ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing branches/development/src/rnemd/RNEMD.cpp (file contents):
Revision 1775 by gezelter, Wed Aug 8 18:45:52 2012 UTC vs.
Revision 1855 by gezelter, Tue Apr 2 18:31:51 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39   * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   #include <cmath>
43 + #include <sstream>
44 + #include <string>
45 +
46   #include "rnemd/RNEMD.hpp"
47   #include "math/Vector3.hpp"
48   #include "math/Vector.hpp"
# Line 49 | Line 52
52   #include "primitives/StuntDouble.hpp"
53   #include "utils/PhysicalConstants.hpp"
54   #include "utils/Tuple.hpp"
55 + #include "brains/Thermo.hpp"
56 + #include "math/ConvexHull.hpp"
57   #ifdef IS_MPI
58   #include <mpi.h>
59   #endif
60  
61 + #ifdef _MSC_VER
62 + #define isnan(x) _isnan((x))
63 + #define isinf(x) (!_finite(x) && !_isnan(x))
64 + #endif
65 +
66   #define HONKING_LARGE_VALUE 1.0e10
67  
68   using namespace std;
69   namespace OpenMD {
70    
71    RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 +                                evaluatorA_(info), seleManA_(info),
73 +                                commonA_(info), evaluatorB_(info),
74 +                                seleManB_(info), commonB_(info),
75                                  usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
76  
77      trialCount_ = 0;
78      failTrialCount_ = 0;
79      failRootCount_ = 0;
80  
81 <    int seedValue;
69 <    Globals * simParams = info->getSimParams();
81 >    Globals* simParams = info->getSimParams();
82      RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
83  
84 +    doRNEMD_ = rnemdParams->getUseRNEMD();
85 +    if (!doRNEMD_) return;
86 +
87      stringToMethod_["Swap"]  = rnemdSwap;
88      stringToMethod_["NIVS"]  = rnemdNIVS;
89      stringToMethod_["VSS"]   = rnemdVSS;
# Line 77 | Line 92 | namespace OpenMD {
92      stringToFluxType_["Px"]  = rnemdPx;
93      stringToFluxType_["Py"]  = rnemdPy;
94      stringToFluxType_["Pz"]  = rnemdPz;
95 +    stringToFluxType_["Pvector"]  = rnemdPvector;
96 +    stringToFluxType_["Lx"]  = rnemdLx;
97 +    stringToFluxType_["Ly"]  = rnemdLy;
98 +    stringToFluxType_["Lz"]  = rnemdLz;
99 +    stringToFluxType_["Lvector"]  = rnemdLvector;
100      stringToFluxType_["KE+Px"]  = rnemdKePx;
101      stringToFluxType_["KE+Py"]  = rnemdKePy;
102      stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
103 +    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
104 +    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
105 +    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
106 +    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
107  
108      runTime_ = simParams->getRunTime();
109      statusTime_ = simParams->getStatusTime();
110  
87    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
88    evaluator_.loadScriptString(rnemdObjectSelection_);
89    seleMan_.setSelectionSet(evaluator_.evaluate());
90
111      const string methStr = rnemdParams->getMethod();
112      bool hasFluxType = rnemdParams->haveFluxType();
113  
114 +    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
115 +
116      string fluxStr;
117      if (hasFluxType) {
118        fluxStr = rnemdParams->getFluxType();
# Line 98 | Line 120 | namespace OpenMD {
120        sprintf(painCave.errMsg,
121                "RNEMD: No fluxType was set in the md file.  This parameter,\n"
122                "\twhich must be one of the following values:\n"
123 <              "\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n"
124 <              "\tuse RNEMD\n");
123 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
124 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
125 >              "\tmust be set to use RNEMD\n");
126        painCave.isFatal = 1;
127        painCave.severity = OPENMD_ERROR;
128        simError();
# Line 108 | Line 131 | namespace OpenMD {
131      bool hasKineticFlux = rnemdParams->haveKineticFlux();
132      bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
133      bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
134 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
135 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
136 +    hasSelectionA_ = rnemdParams->haveSelectionA();
137 +    hasSelectionB_ = rnemdParams->haveSelectionB();
138      bool hasSlabWidth = rnemdParams->haveSlabWidth();
139      bool hasSlabACenter = rnemdParams->haveSlabACenter();
140      bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
141 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
142 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
143 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
144      bool hasOutputFileName = rnemdParams->haveOutputFileName();
145      bool hasOutputFields = rnemdParams->haveOutputFields();
146      
# Line 195 | Line 225 | namespace OpenMD {
225        case rnemdPz:
226          hasCorrectFlux = hasMomentumFlux;
227          break;
228 +      case rnemdLx:
229 +      case rnemdLy:
230 +      case rnemdLz:
231 +        hasCorrectFlux = hasAngularMomentumFlux;
232 +        break;
233        case rnemdPvector:
234          hasCorrectFlux = hasMomentumFluxVector;
235 +        break;
236 +      case rnemdLvector:
237 +        hasCorrectFlux = hasAngularMomentumFluxVector;
238 +        break;
239        case rnemdKePx:
240        case rnemdKePy:
241          hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
242          break;
243 +      case rnemdKeLx:
244 +      case rnemdKeLy:
245 +      case rnemdKeLz:
246 +        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
247 +        break;
248        case rnemdKePvector:
249          hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
250          break;
251 +      case rnemdKeLvector:
252 +        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
253 +        break;
254        default:
255          methodFluxMismatch = true;
256          break;
# Line 224 | Line 271 | namespace OpenMD {
271      }
272      if (!hasCorrectFlux) {
273        sprintf(painCave.errMsg,
274 <              "RNEMD: The current method,\n"
228 <              "\t%s, and flux type %s\n"
274 >              "RNEMD: The current method, %s, and flux type, %s,\n"
275                "\tdid not have the correct flux value specified. Options\n"
276 <              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
276 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
277 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
278                methStr.c_str(), fluxStr.c_str());
279        painCave.isFatal = 1;
280        painCave.severity = OPENMD_ERROR;
# Line 235 | Line 282 | namespace OpenMD {
282      }
283  
284      if (hasKineticFlux) {
285 <      kineticFlux_ = rnemdParams->getKineticFlux();
285 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
286 >      // into  amu / fs^3:
287 >      kineticFlux_ = rnemdParams->getKineticFlux()
288 >        * PhysicalConstants::energyConvert;
289      } else {
290        kineticFlux_ = 0.0;
291      }
# Line 264 | Line 314 | namespace OpenMD {
314          default:
315            break;
316          }
317 <      }    
318 <    }
319 <
320 <    // do some sanity checking
321 <
322 <    int selectionCount = seleMan_.getSelectionCount();
323 <    int nIntegrable = info->getNGlobalIntegrableObjects();
324 <
325 <    if (selectionCount > nIntegrable) {
326 <      sprintf(painCave.errMsg,
327 <              "RNEMD: The current objectSelection,\n"
328 <              "\t\t%s\n"
329 <              "\thas resulted in %d selected objects.  However,\n"
330 <              "\tthe total number of integrable objects in the system\n"
331 <              "\tis only %d.  This is almost certainly not what you want\n"
332 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
333 <              "\tselector in the selection script!\n",
334 <              rnemdObjectSelection_.c_str(),
335 <              selectionCount, nIntegrable);
336 <      painCave.isFatal = 0;
337 <      painCave.severity = OPENMD_WARNING;
338 <      simError();
339 <    }
340 <
341 <    areaAccumulator_ = new Accumulator();
317 >      }
318 >      if (hasAngularMomentumFluxVector) {
319 >        angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector();
320 >      } else {
321 >        angularMomentumFluxVector_ = V3Zero;
322 >        if (hasAngularMomentumFlux) {
323 >          RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
324 >          switch (rnemdFluxType_) {
325 >          case rnemdLx:
326 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
327 >            break;
328 >          case rnemdLy:
329 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
330 >            break;
331 >          case rnemdLz:
332 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
333 >            break;
334 >          case rnemdKeLx:
335 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
336 >            break;
337 >          case rnemdKeLy:
338 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
339 >            break;
340 >          case rnemdKeLz:
341 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
342 >            break;
343 >          default:
344 >            break;
345 >          }
346 >        }        
347 >      }
348  
349 <    nBins_ = rnemdParams->getOutputBins();
349 >      if (hasCoordinateOrigin) {
350 >        coordinateOrigin_ = rnemdParams->getCoordinateOrigin();
351 >      } else {
352 >        coordinateOrigin_ = V3Zero;
353 >      }
354  
355 <    data_.resize(RNEMD::ENDINDEX);
296 <    OutputData z;
297 <    z.units =  "Angstroms";
298 <    z.title =  "Z";
299 <    z.dataType = "RealType";
300 <    z.accumulator.reserve(nBins_);
301 <    for (unsigned int i = 0; i < nBins_; i++)
302 <      z.accumulator.push_back( new Accumulator() );
303 <    data_[Z] = z;
304 <    outputMap_["Z"] =  Z;
355 >      // do some sanity checking
356  
357 <    OutputData temperature;
307 <    temperature.units =  "K";
308 <    temperature.title =  "Temperature";
309 <    temperature.dataType = "RealType";
310 <    temperature.accumulator.reserve(nBins_);
311 <    for (unsigned int i = 0; i < nBins_; i++)
312 <      temperature.accumulator.push_back( new Accumulator() );
313 <    data_[TEMPERATURE] = temperature;
314 <    outputMap_["TEMPERATURE"] =  TEMPERATURE;
357 >      int selectionCount = seleMan_.getSelectionCount();
358  
359 <    OutputData velocity;
360 <    velocity.units = "amu/fs";
361 <    velocity.title =  "Velocity";  
362 <    velocity.dataType = "Vector3d";
363 <    velocity.accumulator.reserve(nBins_);
364 <    for (unsigned int i = 0; i < nBins_; i++)
365 <      velocity.accumulator.push_back( new VectorAccumulator() );
366 <    data_[VELOCITY] = velocity;
367 <    outputMap_["VELOCITY"] = VELOCITY;
359 >      int nIntegrable = info->getNGlobalIntegrableObjects();
360 >
361 >      if (selectionCount > nIntegrable) {
362 >        sprintf(painCave.errMsg,
363 >                "RNEMD: The current objectSelection,\n"
364 >                "\t\t%s\n"
365 >                "\thas resulted in %d selected objects.  However,\n"
366 >                "\tthe total number of integrable objects in the system\n"
367 >                "\tis only %d.  This is almost certainly not what you want\n"
368 >                "\tto do.  A likely cause of this is forgetting the _RB_0\n"
369 >                "\tselector in the selection script!\n",
370 >                rnemdObjectSelection_.c_str(),
371 >                selectionCount, nIntegrable);
372 >        painCave.isFatal = 0;
373 >        painCave.severity = OPENMD_WARNING;
374 >        simError();
375 >      }
376 >
377 >      areaAccumulator_ = new Accumulator();
378 >
379 >      nBins_ = rnemdParams->getOutputBins();
380 >      binWidth_ = rnemdParams->getOutputBinWidth();
381 >
382 >      data_.resize(RNEMD::ENDINDEX);
383 >      OutputData z;
384 >      z.units =  "Angstroms";
385 >      z.title =  "Z";
386 >      z.dataType = "RealType";
387 >      z.accumulator.reserve(nBins_);
388 >      for (int i = 0; i < nBins_; i++)
389 >        z.accumulator.push_back( new Accumulator() );
390 >      data_[Z] = z;
391 >      outputMap_["Z"] =  Z;
392  
393 <    OutputData density;
394 <    density.units =  "g cm^-3";
395 <    density.title =  "Density";
396 <    density.dataType = "RealType";
397 <    density.accumulator.reserve(nBins_);
398 <    for (unsigned int i = 0; i < nBins_; i++)
399 <      density.accumulator.push_back( new Accumulator() );
400 <    data_[DENSITY] = density;
401 <    outputMap_["DENSITY"] =  DENSITY;
393 >      OutputData r;
394 >      r.units =  "Angstroms";
395 >      r.title =  "R";
396 >      r.dataType = "RealType";
397 >      r.accumulator.reserve(nBins_);
398 >      for (int i = 0; i < nBins_; i++)
399 >        r.accumulator.push_back( new Accumulator() );
400 >      data_[R] = r;
401 >      outputMap_["R"] =  R;
402  
403 <    if (hasOutputFields) {
404 <      parseOutputFileFormat(rnemdParams->getOutputFields());
405 <    } else {
406 <      outputMask_.set(Z);
407 <      switch (rnemdFluxType_) {
408 <      case rnemdKE:
409 <      case rnemdRotKE:
410 <      case rnemdFullKE:
411 <        outputMask_.set(TEMPERATURE);
345 <        break;
346 <      case rnemdPx:
347 <      case rnemdPy:
348 <        outputMask_.set(VELOCITY);
349 <        break;
350 <      case rnemdPz:        
351 <      case rnemdPvector:
352 <        outputMask_.set(VELOCITY);
353 <        outputMask_.set(DENSITY);
354 <        break;
355 <      case rnemdKePx:
356 <      case rnemdKePy:
357 <        outputMask_.set(TEMPERATURE);
358 <        outputMask_.set(VELOCITY);
359 <        break;
360 <      case rnemdKePvector:
361 <        outputMask_.set(TEMPERATURE);
362 <        outputMask_.set(VELOCITY);
363 <        outputMask_.set(DENSITY);        
364 <        break;
365 <      default:
366 <        break;
367 <      }
368 <    }
369 <      
370 <    if (hasOutputFileName) {
371 <      rnemdFileName_ = rnemdParams->getOutputFileName();
372 <    } else {
373 <      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
374 <    }          
403 >      OutputData temperature;
404 >      temperature.units =  "K";
405 >      temperature.title =  "Temperature";
406 >      temperature.dataType = "RealType";
407 >      temperature.accumulator.reserve(nBins_);
408 >      for (int i = 0; i < nBins_; i++)
409 >        temperature.accumulator.push_back( new Accumulator() );
410 >      data_[TEMPERATURE] = temperature;
411 >      outputMap_["TEMPERATURE"] =  TEMPERATURE;
412  
413 <    exchangeTime_ = rnemdParams->getExchangeTime();
413 >      OutputData velocity;
414 >      velocity.units = "angstroms/fs";
415 >      velocity.title =  "Velocity";  
416 >      velocity.dataType = "Vector3d";
417 >      velocity.accumulator.reserve(nBins_);
418 >      for (int i = 0; i < nBins_; i++)
419 >        velocity.accumulator.push_back( new VectorAccumulator() );
420 >      data_[VELOCITY] = velocity;
421 >      outputMap_["VELOCITY"] = VELOCITY;
422  
423 <    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
424 <    Mat3x3d hmat = currentSnap_->getHmat();
425 <  
426 <    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
427 <    // Lx, Ly = box dimensions in x & y
428 <    // dt = exchange time interval
429 <    // flux = target flux
423 >      OutputData angularVelocity;
424 >      angularVelocity.units = "angstroms^2/fs";
425 >      angularVelocity.title =  "AngularVelocity";  
426 >      angularVelocity.dataType = "Vector3d";
427 >      angularVelocity.accumulator.reserve(nBins_);
428 >      for (int i = 0; i < nBins_; i++)
429 >        angularVelocity.accumulator.push_back( new VectorAccumulator() );
430 >      data_[ANGULARVELOCITY] = angularVelocity;
431 >      outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
432  
433 <    RealType area = currentSnap_->getXYarea();
434 <    kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
435 <    momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
433 >      OutputData density;
434 >      density.units =  "g cm^-3";
435 >      density.title =  "Density";
436 >      density.dataType = "RealType";
437 >      density.accumulator.reserve(nBins_);
438 >      for (int i = 0; i < nBins_; i++)
439 >        density.accumulator.push_back( new Accumulator() );
440 >      data_[DENSITY] = density;
441 >      outputMap_["DENSITY"] =  DENSITY;
442  
443 <    // total exchange sums are zeroed out at the beginning:
443 >      if (hasOutputFields) {
444 >        parseOutputFileFormat(rnemdParams->getOutputFields());
445 >      } else {
446 >        if (usePeriodicBoundaryConditions_)
447 >          outputMask_.set(Z);
448 >        else
449 >          outputMask_.set(R);
450 >        switch (rnemdFluxType_) {
451 >        case rnemdKE:
452 >        case rnemdRotKE:
453 >        case rnemdFullKE:
454 >          outputMask_.set(TEMPERATURE);
455 >          break;
456 >        case rnemdPx:
457 >        case rnemdPy:
458 >          outputMask_.set(VELOCITY);
459 >          break;
460 >        case rnemdPz:        
461 >        case rnemdPvector:
462 >          outputMask_.set(VELOCITY);
463 >          outputMask_.set(DENSITY);
464 >          break;
465 >        case rnemdLx:
466 >        case rnemdLy:
467 >        case rnemdLz:
468 >        case rnemdLvector:
469 >          outputMask_.set(ANGULARVELOCITY);
470 >          break;
471 >        case rnemdKeLx:
472 >        case rnemdKeLy:
473 >        case rnemdKeLz:
474 >        case rnemdKeLvector:
475 >          outputMask_.set(TEMPERATURE);
476 >          outputMask_.set(ANGULARVELOCITY);
477 >          break;
478 >        case rnemdKePx:
479 >        case rnemdKePy:
480 >          outputMask_.set(TEMPERATURE);
481 >          outputMask_.set(VELOCITY);
482 >          break;
483 >        case rnemdKePvector:
484 >          outputMask_.set(TEMPERATURE);
485 >          outputMask_.set(VELOCITY);
486 >          outputMask_.set(DENSITY);        
487 >          break;
488 >        default:
489 >          break;
490 >        }
491 >      }
492 >      
493 >      if (hasOutputFileName) {
494 >        rnemdFileName_ = rnemdParams->getOutputFileName();
495 >      } else {
496 >        rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
497 >      }          
498  
499 <    kineticExchange_ = 0.0;
393 <    momentumExchange_ = V3Zero;
499 >      exchangeTime_ = rnemdParams->getExchangeTime();
500  
501 <    if (hasSlabWidth)
502 <      slabWidth_ = rnemdParams->getSlabWidth();
503 <    else
504 <      slabWidth_ = hmat(2,2) / 10.0;
505 <  
506 <    if (hasSlabACenter)
507 <      slabACenter_ = rnemdParams->getSlabACenter();
508 <    else
509 <      slabACenter_ = 0.0;
501 >      Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
502 >      // total exchange sums are zeroed out at the beginning:
503 >
504 >      kineticExchange_ = 0.0;
505 >      momentumExchange_ = V3Zero;
506 >      angularMomentumExchange_ = V3Zero;
507 >
508 >      std::ostringstream selectionAstream;
509 >      std::ostringstream selectionBstream;
510      
511 <    if (hasSlabBCenter)
512 <      slabBCenter_ = rnemdParams->getSlabBCenter();
513 <    else
514 <      slabBCenter_ = hmat(2,2) / 2.0;
511 >      if (hasSelectionA_) {
512 >        selectionA_ = rnemdParams->getSelectionA();
513 >      } else {
514 >        if (usePeriodicBoundaryConditions_) {    
515 >          Mat3x3d hmat = currentSnap_->getHmat();
516 >        
517 >          if (hasSlabWidth)
518 >            slabWidth_ = rnemdParams->getSlabWidth();
519 >          else
520 >            slabWidth_ = hmat(2,2) / 10.0;
521 >        
522 >          if (hasSlabACenter)
523 >            slabACenter_ = rnemdParams->getSlabACenter();
524 >          else
525 >            slabACenter_ = 0.0;
526 >        
527 >          selectionAstream << "select wrappedz > "
528 >                           << slabACenter_ - 0.5*slabWidth_
529 >                           <<  " && wrappedz < "
530 >                           << slabACenter_ + 0.5*slabWidth_;
531 >          selectionA_ = selectionAstream.str();
532 >        } else {
533 >          if (hasSphereARadius)
534 >            sphereARadius_ = rnemdParams->getSphereARadius();
535 >          else {
536 >            // use an initial guess to the size of the inner slab to be 1/10 the
537 >            // radius of an approximately spherical hull:
538 >            Thermo thermo(info);
539 >            RealType hVol = thermo.getHullVolume();
540 >            sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
541 >          }
542 >          selectionAstream << "select r < " << sphereARadius_;
543 >          selectionA_ = selectionAstream.str();
544 >        }
545 >      }
546      
547 +      if (hasSelectionB_) {
548 +        selectionB_ = rnemdParams->getSelectionB();
549 +      } else {
550 +        if (usePeriodicBoundaryConditions_) {    
551 +          Mat3x3d hmat = currentSnap_->getHmat();
552 +        
553 +          if (hasSlabWidth)
554 +            slabWidth_ = rnemdParams->getSlabWidth();
555 +          else
556 +            slabWidth_ = hmat(2,2) / 10.0;
557 +        
558 +          if (hasSlabBCenter)
559 +            slabBCenter_ = rnemdParams->getSlabACenter();
560 +          else
561 +            slabBCenter_ = hmat(2,2) / 2.0;
562 +        
563 +          selectionBstream << "select wrappedz > "
564 +                           << slabBCenter_ - 0.5*slabWidth_
565 +                           <<  " && wrappedz < "
566 +                           << slabBCenter_ + 0.5*slabWidth_;
567 +          selectionB_ = selectionBstream.str();
568 +        } else {
569 +          if (hasSphereBRadius_) {
570 +            sphereBRadius_ = rnemdParams->getSphereBRadius();
571 +            selectionBstream << "select r > " << sphereBRadius_;
572 +            selectionB_ = selectionBstream.str();
573 +          } else {
574 +            selectionB_ = "select hull";
575 +            hasSelectionB_ = true;
576 +          }
577 +        }
578 +      }
579 +    }
580 +    // object evaluator:
581 +    evaluator_.loadScriptString(rnemdObjectSelection_);
582 +    seleMan_.setSelectionSet(evaluator_.evaluate());
583 +    
584 +    evaluatorA_.loadScriptString(selectionA_);
585 +    evaluatorB_.loadScriptString(selectionB_);
586 +    
587 +    seleManA_.setSelectionSet(evaluatorA_.evaluate());
588 +    seleManB_.setSelectionSet(evaluatorB_.evaluate());
589 +    
590 +    commonA_ = seleManA_ & seleMan_;
591 +    commonB_ = seleManB_ & seleMan_;    
592    }
593 <  
412 <  RNEMD::~RNEMD() {
593 >  
594      
595 +  RNEMD::~RNEMD() {
596 +    if (!doRNEMD_) return;
597   #ifdef IS_MPI
598      if (worldRank == 0) {
599   #endif
# Line 424 | Line 607 | namespace OpenMD {
607   #endif
608    }
609    
610 <  bool RNEMD::inSlabA(Vector3d pos) {
611 <    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
612 <  }
613 <  bool RNEMD::inSlabB(Vector3d pos) {
431 <    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
432 <  }
610 >  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
611 >    if (!doRNEMD_) return;
612 >    int selei;
613 >    int selej;
614  
434  void RNEMD::doSwap() {
435
615      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
616      Mat3x3d hmat = currentSnap_->getHmat();
617  
439    seleMan_.setSelectionSet(evaluator_.evaluate());
440
441    int selei;
618      StuntDouble* sd;
443    int idx;
619  
620      RealType min_val;
621      bool min_found = false;  
# Line 450 | Line 625 | namespace OpenMD {
625      bool max_found = false;
626      StuntDouble* max_sd;
627  
628 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
629 <         sd = seleMan_.nextSelected(selei)) {
628 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
629 >         sd = seleManA_.nextSelected(selei)) {
630  
456      idx = sd->getLocalIndex();
457
631        Vector3d pos = sd->getPos();
632 <
632 >      
633        // wrap the stuntdouble's position back into the box:
634 <
634 >      
635        if (usePeriodicBoundaryConditions_)
636          currentSnap_->wrapVector(pos);
637 <      bool inA = inSlabA(pos);
638 <      bool inB = inSlabB(pos);
639 <
640 <      if (inA || inB) {
637 >      
638 >      RealType mass = sd->getMass();
639 >      Vector3d vel = sd->getVel();
640 >      RealType value;
641 >      
642 >      switch(rnemdFluxType_) {
643 >      case rnemdKE :
644          
645 <        RealType mass = sd->getMass();
646 <        Vector3d vel = sd->getVel();
647 <        RealType value;
648 <        
649 <        switch(rnemdFluxType_) {
650 <        case rnemdKE :
651 <          
652 <          value = mass * vel.lengthSquare();
653 <          
654 <          if (sd->isDirectional()) {
655 <            Vector3d angMom = sd->getJ();
656 <            Mat3x3d I = sd->getI();
657 <            
658 <            if (sd->isLinear()) {
659 <              int i = sd->linearAxis();
660 <              int j = (i + 1) % 3;
661 <              int k = (i + 2) % 3;
662 <              value += angMom[j] * angMom[j] / I(j, j) +
663 <                angMom[k] * angMom[k] / I(k, k);
664 <            } else {                        
665 <              value += angMom[0]*angMom[0]/I(0, 0)
666 <                + angMom[1]*angMom[1]/I(1, 1)
667 <                + angMom[2]*angMom[2]/I(2, 2);
668 <            }
669 <          } //angular momenta exchange enabled
670 <          //energyConvert temporarily disabled
671 <          //make kineticExchange_ comparable between swap & scale
672 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
673 <          value *= 0.5;
674 <          break;
675 <        case rnemdPx :
676 <          value = mass * vel[0];
677 <          break;
678 <        case rnemdPy :
679 <          value = mass * vel[1];
680 <          break;
681 <        case rnemdPz :
682 <          value = mass * vel[2];
683 <          break;
684 <        default :
509 <          break;
645 >        value = mass * vel.lengthSquare();
646 >        
647 >        if (sd->isDirectional()) {
648 >          Vector3d angMom = sd->getJ();
649 >          Mat3x3d I = sd->getI();
650 >          
651 >          if (sd->isLinear()) {
652 >            int i = sd->linearAxis();
653 >            int j = (i + 1) % 3;
654 >            int k = (i + 2) % 3;
655 >            value += angMom[j] * angMom[j] / I(j, j) +
656 >              angMom[k] * angMom[k] / I(k, k);
657 >          } else {                        
658 >            value += angMom[0]*angMom[0]/I(0, 0)
659 >              + angMom[1]*angMom[1]/I(1, 1)
660 >              + angMom[2]*angMom[2]/I(2, 2);
661 >          }
662 >        } //angular momenta exchange enabled
663 >        value *= 0.5;
664 >        break;
665 >      case rnemdPx :
666 >        value = mass * vel[0];
667 >        break;
668 >      case rnemdPy :
669 >        value = mass * vel[1];
670 >        break;
671 >      case rnemdPz :
672 >        value = mass * vel[2];
673 >        break;
674 >      default :
675 >        break;
676 >      }
677 >      if (!max_found) {
678 >        max_val = value;
679 >        max_sd = sd;
680 >        max_found = true;
681 >      } else {
682 >        if (max_val < value) {
683 >          max_val = value;
684 >          max_sd = sd;
685          }
686 +      }  
687 +    }
688          
689 <        if (inA == 0) {
690 <          if (!min_found) {
691 <            min_val = value;
692 <            min_sd = sd;
693 <            min_found = true;
694 <          } else {
695 <            if (min_val > value) {
696 <              min_val = value;
697 <              min_sd = sd;
698 <            }
699 <          }
700 <        } else {
701 <          if (!max_found) {
702 <            max_val = value;
703 <            max_sd = sd;
704 <            max_found = true;
705 <          } else {
706 <            if (max_val < value) {
707 <              max_val = value;
708 <              max_sd = sd;
709 <            }
710 <          }      
711 <        }
689 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
690 >         sd = seleManB_.nextSelected(selej)) {
691 >
692 >      Vector3d pos = sd->getPos();
693 >      
694 >      // wrap the stuntdouble's position back into the box:
695 >      
696 >      if (usePeriodicBoundaryConditions_)
697 >        currentSnap_->wrapVector(pos);
698 >      
699 >      RealType mass = sd->getMass();
700 >      Vector3d vel = sd->getVel();
701 >      RealType value;
702 >      
703 >      switch(rnemdFluxType_) {
704 >      case rnemdKE :
705 >        
706 >        value = mass * vel.lengthSquare();
707 >        
708 >        if (sd->isDirectional()) {
709 >          Vector3d angMom = sd->getJ();
710 >          Mat3x3d I = sd->getI();
711 >          
712 >          if (sd->isLinear()) {
713 >            int i = sd->linearAxis();
714 >            int j = (i + 1) % 3;
715 >            int k = (i + 2) % 3;
716 >            value += angMom[j] * angMom[j] / I(j, j) +
717 >              angMom[k] * angMom[k] / I(k, k);
718 >          } else {                        
719 >            value += angMom[0]*angMom[0]/I(0, 0)
720 >              + angMom[1]*angMom[1]/I(1, 1)
721 >              + angMom[2]*angMom[2]/I(2, 2);
722 >          }
723 >        } //angular momenta exchange enabled
724 >        value *= 0.5;
725 >        break;
726 >      case rnemdPx :
727 >        value = mass * vel[0];
728 >        break;
729 >      case rnemdPy :
730 >        value = mass * vel[1];
731 >        break;
732 >      case rnemdPz :
733 >        value = mass * vel[2];
734 >        break;
735 >      default :
736 >        break;
737        }
738 +      
739 +      if (!min_found) {
740 +        min_val = value;
741 +        min_sd = sd;
742 +        min_found = true;
743 +      } else {
744 +        if (min_val > value) {
745 +          min_val = value;
746 +          min_sd = sd;
747 +        }
748 +      }
749      }
750      
751 < #ifdef IS_MPI
752 <    int nProc, worldRank;
751 > #ifdef IS_MPI    
752 >    int worldRank = MPI::COMM_WORLD.Get_rank();
753      
541    nProc = MPI::COMM_WORLD.Get_size();
542    worldRank = MPI::COMM_WORLD.Get_rank();
543
754      bool my_min_found = min_found;
755      bool my_max_found = max_found;
756  
# Line 731 | Line 941 | namespace OpenMD {
941          
942          switch(rnemdFluxType_) {
943          case rnemdKE:
734          cerr << "KE\n";
944            kineticExchange_ += max_val - min_val;
945            break;
946          case rnemdPx:
# Line 744 | Line 953 | namespace OpenMD {
953            momentumExchange_.z() += max_val - min_val;
954            break;
955          default:
747          cerr << "default\n";
956            break;
957          }
958        } else {        
# Line 766 | Line 974 | namespace OpenMD {
974      }    
975    }
976    
977 <  void RNEMD::doNIVS() {
977 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
978 >    if (!doRNEMD_) return;
979 >    int selei;
980 >    int selej;
981  
982      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
983 +    RealType time = currentSnap_->getTime();    
984      Mat3x3d hmat = currentSnap_->getHmat();
985  
774    seleMan_.setSelectionSet(evaluator_.evaluate());
775
776    int selei;
986      StuntDouble* sd;
778    int idx;
987  
988      vector<StuntDouble*> hotBin, coldBin;
989  
# Line 794 | Line 1002 | namespace OpenMD {
1002      RealType Kcz = 0.0;
1003      RealType Kcw = 0.0;
1004  
1005 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1006 <         sd = seleMan_.nextSelected(selei)) {
1005 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1006 >         sd = smanA.nextSelected(selei)) {
1007  
800      idx = sd->getLocalIndex();
801
1008        Vector3d pos = sd->getPos();
1009 <
1009 >      
1010        // wrap the stuntdouble's position back into the box:
1011 <
1011 >      
1012        if (usePeriodicBoundaryConditions_)
1013          currentSnap_->wrapVector(pos);
1014 <
1015 <      // which bin is this stuntdouble in?
1016 <      bool inA = inSlabA(pos);
1017 <      bool inB = inSlabB(pos);
1014 >      
1015 >      
1016 >      RealType mass = sd->getMass();
1017 >      Vector3d vel = sd->getVel();
1018 >      
1019 >      hotBin.push_back(sd);
1020 >      Phx += mass * vel.x();
1021 >      Phy += mass * vel.y();
1022 >      Phz += mass * vel.z();
1023 >      Khx += mass * vel.x() * vel.x();
1024 >      Khy += mass * vel.y() * vel.y();
1025 >      Khz += mass * vel.z() * vel.z();
1026 >      if (sd->isDirectional()) {
1027 >        Vector3d angMom = sd->getJ();
1028 >        Mat3x3d I = sd->getI();
1029 >        if (sd->isLinear()) {
1030 >          int i = sd->linearAxis();
1031 >          int j = (i + 1) % 3;
1032 >          int k = (i + 2) % 3;
1033 >          Khw += angMom[j] * angMom[j] / I(j, j) +
1034 >            angMom[k] * angMom[k] / I(k, k);
1035 >        } else {
1036 >          Khw += angMom[0]*angMom[0]/I(0, 0)
1037 >            + angMom[1]*angMom[1]/I(1, 1)
1038 >            + angMom[2]*angMom[2]/I(2, 2);
1039 >        }
1040 >      }
1041 >    }
1042 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1043 >         sd = smanB.nextSelected(selej)) {
1044 >      Vector3d pos = sd->getPos();
1045 >      
1046 >      // wrap the stuntdouble's position back into the box:
1047 >      
1048 >      if (usePeriodicBoundaryConditions_)
1049 >        currentSnap_->wrapVector(pos);
1050 >            
1051 >      RealType mass = sd->getMass();
1052 >      Vector3d vel = sd->getVel();
1053  
1054 <      if (inA || inB) {
1055 <              
1056 <        RealType mass = sd->getMass();
1057 <        Vector3d vel = sd->getVel();
1058 <      
1059 <        if (inA) {
1060 <          hotBin.push_back(sd);
1061 <          Phx += mass * vel.x();
1062 <          Phy += mass * vel.y();
1063 <          Phz += mass * vel.z();
1064 <          Khx += mass * vel.x() * vel.x();
1065 <          Khy += mass * vel.y() * vel.y();
1066 <          Khz += mass * vel.z() * vel.z();
1067 <          if (sd->isDirectional()) {
1068 <            Vector3d angMom = sd->getJ();
1069 <            Mat3x3d I = sd->getI();
1070 <            if (sd->isLinear()) {
1071 <              int i = sd->linearAxis();
1072 <              int j = (i + 1) % 3;
1073 <              int k = (i + 2) % 3;
1074 <              Khw += angMom[j] * angMom[j] / I(j, j) +
834 <                angMom[k] * angMom[k] / I(k, k);
835 <            } else {
836 <              Khw += angMom[0]*angMom[0]/I(0, 0)
837 <                + angMom[1]*angMom[1]/I(1, 1)
838 <                + angMom[2]*angMom[2]/I(2, 2);
839 <            }
840 <          }
841 <        } else {
842 <          coldBin.push_back(sd);
843 <          Pcx += mass * vel.x();
844 <          Pcy += mass * vel.y();
845 <          Pcz += mass * vel.z();
846 <          Kcx += mass * vel.x() * vel.x();
847 <          Kcy += mass * vel.y() * vel.y();
848 <          Kcz += mass * vel.z() * vel.z();
849 <          if (sd->isDirectional()) {
850 <            Vector3d angMom = sd->getJ();
851 <            Mat3x3d I = sd->getI();
852 <            if (sd->isLinear()) {
853 <              int i = sd->linearAxis();
854 <              int j = (i + 1) % 3;
855 <              int k = (i + 2) % 3;
856 <              Kcw += angMom[j] * angMom[j] / I(j, j) +
857 <                angMom[k] * angMom[k] / I(k, k);
858 <            } else {
859 <              Kcw += angMom[0]*angMom[0]/I(0, 0)
860 <                + angMom[1]*angMom[1]/I(1, 1)
861 <                + angMom[2]*angMom[2]/I(2, 2);
862 <            }
863 <          }
864 <        }
1054 >      coldBin.push_back(sd);
1055 >      Pcx += mass * vel.x();
1056 >      Pcy += mass * vel.y();
1057 >      Pcz += mass * vel.z();
1058 >      Kcx += mass * vel.x() * vel.x();
1059 >      Kcy += mass * vel.y() * vel.y();
1060 >      Kcz += mass * vel.z() * vel.z();
1061 >      if (sd->isDirectional()) {
1062 >        Vector3d angMom = sd->getJ();
1063 >        Mat3x3d I = sd->getI();
1064 >        if (sd->isLinear()) {
1065 >          int i = sd->linearAxis();
1066 >          int j = (i + 1) % 3;
1067 >          int k = (i + 2) % 3;
1068 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1069 >            angMom[k] * angMom[k] / I(k, k);
1070 >        } else {
1071 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1072 >            + angMom[1]*angMom[1]/I(1, 1)
1073 >            + angMom[2]*angMom[2]/I(2, 2);
1074 >        }
1075        }
1076      }
1077      
# Line 911 | Line 1121 | namespace OpenMD {
1121  
1122        if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1123          c = sqrt(c);
1124 <        //std::cerr << "cold slab scaling coefficient: " << c << endl;
915 <        //now convert to hotBin coefficient
1124 >
1125          RealType w = 0.0;
1126          if (rnemdFluxType_ ==  rnemdFullKE) {
1127            x = 1.0 + px * (1.0 - c);
# Line 950 | Line 1159 | namespace OpenMD {
1159              }
1160            }
1161            w = sqrt(w);
953          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
954          //           << "\twh= " << w << endl;
1162            for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1163              if (rnemdFluxType_ == rnemdFullKE) {
1164                vel = (*sdi)->getVel();
# Line 1214 | Line 1421 | namespace OpenMD {
1421        failTrialCount_++;
1422      }
1423    }
1424 <
1425 <  void RNEMD::doVSS() {
1424 >  
1425 >  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1426 >    if (!doRNEMD_) return;
1427 >    int selei;
1428 >    int selej;
1429  
1430      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1431      RealType time = currentSnap_->getTime();    
1432      Mat3x3d hmat = currentSnap_->getHmat();
1223
1224    seleMan_.setSelectionSet(evaluator_.evaluate());
1433  
1226    int selei;
1434      StuntDouble* sd;
1228    int idx;
1435  
1436      vector<StuntDouble*> hotBin, coldBin;
1437  
1438      Vector3d Ph(V3Zero);
1439 +    Vector3d Lh(V3Zero);
1440      RealType Mh = 0.0;
1441 +    Mat3x3d Ih(0.0);
1442      RealType Kh = 0.0;
1443      Vector3d Pc(V3Zero);
1444 +    Vector3d Lc(V3Zero);
1445      RealType Mc = 0.0;
1446 +    Mat3x3d Ic(0.0);
1447      RealType Kc = 0.0;
1448      
1449 <
1450 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1241 <         sd = seleMan_.nextSelected(selei)) {
1242 <
1243 <      idx = sd->getLocalIndex();
1449 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1450 >         sd = smanA.nextSelected(selei)) {
1451  
1452        Vector3d pos = sd->getPos();
1453  
1454        // wrap the stuntdouble's position back into the box:
1455 +      
1456 +      if (usePeriodicBoundaryConditions_)
1457 +        currentSnap_->wrapVector(pos);
1458 +      
1459 +      RealType mass = sd->getMass();
1460 +      Vector3d vel = sd->getVel();
1461 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1462 +      RealType r2;
1463 +      
1464 +      hotBin.push_back(sd);
1465 +      Ph += mass * vel;
1466 +      Mh += mass;
1467 +      Kh += mass * vel.lengthSquare();
1468 +      Lh += mass * cross(rPos, vel);
1469 +      Ih -= outProduct(rPos, rPos) * mass;
1470 +      r2 = rPos.lengthSquare();
1471 +      Ih(0, 0) += mass * r2;
1472 +      Ih(1, 1) += mass * r2;
1473 +      Ih(2, 2) += mass * r2;
1474 +      
1475 +      if (rnemdFluxType_ == rnemdFullKE) {
1476 +        if (sd->isDirectional()) {
1477 +          Vector3d angMom = sd->getJ();
1478 +          Mat3x3d I = sd->getI();
1479 +          if (sd->isLinear()) {
1480 +            int i = sd->linearAxis();
1481 +            int j = (i + 1) % 3;
1482 +            int k = (i + 2) % 3;
1483 +            Kh += angMom[j] * angMom[j] / I(j, j) +
1484 +              angMom[k] * angMom[k] / I(k, k);
1485 +          } else {
1486 +            Kh += angMom[0] * angMom[0] / I(0, 0) +
1487 +              angMom[1] * angMom[1] / I(1, 1) +
1488 +              angMom[2] * angMom[2] / I(2, 2);
1489 +          }
1490 +        }
1491 +      }
1492 +    }
1493 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1494 +         sd = smanB.nextSelected(selej)) {
1495  
1496 +      Vector3d pos = sd->getPos();
1497 +      
1498 +      // wrap the stuntdouble's position back into the box:
1499 +      
1500        if (usePeriodicBoundaryConditions_)
1501          currentSnap_->wrapVector(pos);
1502 +      
1503 +      RealType mass = sd->getMass();
1504 +      Vector3d vel = sd->getVel();
1505 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1506 +      RealType r2;
1507  
1508 <      // which bin is this stuntdouble in?
1509 <      bool inA = inSlabA(pos);
1510 <      bool inB = inSlabB(pos);
1508 >      coldBin.push_back(sd);
1509 >      Pc += mass * vel;
1510 >      Mc += mass;
1511 >      Kc += mass * vel.lengthSquare();
1512 >      Lc += mass * cross(rPos, vel);
1513 >      Ic -= outProduct(rPos, rPos) * mass;
1514 >      r2 = rPos.lengthSquare();
1515 >      Ic(0, 0) += mass * r2;
1516 >      Ic(1, 1) += mass * r2;
1517 >      Ic(2, 2) += mass * r2;
1518        
1519 <      if (inA || inB) {
1520 <        
1521 <        RealType mass = sd->getMass();
1522 <        Vector3d vel = sd->getVel();
1523 <      
1524 <        if (inA) {
1525 <          hotBin.push_back(sd);
1526 <          //std::cerr << "before, velocity = " << vel << endl;
1527 <          Ph += mass * vel;
1528 <          //std::cerr << "after, velocity = " << vel << endl;
1529 <          Mh += mass;
1530 <          Kh += mass * vel.lengthSquare();
1531 <          if (rnemdFluxType_ == rnemdFullKE) {
1532 <            if (sd->isDirectional()) {
1533 <              Vector3d angMom = sd->getJ();
1534 <              Mat3x3d I = sd->getI();
1272 <              if (sd->isLinear()) {
1273 <                int i = sd->linearAxis();
1274 <                int j = (i + 1) % 3;
1275 <                int k = (i + 2) % 3;
1276 <                Kh += angMom[j] * angMom[j] / I(j, j) +
1277 <                  angMom[k] * angMom[k] / I(k, k);
1278 <              } else {
1279 <                Kh += angMom[0] * angMom[0] / I(0, 0) +
1280 <                  angMom[1] * angMom[1] / I(1, 1) +
1281 <                  angMom[2] * angMom[2] / I(2, 2);
1282 <              }
1283 <            }
1284 <          }
1285 <        } else { //midBin_
1286 <          coldBin.push_back(sd);
1287 <          Pc += mass * vel;
1288 <          Mc += mass;
1289 <          Kc += mass * vel.lengthSquare();
1290 <          if (rnemdFluxType_ == rnemdFullKE) {
1291 <            if (sd->isDirectional()) {
1292 <              Vector3d angMom = sd->getJ();
1293 <              Mat3x3d I = sd->getI();
1294 <              if (sd->isLinear()) {
1295 <                int i = sd->linearAxis();
1296 <                int j = (i + 1) % 3;
1297 <                int k = (i + 2) % 3;
1298 <                Kc += angMom[j] * angMom[j] / I(j, j) +
1299 <                  angMom[k] * angMom[k] / I(k, k);
1300 <              } else {
1301 <                Kc += angMom[0] * angMom[0] / I(0, 0) +
1302 <                  angMom[1] * angMom[1] / I(1, 1) +
1303 <                  angMom[2] * angMom[2] / I(2, 2);
1304 <              }
1305 <            }
1306 <          }
1307 <        }
1519 >      if (rnemdFluxType_ == rnemdFullKE) {
1520 >        if (sd->isDirectional()) {
1521 >          Vector3d angMom = sd->getJ();
1522 >          Mat3x3d I = sd->getI();
1523 >          if (sd->isLinear()) {
1524 >            int i = sd->linearAxis();
1525 >            int j = (i + 1) % 3;
1526 >            int k = (i + 2) % 3;
1527 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1528 >              angMom[k] * angMom[k] / I(k, k);
1529 >          } else {
1530 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1531 >              angMom[1] * angMom[1] / I(1, 1) +
1532 >              angMom[2] * angMom[2] / I(2, 2);
1533 >          }
1534 >        }
1535        }
1536      }
1537      
1538      Kh *= 0.5;
1539      Kc *= 0.5;
1313
1314    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1315    //        << "\tKc= " << Kc << endl;
1316    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1540      
1541   #ifdef IS_MPI
1542      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1543      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1544 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM);
1545 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM);
1546      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1547      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1548      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1549      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1550 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9,
1551 +                              MPI::REALTYPE, MPI::SUM);
1552 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9,
1553 +                              MPI::REALTYPE, MPI::SUM);
1554   #endif
1555 <
1555 >    
1556      bool successfulExchange = false;
1557      if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1558        Vector3d vc = Pc / Mc;
1559        Vector3d ac = -momentumTarget_ / Mc + vc;
1560        Vector3d acrec = -momentumTarget_ / Mc;
1561 <      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1561 >      
1562 >      // We now need the inverse of the inertia tensor to calculate the
1563 >      // angular velocity of the cold slab;
1564 >      Mat3x3d Ici = Ic.inverse();
1565 >      Vector3d omegac = Ici * Lc;
1566 >      Vector3d bc  = -(Ici * angularMomentumTarget_) + omegac;
1567 >      Vector3d bcrec = bc - omegac;
1568 >      
1569 >      RealType cNumerator = Kc - kineticTarget_
1570 >        - 0.5 * Mc * ac.lengthSquare() - 0.5 * ( dot(bc, Ic * bc));
1571        if (cNumerator > 0.0) {
1572 <        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1572 >        
1573 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare()
1574 >          - 0.5*(dot(omegac, Ic * omegac));
1575 >        
1576          if (cDenominator > 0.0) {
1577            RealType c = sqrt(cNumerator / cDenominator);
1578            if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1579 +            
1580              Vector3d vh = Ph / Mh;
1581              Vector3d ah = momentumTarget_ / Mh + vh;
1582              Vector3d ahrec = momentumTarget_ / Mh;
1583 <            RealType hNumerator = Kh + kineticTarget_
1584 <              - 0.5 * Mh * ah.lengthSquare();
1585 <            if (hNumerator > 0.0) {
1586 <              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1583 >            
1584 >            // We now need the inverse of the inertia tensor to
1585 >            // calculate the angular velocity of the hot slab;
1586 >            Mat3x3d Ihi = Ih.inverse();
1587 >            Vector3d omegah = Ihi * Lh;
1588 >            Vector3d bh  = (Ihi * angularMomentumTarget_) + omegah;
1589 >            Vector3d bhrec = bh - omegah;
1590 >            
1591 >            RealType hNumerator = Kh + kineticTarget_
1592 >              - 0.5 * Mh * ah.lengthSquare() - 0.5 * ( dot(bh, Ih * bh));;
1593 >            if (hNumerator > 0.0) {
1594 >              
1595 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare()
1596 >                - 0.5*(dot(omegah, Ih * omegah));
1597 >              
1598                if (hDenominator > 0.0) {
1599                  RealType h = sqrt(hNumerator / hDenominator);
1600                  if ((h > 0.9) && (h < 1.1)) {
1601 <                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1349 <                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1601 >                  
1602                    vector<StuntDouble*>::iterator sdi;
1603                    Vector3d vel;
1604 +                  Vector3d rPos;
1605 +                  
1606                    for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1607                      //vel = (*sdi)->getVel();
1608 <                    vel = ((*sdi)->getVel() - vc) * c + ac;
1608 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1609 >                    vel = ((*sdi)->getVel() - vc - cross(omegac, rPos)) * c
1610 >                      + ac + cross(bc, rPos);
1611                      (*sdi)->setVel(vel);
1612                      if (rnemdFluxType_ == rnemdFullKE) {
1613                        if ((*sdi)->isDirectional()) {
# Line 1362 | Line 1618 | namespace OpenMD {
1618                    }
1619                    for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1620                      //vel = (*sdi)->getVel();
1621 <                    vel = ((*sdi)->getVel() - vh) * h + ah;
1621 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1622 >                    vel = ((*sdi)->getVel() - vh - cross(omegah, rPos)) * h
1623 >                      + ah + cross(bh, rPos);    
1624 >                    cerr << "setting vel to " << vel << "\n";
1625                      (*sdi)->setVel(vel);
1626                      if (rnemdFluxType_ == rnemdFullKE) {
1627                        if ((*sdi)->isDirectional()) {
# Line 1374 | Line 1633 | namespace OpenMD {
1633                    successfulExchange = true;
1634                    kineticExchange_ += kineticTarget_;
1635                    momentumExchange_ += momentumTarget_;
1636 +                  angularMomentumExchange_ += angularMomentumTarget_;
1637                  }
1638                }
1639              }
# Line 1393 | Line 1653 | namespace OpenMD {
1653      }
1654    }
1655  
1656 <  void RNEMD::doRNEMD() {
1656 >  RealType RNEMD::getDividingArea() {
1657  
1658 +    if (hasDividingArea_) return dividingArea_;
1659 +
1660 +    RealType areaA, areaB;
1661 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1662 +
1663 +    if (hasSelectionA_) {
1664 +      int isd;
1665 +      StuntDouble* sd;
1666 +      vector<StuntDouble*> aSites;
1667 +      ConvexHull* surfaceMeshA = new ConvexHull();
1668 +      seleManA_.setSelectionSet(evaluatorA_.evaluate());
1669 +      for (sd = seleManA_.beginSelected(isd); sd != NULL;
1670 +           sd = seleManA_.nextSelected(isd)) {
1671 +        aSites.push_back(sd);
1672 +      }
1673 +      surfaceMeshA->computeHull(aSites);
1674 +      areaA = surfaceMeshA->getArea();
1675 +    } else {
1676 +      if (usePeriodicBoundaryConditions_) {
1677 +        // in periodic boundaries, the surface area is twice the x-y
1678 +        // area of the current box:
1679 +        areaA = 2.0 * snap->getXYarea();
1680 +      } else {
1681 +        // in non-periodic simulations, without explicitly setting
1682 +        // selections, the sphere radius sets the surface area of the
1683 +        // dividing surface:
1684 +        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1685 +      }
1686 +    }
1687 +
1688 +    if (hasSelectionB_) {
1689 +      int isd;
1690 +      StuntDouble* sd;
1691 +      vector<StuntDouble*> bSites;
1692 +      ConvexHull* surfaceMeshB = new ConvexHull();
1693 +      seleManB_.setSelectionSet(evaluatorB_.evaluate());
1694 +      for (sd = seleManB_.beginSelected(isd); sd != NULL;
1695 +           sd = seleManB_.nextSelected(isd)) {
1696 +        bSites.push_back(sd);
1697 +      }
1698 +      surfaceMeshB->computeHull(bSites);
1699 +      areaB = surfaceMeshB->getArea();
1700 +    } else {
1701 +      if (usePeriodicBoundaryConditions_) {
1702 +        // in periodic boundaries, the surface area is twice the x-y
1703 +        // area of the current box:
1704 +        areaB = 2.0 * snap->getXYarea();
1705 +      } else {
1706 +        // in non-periodic simulations, without explicitly setting
1707 +        // selections, but if a sphereBradius has been set, just use that:
1708 +        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1709 +      }
1710 +    }
1711 +    
1712 +    dividingArea_ = min(areaA, areaB);
1713 +    hasDividingArea_ = true;
1714 +    return dividingArea_;
1715 +  }
1716 +  
1717 +  void RNEMD::doRNEMD() {
1718 +    if (!doRNEMD_) return;
1719      trialCount_++;
1720 +
1721 +    cerr << "trialCount = " << trialCount_ << "\n";
1722 +    // object evaluator:
1723 +    evaluator_.loadScriptString(rnemdObjectSelection_);
1724 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1725 +
1726 +    evaluatorA_.loadScriptString(selectionA_);
1727 +    evaluatorB_.loadScriptString(selectionB_);
1728 +
1729 +    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1730 +    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1731 +
1732 +    commonA_ = seleManA_ & seleMan_;
1733 +    commonB_ = seleManB_ & seleMan_;
1734 +
1735 +    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1736 +    // dt = exchange time interval
1737 +    // flux = target flux
1738 +    // dividingArea = smallest dividing surface between the two regions
1739 +
1740 +    hasDividingArea_ = false;
1741 +    RealType area = getDividingArea();
1742 +
1743 +    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1744 +    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1745 +    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1746 +
1747      switch(rnemdMethod_) {
1748      case rnemdSwap:
1749 <      doSwap();
1749 >      doSwap(commonA_, commonB_);
1750        break;
1751      case rnemdNIVS:
1752 <      doNIVS();
1752 >      doNIVS(commonA_, commonB_);
1753        break;
1754      case rnemdVSS:
1755 <      doVSS();
1755 >      doVSS(commonA_, commonB_);
1756        break;
1757      case rnemdUnkownMethod:
1758      default :
# Line 1413 | Line 1761 | namespace OpenMD {
1761    }
1762  
1763    void RNEMD::collectData() {
1764 <
1764 >    if (!doRNEMD_) return;
1765      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1766 +    
1767 +    cerr << "collecting data\n";
1768 +    // collectData can be called more frequently than the doRNEMD, so use the
1769 +    // computed area from the last exchange time:
1770 +    RealType area = getDividingArea();
1771 +    areaAccumulator_->add(area);
1772      Mat3x3d hmat = currentSnap_->getHmat();
1419
1420    areaAccumulator_->add(currentSnap_->getXYarea());
1421
1773      seleMan_.setSelectionSet(evaluator_.evaluate());
1774  
1775 <    int selei;
1775 >    int selei(0);
1776      StuntDouble* sd;
1777 <    int idx;
1777 >    int binNo;
1778  
1779      vector<RealType> binMass(nBins_, 0.0);
1780      vector<RealType> binPx(nBins_, 0.0);
1781      vector<RealType> binPy(nBins_, 0.0);
1782      vector<RealType> binPz(nBins_, 0.0);
1783 +    vector<RealType> binOmegax(nBins_, 0.0);
1784 +    vector<RealType> binOmegay(nBins_, 0.0);
1785 +    vector<RealType> binOmegaz(nBins_, 0.0);
1786      vector<RealType> binKE(nBins_, 0.0);
1787      vector<int> binDOF(nBins_, 0);
1788      vector<int> binCount(nBins_, 0);
# Line 1436 | Line 1790 | namespace OpenMD {
1790      // alternative approach, track all molecules instead of only those
1791      // selected for scaling/swapping:
1792      /*
1793 <    SimInfo::MoleculeIterator miter;
1794 <    vector<StuntDouble*>::iterator iiter;
1795 <    Molecule* mol;
1796 <    StuntDouble* sd;
1797 <    for (mol = info_->beginMolecule(miter); mol != NULL;
1793 >      SimInfo::MoleculeIterator miter;
1794 >      vector<StuntDouble*>::iterator iiter;
1795 >      Molecule* mol;
1796 >      StuntDouble* sd;
1797 >      for (mol = info_->beginMolecule(miter); mol != NULL;
1798        mol = info_->nextMolecule(miter))
1799        sd is essentially sd
1800 <        for (sd = mol->beginIntegrableObject(iiter);
1801 <             sd != NULL;
1802 <             sd = mol->nextIntegrableObject(iiter))
1800 >      for (sd = mol->beginIntegrableObject(iiter);
1801 >      sd != NULL;
1802 >      sd = mol->nextIntegrableObject(iiter))
1803      */
1804 +
1805      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1806 <         sd = seleMan_.nextSelected(selei)) {
1807 <      
1453 <      idx = sd->getLocalIndex();
1454 <      
1806 >         sd = seleMan_.nextSelected(selei)) {    
1807 >    
1808        Vector3d pos = sd->getPos();
1809  
1810        // wrap the stuntdouble's position back into the box:
1811        
1812 <      if (usePeriodicBoundaryConditions_)
1812 >      if (usePeriodicBoundaryConditions_) {
1813          currentSnap_->wrapVector(pos);
1814 +        // which bin is this stuntdouble in?
1815 +        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1816 +        // Shift molecules by half a box to have bins start at 0
1817 +        // The modulo operator is used to wrap the case when we are
1818 +        // beyond the end of the bins back to the beginning.
1819 +        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1820 +      } else {
1821 +        Vector3d rPos = pos - coordinateOrigin_;
1822 +        binNo = int(rPos.length() / binWidth_);
1823 +      }
1824  
1462
1463      // which bin is this stuntdouble in?
1464      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1465      // Shift molecules by half a box to have bins start at 0
1466      // The modulo operator is used to wrap the case when we are
1467      // beyond the end of the bins back to the beginning.
1468      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1469    
1825        RealType mass = sd->getMass();
1826        Vector3d vel = sd->getVel();
1827 <
1828 <      binCount[binNo]++;
1829 <      binMass[binNo] += mass;
1830 <      binPx[binNo] += mass*vel.x();
1831 <      binPy[binNo] += mass*vel.y();
1832 <      binPz[binNo] += mass*vel.z();
1833 <      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1834 <      binDOF[binNo] += 3;
1835 <
1836 <      if (sd->isDirectional()) {
1837 <        Vector3d angMom = sd->getJ();
1838 <        Mat3x3d I = sd->getI();
1839 <        if (sd->isLinear()) {
1840 <          int i = sd->linearAxis();
1841 <          int j = (i + 1) % 3;
1842 <          int k = (i + 2) % 3;
1843 <          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1844 <                                 angMom[k] * angMom[k] / I(k, k));
1845 <          binDOF[binNo] += 2;
1846 <        } else {
1847 <          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1848 <                                 angMom[1] * angMom[1] / I(1, 1) +
1849 <                                 angMom[2] * angMom[2] / I(2, 2));
1850 <          binDOF[binNo] += 3;
1827 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1828 >      Vector3d aVel = cross(rPos, vel);
1829 >      
1830 >      if (binNo >= 0 && binNo < nBins_)  {
1831 >        binCount[binNo]++;
1832 >        binMass[binNo] += mass;
1833 >        binPx[binNo] += mass*vel.x();
1834 >        binPy[binNo] += mass*vel.y();
1835 >        binPz[binNo] += mass*vel.z();
1836 >        binOmegax[binNo] += aVel.x();
1837 >        binOmegay[binNo] += aVel.y();
1838 >        binOmegaz[binNo] += aVel.z();
1839 >        binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1840 >        binDOF[binNo] += 3;
1841 >        
1842 >        if (sd->isDirectional()) {
1843 >          Vector3d angMom = sd->getJ();
1844 >          Mat3x3d I = sd->getI();
1845 >          if (sd->isLinear()) {
1846 >            int i = sd->linearAxis();
1847 >            int j = (i + 1) % 3;
1848 >            int k = (i + 2) % 3;
1849 >            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1850 >                                   angMom[k] * angMom[k] / I(k, k));
1851 >            binDOF[binNo] += 2;
1852 >          } else {
1853 >            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1854 >                                   angMom[1] * angMom[1] / I(1, 1) +
1855 >                                   angMom[2] * angMom[2] / I(2, 2));
1856 >            binDOF[binNo] += 3;
1857 >          }
1858          }
1859        }
1860      }
1861      
1500
1862   #ifdef IS_MPI
1863      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1864                                nBins_, MPI::INT, MPI::SUM);
# Line 1509 | Line 1870 | namespace OpenMD {
1870                                nBins_, MPI::REALTYPE, MPI::SUM);
1871      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1872                                nBins_, MPI::REALTYPE, MPI::SUM);
1873 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0],
1874 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1875 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0],
1876 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1877 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0],
1878 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1879      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1880                                nBins_, MPI::REALTYPE, MPI::SUM);
1881      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
# Line 1516 | Line 1883 | namespace OpenMD {
1883   #endif
1884  
1885      Vector3d vel;
1886 +    Vector3d aVel;
1887      RealType den;
1888      RealType temp;
1889      RealType z;
1890 +    RealType r;
1891      for (int i = 0; i < nBins_; i++) {
1892 <      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1892 >      if (usePeriodicBoundaryConditions_) {
1893 >        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1894 >        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1895 >          / currentSnap_->getVolume() ;
1896 >      } else {
1897 >        r = (((RealType)i + 0.5) * binWidth_);
1898 >        RealType rinner = (RealType)i * binWidth_;
1899 >        RealType router = (RealType)(i+1) * binWidth_;
1900 >        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
1901 >          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
1902 >      }
1903        vel.x() = binPx[i] / binMass[i];
1904        vel.y() = binPy[i] / binMass[i];
1905        vel.z() = binPz[i] / binMass[i];
1906 <      den = binCount[i] * nBins_ / currentSnap_->getVolume();
1907 <      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1908 <                               PhysicalConstants::energyConvert);
1906 >      aVel.x() = binOmegax[i];
1907 >      aVel.y() = binOmegay[i];
1908 >      aVel.z() = binOmegaz[i];
1909  
1910 <      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1911 <        if(outputMask_[j]) {
1912 <          switch(j) {
1913 <          case Z:
1914 <            (data_[j].accumulator[i])->add(z);
1915 <            break;
1916 <          case TEMPERATURE:
1917 <            data_[j].accumulator[i]->add(temp);
1918 <            break;
1919 <          case VELOCITY:
1920 <            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1921 <            break;
1922 <          case DENSITY:
1923 <            data_[j].accumulator[i]->add(den);
1924 <            break;
1910 >      if (binCount[i] > 0) {
1911 >        // only add values if there are things to add
1912 >        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1913 >                                 PhysicalConstants::energyConvert);
1914 >        
1915 >        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1916 >          if(outputMask_[j]) {
1917 >            switch(j) {
1918 >            case Z:
1919 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
1920 >              break;
1921 >            case R:
1922 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
1923 >              break;
1924 >            case TEMPERATURE:
1925 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
1926 >              break;
1927 >            case VELOCITY:
1928 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1929 >              break;
1930 >            case ANGULARVELOCITY:  
1931 >              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel);
1932 >              break;
1933 >            case DENSITY:
1934 >              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
1935 >              break;
1936 >            }
1937            }
1938          }
1939        }
# Line 1550 | Line 1941 | namespace OpenMD {
1941    }
1942  
1943    void RNEMD::getStarted() {
1944 +    if (!doRNEMD_) return;
1945 +    hasDividingArea_ = false;
1946      collectData();
1947      writeOutputFile();
1948    }
1949  
1950    void RNEMD::parseOutputFileFormat(const std::string& format) {
1951 +    if (!doRNEMD_) return;
1952      StringTokenizer tokenizer(format, " ,;|\t\n\r");
1953      
1954      while(tokenizer.hasMoreTokens()) {
# Line 1575 | Line 1969 | namespace OpenMD {
1969    }
1970    
1971    void RNEMD::writeOutputFile() {
1972 +    if (!doRNEMD_) return;
1973      
1974   #ifdef IS_MPI
1975      // If we're the root node, should we print out the results
# Line 1596 | Line 1991 | namespace OpenMD {
1991        RealType time = currentSnap_->getTime();
1992        RealType avgArea;
1993        areaAccumulator_->getAverage(avgArea);
1994 <      RealType Jz = kineticExchange_ / (2.0 * time * avgArea);
1995 <      Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);      
1994 >      RealType Jz = kineticExchange_ / (time * avgArea)
1995 >        / PhysicalConstants::energyConvert;
1996 >      Vector3d JzP = momentumExchange_ / (time * avgArea);      
1997 >      Vector3d JzL = angularMomentumExchange_ / (time * avgArea);      
1998  
1999        rnemdFile_ << "#######################################################\n";
2000        rnemdFile_ << "# RNEMD {\n";
# Line 1617 | Line 2014 | namespace OpenMD {
2014  
2015        rnemdFile_ << "#    objectSelection = \""
2016                   << rnemdObjectSelection_ << "\";\n";
2017 <      rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n";
2018 <      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n";
1622 <      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n";
2017 >      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2018 >      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2019        rnemdFile_ << "# }\n";
2020        rnemdFile_ << "#######################################################\n";
2021        rnemdFile_ << "# RNEMD report:\n";      
2022 <      rnemdFile_ << "#     running time = " << time << " fs\n";
2023 <      rnemdFile_ << "#     target flux:\n";
2024 <      rnemdFile_ << "#         kinetic = " << kineticFlux_ << "\n";
2025 <      rnemdFile_ << "#         momentum = " << momentumFluxVector_ << "\n";
2026 <      rnemdFile_ << "#     target one-time exchanges:\n";
2027 <      rnemdFile_ << "#         kinetic = " << kineticTarget_ << "\n";
2028 <      rnemdFile_ << "#         momentum = " << momentumTarget_ << "\n";
2029 <      rnemdFile_ << "#     actual exchange totals:\n";
2030 <      rnemdFile_ << "#         kinetic = " << kineticExchange_ << "\n";
2031 <      rnemdFile_ << "#         momentum = " << momentumExchange_  << "\n";
2032 <      rnemdFile_ << "#     actual flux:\n";
2033 <      rnemdFile_ << "#         kinetic = " << Jz << "\n";
2034 <      rnemdFile_ << "#         momentum = " << JzP  << "\n";
2035 <      rnemdFile_ << "#     exchange statistics:\n";
2036 <      rnemdFile_ << "#         attempted = " << trialCount_ << "\n";
2037 <      rnemdFile_ << "#         failed = " << failTrialCount_ << "\n";    
2022 >      rnemdFile_ << "#      running time = " << time << " fs\n";
2023 >      rnemdFile_ << "# Target flux:\n";
2024 >      rnemdFile_ << "#           kinetic = "
2025 >                 << kineticFlux_ / PhysicalConstants::energyConvert
2026 >                 << " (kcal/mol/A^2/fs)\n";
2027 >      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2028 >                 << " (amu/A/fs^2)\n";
2029 >      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2030 >                 << " (amu/A^2/fs^2)\n";
2031 >      rnemdFile_ << "# Target one-time exchanges:\n";
2032 >      rnemdFile_ << "#          kinetic = "
2033 >                 << kineticTarget_ / PhysicalConstants::energyConvert
2034 >                 << " (kcal/mol)\n";
2035 >      rnemdFile_ << "#          momentum = " << momentumTarget_
2036 >                 << " (amu*A/fs)\n";
2037 >      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2038 >                 << " (amu*A^2/fs)\n";
2039 >      rnemdFile_ << "# Actual exchange totals:\n";
2040 >      rnemdFile_ << "#          kinetic = "
2041 >                 << kineticExchange_ / PhysicalConstants::energyConvert
2042 >                 << " (kcal/mol)\n";
2043 >      rnemdFile_ << "#          momentum = " << momentumExchange_
2044 >                 << " (amu*A/fs)\n";      
2045 >      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2046 >                 << " (amu*A^2/fs)\n";      
2047 >      rnemdFile_ << "# Actual flux:\n";
2048 >      rnemdFile_ << "#          kinetic = " << Jz
2049 >                 << " (kcal/mol/A^2/fs)\n";
2050 >      rnemdFile_ << "#          momentum = " << JzP
2051 >                 << " (amu/A/fs^2)\n";
2052 >      rnemdFile_ << "#  angular momentum = " << JzL
2053 >                 << " (amu/A^2/fs^2)\n";
2054 >      rnemdFile_ << "# Exchange statistics:\n";
2055 >      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2056 >      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2057        if (rnemdMethod_ == rnemdNIVS) {
2058 <        rnemdFile_ << "#         NIVS root-check errors = "
2058 >        rnemdFile_ << "#  NIVS root-check errors = "
2059                     << failRootCount_ << "\n";
2060        }
2061        rnemdFile_ << "#######################################################\n";
# Line 1653 | Line 2068 | namespace OpenMD {
2068          if (outputMask_[i]) {
2069            rnemdFile_ << "\t" << data_[i].title <<
2070              "(" << data_[i].units << ")";
2071 +          // add some extra tabs for column alignment
2072 +          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2073          }
2074        }
2075        rnemdFile_ << std::endl;
2076        
2077        rnemdFile_.precision(8);
2078        
2079 <      for (unsigned int j = 0; j < nBins_; j++) {        
2079 >      for (int j = 0; j < nBins_; j++) {        
2080          
2081          for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2082            if (outputMask_[i]) {
2083              if (data_[i].dataType == "RealType")
2084                writeReal(i,j);
2085 <            else if (data_[i].dataType == "Vector3d")
2085 >            else if (data_[i].dataType == "Vector3d")
2086                writeVector(i,j);
2087              else {
2088                sprintf( painCave.errMsg,
# Line 1685 | Line 2102 | namespace OpenMD {
2102        rnemdFile_ << "#######################################################\n";
2103  
2104  
2105 <      for (unsigned int j = 0; j < nBins_; j++) {        
2105 >      for (int j = 0; j < nBins_; j++) {        
2106          rnemdFile_ << "#";
2107          for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2108            if (outputMask_[i]) {
# Line 1716 | Line 2133 | namespace OpenMD {
2133    }
2134    
2135    void RNEMD::writeReal(int index, unsigned int bin) {
2136 +    if (!doRNEMD_) return;
2137      assert(index >=0 && index < ENDINDEX);
2138 <    assert(bin < nBins_);
2138 >    assert(int(bin) < nBins_);
2139      RealType s;
2140 +    int count;
2141      
2142 <    data_[index].accumulator[bin]->getAverage(s);
2142 >    count = data_[index].accumulator[bin]->count();
2143 >    if (count == 0) return;
2144      
2145 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2146 +    
2147      if (! isinf(s) && ! isnan(s)) {
2148        rnemdFile_ << "\t" << s;
2149      } else{
# Line 1734 | Line 2156 | namespace OpenMD {
2156    }
2157    
2158    void RNEMD::writeVector(int index, unsigned int bin) {
2159 +    if (!doRNEMD_) return;
2160      assert(index >=0 && index < ENDINDEX);
2161 <    assert(bin < nBins_);
2161 >    assert(int(bin) < nBins_);
2162      Vector3d s;
2163 +    int count;
2164 +    
2165 +    count = data_[index].accumulator[bin]->count();
2166 +
2167 +    if (count == 0) return;
2168 +
2169      dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2170      if (isinf(s[0]) || isnan(s[0]) ||
2171          isinf(s[1]) || isnan(s[1]) ||
# Line 1752 | Line 2181 | namespace OpenMD {
2181    }  
2182  
2183    void RNEMD::writeRealStdDev(int index, unsigned int bin) {
2184 +    if (!doRNEMD_) return;
2185      assert(index >=0 && index < ENDINDEX);
2186 <    assert(bin < nBins_);
2186 >    assert(int(bin) < nBins_);
2187      RealType s;
2188 +    int count;
2189      
2190 <    data_[index].accumulator[bin]->getStdDev(s);
2190 >    count = data_[index].accumulator[bin]->count();
2191 >    if (count == 0) return;
2192      
2193 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
2194 +    
2195      if (! isinf(s) && ! isnan(s)) {
2196        rnemdFile_ << "\t" << s;
2197      } else{
# Line 1770 | Line 2204 | namespace OpenMD {
2204    }
2205    
2206    void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
2207 +    if (!doRNEMD_) return;
2208      assert(index >=0 && index < ENDINDEX);
2209 <    assert(bin < nBins_);
2209 >    assert(int(bin) < nBins_);
2210      Vector3d s;
2211 +    int count;
2212 +    
2213 +    count = data_[index].accumulator[bin]->count();
2214 +    if (count == 0) return;
2215 +
2216      dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
2217      if (isinf(s[0]) || isnan(s[0]) ||
2218          isinf(s[1]) || isnan(s[1]) ||

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines