMsg,
960 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
961 >        painCave.isFatal = 0;
962 >        painCave.severity = OPENMD_INFO;
963 >        simError();        
964 >        failTrialCount_++;
965 >      }
966 >    } else {
967 >      sprintf(painCave.errMsg,
968 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
969 >              "\twas not present in at least one of the two slabs.\n");
970 >      painCave.isFatal = 0;
971 >      painCave.severity = OPENMD_INFO;
972 >      simError();        
973 >      failTrialCount_++;
974 >    }    
975 >  }
976 >  
977 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
978 >    if (!doRNEMD_) return;
979 >    int selei;
980 >    int selej;
981 >
982 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
983 >    RealType time = currentSnap_->getTime();    
984 >    Mat3x3d hmat = currentSnap_->getHmat();
985 >
986 >    StuntDouble* sd;
987 >
988 >    vector<StuntDouble*> hotBin, coldBin;
989 >
990 >    RealType Phx = 0.0;
991 >    RealType Phy = 0.0;
992 >    RealType Phz = 0.0;
993 >    RealType Khx = 0.0;
994 >    RealType Khy = 0.0;
995 >    RealType Khz = 0.0;
996 >    RealType Khw = 0.0;
997 >    RealType Pcx = 0.0;
998 >    RealType Pcy = 0.0;
999 >    RealType Pcz = 0.0;
1000 >    RealType Kcx = 0.0;
1001 >    RealType Kcy = 0.0;
1002 >    RealType Kcz = 0.0;
1003 >    RealType Kcw = 0.0;
1004 >
1005 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1006 >         sd = smanA.nextSelected(selei)) {
1007 >
1008 >      Vector3d pos = sd->getPos();
1009 >      
1010 >      // wrap the stuntdouble's position back into the box:
1011 >      
1012 >      if (usePeriodicBoundaryConditions_)
1013 >        currentSnap_->wrapVector(pos);
1014 >      
1015 >      
1016 >      RealType mass = sd->getMass();
1017 >      Vector3d vel = sd->getVel();
1018 >      
1019 >      hotBin.push_back(sd);
1020 >      Phx += mass * vel.x();
1021 >      Phy += mass * vel.y();
1022 >      Phz += mass * vel.z();
1023 >      Khx += mass * vel.x() * vel.x();
1024 >      Khy += mass * vel.y() * vel.y();
1025 >      Khz += mass * vel.z() * vel.z();
1026 >      if (sd->isDirectional()) {
1027 >        Vector3d angMom = sd->getJ();
1028 >        Mat3x3d I = sd->getI();
1029 >        if (sd->isLinear()) {
1030 >          int i = sd->linearAxis();
1031 >          int j = (i + 1) % 3;
1032 >          int k = (i + 2) % 3;
1033 >          Khw += angMom[j] * angMom[j] / I(j, j) +
1034 >            angMom[k] * angMom[k] / I(k, k);
1035 >        } else {
1036 >          Khw += angMom[0]*angMom[0]/I(0, 0)
1037 >            + angMom[1]*angMom[1]/I(1, 1)
1038 >            + angMom[2]*angMom[2]/I(2, 2);
1039 >        }
1040 >      }
1041 >    }
1042 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1043 >         sd = smanB.nextSelected(selej)) {
1044 >      Vector3d pos = sd->getPos();
1045 >      
1046 >      // wrap the stuntdouble's position back into the box:
1047 >      
1048 >      if (usePeriodicBoundaryConditions_)
1049 >        currentSnap_->wrapVector(pos);
1050 >            
1051 >      RealType mass = sd->getMass();
1052 >      Vector3d vel = sd->getVel();
1053 >
1054 >      coldBin.push_back(sd);
1055 >      Pcx += mass * vel.x();
1056 >      Pcy += mass * vel.y();
1057 >      Pcz += mass * vel.z();
1058 >      Kcx += mass * vel.x() * vel.x();
1059 >      Kcy += mass * vel.y() * vel.y();
1060 >      Kcz += mass * vel.z() * vel.z();
1061 >      if (sd->isDirectional()) {
1062 >        Vector3d angMom = sd->getJ();
1063 >        Mat3x3d I = sd->getI();
1064 >        if (sd->isLinear()) {
1065 >          int i = sd->linearAxis();
1066 >          int j = (i + 1) % 3;
1067 >          int k = (i + 2) % 3;
1068 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1069 >            angMom[k] * angMom[k] / I(k, k);
1070 >        } else {
1071 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1072 >            + angMom[1]*angMom[1]/I(1, 1)
1073 >            + angMom[2]*angMom[2]/I(2, 2);
1074 >        }
1075 >      }
1076 >    }
1077 >    
1078 >    Khx *= 0.5;
1079 >    Khy *= 0.5;
1080 >    Khz *= 0.5;
1081 >    Khw *= 0.5;
1082 >    Kcx *= 0.5;
1083 >    Kcy *= 0.5;
1084 >    Kcz *= 0.5;
1085 >    Kcw *= 0.5;
1086 >
1087 > #ifdef IS_MPI
1088 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
1089 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
1090 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
1091 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
1092 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
1093 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
1094 >
1095 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
1096 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
1097 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
1098 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
1099 >
1100 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
1101 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
1102 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
1103 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
1104 > #endif
1105 >
1106 >    //solve coldBin coeff's first
1107 >    RealType px = Pcx / Phx;
1108 >    RealType py = Pcy / Phy;
1109 >    RealType pz = Pcz / Phz;
1110 >    RealType c, x, y, z;
1111 >    bool successfulScale = false;
1112 >    if ((rnemdFluxType_ == rnemdFullKE) ||
1113 >        (rnemdFluxType_ == rnemdRotKE)) {
1114 >      //may need sanity check Khw & Kcw > 0
1115 >
1116 >      if (rnemdFluxType_ == rnemdFullKE) {
1117 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1118 >      } else {
1119 >        c = 1.0 - kineticTarget_ / Kcw;
1120 >      }
1121 >
1122 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1123 >        c = sqrt(c);
1124 >
1125 >        RealType w = 0.0;
1126 >        if (rnemdFluxType_ ==  rnemdFullKE) {
1127 >          x = 1.0 + px * (1.0 - c);
1128 >          y = 1.0 + py * (1.0 - c);
1129 >          z = 1.0 + pz * (1.0 - c);
1130 >          /* more complicated way
1131 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
1132 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
1133 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
1134 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
1135 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1136 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
1137 >          */
1138 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1139 >              (fabs(z - 1.0) < 0.1)) {
1140 >            w = 1.0 + (kineticTarget_
1141 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1142 >                       + Khz * (1.0 - z * z)) / Khw;
1143 >          }//no need to calculate w if x, y or z is out of range
1144 >        } else {
1145 >          w = 1.0 + kineticTarget_ / Khw;
1146 >        }
1147 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1148 >          //if w is in the right range, so should be x, y, z.
1149 >          vector<StuntDouble*>::iterator sdi;
1150 >          Vector3d vel;
1151 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1152 >            if (rnemdFluxType_ == rnemdFullKE) {
1153 >              vel = (*sdi)->getVel() * c;
1154 >              (*sdi)->setVel(vel);
1155 >            }
1156 >            if ((*sdi)->isDirectional()) {
1157 >              Vector3d angMom = (*sdi)->getJ() * c;
1158 >              (*sdi)->setJ(angMom);
1159 >            }
1160 >          }
1161 >          w = sqrt(w);
1162 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1163 >            if (rnemdFluxType_ == rnemdFullKE) {
1164 >              vel = (*sdi)->getVel();
1165 >              vel.x() *= x;
1166 >              vel.y() *= y;
1167 >              vel.z() *= z;
1168 >              (*sdi)->setVel(vel);
1169 >            }
1170 >            if ((*sdi)->isDirectional()) {
1171 >              Vector3d angMom = (*sdi)->getJ() * w;
1172 >              (*sdi)->setJ(angMom);
1173 >            }
1174 >          }
1175 >          successfulScale = true;
1176 >          kineticExchange_ += kineticTarget_;
1177 >        }
1178 >      }
1179 >    } else {
1180 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
1181 >      switch(rnemdFluxType_) {
1182 >      case rnemdKE :
1183 >        /* used hotBin coeff's & only scale x & y dimensions
1184 >           RealType px = Phx / Pcx;
1185 >           RealType py = Phy / Pcy;
1186 >           a110 = Khy;
1187 >           c0 = - Khx - Khy - kineticTarget_;
1188 >           a000 = Khx;
1189 >           a111 = Kcy * py * py;
1190 >           b11 = -2.0 * Kcy * py * (1.0 + py);
1191 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1192 >           b01 = -2.0 * Kcx * px * (1.0 + px);
1193 >           a001 = Kcx * px * px;
1194 >        */
1195 >        //scale all three dimensions, let c_x = c_y
1196 >        a000 = Kcx + Kcy;
1197 >        a110 = Kcz;
1198 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1199 >        a001 = Khx * px * px + Khy * py * py;
1200 >        a111 = Khz * pz * pz;
1201 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1202 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1203 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1204 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1205 >        break;
1206 >      case rnemdPx :
1207 >        c = 1 - momentumTarget_.x() / Pcx;
1208 >        a000 = Kcy;
1209 >        a110 = Kcz;
1210 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1211 >        a001 = py * py * Khy;
1212 >        a111 = pz * pz * Khz;
1213 >        b01 = -2.0 * Khy * py * (1.0 + py);
1214 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1215 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1216 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1217 >        break;
1218 >      case rnemdPy :
1219 >        c = 1 - momentumTarget_.y() / Pcy;
1220 >        a000 = Kcx;
1221 >        a110 = Kcz;
1222 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1223 >        a001 = px * px * Khx;
1224 >        a111 = pz * pz * Khz;
1225 >        b01 = -2.0 * Khx * px * (1.0 + px);
1226 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1227 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1228 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1229 >        break;
1230 >      case rnemdPz ://we don't really do this, do we?
1231 >        c = 1 - momentumTarget_.z() / Pcz;
1232 >        a000 = Kcx;
1233 >        a110 = Kcy;
1234 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1235 >        a001 = px * px * Khx;
1236 >        a111 = py * py * Khy;
1237 >        b01 = -2.0 * Khx * px * (1.0 + px);
1238 >        b11 = -2.0 * Khy * py * (1.0 + py);
1239 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1240 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1241 >        break;
1242 >      default :
1243 >        break;
1244 >      }
1245 >      
1246 >      RealType v1 = a000 * a111 - a001 * a110;
1247 >      RealType v2 = a000 * b01;
1248 >      RealType v3 = a000 * b11;
1249 >      RealType v4 = a000 * c1 - a001 * c0;
1250 >      RealType v8 = a110 * b01;
1251 >      RealType v10 = - b01 * c0;
1252 >      
1253 >      RealType u0 = v2 * v10 - v4 * v4;
1254 >      RealType u1 = -2.0 * v3 * v4;
1255 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1256 >      RealType u3 = -2.0 * v1 * v3;
1257 >      RealType u4 = - v1 * v1;
1258 >      //rescale coefficients
1259 >      RealType maxAbs = fabs(u0);
1260 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1261 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1262 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1263 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1264 >      u0 /= maxAbs;
1265 >      u1 /= maxAbs;
1266 >      u2 /= maxAbs;
1267 >      u3 /= maxAbs;
1268 >      u4 /= maxAbs;
1269 >      //max_element(start, end) is also available.
1270 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1271 >      poly.setCoefficient(4, u4);
1272 >      poly.setCoefficient(3, u3);
1273 >      poly.setCoefficient(2, u2);
1274 >      poly.setCoefficient(1, u1);
1275 >      poly.setCoefficient(0, u0);
1276 >      vector<RealType> realRoots = poly.FindRealRoots();
1277 >      
1278 >      vector<RealType>::iterator ri;
1279 >      RealType r1, r2, alpha0;
1280 >      vector<pair<RealType,RealType> > rps;
1281 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1282 >        r2 = *ri;
1283 >        //check if FindRealRoots() give the right answer
1284 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1285 >          sprintf(painCave.errMsg,
1286 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1287 >          painCave.isFatal = 0;
1288 >          simError();
1289 >          failRootCount_++;
1290 >        }
1291 >        //might not be useful w/o rescaling coefficients
1292 >        alpha0 = -c0 - a110 * r2 * r2;
1293 >        if (alpha0 >= 0.0) {
1294 >          r1 = sqrt(alpha0 / a000);
1295 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1296 >              < 1e-6)
1297 >            { rps.push_back(make_pair(r1, r2)); }
1298 >          if (r1 > 1e-6) { //r1 non-negative
1299 >            r1 = -r1;
1300 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1301 >                < 1e-6)
1302 >              { rps.push_back(make_pair(r1, r2)); }
1303 >          }
1304 >        }
1305 >      }
1306 >      // Consider combining together the solving pair part w/ the searching
1307 >      // best solution part so that we don't need the pairs vector
1308 >      if (!rps.empty()) {
1309 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1310 >        RealType diff;
1311 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1312 >        vector<pair<RealType,RealType> >::iterator rpi;
1313 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1314 >          r1 = (*rpi).first;
1315 >          r2 = (*rpi).second;
1316 >          switch(rnemdFluxType_) {
1317 >          case rnemdKE :
1318 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1319 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1320 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1321 >            break;
1322 >          case rnemdPx :
1323 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1324 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1325 >            break;
1326 >          case rnemdPy :
1327 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1328 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1329 >            break;
1330 >          case rnemdPz :
1331 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1332 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1333 >          default :
1334 >            break;
1335 >          }
1336 >          if (diff < smallestDiff) {
1337 >            smallestDiff = diff;
1338 >            bestPair = *rpi;
1339 >          }
1340 >        }
1341 > #ifdef IS_MPI
1342 >        if (worldRank == 0) {
1343 > #endif
1344 >          // sprintf(painCave.errMsg,
1345 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1346 >          //         bestPair.first, bestPair.second);
1347 >          // painCave.isFatal = 0;
1348 >          // painCave.severity = OPENMD_INFO;
1349 >          // simError();
1350 > #ifdef IS_MPI
1351 >        }
1352 > #endif
1353 >        
1354 >        switch(rnemdFluxType_) {
1355 >        case rnemdKE :
1356 >          x = bestPair.first;
1357 >          y = bestPair.first;
1358 >          z = bestPair.second;
1359 >          break;
1360 >        case rnemdPx :
1361 >          x = c;
1362 >          y = bestPair.first;
1363 >          z = bestPair.second;
1364 >          break;
1365 >        case rnemdPy :
1366 >          x = bestPair.first;
1367 >          y = c;
1368 >          z = bestPair.second;
1369 >          break;
1370 >        case rnemdPz :
1371 >          x = bestPair.first;
1372 >          y = bestPair.second;
1373 >          z = c;
1374 >          break;          
1375 >        default :
1376 >          break;
1377 >        }
1378 >        vector<StuntDouble*>::iterator sdi;
1379 >        Vector3d vel;
1380 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1381 >          vel = (*sdi)->getVel();
1382 >          vel.x() *= x;
1383 >          vel.y() *= y;
1384 >          vel.z() *= z;
1385 >          (*sdi)->setVel(vel);
1386 >        }
1387 >        //convert to hotBin coefficient
1388 >        x = 1.0 + px * (1.0 - x);
1389 >        y = 1.0 + py * (1.0 - y);
1390 >        z = 1.0 + pz * (1.0 - z);
1391 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1392 >          vel = (*sdi)->getVel();
1393 >          vel.x() *= x;
1394 >          vel.y() *= y;
1395 >          vel.z() *= z;
1396 >          (*sdi)->setVel(vel);
1397 >        }
1398 >        successfulScale = true;
1399 >        switch(rnemdFluxType_) {
1400 >        case rnemdKE :
1401 >          kineticExchange_ += kineticTarget_;
1402 >          break;
1403 >        case rnemdPx :
1404 >        case rnemdPy :
1405 >        case rnemdPz :
1406 >          momentumExchange_ += momentumTarget_;
1407 >          break;          
1408 >        default :
1409 >          break;
1410 >        }      
1411 >      }
1412 >    }
1413 >    if (successfulScale != true) {
1414 >      sprintf(painCave.errMsg,
1415 >              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1416 >              "\tthe constraint equations may not exist or there may be\n"
1417 >              "\tno selected objects in one or both slabs.\n");
1418 >      painCave.isFatal = 0;
1419 >      painCave.severity = OPENMD_INFO;
1420 >      simError();        
1421 >      failTrialCount_++;
1422 >    }
1423 >  }
1424 >  
1425 >  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1426 >    if (!doRNEMD_) return;
1427 >    int selei;
1428 >    int selej;
1429 >
1430 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1431 >    RealType time = currentSnap_->getTime();    
1432 >    Mat3x3d hmat = currentSnap_->getHmat();
1433 >
1434 >    StuntDouble* sd;
1435 >
1436 >    vector<StuntDouble*> hotBin, coldBin;
1437 >
1438 >    Vector3d Ph(V3Zero);
1439 >    Vector3d Lh(V3Zero);
1440 >    RealType Mh = 0.0;
1441 >    Mat3x3d Ih(0.0);
1442 >    RealType Kh = 0.0;
1443 >    Vector3d Pc(V3Zero);
1444 >    Vector3d Lc(V3Zero);
1445 >    RealType Mc = 0.0;
1446 >    Mat3x3d Ic(0.0);
1447 >    RealType Kc = 0.0;
1448 >    
1449 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1450 >         sd = smanA.nextSelected(selei)) {
1451 >
1452 >      Vector3d pos = sd->getPos();
1453 >
1454 >      // wrap the stuntdouble's position back into the box:
1455 >      
1456 >      if (usePeriodicBoundaryConditions_)
1457 >        currentSnap_->wrapVector(pos);
1458 >      
1459 >      RealType mass = sd->getMass();
1460 >      Vector3d vel = sd->getVel();
1461 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1462 >      RealType r2;
1463 >      
1464 >      hotBin.push_back(sd);
1465 >      Ph += mass * vel;
1466 >      Mh += mass;
1467 >      Kh += mass * vel.lengthSquare();
1468 >      Lh += mass * cross(rPos, vel);
1469 >      Ih -= outProduct(rPos, rPos) * mass;
1470 >      r2 = rPos.lengthSquare();
1471 >      Ih(0, 0) += mass * r2;
1472 >      Ih(1, 1) += mass * r2;
1473 >      Ih(2, 2) += mass * r2;
1474 >      
1475 >      if (rnemdFluxType_ == rnemdFullKE) {
1476 >        if (sd->isDirectional()) {
1477 >          Vector3d angMom = sd->getJ();
1478 >          Mat3x3d I = sd->getI();
1479 >          if (sd->isLinear()) {
1480 >            int i = sd->linearAxis();
1481 >            int j = (i + 1) % 3;
1482 >            int k = (i + 2) % 3;
1483 >            Kh += angMom[j] * angMom[j] / I(j, j) +
1484 >              angMom[k] * angMom[k] / I(k, k);
1485 >          } else {
1486 >            Kh += angMom[0] * angMom[0] / I(0, 0) +
1487 >              angMom[1] * angMom[1] / I(1, 1) +
1488 >              angMom[2] * angMom[2] / I(2, 2);
1489 >          }
1490 >        }
1491 >      }
1492 >    }
1493 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1494 >         sd = smanB.nextSelected(selej)) {
1495 >
1496 >      Vector3d pos = sd->getPos();
1497 >      
1498 >      // wrap the stuntdouble's position back into the box:
1499 >      
1500 >      if (usePeriodicBoundaryConditions_)
1501 >        currentSnap_->wrapVector(pos);
1502 >      
1503 >      RealType mass = sd->getMass();
1504 >      Vector3d vel = sd->getVel();
1505 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1506 >      RealType r2;
1507 >
1508 >      coldBin.push_back(sd);
1509 >      Pc += mass * vel;
1510 >      Mc += mass;
1511 >      Kc += mass * vel.lengthSquare();
1512 >      Lc += mass * cross(rPos, vel);
1513 >      Ic -= outProduct(rPos, rPos) * mass;
1514 >      r2 = rPos.lengthSquare();
1515 >      Ic(0, 0) += mass * r2;
1516 >      Ic(1, 1) += mass * r2;
1517 >      Ic(2, 2) += mass * r2;
1518 >      
1519 >      if (rnemdFluxType_ == rnemdFullKE) {
1520 >        if (sd->isDirectional()) {
1521 >          Vector3d angMom = sd->getJ();
1522 >          Mat3x3d I = sd->getI();
1523 >          if (sd->isLinear()) {
1524 >            int i = sd->linearAxis();
1525 >            int j = (i + 1) % 3;
1526 >            int k = (i + 2) % 3;
1527 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1528 >              angMom[k] * angMom[k] / I(k, k);
1529 >          } else {
1530 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1531 >              angMom[1] * angMom[1] / I(1, 1) +
1532 >              angMom[2] * angMom[2] / I(2, 2);
1533 >          }
1534 >        }
1535 >      }
1536 >    }
1537 >    
1538 >    Kh *= 0.5;
1539 >    Kc *= 0.5;
1540 >    
1541 > #ifdef IS_MPI
1542 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1543 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1544 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM);
1545 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM);
1546 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1547 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1548 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1549 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1550 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9,
1551 >                              MPI::REALTYPE, MPI::SUM);
1552 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9,
1553 >                              MPI::REALTYPE, MPI::SUM);
1554 > #endif
1555 >    
1556 >    bool successfulExchange = false;
1557 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1558 >      Vector3d vc = Pc / Mc;
1559 >      Vector3d ac = -momentumTarget_ / Mc + vc;
1560 >      Vector3d acrec = -momentumTarget_ / Mc;
1561 >      
1562 >      // We now need the inverse of the inertia tensor to calculate the
1563 >      // angular velocity of the cold slab;
1564 >      Mat3x3d Ici = Ic.inverse();
1565 >      Vector3d omegac = Ici * Lc;
1566 >      Vector3d bc  = -(Ici * angularMomentumTarget_) + omegac;
1567 >      Vector3d bcrec = bc - omegac;
1568 >      
1569 >      RealType cNumerator = Kc - kineticTarget_
1570 >        - 0.5 * Mc * ac.lengthSquare() - 0.5 * ( dot(bc, Ic * bc));
1571 >      if (cNumerator > 0.0) {
1572 >        
1573 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare()
1574 >          - 0.5*(dot(omegac, Ic * omegac));
1575 >        
1576 >        if (cDenominator > 0.0) {
1577 >          RealType c = sqrt(cNumerator / cDenominator);
1578 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1579 >            
1580 >            Vector3d vh = Ph / Mh;
1581 >            Vector3d ah = momentumTarget_ / Mh + vh;
1582 >            Vector3d ahrec = momentumTarget_ / Mh;
1583 >            
1584 >            // We now need the inverse of the inertia tensor to
1585 >            // calculate the angular velocity of the hot slab;
1586 >            Mat3x3d Ihi = Ih.inverse();
1587 >            Vector3d omegah = Ihi * Lh;
1588 >            Vector3d bh  = (Ihi * angularMomentumTarget_) + omegah;
1589 >            Vector3d bhrec = bh - omegah;
1590 >            
1591 >            RealType hNumerator = Kh + kineticTarget_
1592 >              - 0.5 * Mh * ah.lengthSquare() - 0.5 * ( dot(bh, Ih * bh));;
1593 >            if (hNumerator > 0.0) {
1594 >              
1595 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare()
1596 >                - 0.5*(dot(omegah, Ih * omegah));
1597 >              
1598 >              if (hDenominator > 0.0) {
1599 >                RealType h = sqrt(hNumerator / hDenominator);
1600 >                if ((h > 0.9) && (h < 1.1)) {
1601 >                  
1602 >                  vector<StuntDouble*>::iterator sdi;
1603 >                  Vector3d vel;
1604 >                  Vector3d rPos;
1605 >                  
1606 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1607 >                    //vel = (*sdi)->getVel();
1608 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1609 >                    vel = ((*sdi)->getVel() - vc - cross(omegac, rPos)) * c
1610 >                      + ac + cross(bc, rPos);
1611 >                    (*sdi)->setVel(vel);
1612 >                    if (rnemdFluxType_ == rnemdFullKE) {
1613 >                      if ((*sdi)->isDirectional()) {
1614 >                        Vector3d angMom = (*sdi)->getJ() * c;
1615 >                        (*sdi)->setJ(angMom);
1616 >                      }
1617 >                    }
1618 >                  }
1619 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1620 >                    //vel = (*sdi)->getVel();
1621 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1622 >                    vel = ((*sdi)->getVel() - vh - cross(omegah, rPos)) * h
1623 >                      + ah + cross(bh, rPos);    
1624 >                    (*sdi)->setVel(vel);
1625 >                    if (rnemdFluxType_ == rnemdFullKE) {
1626 >                      if ((*sdi)->isDirectional()) {
1627 >                        Vector3d angMom = (*sdi)->getJ() * h;
1628 >                        (*sdi)->setJ(angMom);
1629 >                      }
1630 >                    }
1631 >                  }
1632 >                  successfulExchange = true;
1633 >                  kineticExchange_ += kineticTarget_;
1634 >                  momentumExchange_ += momentumTarget_;
1635 >                  angularMomentumExchange_ += angularMomentumTarget_;
1636 >                }
1637 >              }
1638 >            }
1639 >          }
1640 >        }
1641 >      }
1642 >    }
1643 >    if (successfulExchange != true) {
1644 >      sprintf(painCave.errMsg,
1645 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1646 >              "\tthe constraint equations may not exist or there may be\n"
1647 >              "\tno selected objects in one or both slabs.\n");
1648 >      painCave.isFatal = 0;
1649 >      painCave.severity = OPENMD_INFO;
1650 >      simError();        
1651 >      failTrialCount_++;
1652 >    }
1653 >  }
1654 >
1655 >  RealType RNEMD::getDividingArea() {
1656 >
1657 >    if (hasDividingArea_) return dividingArea_;
1658 >
1659 >    RealType areaA, areaB;
1660 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1661 >
1662 >    if (hasSelectionA_) {
1663 >      int isd;
1664 >      StuntDouble* sd;
1665 >      vector<StuntDouble*> aSites;
1666 >      ConvexHull* surfaceMeshA = new ConvexHull();
1667 >      seleManA_.setSelectionSet(evaluatorA_.evaluate());
1668 >      for (sd = seleManA_.beginSelected(isd); sd != NULL;
1669 >           sd = seleManA_.nextSelected(isd)) {
1670 >        aSites.push_back(sd);
1671 >      }
1672 >      surfaceMeshA->computeHull(aSites);
1673 >      areaA = surfaceMeshA->getArea();
1674 >    } else {
1675 >      if (usePeriodicBoundaryConditions_) {
1676 >        // in periodic boundaries, the surface area is twice the x-y
1677 >        // area of the current box:
1678 >        areaA = 2.0 * snap->getXYarea();
1679 >      } else {
1680 >        // in non-periodic simulations, without explicitly setting
1681 >        // selections, the sphere radius sets the surface area of the
1682 >        // dividing surface:
1683 >        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1684 >      }
1685 >    }
1686 >
1687 >    if (hasSelectionB_) {
1688 >      int isd;
1689 >      StuntDouble* sd;
1690 >      vector<StuntDouble*> bSites;
1691 >      ConvexHull* surfaceMeshB = new ConvexHull();
1692 >      seleManB_.setSelectionSet(evaluatorB_.evaluate());
1693 >      for (sd = seleManB_.beginSelected(isd); sd != NULL;
1694 >           sd = seleManB_.nextSelected(isd)) {
1695 >        bSites.push_back(sd);
1696 >      }
1697 >      surfaceMeshB->computeHull(bSites);
1698 >      areaB = surfaceMeshB->getArea();
1699 >    } else {
1700 >      if (usePeriodicBoundaryConditions_) {
1701 >        // in periodic boundaries, the surface area is twice the x-y
1702 >        // area of the current box:
1703 >        areaB = 2.0 * snap->getXYarea();
1704 >      } else {
1705 >        // in non-periodic simulations, without explicitly setting
1706 >        // selections, but if a sphereBradius has been set, just use that:
1707 >        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1708 >      }
1709 >    }
1710 >    
1711 >    dividingArea_ = min(areaA, areaB);
1712 >    hasDividingArea_ = true;
1713 >    return dividingArea_;
1714 >  }
1715 >  
1716 >  void RNEMD::doRNEMD() {
1717 >    if (!doRNEMD_) return;
1718 >    trialCount_++;
1719 >
1720 >    // object evaluator:
1721 >    evaluator_.loadScriptString(rnemdObjectSelection_);
1722 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1723 >
1724 >    evaluatorA_.loadScriptString(selectionA_);
1725 >    evaluatorB_.loadScriptString(selectionB_);
1726 >
1727 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1728 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1729 >
1730 >    commonA_ = seleManA_ & seleMan_;
1731 >    commonB_ = seleManB_ & seleMan_;
1732 >
1733 >    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1734 >    // dt = exchange time interval
1735 >    // flux = target flux
1736 >    // dividingArea = smallest dividing surface between the two regions
1737 >
1738 >    hasDividingArea_ = false;
1739 >    RealType area = getDividingArea();
1740 >
1741 >    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1742 >    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1743 >    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1744 >
1745 >    switch(rnemdMethod_) {
1746 >    case rnemdSwap:
1747 >      doSwap(commonA_, commonB_);
1748 >      break;
1749 >    case rnemdNIVS:
1750 >      doNIVS(commonA_, commonB_);
1751 >      break;
1752 >    case rnemdVSS:
1753 >      doVSS(commonA_, commonB_);
1754 >      break;
1755 >    case rnemdUnkownMethod:
1756 >    default :
1757 >      break;
1758 >    }
1759 >  }
1760 >
1761 >  void RNEMD::collectData() {
1762 >    if (!doRNEMD_) return;
1763 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1764 >    
1765 >    // collectData can be called more frequently than the doRNEMD, so use the
1766 >    // computed area from the last exchange time:
1767 >    RealType area = getDividingArea();
1768 >    areaAccumulator_->add(area);
1769 >    Mat3x3d hmat = currentSnap_->getHmat();
1770 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1771 >
1772 >    int selei(0);
1773 >    StuntDouble* sd;
1774 >    int binNo;
1775 >
1776 >    vector<RealType> binMass(nBins_, 0.0);
1777 >    vector<RealType> binPx(nBins_, 0.0);
1778 >    vector<RealType> binPy(nBins_, 0.0);
1779 >    vector<RealType> binPz(nBins_, 0.0);
1780 >    vector<RealType> binOmegax(nBins_, 0.0);
1781 >    vector<RealType> binOmegay(nBins_, 0.0);
1782 >    vector<RealType> binOmegaz(nBins_, 0.0);
1783 >    vector<RealType> binKE(nBins_, 0.0);
1784 >    vector<int> binDOF(nBins_, 0);
1785 >    vector<int> binCount(nBins_, 0);
1786 >
1787 >    // alternative approach, track all molecules instead of only those
1788 >    // selected for scaling/swapping:
1789 >    /*
1790 >      SimInfo::MoleculeIterator miter;
1791 >      vector<StuntDouble*>::iterator iiter;
1792 >      Molecule* mol;
1793 >      StuntDouble* sd;
1794 >      for (mol = info_->beginMolecule(miter); mol != NULL;
1795 >      mol = info_->nextMolecule(miter))
1796 >      sd is essentially sd
1797 >      for (sd = mol->beginIntegrableObject(iiter);
1798 >      sd != NULL;
1799 >      sd = mol->nextIntegrableObject(iiter))
1800 >    */
1801 >
1802 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1803 >         sd = seleMan_.nextSelected(selei)) {    
1804 >    
1805 >      Vector3d pos = sd->getPos();
1806 >
1807 >      // wrap the stuntdouble's position back into the box:
1808 >      
1809 >      if (usePeriodicBoundaryConditions_) {
1810 >        currentSnap_->wrapVector(pos);
1811 >        // which bin is this stuntdouble in?
1812 >        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1813 >        // Shift molecules by half a box to have bins start at 0
1814 >        // The modulo operator is used to wrap the case when we are
1815 >        // beyond the end of the bins back to the beginning.
1816 >        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1817 >      } else {
1818 >        Vector3d rPos = pos - coordinateOrigin_;
1819 >        binNo = int(rPos.length() / binWidth_);
1820 >      }
1821 >
1822 >      RealType mass = sd->getMass();
1823 >      Vector3d vel = sd->getVel();
1824 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1825 >      Vector3d aVel = cross(rPos, vel);
1826 >      
1827 >      if (binNo >= 0 && binNo < nBins_)  {
1828 >        binCount[binNo]++;
1829 >        binMass[binNo] += mass;
1830 >        binPx[binNo] += mass*vel.x();
1831 >        binPy[binNo] += mass*vel.y();
1832 >        binPz[binNo] += mass*vel.z();
1833 >        binOmegax[binNo] += aVel.x();
1834 >        binOmegay[binNo] += aVel.y();
1835 >        binOmegaz[binNo] += aVel.z();
1836 >        binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1837 >        binDOF[binNo] += 3;
1838 >        
1839 >        if (sd->isDirectional()) {
1840 >          Vector3d angMom = sd->getJ();
1841 >          Mat3x3d I = sd->getI();
1842 >          if (sd->isLinear()) {
1843 >            int i = sd->linearAxis();
1844 >            int j = (i + 1) % 3;
1845 >            int k = (i + 2) % 3;
1846 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1847 >                                   angMom[k] * angMom[k] / I(k, k));
1848 >            binDOF[binNo] += 2;
1849 >          } else {
1850 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1851 >                                   angMom[1] * angMom[1] / I(1, 1) +
1852 >                                   angMom[2] * angMom[2] / I(2, 2));
1853 >            binDOF[binNo] += 3;
1854 >          }
1855 >        }
1856 >      }
1857 >    }
1858 >    
1859 > #ifdef IS_MPI
1860 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1861 >                              nBins_, MPI::INT, MPI::SUM);
1862 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1863 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1864 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1865 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1866 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1867 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1868 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1869 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1870 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0],
1871 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1872 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0],
1873 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1874 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0],
1875 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1876 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1877 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1878 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1879 >                              nBins_, MPI::INT, MPI::SUM);
1880 > #endif
1881 >
1882 >    Vector3d vel;
1883 >    Vector3d aVel;
1884 >    RealType den;
1885 >    RealType temp;
1886 >    RealType z;
1887 >    RealType r;
1888 >    for (int i = 0; i < nBins_; i++) {
1889 >      if (usePeriodicBoundaryConditions_) {
1890 >        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1891 >        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1892 >          / currentSnap_->getVolume() ;
1893 >      } else {
1894 >        r = (((RealType)i + 0.5) * binWidth_);
1895 >        RealType rinner = (RealType)i * binWidth_;
1896 >        RealType router = (RealType)(i+1) * binWidth_;
1897 >        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
1898 >          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
1899 >      }
1900 >      vel.x() = binPx[i] / binMass[i];
1901 >      vel.y() = binPy[i] / binMass[i];
1902 >      vel.z() = binPz[i] / binMass[i];
1903 >      aVel.x() = binOmegax[i];
1904 >      aVel.y() = binOmegay[i];
1905 >      aVel.z() = binOmegaz[i];
1906 >
1907 >      if (binCount[i] > 0) {
1908 >        // only add values if there are things to add
1909 >        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1910 >                                 PhysicalConstants::energyConvert);
1911 >        
1912 >        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1913 >          if(outputMask_[j]) {
1914 >            switch(j) {
1915 >            case Z:
1916 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
1917 >              break;
1918 >            case R:
1919 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
1920 >              break;
1921 >            case TEMPERATURE:
1922 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
1923 >              break;
1924 >            case VELOCITY:
1925 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1926 >              break;
1927 >            case ANGULARVELOCITY:  
1928 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel);
1929 >              break;
1930 >            case DENSITY:
1931 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
1932 >              break;
1933 >            }
1934 >          }
1935 >        }
1936 >      }
1937 >    }
1938 >  }
1939 >
1940 >  void RNEMD::getStarted() {
1941 >    if (!doRNEMD_) return;
1942 >    hasDividingArea_ = false;
1943 >    collectData();
1944 >    writeOutputFile();
1945 >  }
1946 >
1947 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
1948 >    if (!doRNEMD_) return;
1949 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1950 >    
1951 >    while(tokenizer.hasMoreTokens()) {
1952 >      std::string token(tokenizer.nextToken());
1953 >      toUpper(token);
1954 >      OutputMapType::iterator i = outputMap_.find(token);
1955 >      if (i != outputMap_.end()) {
1956 >        outputMask_.set(i->second);
1957 >      } else {
1958 >        sprintf( painCave.errMsg,
1959 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1960 >                 "\toutputFileFormat keyword.\n", token.c_str() );
1961 >        painCave.isFatal = 0;
1962 >        painCave.severity = OPENMD_ERROR;
1963 >        simError();            
1964 >      }
1965 >    }  
1966 >  }
1967 >  
1968 >  void RNEMD::writeOutputFile() {
1969 >    if (!doRNEMD_) return;
1970 >    
1971 > #ifdef IS_MPI
1972 >    // If we're the root node, should we print out the results
1973 >    int worldRank = MPI::COMM_WORLD.Get_rank();
1974 >    if (worldRank == 0) {
1975 > #endif
1976 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1977 >      
1978 >      if( !rnemdFile_ ){        
1979 >        sprintf( painCave.errMsg,
1980 >                 "Could not open \"%s\" for RNEMD output.\n",
1981 >                 rnemdFileName_.c_str());
1982 >        painCave.isFatal = 1;
1983 >        simError();
1984 >      }
1985 >
1986 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1987 >
1988 >      RealType time = currentSnap_->getTime();
1989 >      RealType avgArea;
1990 >      areaAccumulator_->getAverage(avgArea);
1991 >      RealType Jz = kineticExchange_ / (time * avgArea)
1992 >        / PhysicalConstants::energyConvert;
1993 >      Vector3d JzP = momentumExchange_ / (time * avgArea);      
1994 >      Vector3d JzL = angularMomentumExchange_ / (time * avgArea);      
1995 >
1996 >      rnemdFile_ << "#######################################################\n";
1997 >      rnemdFile_ << "# RNEMD {\n";
1998 >
1999 >      map<string, RNEMDMethod>::iterator mi;
2000 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2001 >        if ( (*mi).second == rnemdMethod_)
2002 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2003 >      }
2004 >      map<string, RNEMDFluxType>::iterator fi;
2005 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2006 >        if ( (*fi).second == rnemdFluxType_)
2007 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2008 >      }
2009 >      
2010 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2011 >
2012 >      rnemdFile_ << "#    objectSelection = \""
2013 >                 << rnemdObjectSelection_ << "\";\n";
2014 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2015 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2016 >      rnemdFile_ << "# }\n";
2017 >      rnemdFile_ << "#######################################################\n";
2018 >      rnemdFile_ << "# RNEMD report:\n";      
2019 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2020 >      rnemdFile_ << "# Target flux:\n";
2021 >      rnemdFile_ << "#           kinetic = "
2022 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2023 >                 << " (kcal/mol/A^2/fs)\n";
2024 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2025 >                 << " (amu/A/fs^2)\n";
2026 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2027 >                 << " (amu/A^2/fs^2)\n";
2028 >      rnemdFile_ << "# Target one-time exchanges:\n";
2029 >      rnemdFile_ << "#          kinetic = "
2030 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2031 >                 << " (kcal/mol)\n";
2032 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2033 >                 << " (amu*A/fs)\n";
2034 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2035 >                 << " (amu*A^2/fs)\n";
2036 >      rnemdFile_ << "# Actual exchange totals:\n";
2037 >      rnemdFile_ << "#          kinetic = "
2038 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2039 >                 << " (kcal/mol)\n";
2040 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2041 >                 << " (amu*A/fs)\n";      
2042 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2043 >                 << " (amu*A^2/fs)\n";      
2044 >      rnemdFile_ << "# Actual flux:\n";
2045 >      rnemdFile_ << "#          kinetic = " << Jz
2046 >                 << " (kcal/mol/A^2/fs)\n";
2047 >      rnemdFile_ << "#          momentum = " << JzP
2048 >                 << " (amu/A/fs^2)\n";
2049 >      rnemdFile_ << "#  angular momentum = " << JzL
2050 >                 << " (amu/A^2/fs^2)\n";
2051 >      rnemdFile_ << "# Exchange statistics:\n";
2052 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2053 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2054 >      if (rnemdMethod_ == rnemdNIVS) {
2055 >        rnemdFile_ << "#  NIVS root-check errors = "
2056 >                   << failRootCount_ << "\n";
2057 >      }
2058 >      rnemdFile_ << "#######################################################\n";
2059 >      
2060 >      
2061 >      
2062 >      //write title
2063 >      rnemdFile_ << "#";
2064 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2065 >        if (outputMask_[i]) {
2066 >          rnemdFile_ << "\t" << data_[i].title <<
2067 >            "(" << data_[i].units << ")";
2068 >          // add some extra tabs for column alignment
2069 >          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2070 >        }
2071 >      }
2072 >      rnemdFile_ << std::endl;
2073 >      
2074 >      rnemdFile_.precision(8);
2075 >      
2076 >      for (int j = 0; j < nBins_; j++) {        
2077 >        
2078 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2079 >          if (outputMask_[i]) {
2080 >            if (data_[i].dataType == "RealType")
2081 >              writeReal(i,j);
2082 >            else if (data_[i].dataType == "Vector3d")
2083 >              writeVector(i,j);
2084 >            else {
2085 >              sprintf( painCave.errMsg,
2086 >                       "RNEMD found an unknown data type for: %s ",
2087 >                       data_[i].title.c_str());
2088 >              painCave.isFatal = 1;
2089 >              simError();
2090 >            }
2091 >          }
2092 >        }
2093 >        rnemdFile_ << std::endl;
2094 >        
2095 >      }        
2096 >
2097 >      rnemdFile_ << "#######################################################\n";
2098 >      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
2099 >      rnemdFile_ << "#######################################################\n";
2100 >
2101 >
2102 >      for (int j = 0; j < nBins_; j++) {        
2103 >        rnemdFile_ << "#";
2104 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2105 >          if (outputMask_[i]) {
2106 >            if (data_[i].dataType == "RealType")
2107 >              writeRealStdDev(i,j);
2108 >            else if (data_[i].dataType == "Vector3d")
2109 >              writeVectorStdDev(i,j);
2110 >            else {
2111 >              sprintf( painCave.errMsg,
2112 >                       "RNEMD found an unknown data type for: %s ",
2113 >                       data_[i].title.c_str());
2114 >              painCave.isFatal = 1;
2115 >              simError();
2116 >            }
2117 >          }
2118 >        }
2119 >        rnemdFile_ << std::endl;
2120 >        
2121 >      }        
2122 >      
2123 >      rnemdFile_.flush();
2124 >      rnemdFile_.close();
2125 >      
2126 > #ifdef IS_MPI
2127 >    }
2128 > #endif
2129 >    
2130 >  }
2131 >  
2132 >  void RNEMD::writeReal(int index, unsigned int bin) {
2133 >    if (!doRNEMD_) return;
2134 >    assert(index >=0 && index < ENDINDEX);
2135 >    assert(int(bin) < nBins_);
2136 >    RealType s;
2137 >    int count;
2138 >    
2139 >    count = data_[index].accumulator[bin]->count();
2140 >    if (count == 0) return;
2141 >    
2142 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2143 >    
2144 >    if (! isinf(s) && ! isnan(s)) {
2145 >      rnemdFile_ << "\t" << s;
2146 >    } else{
2147 >      sprintf( painCave.errMsg,
2148 >               "RNEMD detected a numerical error writing: %s for bin %d",
2149 >               data_[index].title.c_str(), bin);
2150 >      painCave.isFatal = 1;
2151 >      simError();
2152 >    }    
2153 >  }
2154 >  
2155 >  void RNEMD::writeVector(int index, unsigned int bin) {
2156 >    if (!doRNEMD_) return;
2157 >    assert(index >=0 && index < ENDINDEX);
2158 >    assert(int(bin) < nBins_);
2159 >    Vector3d s;
2160 >    int count;
2161 >    
2162 >    count = data_[index].accumulator[bin]->count();
2163 >
2164 >    if (count == 0) return;
2165 >
2166 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2167 >    if (isinf(s[0]) || isnan(s[0]) ||
2168 >        isinf(s[1]) || isnan(s[1]) ||
2169 >        isinf(s[2]) || isnan(s[2]) ) {      
2170 >      sprintf( painCave.errMsg,
2171 >               "RNEMD detected a numerical error writing: %s for bin %d",
2172 >               data_[index].title.c_str(), bin);
2173 >      painCave.isFatal = 1;
2174 >      simError();
2175 >    } else {
2176 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2177 >    }
2178 >  }  
2179 >
2180 >  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
2181 >    if (!doRNEMD_) return;
2182 >    assert(index >=0 && index < ENDINDEX);
2183 >    assert(int(bin) < nBins_);
2184 >    RealType s;
2185 >    int count;
2186 >    
2187 >    count = data_[index].accumulator[bin]->count();
2188 >    if (count == 0) return;
2189 >    
2190 >    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
2191 >    
2192 >    if (! isinf(s) && ! isnan(s)) {
2193 >      rnemdFile_ << "\t" << s;
2194 >    } else{
2195 >      sprintf( painCave.errMsg,
2196 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
2197 >               data_[index].title.c_str(), bin);
2198 >      painCave.isFatal = 1;
2199 >      simError();
2200 >    }    
2201 >  }
2202 >  
2203 >  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
2204 >    if (!doRNEMD_) return;
2205 >    assert(index >=0 && index < ENDINDEX);
2206 >    assert(int(bin) < nBins_);
2207 >    Vector3d s;
2208 >    int count;
2209 >    
2210 >    count = data_[index].accumulator[bin]->count();
2211 >    if (count == 0) return;
2212 >
2213 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
2214 >    if (isinf(s[0]) || isnan(s[0]) ||
2215 >        isinf(s[1]) || isnan(s[1]) ||
2216 >        isinf(s[2]) || isnan(s[2]) ) {      
2217 >      sprintf( painCave.errMsg,
2218 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
2219 >               data_[index].title.c_str(), bin);
2220 >      painCave.isFatal = 1;
2221 >      simError();
2222 >    } else {
2223 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2224 >    }
2225 >  }  
2226 > }
2227 >

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (property svn:keywords), Revision 1856 by gezelter, Tue Apr 2 21:30:34 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines