71 |
|
RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), |
72 |
|
evaluatorA_(info), seleManA_(info), |
73 |
|
commonA_(info), evaluatorB_(info), |
74 |
< |
seleManB_(info), commonB_(info), |
74 |
> |
seleManB_(info), commonB_(info), |
75 |
> |
hasData_(false), hasDividingArea_(false), |
76 |
|
usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { |
77 |
|
|
78 |
|
trialCount_ = 0; |
421 |
|
data_[VELOCITY] = velocity; |
422 |
|
outputMap_["VELOCITY"] = VELOCITY; |
423 |
|
|
424 |
+ |
OutputData angularVelocity; |
425 |
+ |
angularVelocity.units = "angstroms^2/fs"; |
426 |
+ |
angularVelocity.title = "AngularVelocity"; |
427 |
+ |
angularVelocity.dataType = "Vector3d"; |
428 |
+ |
angularVelocity.accumulator.reserve(nBins_); |
429 |
+ |
for (int i = 0; i < nBins_; i++) |
430 |
+ |
angularVelocity.accumulator.push_back( new VectorAccumulator() ); |
431 |
+ |
data_[ANGULARVELOCITY] = angularVelocity; |
432 |
+ |
outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY; |
433 |
+ |
|
434 |
|
OutputData density; |
435 |
|
density.units = "g cm^-3"; |
436 |
|
density.title = "Density"; |
557 |
|
slabWidth_ = hmat(2,2) / 10.0; |
558 |
|
|
559 |
|
if (hasSlabBCenter) |
560 |
< |
slabBCenter_ = rnemdParams->getSlabACenter(); |
560 |
> |
slabBCenter_ = rnemdParams->getSlabBCenter(); |
561 |
|
else |
562 |
|
slabBCenter_ = hmat(2,2) / 2.0; |
563 |
|
|
578 |
|
} |
579 |
|
} |
580 |
|
} |
581 |
+ |
|
582 |
|
// object evaluator: |
583 |
|
evaluator_.loadScriptString(rnemdObjectSelection_); |
584 |
|
seleMan_.setSelectionSet(evaluator_.evaluate()); |
573 |
– |
|
585 |
|
evaluatorA_.loadScriptString(selectionA_); |
586 |
|
evaluatorB_.loadScriptString(selectionB_); |
576 |
– |
|
587 |
|
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
588 |
|
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
579 |
– |
|
589 |
|
commonA_ = seleManA_ & seleMan_; |
590 |
< |
commonB_ = seleManB_ & seleMan_; |
590 |
> |
commonB_ = seleManB_ & seleMan_; |
591 |
|
} |
592 |
|
|
593 |
|
|
604 |
|
#ifdef IS_MPI |
605 |
|
} |
606 |
|
#endif |
607 |
+ |
|
608 |
+ |
// delete all of the objects we created: |
609 |
+ |
delete areaAccumulator_; |
610 |
+ |
data_.clear(); |
611 |
|
} |
612 |
|
|
613 |
|
void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) { |
1151 |
|
//if w is in the right range, so should be x, y, z. |
1152 |
|
vector<StuntDouble*>::iterator sdi; |
1153 |
|
Vector3d vel; |
1154 |
< |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1154 |
> |
for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1155 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1156 |
|
vel = (*sdi)->getVel() * c; |
1157 |
|
(*sdi)->setVel(vel); |
1162 |
|
} |
1163 |
|
} |
1164 |
|
w = sqrt(w); |
1165 |
< |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1165 |
> |
for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1166 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1167 |
|
vel = (*sdi)->getVel(); |
1168 |
|
vel.x() *= x; |
1281 |
|
vector<RealType>::iterator ri; |
1282 |
|
RealType r1, r2, alpha0; |
1283 |
|
vector<pair<RealType,RealType> > rps; |
1284 |
< |
for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) { |
1284 |
> |
for (ri = realRoots.begin(); ri !=realRoots.end(); ++ri) { |
1285 |
|
r2 = *ri; |
1286 |
|
//check if FindRealRoots() give the right answer |
1287 |
|
if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { |
1313 |
|
RealType diff; |
1314 |
|
pair<RealType,RealType> bestPair = make_pair(1.0, 1.0); |
1315 |
|
vector<pair<RealType,RealType> >::iterator rpi; |
1316 |
< |
for (rpi = rps.begin(); rpi != rps.end(); rpi++) { |
1316 |
> |
for (rpi = rps.begin(); rpi != rps.end(); ++rpi) { |
1317 |
|
r1 = (*rpi).first; |
1318 |
|
r2 = (*rpi).second; |
1319 |
|
switch(rnemdFluxType_) { |
1380 |
|
} |
1381 |
|
vector<StuntDouble*>::iterator sdi; |
1382 |
|
Vector3d vel; |
1383 |
< |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1383 |
> |
for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1384 |
|
vel = (*sdi)->getVel(); |
1385 |
|
vel.x() *= x; |
1386 |
|
vel.y() *= y; |
1391 |
|
x = 1.0 + px * (1.0 - x); |
1392 |
|
y = 1.0 + py * (1.0 - y); |
1393 |
|
z = 1.0 + pz * (1.0 - z); |
1394 |
< |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1394 |
> |
for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1395 |
|
vel = (*sdi)->getVel(); |
1396 |
|
vel.x() *= x; |
1397 |
|
vel.y() *= y; |
1448 |
|
RealType Mc = 0.0; |
1449 |
|
Mat3x3d Ic(0.0); |
1450 |
|
RealType Kc = 0.0; |
1451 |
+ |
|
1452 |
+ |
// Constraints can be on only the linear or angular momentum, but |
1453 |
+ |
// not both. Usually, the user will specify which they want, but |
1454 |
+ |
// in case they don't, the use of periodic boundaries should make |
1455 |
+ |
// the choice for us. |
1456 |
+ |
bool doLinearPart = false; |
1457 |
+ |
bool doAngularPart = false; |
1458 |
+ |
|
1459 |
+ |
switch (rnemdFluxType_) { |
1460 |
+ |
case rnemdPx: |
1461 |
+ |
case rnemdPy: |
1462 |
+ |
case rnemdPz: |
1463 |
+ |
case rnemdPvector: |
1464 |
+ |
case rnemdKePx: |
1465 |
+ |
case rnemdKePy: |
1466 |
+ |
case rnemdKePvector: |
1467 |
+ |
doLinearPart = true; |
1468 |
+ |
break; |
1469 |
+ |
case rnemdLx: |
1470 |
+ |
case rnemdLy: |
1471 |
+ |
case rnemdLz: |
1472 |
+ |
case rnemdLvector: |
1473 |
+ |
case rnemdKeLx: |
1474 |
+ |
case rnemdKeLy: |
1475 |
+ |
case rnemdKeLz: |
1476 |
+ |
case rnemdKeLvector: |
1477 |
+ |
doAngularPart = true; |
1478 |
+ |
break; |
1479 |
+ |
case rnemdKE: |
1480 |
+ |
case rnemdRotKE: |
1481 |
+ |
case rnemdFullKE: |
1482 |
+ |
default: |
1483 |
+ |
if (usePeriodicBoundaryConditions_) |
1484 |
+ |
doLinearPart = true; |
1485 |
+ |
else |
1486 |
+ |
doAngularPart = true; |
1487 |
+ |
break; |
1488 |
+ |
} |
1489 |
|
|
1490 |
|
for (sd = smanA.beginSelected(selei); sd != NULL; |
1491 |
|
sd = smanA.nextSelected(selei)) { |
1594 |
|
MPI::REALTYPE, MPI::SUM); |
1595 |
|
#endif |
1596 |
|
|
1597 |
+ |
|
1598 |
+ |
Vector3d ac, acrec, bc, bcrec; |
1599 |
+ |
Vector3d ah, ahrec, bh, bhrec; |
1600 |
+ |
RealType cNumerator, cDenominator; |
1601 |
+ |
RealType hNumerator, hDenominator; |
1602 |
+ |
|
1603 |
+ |
|
1604 |
|
bool successfulExchange = false; |
1605 |
|
if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty |
1606 |
|
Vector3d vc = Pc / Mc; |
1607 |
< |
Vector3d ac = -momentumTarget_ / Mc + vc; |
1608 |
< |
Vector3d acrec = -momentumTarget_ / Mc; |
1607 |
> |
ac = -momentumTarget_ / Mc + vc; |
1608 |
> |
acrec = -momentumTarget_ / Mc; |
1609 |
|
|
1610 |
|
// We now need the inverse of the inertia tensor to calculate the |
1611 |
|
// angular velocity of the cold slab; |
1612 |
|
Mat3x3d Ici = Ic.inverse(); |
1613 |
|
Vector3d omegac = Ici * Lc; |
1614 |
< |
Vector3d bc = -(Ici * angularMomentumTarget_) + omegac; |
1615 |
< |
Vector3d bcrec = bc - omegac; |
1614 |
> |
bc = -(Ici * angularMomentumTarget_) + omegac; |
1615 |
> |
bcrec = bc - omegac; |
1616 |
|
|
1617 |
< |
RealType cNumerator = Kc - kineticTarget_ |
1618 |
< |
- 0.5 * Mc * ac.lengthSquare() - 0.5 * ( dot(bc, Ic * bc)); |
1617 |
> |
cNumerator = Kc - kineticTarget_; |
1618 |
> |
if (doLinearPart) |
1619 |
> |
cNumerator -= 0.5 * Mc * ac.lengthSquare(); |
1620 |
> |
|
1621 |
> |
if (doAngularPart) |
1622 |
> |
cNumerator -= 0.5 * ( dot(bc, Ic * bc)); |
1623 |
> |
|
1624 |
|
if (cNumerator > 0.0) { |
1625 |
|
|
1626 |
< |
RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare() |
1627 |
< |
- 0.5*(dot(omegac, Ic * omegac)); |
1626 |
> |
cDenominator = Kc; |
1627 |
> |
|
1628 |
> |
if (doLinearPart) |
1629 |
> |
cDenominator -= 0.5 * Mc * vc.lengthSquare(); |
1630 |
> |
|
1631 |
> |
if (doAngularPart) |
1632 |
> |
cDenominator -= 0.5*(dot(omegac, Ic * omegac)); |
1633 |
|
|
1634 |
|
if (cDenominator > 0.0) { |
1635 |
|
RealType c = sqrt(cNumerator / cDenominator); |
1636 |
|
if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients |
1637 |
|
|
1638 |
|
Vector3d vh = Ph / Mh; |
1639 |
< |
Vector3d ah = momentumTarget_ / Mh + vh; |
1640 |
< |
Vector3d ahrec = momentumTarget_ / Mh; |
1639 |
> |
ah = momentumTarget_ / Mh + vh; |
1640 |
> |
ahrec = momentumTarget_ / Mh; |
1641 |
|
|
1642 |
|
// We now need the inverse of the inertia tensor to |
1643 |
|
// calculate the angular velocity of the hot slab; |
1644 |
|
Mat3x3d Ihi = Ih.inverse(); |
1645 |
|
Vector3d omegah = Ihi * Lh; |
1646 |
< |
Vector3d bh = (Ihi * angularMomentumTarget_) + omegah; |
1647 |
< |
Vector3d bhrec = bh - omegah; |
1646 |
> |
bh = (Ihi * angularMomentumTarget_) + omegah; |
1647 |
> |
bhrec = bh - omegah; |
1648 |
|
|
1649 |
< |
RealType hNumerator = Kh + kineticTarget_ |
1650 |
< |
- 0.5 * Mh * ah.lengthSquare() - 0.5 * ( dot(bh, Ih * bh));; |
1649 |
> |
hNumerator = Kh + kineticTarget_; |
1650 |
> |
if (doLinearPart) |
1651 |
> |
hNumerator -= 0.5 * Mh * ah.lengthSquare(); |
1652 |
> |
|
1653 |
> |
if (doAngularPart) |
1654 |
> |
hNumerator -= 0.5 * ( dot(bh, Ih * bh)); |
1655 |
> |
|
1656 |
|
if (hNumerator > 0.0) { |
1657 |
|
|
1658 |
< |
RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare() |
1659 |
< |
- 0.5*(dot(omegah, Ih * omegah)); |
1658 |
> |
hDenominator = Kh; |
1659 |
> |
if (doLinearPart) |
1660 |
> |
hDenominator -= 0.5 * Mh * vh.lengthSquare(); |
1661 |
> |
if (doAngularPart) |
1662 |
> |
hDenominator -= 0.5*(dot(omegah, Ih * omegah)); |
1663 |
|
|
1664 |
|
if (hDenominator > 0.0) { |
1665 |
|
RealType h = sqrt(hNumerator / hDenominator); |
1669 |
|
Vector3d vel; |
1670 |
|
Vector3d rPos; |
1671 |
|
|
1672 |
< |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1672 |
> |
for (sdi = coldBin.begin(); sdi != coldBin.end(); ++sdi) { |
1673 |
|
//vel = (*sdi)->getVel(); |
1674 |
|
rPos = (*sdi)->getPos() - coordinateOrigin_; |
1675 |
< |
vel = ((*sdi)->getVel() - vc - cross(omegac, rPos)) * c |
1676 |
< |
+ ac + cross(bc, rPos); |
1675 |
> |
if (doLinearPart) |
1676 |
> |
vel = ((*sdi)->getVel() - vc) * c + ac; |
1677 |
> |
if (doAngularPart) |
1678 |
> |
vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos); |
1679 |
> |
|
1680 |
|
(*sdi)->setVel(vel); |
1681 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1682 |
|
if ((*sdi)->isDirectional()) { |
1685 |
|
} |
1686 |
|
} |
1687 |
|
} |
1688 |
< |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1688 |
> |
for (sdi = hotBin.begin(); sdi != hotBin.end(); ++sdi) { |
1689 |
|
//vel = (*sdi)->getVel(); |
1690 |
|
rPos = (*sdi)->getPos() - coordinateOrigin_; |
1691 |
< |
vel = ((*sdi)->getVel() - vh - cross(omegah, rPos)) * h |
1692 |
< |
+ ah + cross(bh, rPos); |
1691 |
> |
if (doLinearPart) |
1692 |
> |
vel = ((*sdi)->getVel() - vh) * h + ah; |
1693 |
> |
if (doAngularPart) |
1694 |
> |
vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos); |
1695 |
> |
|
1696 |
|
(*sdi)->setVel(vel); |
1697 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1698 |
|
if ((*sdi)->isDirectional()) { |
1735 |
|
int isd; |
1736 |
|
StuntDouble* sd; |
1737 |
|
vector<StuntDouble*> aSites; |
1656 |
– |
ConvexHull* surfaceMeshA = new ConvexHull(); |
1738 |
|
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1739 |
|
for (sd = seleManA_.beginSelected(isd); sd != NULL; |
1740 |
|
sd = seleManA_.nextSelected(isd)) { |
1741 |
|
aSites.push_back(sd); |
1742 |
|
} |
1743 |
+ |
ConvexHull* surfaceMeshA = new ConvexHull(); |
1744 |
|
surfaceMeshA->computeHull(aSites); |
1745 |
|
areaA = surfaceMeshA->getArea(); |
1746 |
+ |
delete surfaceMeshA; |
1747 |
+ |
|
1748 |
|
} else { |
1749 |
|
if (usePeriodicBoundaryConditions_) { |
1750 |
|
// in periodic boundaries, the surface area is twice the x-y |
1758 |
|
} |
1759 |
|
} |
1760 |
|
|
1761 |
+ |
|
1762 |
+ |
|
1763 |
|
if (hasSelectionB_) { |
1764 |
|
int isd; |
1765 |
|
StuntDouble* sd; |
1766 |
|
vector<StuntDouble*> bSites; |
1681 |
– |
ConvexHull* surfaceMeshB = new ConvexHull(); |
1767 |
|
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1768 |
|
for (sd = seleManB_.beginSelected(isd); sd != NULL; |
1769 |
|
sd = seleManB_.nextSelected(isd)) { |
1770 |
|
bSites.push_back(sd); |
1771 |
|
} |
1772 |
+ |
ConvexHull* surfaceMeshB = new ConvexHull(); |
1773 |
|
surfaceMeshB->computeHull(bSites); |
1774 |
|
areaB = surfaceMeshB->getArea(); |
1775 |
+ |
delete surfaceMeshB; |
1776 |
+ |
|
1777 |
|
} else { |
1778 |
|
if (usePeriodicBoundaryConditions_) { |
1779 |
|
// in periodic boundaries, the surface area is twice the x-y |
1839 |
|
void RNEMD::collectData() { |
1840 |
|
if (!doRNEMD_) return; |
1841 |
|
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1842 |
< |
|
1842 |
> |
|
1843 |
|
// collectData can be called more frequently than the doRNEMD, so use the |
1844 |
|
// computed area from the last exchange time: |
1845 |
< |
|
1846 |
< |
areaAccumulator_->add(getDividingArea()); |
1845 |
> |
RealType area = getDividingArea(); |
1846 |
> |
areaAccumulator_->add(area); |
1847 |
|
Mat3x3d hmat = currentSnap_->getHmat(); |
1848 |
|
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1849 |
|
|
1902 |
|
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1903 |
|
Vector3d aVel = cross(rPos, vel); |
1904 |
|
|
1905 |
< |
if (binNo < nBins_) { |
1905 |
> |
if (binNo >= 0 && binNo < nBins_) { |
1906 |
|
binCount[binNo]++; |
1907 |
|
binMass[binNo] += mass; |
1908 |
|
binPx[binNo] += mass*vel.x(); |
1978 |
|
vel.x() = binPx[i] / binMass[i]; |
1979 |
|
vel.y() = binPy[i] / binMass[i]; |
1980 |
|
vel.z() = binPz[i] / binMass[i]; |
1981 |
< |
aVel.x() = binOmegax[i]; |
1982 |
< |
aVel.y() = binOmegay[i]; |
1983 |
< |
aVel.z() = binOmegaz[i]; |
1981 |
> |
aVel.x() = binOmegax[i] / binCount[i]; |
1982 |
> |
aVel.y() = binOmegay[i] / binCount[i]; |
1983 |
> |
aVel.z() = binOmegaz[i] / binCount[i]; |
1984 |
|
|
1985 |
|
if (binCount[i] > 0) { |
1986 |
|
// only add values if there are things to add |
2002 |
|
case VELOCITY: |
2003 |
|
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); |
2004 |
|
break; |
2005 |
< |
case ANGULARVELOCITY: |
2005 |
> |
case ANGULARVELOCITY: |
2006 |
|
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel); |
2007 |
|
break; |
2008 |
|
case DENSITY: |
2013 |
|
} |
2014 |
|
} |
2015 |
|
} |
2016 |
+ |
hasData_ = true; |
2017 |
|
} |
2018 |
|
|
2019 |
|
void RNEMD::getStarted() { |
2046 |
|
|
2047 |
|
void RNEMD::writeOutputFile() { |
2048 |
|
if (!doRNEMD_) return; |
2049 |
+ |
if (!hasData_) return; |
2050 |
|
|
2051 |
|
#ifdef IS_MPI |
2052 |
|
// If we're the root node, should we print out the results |
2068 |
|
RealType time = currentSnap_->getTime(); |
2069 |
|
RealType avgArea; |
2070 |
|
areaAccumulator_->getAverage(avgArea); |
1981 |
– |
RealType Jz = kineticExchange_ / (time * avgArea) |
1982 |
– |
/ PhysicalConstants::energyConvert; |
1983 |
– |
Vector3d JzP = momentumExchange_ / (time * avgArea); |
1984 |
– |
Vector3d JzL = angularMomentumExchange_ / (time * avgArea); |
2071 |
|
|
2072 |
+ |
RealType Jz(0.0); |
2073 |
+ |
Vector3d JzP(V3Zero); |
2074 |
+ |
Vector3d JzL(V3Zero); |
2075 |
+ |
if (time >= info_->getSimParams()->getDt()) { |
2076 |
+ |
Jz = kineticExchange_ / (time * avgArea) |
2077 |
+ |
/ PhysicalConstants::energyConvert; |
2078 |
+ |
JzP = momentumExchange_ / (time * avgArea); |
2079 |
+ |
JzL = angularMomentumExchange_ / (time * avgArea); |
2080 |
+ |
} |
2081 |
+ |
|
2082 |
|
rnemdFile_ << "#######################################################\n"; |
2083 |
|
rnemdFile_ << "# RNEMD {\n"; |
2084 |
|
|
2165 |
|
if (outputMask_[i]) { |
2166 |
|
if (data_[i].dataType == "RealType") |
2167 |
|
writeReal(i,j); |
2168 |
< |
else if (data_[i].dataType == "Vector3d") |
2168 |
> |
else if (data_[i].dataType == "Vector3d") |
2169 |
|
writeVector(i,j); |
2170 |
|
else { |
2171 |
|
sprintf( painCave.errMsg, |
2222 |
|
RealType s; |
2223 |
|
int count; |
2224 |
|
|
2225 |
< |
count = dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->count(); |
2225 |
> |
count = data_[index].accumulator[bin]->count(); |
2226 |
|
if (count == 0) return; |
2227 |
|
|
2228 |
|
dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s); |
2231 |
|
rnemdFile_ << "\t" << s; |
2232 |
|
} else{ |
2233 |
|
sprintf( painCave.errMsg, |
2234 |
< |
"RNEMD detected a numerical error writing: %s for bin %d", |
2234 |
> |
"RNEMD detected a numerical error writing: %s for bin %u", |
2235 |
|
data_[index].title.c_str(), bin); |
2236 |
|
painCave.isFatal = 1; |
2237 |
|
simError(); |
2245 |
|
Vector3d s; |
2246 |
|
int count; |
2247 |
|
|
2248 |
< |
count = dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->count(); |
2248 |
> |
count = data_[index].accumulator[bin]->count(); |
2249 |
> |
|
2250 |
|
if (count == 0) return; |
2251 |
|
|
2252 |
|
dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s); |
2254 |
|
isinf(s[1]) || isnan(s[1]) || |
2255 |
|
isinf(s[2]) || isnan(s[2]) ) { |
2256 |
|
sprintf( painCave.errMsg, |
2257 |
< |
"RNEMD detected a numerical error writing: %s for bin %d", |
2257 |
> |
"RNEMD detected a numerical error writing: %s for bin %u", |
2258 |
|
data_[index].title.c_str(), bin); |
2259 |
|
painCave.isFatal = 1; |
2260 |
|
simError(); |
2270 |
|
RealType s; |
2271 |
|
int count; |
2272 |
|
|
2273 |
< |
count = dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->count(); |
2273 |
> |
count = data_[index].accumulator[bin]->count(); |
2274 |
|
if (count == 0) return; |
2275 |
|
|
2276 |
|
dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s); |
2279 |
|
rnemdFile_ << "\t" << s; |
2280 |
|
} else{ |
2281 |
|
sprintf( painCave.errMsg, |
2282 |
< |
"RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2282 |
> |
"RNEMD detected a numerical error writing: %s std. dev. for bin %u", |
2283 |
|
data_[index].title.c_str(), bin); |
2284 |
|
painCave.isFatal = 1; |
2285 |
|
simError(); |
2293 |
|
Vector3d s; |
2294 |
|
int count; |
2295 |
|
|
2296 |
< |
count = dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->count(); |
2296 |
> |
count = data_[index].accumulator[bin]->count(); |
2297 |
|
if (count == 0) return; |
2298 |
|
|
2299 |
|
dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s); |
2301 |
|
isinf(s[1]) || isnan(s[1]) || |
2302 |
|
isinf(s[2]) || isnan(s[2]) ) { |
2303 |
|
sprintf( painCave.errMsg, |
2304 |
< |
"RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2304 |
> |
"RNEMD detected a numerical error writing: %s std. dev. for bin %u", |
2305 |
|
data_[index].title.c_str(), bin); |
2306 |
|
painCave.isFatal = 1; |
2307 |
|
simError(); |