ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1627 by gezelter, Tue Sep 13 22:05:04 2011 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1776 by gezelter, Thu Aug 9 15:52:59 2012 UTC

# Line 40 | Line 40
40   */
41  
42   #include <cmath>
43 < #include "integrators/RNEMD.hpp"
43 > #include "rnemd/RNEMD.hpp"
44   #include "math/Vector3.hpp"
45 + #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47   #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50   #include "utils/PhysicalConstants.hpp"
51   #include "utils/Tuple.hpp"
52 <
52 < #ifndef IS_MPI
53 < #include "math/SeqRandNumGen.hpp"
54 < #else
52 > #ifdef IS_MPI
53   #include <mpi.h>
56 #include "math/ParallelRandNumGen.hpp"
54   #endif
55  
56   #define HONKING_LARGE_VALUE 1.0e10
57  
58 + using namespace std;
59   namespace OpenMD {
60    
61 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
61 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
62 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63  
64 +    trialCount_ = 0;
65      failTrialCount_ = 0;
66      failRootCount_ = 0;
67  
68      int seedValue;
69      Globals * simParams = info->getSimParams();
70 +    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
71  
72 <    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
73 <    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
73 <    stringToEnumMap_["PxScale"] = rnemdPxScale;
74 <    stringToEnumMap_["PyScale"] = rnemdPyScale;
75 <    stringToEnumMap_["PzScale"] = rnemdPzScale;
76 <    stringToEnumMap_["Px"] = rnemdPx;
77 <    stringToEnumMap_["Py"] = rnemdPy;
78 <    stringToEnumMap_["Pz"] = rnemdPz;
79 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
72 >    doRNEMD_ = rnemdParams->getUseRNEMD();
73 >    if (!doRNEMD_) return;
74  
75 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
75 >    stringToMethod_["Swap"]  = rnemdSwap;
76 >    stringToMethod_["NIVS"]  = rnemdNIVS;
77 >    stringToMethod_["VSS"]   = rnemdVSS;
78 >
79 >    stringToFluxType_["KE"]  = rnemdKE;
80 >    stringToFluxType_["Px"]  = rnemdPx;
81 >    stringToFluxType_["Py"]  = rnemdPy;
82 >    stringToFluxType_["Pz"]  = rnemdPz;
83 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
84 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
85 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
86 >
87 >    runTime_ = simParams->getRunTime();
88 >    statusTime_ = simParams->getStatusTime();
89 >
90 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
91      evaluator_.loadScriptString(rnemdObjectSelection_);
92      seleMan_.setSelectionSet(evaluator_.evaluate());
93  
94 +    const string methStr = rnemdParams->getMethod();
95 +    bool hasFluxType = rnemdParams->haveFluxType();
96 +
97 +    string fluxStr;
98 +    if (hasFluxType) {
99 +      fluxStr = rnemdParams->getFluxType();
100 +    } else {
101 +      sprintf(painCave.errMsg,
102 +              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
103 +              "\twhich must be one of the following values:\n"
104 +              "\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n"
105 +              "\tuse RNEMD\n");
106 +      painCave.isFatal = 1;
107 +      painCave.severity = OPENMD_ERROR;
108 +      simError();
109 +    }
110 +
111 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
112 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
113 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
114 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
115 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
116 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
117 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
118 +    bool hasOutputFields = rnemdParams->haveOutputFields();
119 +    
120 +    map<string, RNEMDMethod>::iterator i;
121 +    i = stringToMethod_.find(methStr);
122 +    if (i != stringToMethod_.end())
123 +      rnemdMethod_ = i->second;
124 +    else {
125 +      sprintf(painCave.errMsg,
126 +              "RNEMD: The current method,\n"
127 +              "\t\t%s is not one of the recognized\n"
128 +              "\texchange methods: Swap, NIVS, or VSS\n",
129 +              methStr.c_str());
130 +      painCave.isFatal = 1;
131 +      painCave.severity = OPENMD_ERROR;
132 +      simError();
133 +    }
134 +
135 +    map<string, RNEMDFluxType>::iterator j;
136 +    j = stringToFluxType_.find(fluxStr);
137 +    if (j != stringToFluxType_.end())
138 +      rnemdFluxType_ = j->second;
139 +    else {
140 +      sprintf(painCave.errMsg,
141 +              "RNEMD: The current fluxType,\n"
142 +              "\t\t%s\n"
143 +              "\tis not one of the recognized flux types.\n",
144 +              fluxStr.c_str());
145 +      painCave.isFatal = 1;
146 +      painCave.severity = OPENMD_ERROR;
147 +      simError();
148 +    }
149 +
150 +    bool methodFluxMismatch = false;
151 +    bool hasCorrectFlux = false;
152 +    switch(rnemdMethod_) {
153 +    case rnemdSwap:
154 +      switch (rnemdFluxType_) {
155 +      case rnemdKE:
156 +        hasCorrectFlux = hasKineticFlux;
157 +        break;
158 +      case rnemdPx:
159 +      case rnemdPy:
160 +      case rnemdPz:
161 +        hasCorrectFlux = hasMomentumFlux;
162 +        break;
163 +      default :
164 +        methodFluxMismatch = true;
165 +        break;
166 +      }
167 +      break;
168 +    case rnemdNIVS:
169 +      switch (rnemdFluxType_) {
170 +      case rnemdKE:
171 +      case rnemdRotKE:
172 +      case rnemdFullKE:
173 +        hasCorrectFlux = hasKineticFlux;
174 +        break;
175 +      case rnemdPx:
176 +      case rnemdPy:
177 +      case rnemdPz:
178 +        hasCorrectFlux = hasMomentumFlux;
179 +        break;
180 +      case rnemdKePx:
181 +      case rnemdKePy:
182 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
183 +        break;
184 +      default:
185 +        methodFluxMismatch = true;
186 +        break;
187 +      }
188 +      break;
189 +    case rnemdVSS:
190 +      switch (rnemdFluxType_) {
191 +      case rnemdKE:
192 +      case rnemdRotKE:
193 +      case rnemdFullKE:
194 +        hasCorrectFlux = hasKineticFlux;
195 +        break;
196 +      case rnemdPx:
197 +      case rnemdPy:
198 +      case rnemdPz:
199 +        hasCorrectFlux = hasMomentumFlux;
200 +        break;
201 +      case rnemdPvector:
202 +        hasCorrectFlux = hasMomentumFluxVector;
203 +      case rnemdKePx:
204 +      case rnemdKePy:
205 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
206 +        break;
207 +      case rnemdKePvector:
208 +        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
209 +        break;
210 +      default:
211 +        methodFluxMismatch = true;
212 +        break;
213 +      }
214 +    default:
215 +      break;
216 +    }
217 +
218 +    if (methodFluxMismatch) {
219 +      sprintf(painCave.errMsg,
220 +              "RNEMD: The current method,\n"
221 +              "\t\t%s\n"
222 +              "\tcannot be used with the current flux type, %s\n",
223 +              methStr.c_str(), fluxStr.c_str());
224 +      painCave.isFatal = 1;
225 +      painCave.severity = OPENMD_ERROR;
226 +      simError();        
227 +    }
228 +    if (!hasCorrectFlux) {
229 +      sprintf(painCave.errMsg,
230 +              "RNEMD: The current method,\n"
231 +              "\t%s, and flux type %s\n"
232 +              "\tdid not have the correct flux value specified. Options\n"
233 +              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
234 +              methStr.c_str(), fluxStr.c_str());
235 +      painCave.isFatal = 1;
236 +      painCave.severity = OPENMD_ERROR;
237 +      simError();        
238 +    }
239 +
240 +    if (hasKineticFlux) {
241 +      kineticFlux_ = rnemdParams->getKineticFlux();
242 +    } else {
243 +      kineticFlux_ = 0.0;
244 +    }
245 +    if (hasMomentumFluxVector) {
246 +      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
247 +    } else {
248 +      momentumFluxVector_ = V3Zero;
249 +      if (hasMomentumFlux) {
250 +        RealType momentumFlux = rnemdParams->getMomentumFlux();
251 +        switch (rnemdFluxType_) {
252 +        case rnemdPx:
253 +          momentumFluxVector_.x() = momentumFlux;
254 +          break;
255 +        case rnemdPy:
256 +          momentumFluxVector_.y() = momentumFlux;
257 +          break;
258 +        case rnemdPz:
259 +          momentumFluxVector_.z() = momentumFlux;
260 +          break;
261 +        case rnemdKePx:
262 +          momentumFluxVector_.x() = momentumFlux;
263 +          break;
264 +        case rnemdKePy:
265 +          momentumFluxVector_.y() = momentumFlux;
266 +          break;
267 +        default:
268 +          break;
269 +        }
270 +      }    
271 +    }
272 +
273      // do some sanity checking
274  
275      int selectionCount = seleMan_.getSelectionCount();
# Line 89 | Line 277 | namespace OpenMD {
277  
278      if (selectionCount > nIntegrable) {
279        sprintf(painCave.errMsg,
280 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
280 >              "RNEMD: The current objectSelection,\n"
281                "\t\t%s\n"
282                "\thas resulted in %d selected objects.  However,\n"
283                "\tthe total number of integrable objects in the system\n"
# Line 99 | Line 287 | namespace OpenMD {
287                rnemdObjectSelection_.c_str(),
288                selectionCount, nIntegrable);
289        painCave.isFatal = 0;
290 +      painCave.severity = OPENMD_WARNING;
291        simError();
103
292      }
105    
106    const std::string st = simParams->getRNEMD_exchangeType();
293  
294 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
109 <    i = stringToEnumMap_.find(st);
110 <    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
111 <    if (rnemdType_ == rnemdUnknown) {
112 <      std::cerr << "WARNING! RNEMD Type Unknown!\n";
113 <    }
294 >    areaAccumulator_ = new Accumulator();
295  
296 < #ifdef IS_MPI
116 <    if (worldRank == 0) {
117 < #endif
296 >    nBins_ = rnemdParams->getOutputBins();
297  
298 <      std::string rnemdFileName;
299 <      std::string xTempFileName;
300 <      std::string yTempFileName;
301 <      std::string zTempFileName;
302 <      switch(rnemdType_) {
303 <      case rnemdKineticSwap :
304 <      case rnemdKineticScale :
305 <        rnemdFileName = "temperature.log";
298 >    data_.resize(RNEMD::ENDINDEX);
299 >    OutputData z;
300 >    z.units =  "Angstroms";
301 >    z.title =  "Z";
302 >    z.dataType = "RealType";
303 >    z.accumulator.reserve(nBins_);
304 >    for (unsigned int i = 0; i < nBins_; i++)
305 >      z.accumulator.push_back( new Accumulator() );
306 >    data_[Z] = z;
307 >    outputMap_["Z"] =  Z;
308 >
309 >    OutputData temperature;
310 >    temperature.units =  "K";
311 >    temperature.title =  "Temperature";
312 >    temperature.dataType = "RealType";
313 >    temperature.accumulator.reserve(nBins_);
314 >    for (unsigned int i = 0; i < nBins_; i++)
315 >      temperature.accumulator.push_back( new Accumulator() );
316 >    data_[TEMPERATURE] = temperature;
317 >    outputMap_["TEMPERATURE"] =  TEMPERATURE;
318 >
319 >    OutputData velocity;
320 >    velocity.units = "amu/fs";
321 >    velocity.title =  "Velocity";  
322 >    velocity.dataType = "Vector3d";
323 >    velocity.accumulator.reserve(nBins_);
324 >    for (unsigned int i = 0; i < nBins_; i++)
325 >      velocity.accumulator.push_back( new VectorAccumulator() );
326 >    data_[VELOCITY] = velocity;
327 >    outputMap_["VELOCITY"] = VELOCITY;
328 >
329 >    OutputData density;
330 >    density.units =  "g cm^-3";
331 >    density.title =  "Density";
332 >    density.dataType = "RealType";
333 >    density.accumulator.reserve(nBins_);
334 >    for (unsigned int i = 0; i < nBins_; i++)
335 >      density.accumulator.push_back( new Accumulator() );
336 >    data_[DENSITY] = density;
337 >    outputMap_["DENSITY"] =  DENSITY;
338 >
339 >    if (hasOutputFields) {
340 >      parseOutputFileFormat(rnemdParams->getOutputFields());
341 >    } else {
342 >      outputMask_.set(Z);
343 >      switch (rnemdFluxType_) {
344 >      case rnemdKE:
345 >      case rnemdRotKE:
346 >      case rnemdFullKE:
347 >        outputMask_.set(TEMPERATURE);
348          break;
349 <      case rnemdPx :
350 <      case rnemdPxScale :
351 <      case rnemdPy :
131 <      case rnemdPyScale :
132 <        rnemdFileName = "momemtum.log";
133 <        xTempFileName = "temperatureX.log";
134 <        yTempFileName = "temperatureY.log";
135 <        zTempFileName = "temperatureZ.log";
136 <        xTempLog_.open(xTempFileName.c_str());
137 <        yTempLog_.open(yTempFileName.c_str());
138 <        zTempLog_.open(zTempFileName.c_str());
349 >      case rnemdPx:
350 >      case rnemdPy:
351 >        outputMask_.set(VELOCITY);
352          break;
353 <      case rnemdPz :
354 <      case rnemdPzScale :
355 <      case rnemdUnknown :
356 <      default :
144 <        rnemdFileName = "rnemd.log";
353 >      case rnemdPz:        
354 >      case rnemdPvector:
355 >        outputMask_.set(VELOCITY);
356 >        outputMask_.set(DENSITY);
357          break;
358 +      case rnemdKePx:
359 +      case rnemdKePy:
360 +        outputMask_.set(TEMPERATURE);
361 +        outputMask_.set(VELOCITY);
362 +        break;
363 +      case rnemdKePvector:
364 +        outputMask_.set(TEMPERATURE);
365 +        outputMask_.set(VELOCITY);
366 +        outputMask_.set(DENSITY);        
367 +        break;
368 +      default:
369 +        break;
370        }
147      rnemdLog_.open(rnemdFileName.c_str());
148
149 #ifdef IS_MPI
371      }
372 < #endif
373 <
374 <    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
154 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
155 <    midBin_ = nBins_ / 2;
156 <    if (simParams->haveRNEMD_logWidth()) {
157 <      rnemdLogWidth_ = simParams->getRNEMD_logWidth();
158 <      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
159 <        std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
160 <        std::cerr << "Automaically set back to default.\n";
161 <        rnemdLogWidth_ = nBins_;
162 <      }
372 >      
373 >    if (hasOutputFileName) {
374 >      rnemdFileName_ = rnemdParams->getOutputFileName();
375      } else {
376 <      rnemdLogWidth_ = nBins_;
377 <    }
166 <    valueHist_.resize(rnemdLogWidth_, 0.0);
167 <    valueCount_.resize(rnemdLogWidth_, 0);
168 <    xTempHist_.resize(rnemdLogWidth_, 0.0);
169 <    yTempHist_.resize(rnemdLogWidth_, 0.0);
170 <    zTempHist_.resize(rnemdLogWidth_, 0.0);
376 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
377 >    }          
378  
379 <    set_RNEMD_exchange_total(0.0);
173 <    if (simParams->haveRNEMD_targetFlux()) {
174 <      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
175 <    } else {
176 <      set_RNEMD_target_flux(0.0);
177 <    }
379 >    exchangeTime_ = rnemdParams->getExchangeTime();
380  
381 < #ifndef IS_MPI
382 <    if (simParams->haveSeed()) {
181 <      seedValue = simParams->getSeed();
182 <      randNumGen_ = new SeqRandNumGen(seedValue);
183 <    }else {
184 <      randNumGen_ = new SeqRandNumGen();
185 <    }    
186 < #else
187 <    if (simParams->haveSeed()) {
188 <      seedValue = simParams->getSeed();
189 <      randNumGen_ = new ParallelRandNumGen(seedValue);
190 <    }else {
191 <      randNumGen_ = new ParallelRandNumGen();
192 <    }    
193 < #endif
194 <  }
381 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
382 >    Mat3x3d hmat = currentSnap_->getHmat();
383    
384 <  RNEMD::~RNEMD() {
385 <    delete randNumGen_;
384 >    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
385 >    // Lx, Ly = box dimensions in x & y
386 >    // dt = exchange time interval
387 >    // flux = target flux
388 >
389 >    RealType area = currentSnap_->getXYarea();
390 >    kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
391 >    momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
392 >
393 >    // total exchange sums are zeroed out at the beginning:
394 >
395 >    kineticExchange_ = 0.0;
396 >    momentumExchange_ = V3Zero;
397 >
398 >    if (hasSlabWidth)
399 >      slabWidth_ = rnemdParams->getSlabWidth();
400 >    else
401 >      slabWidth_ = hmat(2,2) / 10.0;
402 >  
403 >    if (hasSlabACenter)
404 >      slabACenter_ = rnemdParams->getSlabACenter();
405 >    else
406 >      slabACenter_ = 0.0;
407      
408 +    if (hasSlabBCenter)
409 +      slabBCenter_ = rnemdParams->getSlabBCenter();
410 +    else
411 +      slabBCenter_ = hmat(2,2) / 2.0;
412 +    
413 +  }
414 +  
415 +  RNEMD::~RNEMD() {
416 +    if (!doRNEMD_) return;
417   #ifdef IS_MPI
418      if (worldRank == 0) {
419   #endif
420 <      std::cerr << "total fail trials: " << failTrialCount_ << "\n";
421 <      rnemdLog_.close();
422 <      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
423 <        std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
424 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) {
207 <        xTempLog_.close();
208 <        yTempLog_.close();
209 <        zTempLog_.close();
210 <      }
420 >
421 >      writeOutputFile();
422 >
423 >      rnemdFile_.close();
424 >      
425   #ifdef IS_MPI
426      }
427   #endif
428    }
429 +  
430 +  bool RNEMD::inSlabA(Vector3d pos) {
431 +    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
432 +  }
433 +  bool RNEMD::inSlabB(Vector3d pos) {
434 +    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
435 +  }
436  
437    void RNEMD::doSwap() {
438 <
438 >    if (!doRNEMD_) return;
439      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
440      Mat3x3d hmat = currentSnap_->getHmat();
441  
# Line 243 | Line 464 | namespace OpenMD {
464  
465        if (usePeriodicBoundaryConditions_)
466          currentSnap_->wrapVector(pos);
467 +      bool inA = inSlabA(pos);
468 +      bool inB = inSlabB(pos);
469  
470 <      // which bin is this stuntdouble in?
248 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
249 <
250 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
251 <
252 <
253 <      // if we're in bin 0 or the middleBin
254 <      if (binNo == 0 || binNo == midBin_) {
470 >      if (inA || inB) {
471          
472          RealType mass = sd->getMass();
473          Vector3d vel = sd->getVel();
474          RealType value;
475 <
476 <        switch(rnemdType_) {
477 <        case rnemdKineticSwap :
475 >        
476 >        switch(rnemdFluxType_) {
477 >        case rnemdKE :
478            
479 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
480 <                          vel[2]*vel[2]);
481 <          if (sd->isDirectional()) {
479 >          value = mass * vel.lengthSquare();
480 >          
481 >          if (sd->isDirectional()) {
482              Vector3d angMom = sd->getJ();
483              Mat3x3d I = sd->getI();
484              
485              if (sd->isLinear()) {
486 <              int i = sd->linearAxis();
487 <              int j = (i + 1) % 3;
488 <              int k = (i + 2) % 3;
489 <              value += angMom[j] * angMom[j] / I(j, j) +
490 <                angMom[k] * angMom[k] / I(k, k);
486 >              int i = sd->linearAxis();
487 >              int j = (i + 1) % 3;
488 >              int k = (i + 2) % 3;
489 >              value += angMom[j] * angMom[j] / I(j, j) +
490 >                angMom[k] * angMom[k] / I(k, k);
491              } else {                        
492 <              value += angMom[0]*angMom[0]/I(0, 0)
493 <                + angMom[1]*angMom[1]/I(1, 1)
494 <                + angMom[2]*angMom[2]/I(2, 2);
492 >              value += angMom[0]*angMom[0]/I(0, 0)
493 >                + angMom[1]*angMom[1]/I(1, 1)
494 >                + angMom[2]*angMom[2]/I(2, 2);
495              }
496 <          }
497 <          //make exchangeSum_ comparable between swap & scale
498 <          //temporarily without using energyConvert
496 >          } //angular momenta exchange enabled
497 >          //energyConvert temporarily disabled
498 >          //make kineticExchange_ comparable between swap & scale
499            //value = value * 0.5 / PhysicalConstants::energyConvert;
500            value *= 0.5;
501            break;
# Line 296 | Line 512 | namespace OpenMD {
512            break;
513          }
514          
515 <        if (binNo == 0) {
515 >        if (inA == 0) {
516            if (!min_found) {
517              min_val = value;
518              min_sd = sd;
# Line 307 | Line 523 | namespace OpenMD {
523                min_sd = sd;
524              }
525            }
526 <        } else { //midBin_
526 >        } else {
527            if (!max_found) {
528              max_val = value;
529              max_sd = sd;
# Line 321 | Line 537 | namespace OpenMD {
537          }
538        }
539      }
540 <
540 >    
541   #ifdef IS_MPI
542      int nProc, worldRank;
543 <
543 >    
544      nProc = MPI::COMM_WORLD.Get_size();
545      worldRank = MPI::COMM_WORLD.Get_rank();
546  
# Line 332 | Line 548 | namespace OpenMD {
548      bool my_max_found = max_found;
549  
550      // Even if we didn't find a minimum, did someone else?
551 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
336 <                              1, MPI::BOOL, MPI::LAND);
337 <    
551 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
552      // Even if we didn't find a maximum, did someone else?
553 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
554 <                              1, MPI::BOOL, MPI::LAND);
555 <    
556 <    struct {
557 <      RealType val;
558 <      int rank;
559 <    } max_vals, min_vals;
560 <    
561 <    if (min_found) {
562 <      if (my_min_found)
553 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
554 > #endif
555 >
556 >    if (max_found && min_found) {
557 >
558 > #ifdef IS_MPI
559 >      struct {
560 >        RealType val;
561 >        int rank;
562 >      } max_vals, min_vals;
563 >      
564 >      if (my_min_found) {
565          min_vals.val = min_val;
566 <      else
566 >      } else {
567          min_vals.val = HONKING_LARGE_VALUE;
568 <      
568 >      }
569        min_vals.rank = worldRank;    
570        
571        // Who had the minimum?
572        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
573                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
574        min_val = min_vals.val;
359    }
575        
576 <    if (max_found) {
362 <      if (my_max_found)
576 >      if (my_max_found) {
577          max_vals.val = max_val;
578 <      else
578 >      } else {
579          max_vals.val = -HONKING_LARGE_VALUE;
580 <      
580 >      }
581        max_vals.rank = worldRank;    
582        
583        // Who had the maximum?
584        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
585                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
586        max_val = max_vals.val;
373    }
587   #endif
588 <
589 <    if (max_found && min_found) {
590 <      if (min_val< max_val) {
378 <
588 >      
589 >      if (min_val < max_val) {
590 >        
591   #ifdef IS_MPI      
592          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
593            // I have both maximum and minimum, so proceed like a single
594            // processor version:
595   #endif
596 <          // objects to be swapped: velocity & angular velocity
596 >
597            Vector3d min_vel = min_sd->getVel();
598            Vector3d max_vel = max_sd->getVel();
599            RealType temp_vel;
600            
601 <          switch(rnemdType_) {
602 <          case rnemdKineticSwap :
601 >          switch(rnemdFluxType_) {
602 >          case rnemdKE :
603              min_sd->setVel(max_vel);
604              max_sd->setVel(min_vel);
605 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
605 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
606                Vector3d min_angMom = min_sd->getJ();
607                Vector3d max_angMom = max_sd->getJ();
608                min_sd->setJ(max_angMom);
609                max_sd->setJ(min_angMom);
610 <            }
610 >            }//angular momenta exchange enabled
611 >            //assumes same rigid body identity
612              break;
613            case rnemdPx :
614              temp_vel = min_vel.x();
# Line 421 | Line 634 | namespace OpenMD {
634            default :
635              break;
636            }
637 +
638   #ifdef IS_MPI
639            // the rest of the cases only apply in parallel simulations:
640          } else if (max_vals.rank == worldRank) {
# Line 436 | Line 650 | namespace OpenMD {
650                                     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
651                                     min_vals.rank, 0, status);
652            
653 <          switch(rnemdType_) {
654 <          case rnemdKineticSwap :
653 >          switch(rnemdFluxType_) {
654 >          case rnemdKE :
655              max_sd->setVel(min_vel);
656 <            
656 >            //angular momenta exchange enabled
657              if (max_sd->isDirectional()) {
658                Vector3d min_angMom;
659                Vector3d max_angMom = max_sd->getJ();
660 <
660 >              
661                // point-to-point swap of the angular momentum vector
662                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
663                                         MPI::REALTYPE, min_vals.rank, 1,
664                                         min_angMom.getArrayPointer(), 3,
665                                         MPI::REALTYPE, min_vals.rank, 1,
666                                         status);
667 <
667 >              
668                max_sd->setJ(min_angMom);
669 <            }
669 >            }
670              break;
671            case rnemdPx :
672              max_vel.x() = min_vel.x();
# Line 482 | Line 696 | namespace OpenMD {
696                                     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
697                                     max_vals.rank, 0, status);
698            
699 <          switch(rnemdType_) {
700 <          case rnemdKineticSwap :
699 >          switch(rnemdFluxType_) {
700 >          case rnemdKE :
701              min_sd->setVel(max_vel);
702 <            
702 >            //angular momenta exchange enabled
703              if (min_sd->isDirectional()) {
704                Vector3d min_angMom = min_sd->getJ();
705                Vector3d max_angMom;
706 <
706 >              
707                // point-to-point swap of the angular momentum vector
708                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
709                                         MPI::REALTYPE, max_vals.rank, 1,
710                                         max_angMom.getArrayPointer(), 3,
711                                         MPI::REALTYPE, max_vals.rank, 1,
712                                         status);
713 <
713 >              
714                min_sd->setJ(max_angMom);
715              }
716              break;
# Line 517 | Line 731 | namespace OpenMD {
731            }
732          }
733   #endif
734 <        exchangeSum_ += max_val - min_val;
735 <      } else {
736 <        std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
734 >        
735 >        switch(rnemdFluxType_) {
736 >        case rnemdKE:
737 >          cerr << "KE\n";
738 >          kineticExchange_ += max_val - min_val;
739 >          break;
740 >        case rnemdPx:
741 >          momentumExchange_.x() += max_val - min_val;
742 >          break;
743 >        case rnemdPy:
744 >          momentumExchange_.y() += max_val - min_val;
745 >          break;
746 >        case rnemdPz:
747 >          momentumExchange_.z() += max_val - min_val;
748 >          break;
749 >        default:
750 >          cerr << "default\n";
751 >          break;
752 >        }
753 >      } else {        
754 >        sprintf(painCave.errMsg,
755 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
756 >        painCave.isFatal = 0;
757 >        painCave.severity = OPENMD_INFO;
758 >        simError();        
759          failTrialCount_++;
760        }
761      } else {
762 <      std::cerr << "exchange NOT performed!\n";
763 <      std::cerr << "at least one of the two slabs empty.\n";
762 >      sprintf(painCave.errMsg,
763 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
764 >              "\twas not present in at least one of the two slabs.\n");
765 >      painCave.isFatal = 0;
766 >      painCave.severity = OPENMD_INFO;
767 >      simError();        
768        failTrialCount_++;
769 <    }
530 <    
769 >    }    
770    }
771    
772 <  void RNEMD::doScale() {
773 <
772 >  void RNEMD::doNIVS() {
773 >    if (!doRNEMD_) return;
774      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
775      Mat3x3d hmat = currentSnap_->getHmat();
776  
# Line 541 | Line 780 | namespace OpenMD {
780      StuntDouble* sd;
781      int idx;
782  
783 <    std::vector<StuntDouble*> hotBin, coldBin;
783 >    vector<StuntDouble*> hotBin, coldBin;
784  
785      RealType Phx = 0.0;
786      RealType Phy = 0.0;
# Line 549 | Line 788 | namespace OpenMD {
788      RealType Khx = 0.0;
789      RealType Khy = 0.0;
790      RealType Khz = 0.0;
791 +    RealType Khw = 0.0;
792      RealType Pcx = 0.0;
793      RealType Pcy = 0.0;
794      RealType Pcz = 0.0;
795      RealType Kcx = 0.0;
796      RealType Kcy = 0.0;
797      RealType Kcz = 0.0;
798 +    RealType Kcw = 0.0;
799  
800      for (sd = seleMan_.beginSelected(selei); sd != NULL;
801           sd = seleMan_.nextSelected(selei)) {
# Line 569 | Line 810 | namespace OpenMD {
810          currentSnap_->wrapVector(pos);
811  
812        // which bin is this stuntdouble in?
813 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
813 >      bool inA = inSlabA(pos);
814 >      bool inB = inSlabB(pos);
815  
816 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
817 <
576 <      // if we're in bin 0 or the middleBin
577 <      if (binNo == 0 || binNo == midBin_) {
578 <        
816 >      if (inA || inB) {
817 >              
818          RealType mass = sd->getMass();
819          Vector3d vel = sd->getVel();
820        
821 <        if (binNo == 0) {
821 >        if (inA) {
822            hotBin.push_back(sd);
823            Phx += mass * vel.x();
824            Phy += mass * vel.y();
# Line 587 | Line 826 | namespace OpenMD {
826            Khx += mass * vel.x() * vel.x();
827            Khy += mass * vel.y() * vel.y();
828            Khz += mass * vel.z() * vel.z();
829 <        } else { //midBin_
829 >          if (sd->isDirectional()) {
830 >            Vector3d angMom = sd->getJ();
831 >            Mat3x3d I = sd->getI();
832 >            if (sd->isLinear()) {
833 >              int i = sd->linearAxis();
834 >              int j = (i + 1) % 3;
835 >              int k = (i + 2) % 3;
836 >              Khw += angMom[j] * angMom[j] / I(j, j) +
837 >                angMom[k] * angMom[k] / I(k, k);
838 >            } else {
839 >              Khw += angMom[0]*angMom[0]/I(0, 0)
840 >                + angMom[1]*angMom[1]/I(1, 1)
841 >                + angMom[2]*angMom[2]/I(2, 2);
842 >            }
843 >          }
844 >        } else {
845            coldBin.push_back(sd);
846            Pcx += mass * vel.x();
847            Pcy += mass * vel.y();
# Line 595 | Line 849 | namespace OpenMD {
849            Kcx += mass * vel.x() * vel.x();
850            Kcy += mass * vel.y() * vel.y();
851            Kcz += mass * vel.z() * vel.z();
852 +          if (sd->isDirectional()) {
853 +            Vector3d angMom = sd->getJ();
854 +            Mat3x3d I = sd->getI();
855 +            if (sd->isLinear()) {
856 +              int i = sd->linearAxis();
857 +              int j = (i + 1) % 3;
858 +              int k = (i + 2) % 3;
859 +              Kcw += angMom[j] * angMom[j] / I(j, j) +
860 +                angMom[k] * angMom[k] / I(k, k);
861 +            } else {
862 +              Kcw += angMom[0]*angMom[0]/I(0, 0)
863 +                + angMom[1]*angMom[1]/I(1, 1)
864 +                + angMom[2]*angMom[2]/I(2, 2);
865 +            }
866 +          }
867          }
868        }
869      }
870 <
870 >    
871      Khx *= 0.5;
872      Khy *= 0.5;
873      Khz *= 0.5;
874 +    Khw *= 0.5;
875      Kcx *= 0.5;
876      Kcy *= 0.5;
877      Kcz *= 0.5;
878 +    Kcw *= 0.5;
879  
880   #ifdef IS_MPI
881      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
# Line 617 | Line 888 | namespace OpenMD {
888      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
889      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
890      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
891 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
892 +
893      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
894      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
895      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
896 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
897   #endif
898  
899 <    //use coldBin coeff's
899 >    //solve coldBin coeff's first
900      RealType px = Pcx / Phx;
901      RealType py = Pcy / Phy;
902      RealType pz = Pcz / Phz;
903 +    RealType c, x, y, z;
904 +    bool successfulScale = false;
905 +    if ((rnemdFluxType_ == rnemdFullKE) ||
906 +        (rnemdFluxType_ == rnemdRotKE)) {
907 +      //may need sanity check Khw & Kcw > 0
908  
909 <    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
910 <    switch(rnemdType_) {
911 <    case rnemdKineticScale :
912 <    /*used hotBin coeff's & only scale x & y dimensions
913 <      RealType px = Phx / Pcx;
635 <      RealType py = Phy / Pcy;
636 <      a110 = Khy;
637 <      c0 = - Khx - Khy - targetFlux_;
638 <      a000 = Khx;
639 <      a111 = Kcy * py * py
640 <      b11 = -2.0 * Kcy * py * (1.0 + py);
641 <      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
642 <      b01 = -2.0 * Kcx * px * (1.0 + px);
643 <      a001 = Kcx * px * px;
644 <    */
909 >      if (rnemdFluxType_ == rnemdFullKE) {
910 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
911 >      } else {
912 >        c = 1.0 - kineticTarget_ / Kcw;
913 >      }
914  
915 <      //scale all three dimensions, let c_x = c_y
916 <      a000 = Kcx + Kcy;
917 <      a110 = Kcz;
918 <      c0 = targetFlux_ - Kcx - Kcy - Kcz;
919 <      a001 = Khx * px * px + Khy * py * py;
920 <      a111 = Khz * pz * pz;
921 <      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
922 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
923 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
924 <         + Khz * pz * (2.0 + pz) - targetFlux_;
925 <      break;
926 <    case rnemdPxScale :
927 <      c = 1 - targetFlux_ / Pcx;
928 <      a000 = Kcy;
929 <      a110 = Kcz;
930 <      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
931 <      a001 = py * py * Khy;
932 <      a111 = pz * pz * Khz;
933 <      b01 = -2.0 * Khy * py * (1.0 + py);
934 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
935 <      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
936 <         + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
937 <      break;
938 <    case rnemdPyScale :
939 <      c = 1 - targetFlux_ / Pcy;
940 <      a000 = Kcx;
941 <      a110 = Kcz;
942 <      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
943 <      a001 = px * px * Khx;
944 <      a111 = pz * pz * Khz;
945 <      b01 = -2.0 * Khx * px * (1.0 + px);
946 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
947 <      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
948 <         + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
949 <      break;
950 <    case rnemdPzScale ://we don't really do this, do we?
951 <      c = 1 - targetFlux_ / Pcz;
952 <      a000 = Kcx;
953 <      a110 = Kcy;
954 <      c0 = Kcz * c * c - Kcx - Kcy - Kcz;
955 <      a001 = px * px * Khx;
956 <      a111 = py * py * Khy;
957 <      b01 = -2.0 * Khx * px * (1.0 + px);
958 <      b11 = -2.0 * Khy * py * (1.0 + py);
959 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
960 <        + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
961 <      break;      
962 <    default :
963 <      break;
915 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
916 >        c = sqrt(c);
917 >        //std::cerr << "cold slab scaling coefficient: " << c << endl;
918 >        //now convert to hotBin coefficient
919 >        RealType w = 0.0;
920 >        if (rnemdFluxType_ ==  rnemdFullKE) {
921 >          x = 1.0 + px * (1.0 - c);
922 >          y = 1.0 + py * (1.0 - c);
923 >          z = 1.0 + pz * (1.0 - c);
924 >          /* more complicated way
925 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
926 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
927 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
928 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
929 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
930 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
931 >          */
932 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
933 >              (fabs(z - 1.0) < 0.1)) {
934 >            w = 1.0 + (kineticTarget_
935 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
936 >                       + Khz * (1.0 - z * z)) / Khw;
937 >          }//no need to calculate w if x, y or z is out of range
938 >        } else {
939 >          w = 1.0 + kineticTarget_ / Khw;
940 >        }
941 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
942 >          //if w is in the right range, so should be x, y, z.
943 >          vector<StuntDouble*>::iterator sdi;
944 >          Vector3d vel;
945 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
946 >            if (rnemdFluxType_ == rnemdFullKE) {
947 >              vel = (*sdi)->getVel() * c;
948 >              (*sdi)->setVel(vel);
949 >            }
950 >            if ((*sdi)->isDirectional()) {
951 >              Vector3d angMom = (*sdi)->getJ() * c;
952 >              (*sdi)->setJ(angMom);
953 >            }
954 >          }
955 >          w = sqrt(w);
956 >          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
957 >          //           << "\twh= " << w << endl;
958 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
959 >            if (rnemdFluxType_ == rnemdFullKE) {
960 >              vel = (*sdi)->getVel();
961 >              vel.x() *= x;
962 >              vel.y() *= y;
963 >              vel.z() *= z;
964 >              (*sdi)->setVel(vel);
965 >            }
966 >            if ((*sdi)->isDirectional()) {
967 >              Vector3d angMom = (*sdi)->getJ() * w;
968 >              (*sdi)->setJ(angMom);
969 >            }
970 >          }
971 >          successfulScale = true;
972 >          kineticExchange_ += kineticTarget_;
973 >        }
974 >      }
975 >    } else {
976 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
977 >      switch(rnemdFluxType_) {
978 >      case rnemdKE :
979 >        /* used hotBin coeff's & only scale x & y dimensions
980 >           RealType px = Phx / Pcx;
981 >           RealType py = Phy / Pcy;
982 >           a110 = Khy;
983 >           c0 = - Khx - Khy - kineticTarget_;
984 >           a000 = Khx;
985 >           a111 = Kcy * py * py;
986 >           b11 = -2.0 * Kcy * py * (1.0 + py);
987 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
988 >           b01 = -2.0 * Kcx * px * (1.0 + px);
989 >           a001 = Kcx * px * px;
990 >        */
991 >        //scale all three dimensions, let c_x = c_y
992 >        a000 = Kcx + Kcy;
993 >        a110 = Kcz;
994 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
995 >        a001 = Khx * px * px + Khy * py * py;
996 >        a111 = Khz * pz * pz;
997 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
998 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
999 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1000 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1001 >        break;
1002 >      case rnemdPx :
1003 >        c = 1 - momentumTarget_.x() / Pcx;
1004 >        a000 = Kcy;
1005 >        a110 = Kcz;
1006 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1007 >        a001 = py * py * Khy;
1008 >        a111 = pz * pz * Khz;
1009 >        b01 = -2.0 * Khy * py * (1.0 + py);
1010 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1011 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1012 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1013 >        break;
1014 >      case rnemdPy :
1015 >        c = 1 - momentumTarget_.y() / Pcy;
1016 >        a000 = Kcx;
1017 >        a110 = Kcz;
1018 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1019 >        a001 = px * px * Khx;
1020 >        a111 = pz * pz * Khz;
1021 >        b01 = -2.0 * Khx * px * (1.0 + px);
1022 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1023 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1024 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1025 >        break;
1026 >      case rnemdPz ://we don't really do this, do we?
1027 >        c = 1 - momentumTarget_.z() / Pcz;
1028 >        a000 = Kcx;
1029 >        a110 = Kcy;
1030 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1031 >        a001 = px * px * Khx;
1032 >        a111 = py * py * Khy;
1033 >        b01 = -2.0 * Khx * px * (1.0 + px);
1034 >        b11 = -2.0 * Khy * py * (1.0 + py);
1035 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1036 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1037 >        break;
1038 >      default :
1039 >        break;
1040 >      }
1041 >      
1042 >      RealType v1 = a000 * a111 - a001 * a110;
1043 >      RealType v2 = a000 * b01;
1044 >      RealType v3 = a000 * b11;
1045 >      RealType v4 = a000 * c1 - a001 * c0;
1046 >      RealType v8 = a110 * b01;
1047 >      RealType v10 = - b01 * c0;
1048 >      
1049 >      RealType u0 = v2 * v10 - v4 * v4;
1050 >      RealType u1 = -2.0 * v3 * v4;
1051 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1052 >      RealType u3 = -2.0 * v1 * v3;
1053 >      RealType u4 = - v1 * v1;
1054 >      //rescale coefficients
1055 >      RealType maxAbs = fabs(u0);
1056 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1057 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1058 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1059 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1060 >      u0 /= maxAbs;
1061 >      u1 /= maxAbs;
1062 >      u2 /= maxAbs;
1063 >      u3 /= maxAbs;
1064 >      u4 /= maxAbs;
1065 >      //max_element(start, end) is also available.
1066 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1067 >      poly.setCoefficient(4, u4);
1068 >      poly.setCoefficient(3, u3);
1069 >      poly.setCoefficient(2, u2);
1070 >      poly.setCoefficient(1, u1);
1071 >      poly.setCoefficient(0, u0);
1072 >      vector<RealType> realRoots = poly.FindRealRoots();
1073 >      
1074 >      vector<RealType>::iterator ri;
1075 >      RealType r1, r2, alpha0;
1076 >      vector<pair<RealType,RealType> > rps;
1077 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1078 >        r2 = *ri;
1079 >        //check if FindRealRoots() give the right answer
1080 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1081 >          sprintf(painCave.errMsg,
1082 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1083 >          painCave.isFatal = 0;
1084 >          simError();
1085 >          failRootCount_++;
1086 >        }
1087 >        //might not be useful w/o rescaling coefficients
1088 >        alpha0 = -c0 - a110 * r2 * r2;
1089 >        if (alpha0 >= 0.0) {
1090 >          r1 = sqrt(alpha0 / a000);
1091 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1092 >              < 1e-6)
1093 >            { rps.push_back(make_pair(r1, r2)); }
1094 >          if (r1 > 1e-6) { //r1 non-negative
1095 >            r1 = -r1;
1096 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1097 >                < 1e-6)
1098 >              { rps.push_back(make_pair(r1, r2)); }
1099 >          }
1100 >        }
1101 >      }
1102 >      // Consider combining together the solving pair part w/ the searching
1103 >      // best solution part so that we don't need the pairs vector
1104 >      if (!rps.empty()) {
1105 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1106 >        RealType diff;
1107 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1108 >        vector<pair<RealType,RealType> >::iterator rpi;
1109 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1110 >          r1 = (*rpi).first;
1111 >          r2 = (*rpi).second;
1112 >          switch(rnemdFluxType_) {
1113 >          case rnemdKE :
1114 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1115 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1116 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1117 >            break;
1118 >          case rnemdPx :
1119 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1120 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1121 >            break;
1122 >          case rnemdPy :
1123 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1124 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1125 >            break;
1126 >          case rnemdPz :
1127 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1128 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1129 >          default :
1130 >            break;
1131 >          }
1132 >          if (diff < smallestDiff) {
1133 >            smallestDiff = diff;
1134 >            bestPair = *rpi;
1135 >          }
1136 >        }
1137 > #ifdef IS_MPI
1138 >        if (worldRank == 0) {
1139 > #endif
1140 >          // sprintf(painCave.errMsg,
1141 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1142 >          //         bestPair.first, bestPair.second);
1143 >          // painCave.isFatal = 0;
1144 >          // painCave.severity = OPENMD_INFO;
1145 >          // simError();
1146 > #ifdef IS_MPI
1147 >        }
1148 > #endif
1149 >        
1150 >        switch(rnemdFluxType_) {
1151 >        case rnemdKE :
1152 >          x = bestPair.first;
1153 >          y = bestPair.first;
1154 >          z = bestPair.second;
1155 >          break;
1156 >        case rnemdPx :
1157 >          x = c;
1158 >          y = bestPair.first;
1159 >          z = bestPair.second;
1160 >          break;
1161 >        case rnemdPy :
1162 >          x = bestPair.first;
1163 >          y = c;
1164 >          z = bestPair.second;
1165 >          break;
1166 >        case rnemdPz :
1167 >          x = bestPair.first;
1168 >          y = bestPair.second;
1169 >          z = c;
1170 >          break;          
1171 >        default :
1172 >          break;
1173 >        }
1174 >        vector<StuntDouble*>::iterator sdi;
1175 >        Vector3d vel;
1176 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1177 >          vel = (*sdi)->getVel();
1178 >          vel.x() *= x;
1179 >          vel.y() *= y;
1180 >          vel.z() *= z;
1181 >          (*sdi)->setVel(vel);
1182 >        }
1183 >        //convert to hotBin coefficient
1184 >        x = 1.0 + px * (1.0 - x);
1185 >        y = 1.0 + py * (1.0 - y);
1186 >        z = 1.0 + pz * (1.0 - z);
1187 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1188 >          vel = (*sdi)->getVel();
1189 >          vel.x() *= x;
1190 >          vel.y() *= y;
1191 >          vel.z() *= z;
1192 >          (*sdi)->setVel(vel);
1193 >        }
1194 >        successfulScale = true;
1195 >        switch(rnemdFluxType_) {
1196 >        case rnemdKE :
1197 >          kineticExchange_ += kineticTarget_;
1198 >          break;
1199 >        case rnemdPx :
1200 >        case rnemdPy :
1201 >        case rnemdPz :
1202 >          momentumExchange_ += momentumTarget_;
1203 >          break;          
1204 >        default :
1205 >          break;
1206 >        }      
1207 >      }
1208      }
1209 +    if (successfulScale != true) {
1210 +      sprintf(painCave.errMsg,
1211 +              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1212 +              "\tthe constraint equations may not exist or there may be\n"
1213 +              "\tno selected objects in one or both slabs.\n");
1214 +      painCave.isFatal = 0;
1215 +      painCave.severity = OPENMD_INFO;
1216 +      simError();        
1217 +      failTrialCount_++;
1218 +    }
1219 +  }
1220  
1221 <    RealType v1 = a000 * a111 - a001 * a110;
1222 <    RealType v2 = a000 * b01;
1223 <    RealType v3 = a000 * b11;
1224 <    RealType v4 = a000 * c1 - a001 * c0;
1225 <    RealType v8 = a110 * b01;
702 <    RealType v10 = - b01 * c0;
1221 >  void RNEMD::doVSS() {
1222 >    if (!doRNEMD_) return;
1223 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1224 >    RealType time = currentSnap_->getTime();    
1225 >    Mat3x3d hmat = currentSnap_->getHmat();
1226  
1227 <    RealType u0 = v2 * v10 - v4 * v4;
705 <    RealType u1 = -2.0 * v3 * v4;
706 <    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
707 <    RealType u3 = -2.0 * v1 * v3;
708 <    RealType u4 = - v1 * v1;
709 <    //rescale coefficients
710 <    RealType maxAbs = fabs(u0);
711 <    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
712 <    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
713 <    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
714 <    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
715 <    u0 /= maxAbs;
716 <    u1 /= maxAbs;
717 <    u2 /= maxAbs;
718 <    u3 /= maxAbs;
719 <    u4 /= maxAbs;
720 <    //max_element(start, end) is also available.
721 <    Polynomial<RealType> poly; //same as DoublePolynomial poly;
722 <    poly.setCoefficient(4, u4);
723 <    poly.setCoefficient(3, u3);
724 <    poly.setCoefficient(2, u2);
725 <    poly.setCoefficient(1, u1);
726 <    poly.setCoefficient(0, u0);
727 <    std::vector<RealType> realRoots = poly.FindRealRoots();
1227 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1228  
1229 <    std::vector<RealType>::iterator ri;
1230 <    RealType r1, r2, alpha0;
1231 <    std::vector<std::pair<RealType,RealType> > rps;
1232 <    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1233 <      r2 = *ri;
1234 <      //check if FindRealRoots() give the right answer
1235 <      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1236 <        sprintf(painCave.errMsg,
1237 <                "RNEMD Warning: polynomial solve seems to have an error!");
1238 <        painCave.isFatal = 0;
1239 <        simError();
1240 <        failRootCount_++;
1241 <      }
1242 <      //might not be useful w/o rescaling coefficients
1243 <      alpha0 = -c0 - a110 * r2 * r2;
1244 <      if (alpha0 >= 0.0) {
1245 <        r1 = sqrt(alpha0 / a000);
1246 <        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
1247 <          { rps.push_back(std::make_pair(r1, r2)); }
1248 <        if (r1 > 1e-6) { //r1 non-negative
1249 <          r1 = -r1;
1250 <          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
1251 <            { rps.push_back(std::make_pair(r1, r2)); }
1252 <        }
1229 >    int selei;
1230 >    StuntDouble* sd;
1231 >    int idx;
1232 >
1233 >    vector<StuntDouble*> hotBin, coldBin;
1234 >
1235 >    Vector3d Ph(V3Zero);
1236 >    RealType Mh = 0.0;
1237 >    RealType Kh = 0.0;
1238 >    Vector3d Pc(V3Zero);
1239 >    RealType Mc = 0.0;
1240 >    RealType Kc = 0.0;
1241 >    
1242 >
1243 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1244 >         sd = seleMan_.nextSelected(selei)) {
1245 >
1246 >      idx = sd->getLocalIndex();
1247 >
1248 >      Vector3d pos = sd->getPos();
1249 >
1250 >      // wrap the stuntdouble's position back into the box:
1251 >
1252 >      if (usePeriodicBoundaryConditions_)
1253 >        currentSnap_->wrapVector(pos);
1254 >
1255 >      // which bin is this stuntdouble in?
1256 >      bool inA = inSlabA(pos);
1257 >      bool inB = inSlabB(pos);
1258 >      
1259 >      if (inA || inB) {
1260 >        
1261 >        RealType mass = sd->getMass();
1262 >        Vector3d vel = sd->getVel();
1263 >      
1264 >        if (inA) {
1265 >          hotBin.push_back(sd);
1266 >          //std::cerr << "before, velocity = " << vel << endl;
1267 >          Ph += mass * vel;
1268 >          //std::cerr << "after, velocity = " << vel << endl;
1269 >          Mh += mass;
1270 >          Kh += mass * vel.lengthSquare();
1271 >          if (rnemdFluxType_ == rnemdFullKE) {
1272 >            if (sd->isDirectional()) {
1273 >              Vector3d angMom = sd->getJ();
1274 >              Mat3x3d I = sd->getI();
1275 >              if (sd->isLinear()) {
1276 >                int i = sd->linearAxis();
1277 >                int j = (i + 1) % 3;
1278 >                int k = (i + 2) % 3;
1279 >                Kh += angMom[j] * angMom[j] / I(j, j) +
1280 >                  angMom[k] * angMom[k] / I(k, k);
1281 >              } else {
1282 >                Kh += angMom[0] * angMom[0] / I(0, 0) +
1283 >                  angMom[1] * angMom[1] / I(1, 1) +
1284 >                  angMom[2] * angMom[2] / I(2, 2);
1285 >              }
1286 >            }
1287 >          }
1288 >        } else { //midBin_
1289 >          coldBin.push_back(sd);
1290 >          Pc += mass * vel;
1291 >          Mc += mass;
1292 >          Kc += mass * vel.lengthSquare();
1293 >          if (rnemdFluxType_ == rnemdFullKE) {
1294 >            if (sd->isDirectional()) {
1295 >              Vector3d angMom = sd->getJ();
1296 >              Mat3x3d I = sd->getI();
1297 >              if (sd->isLinear()) {
1298 >                int i = sd->linearAxis();
1299 >                int j = (i + 1) % 3;
1300 >                int k = (i + 2) % 3;
1301 >                Kc += angMom[j] * angMom[j] / I(j, j) +
1302 >                  angMom[k] * angMom[k] / I(k, k);
1303 >              } else {
1304 >                Kc += angMom[0] * angMom[0] / I(0, 0) +
1305 >                  angMom[1] * angMom[1] / I(1, 1) +
1306 >                  angMom[2] * angMom[2] / I(2, 2);
1307 >              }
1308 >            }
1309 >          }
1310 >        }
1311        }
1312      }
1313 <    // Consider combininig together the solving pair part w/ the searching
1314 <    // best solution part so that we don't need the pairs vector
1315 <    if (!rps.empty()) {
1316 <      RealType smallestDiff = HONKING_LARGE_VALUE;
1317 <      RealType diff;
1318 <      std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
1319 <      std::vector<std::pair<RealType,RealType> >::iterator rpi;
1320 <      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
763 <        r1 = (*rpi).first;
764 <        r2 = (*rpi).second;
765 <        switch(rnemdType_) {
766 <        case rnemdKineticScale :
767 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
768 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
769 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
770 <          break;
771 <        case rnemdPxScale :
772 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
773 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
774 <          break;
775 <        case rnemdPyScale :
776 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
777 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
778 <          break;
779 <        case rnemdPzScale :
780 <        default :
781 <          break;
782 <        }
783 <        if (diff < smallestDiff) {
784 <          smallestDiff = diff;
785 <          bestPair = *rpi;
786 <        }
787 <      }
1313 >    
1314 >    Kh *= 0.5;
1315 >    Kc *= 0.5;
1316 >
1317 >    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1318 >    //        << "\tKc= " << Kc << endl;
1319 >    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1320 >    
1321   #ifdef IS_MPI
1322 <      if (worldRank == 0) {
1322 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1323 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1324 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1325 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1326 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1327 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1328   #endif
791        std::cerr << "we choose r1 = " << bestPair.first
792                  << " and r2 = " << bestPair.second << "\n";
793 #ifdef IS_MPI
794      }
795 #endif
1329  
1330 <      RealType x, y, z;
1331 <        switch(rnemdType_) {
1332 <        case rnemdKineticScale :
1333 <          x = bestPair.first;
1334 <          y = bestPair.first;
1335 <          z = bestPair.second;
1336 <          break;
1337 <        case rnemdPxScale :
1338 <          x = c;
1339 <          y = bestPair.first;
1340 <          z = bestPair.second;
1341 <          break;
1342 <        case rnemdPyScale :
1343 <          x = bestPair.first;
1344 <          y = c;
1345 <          z = bestPair.second;
1346 <          break;
1347 <        case rnemdPzScale :
1348 <          x = bestPair.first;
1349 <          y = bestPair.second;
1350 <          z = c;
1351 <          break;          
1352 <        default :
1353 <          break;
1354 <        }
1355 <      std::vector<StuntDouble*>::iterator sdi;
1356 <      Vector3d vel;
1357 <      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1358 <        vel = (*sdi)->getVel();
1359 <        vel.x() *= x;
1360 <        vel.y() *= y;
1361 <        vel.z() *= z;
1362 <        (*sdi)->setVel(vel);
1330 >    bool successfulExchange = false;
1331 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1332 >      Vector3d vc = Pc / Mc;
1333 >      Vector3d ac = -momentumTarget_ / Mc + vc;
1334 >      Vector3d acrec = -momentumTarget_ / Mc;
1335 >      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1336 >      if (cNumerator > 0.0) {
1337 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1338 >        if (cDenominator > 0.0) {
1339 >          RealType c = sqrt(cNumerator / cDenominator);
1340 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1341 >            Vector3d vh = Ph / Mh;
1342 >            Vector3d ah = momentumTarget_ / Mh + vh;
1343 >            Vector3d ahrec = momentumTarget_ / Mh;
1344 >            RealType hNumerator = Kh + kineticTarget_
1345 >              - 0.5 * Mh * ah.lengthSquare();
1346 >            if (hNumerator > 0.0) {
1347 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1348 >              if (hDenominator > 0.0) {
1349 >                RealType h = sqrt(hNumerator / hDenominator);
1350 >                if ((h > 0.9) && (h < 1.1)) {
1351 >                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1352 >                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1353 >                  vector<StuntDouble*>::iterator sdi;
1354 >                  Vector3d vel;
1355 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1356 >                    //vel = (*sdi)->getVel();
1357 >                    vel = ((*sdi)->getVel() - vc) * c + ac;
1358 >                    (*sdi)->setVel(vel);
1359 >                    if (rnemdFluxType_ == rnemdFullKE) {
1360 >                      if ((*sdi)->isDirectional()) {
1361 >                        Vector3d angMom = (*sdi)->getJ() * c;
1362 >                        (*sdi)->setJ(angMom);
1363 >                      }
1364 >                    }
1365 >                  }
1366 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1367 >                    //vel = (*sdi)->getVel();
1368 >                    vel = ((*sdi)->getVel() - vh) * h + ah;
1369 >                    (*sdi)->setVel(vel);
1370 >                    if (rnemdFluxType_ == rnemdFullKE) {
1371 >                      if ((*sdi)->isDirectional()) {
1372 >                        Vector3d angMom = (*sdi)->getJ() * h;
1373 >                        (*sdi)->setJ(angMom);
1374 >                      }
1375 >                    }
1376 >                  }
1377 >                  successfulExchange = true;
1378 >                  kineticExchange_ += kineticTarget_;
1379 >                  momentumExchange_ += momentumTarget_;
1380 >                }
1381 >              }
1382 >            }
1383 >          }
1384 >        }
1385        }
1386 <      //convert to hotBin coefficient
1387 <      x = 1.0 + px * (1.0 - x);
1388 <      y = 1.0 + py * (1.0 - y);
1389 <      z = 1.0 + pz * (1.0 - z);
1390 <      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1391 <        vel = (*sdi)->getVel();
1392 <        vel.x() *= x;
1393 <        vel.y() *= y;
1394 <        vel.z() *= z;
840 <        (*sdi)->setVel(vel);
841 <      }
842 <      exchangeSum_ += targetFlux_;
843 <      //we may want to check whether the exchange has been successful
844 <    } else {
845 <      std::cerr << "exchange NOT performed!\n";//MPI incompatible
1386 >    }
1387 >    if (successfulExchange != true) {
1388 >      sprintf(painCave.errMsg,
1389 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1390 >              "\tthe constraint equations may not exist or there may be\n"
1391 >              "\tno selected objects in one or both slabs.\n");
1392 >      painCave.isFatal = 0;
1393 >      painCave.severity = OPENMD_INFO;
1394 >      simError();        
1395        failTrialCount_++;
1396      }
848
1397    }
1398  
1399    void RNEMD::doRNEMD() {
1400 <
1401 <    switch(rnemdType_) {
1402 <    case rnemdKineticScale :
1403 <    case rnemdPxScale :
856 <    case rnemdPyScale :
857 <    case rnemdPzScale :
858 <      doScale();
859 <      break;
860 <    case rnemdKineticSwap :
861 <    case rnemdPx :
862 <    case rnemdPy :
863 <    case rnemdPz :
1400 >    if (!doRNEMD_) return;
1401 >    trialCount_++;
1402 >    switch(rnemdMethod_) {
1403 >    case rnemdSwap:
1404        doSwap();
1405        break;
1406 <    case rnemdUnknown :
1406 >    case rnemdNIVS:
1407 >      doNIVS();
1408 >      break;
1409 >    case rnemdVSS:
1410 >      doVSS();
1411 >      break;
1412 >    case rnemdUnkownMethod:
1413      default :
1414        break;
1415      }
1416    }
1417  
1418    void RNEMD::collectData() {
1419 <
1419 >    if (!doRNEMD_) return;
1420      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1421      Mat3x3d hmat = currentSnap_->getHmat();
1422  
1423 +    areaAccumulator_->add(currentSnap_->getXYarea());
1424 +
1425      seleMan_.setSelectionSet(evaluator_.evaluate());
1426  
1427      int selei;
1428      StuntDouble* sd;
1429      int idx;
1430  
1431 +    vector<RealType> binMass(nBins_, 0.0);
1432 +    vector<RealType> binPx(nBins_, 0.0);
1433 +    vector<RealType> binPy(nBins_, 0.0);
1434 +    vector<RealType> binPz(nBins_, 0.0);
1435 +    vector<RealType> binKE(nBins_, 0.0);
1436 +    vector<int> binDOF(nBins_, 0);
1437 +    vector<int> binCount(nBins_, 0);
1438 +
1439 +    // alternative approach, track all molecules instead of only those
1440 +    // selected for scaling/swapping:
1441 +    /*
1442 +    SimInfo::MoleculeIterator miter;
1443 +    vector<StuntDouble*>::iterator iiter;
1444 +    Molecule* mol;
1445 +    StuntDouble* sd;
1446 +    for (mol = info_->beginMolecule(miter); mol != NULL;
1447 +      mol = info_->nextMolecule(miter))
1448 +      sd is essentially sd
1449 +        for (sd = mol->beginIntegrableObject(iiter);
1450 +             sd != NULL;
1451 +             sd = mol->nextIntegrableObject(iiter))
1452 +    */
1453      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1454           sd = seleMan_.nextSelected(selei)) {
1455        
# Line 891 | Line 1461 | namespace OpenMD {
1461        
1462        if (usePeriodicBoundaryConditions_)
1463          currentSnap_->wrapVector(pos);
1464 <      
1464 >
1465 >
1466        // which bin is this stuntdouble in?
1467        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1468 <      
1468 >      // Shift molecules by half a box to have bins start at 0
1469 >      // The modulo operator is used to wrap the case when we are
1470 >      // beyond the end of the bins back to the beginning.
1471        int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1472 <
900 <      if (rnemdLogWidth_ == midBin_ + 1)
901 <        if (binNo > midBin_)
902 <          binNo = nBins_ - binNo;
903 <
1472 >    
1473        RealType mass = sd->getMass();
1474        Vector3d vel = sd->getVel();
906      RealType value;
907      RealType xVal, yVal, zVal;
1475  
1476 <      switch(rnemdType_) {
1477 <      case rnemdKineticSwap :
1478 <      case rnemdKineticScale :
1479 <        
1480 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
1481 <                        vel[2]*vel[2]);
1482 <        
916 <        valueCount_[binNo] += 3;
917 <        if (sd->isDirectional()) {
918 <          Vector3d angMom = sd->getJ();
919 <          Mat3x3d I = sd->getI();
920 <          
921 <          if (sd->isLinear()) {
922 <            int i = sd->linearAxis();
923 <            int j = (i + 1) % 3;
924 <            int k = (i + 2) % 3;
925 <            value += angMom[j] * angMom[j] / I(j, j) +
926 <              angMom[k] * angMom[k] / I(k, k);
1476 >      binCount[binNo]++;
1477 >      binMass[binNo] += mass;
1478 >      binPx[binNo] += mass*vel.x();
1479 >      binPy[binNo] += mass*vel.y();
1480 >      binPz[binNo] += mass*vel.z();
1481 >      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1482 >      binDOF[binNo] += 3;
1483  
1484 <            valueCount_[binNo] +=2;
1484 >      if (sd->isDirectional()) {
1485 >        Vector3d angMom = sd->getJ();
1486 >        Mat3x3d I = sd->getI();
1487 >        if (sd->isLinear()) {
1488 >          int i = sd->linearAxis();
1489 >          int j = (i + 1) % 3;
1490 >          int k = (i + 2) % 3;
1491 >          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1492 >                                 angMom[k] * angMom[k] / I(k, k));
1493 >          binDOF[binNo] += 2;
1494 >        } else {
1495 >          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1496 >                                 angMom[1] * angMom[1] / I(1, 1) +
1497 >                                 angMom[2] * angMom[2] / I(2, 2));
1498 >          binDOF[binNo] += 3;
1499 >        }
1500 >      }
1501 >    }
1502 >    
1503  
1504 <          } else {
1505 <            value += angMom[0]*angMom[0]/I(0, 0)
1506 <              + angMom[1]*angMom[1]/I(1, 1)
1507 <              + angMom[2]*angMom[2]/I(2, 2);
1508 <            valueCount_[binNo] +=3;
1509 <          }
1510 <        }
1511 <        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1504 > #ifdef IS_MPI
1505 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1506 >                              nBins_, MPI::INT, MPI::SUM);
1507 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1508 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1509 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1510 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1511 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1512 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1513 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1514 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1515 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1516 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1517 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1518 >                              nBins_, MPI::INT, MPI::SUM);
1519 > #endif
1520  
1521 <        break;
1522 <      case rnemdPx :
1523 <      case rnemdPxScale :
1524 <        value = mass * vel[0];
1525 <        valueCount_[binNo]++;
1526 <        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
1527 <          / PhysicalConstants::kb;
1528 <        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1529 <          / PhysicalConstants::kb;
1530 <        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1531 <          / PhysicalConstants::kb;
1532 <        xTempHist_[binNo] += xVal;
1533 <        yTempHist_[binNo] += yVal;
1534 <        zTempHist_[binNo] += zVal;
1535 <        break;
1536 <      case rnemdPy :
1537 <      case rnemdPyScale :
1538 <        value = mass * vel[1];
1539 <        valueCount_[binNo]++;
1540 <        break;
1541 <      case rnemdPz :
1542 <      case rnemdPzScale :
1543 <        value = mass * vel[2];
1544 <        valueCount_[binNo]++;
1545 <        break;
1546 <      case rnemdUnknown :
1547 <      default :
1548 <        break;
1521 >    Vector3d vel;
1522 >    RealType den;
1523 >    RealType temp;
1524 >    RealType z;
1525 >    for (int i = 0; i < nBins_; i++) {
1526 >      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1527 >      vel.x() = binPx[i] / binMass[i];
1528 >      vel.y() = binPy[i] / binMass[i];
1529 >      vel.z() = binPz[i] / binMass[i];
1530 >      den = binCount[i] * nBins_ / currentSnap_->getVolume();
1531 >      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1532 >                               PhysicalConstants::energyConvert);
1533 >
1534 >      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1535 >        if(outputMask_[j]) {
1536 >          switch(j) {
1537 >          case Z:
1538 >            (data_[j].accumulator[i])->add(z);
1539 >            break;
1540 >          case TEMPERATURE:
1541 >            data_[j].accumulator[i]->add(temp);
1542 >            break;
1543 >          case VELOCITY:
1544 >            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1545 >            break;
1546 >          case DENSITY:
1547 >            data_[j].accumulator[i]->add(den);
1548 >            break;
1549 >          }
1550 >        }
1551        }
968      valueHist_[binNo] += value;
1552      }
970
1553    }
1554  
1555    void RNEMD::getStarted() {
1556 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1557 <    Stats& stat = currentSnap_->statData;
1558 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1556 >    if (!doRNEMD_) return;
1557 >    collectData();
1558 >    writeOutputFile();
1559    }
1560  
1561 <  void RNEMD::getStatus() {
1562 <
1563 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1564 <    Stats& stat = currentSnap_->statData;
1565 <    RealType time = currentSnap_->getTime();
1566 <
1567 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1568 <    //or to be more meaningful, define another item as exchangeSum_ / time
1569 <    int j;
1570 <
1561 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
1562 >    if (!doRNEMD_) return;
1563 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1564 >    
1565 >    while(tokenizer.hasMoreTokens()) {
1566 >      std::string token(tokenizer.nextToken());
1567 >      toUpper(token);
1568 >      OutputMapType::iterator i = outputMap_.find(token);
1569 >      if (i != outputMap_.end()) {
1570 >        outputMask_.set(i->second);
1571 >      } else {
1572 >        sprintf( painCave.errMsg,
1573 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1574 >                 "\toutputFileFormat keyword.\n", token.c_str() );
1575 >        painCave.isFatal = 0;
1576 >        painCave.severity = OPENMD_ERROR;
1577 >        simError();            
1578 >      }
1579 >    }  
1580 >  }
1581 >  
1582 >  void RNEMD::writeOutputFile() {
1583 >    if (!doRNEMD_) return;
1584 >    
1585   #ifdef IS_MPI
990
991    // all processors have the same number of bins, and STL vectors pack their
992    // arrays, so in theory, this should be safe:
993
994    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
995                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
996    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
997                              rnemdLogWidth_, MPI::INT, MPI::SUM);
998    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) {
999      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1000                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1001      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1002                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1003      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1004                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1005    }
1586      // If we're the root node, should we print out the results
1587      int worldRank = MPI::COMM_WORLD.Get_rank();
1588      if (worldRank == 0) {
1589   #endif
1590 <      rnemdLog_ << time;
1591 <      for (j = 0; j < rnemdLogWidth_; j++) {
1592 <        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
1590 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1591 >      
1592 >      if( !rnemdFile_ ){        
1593 >        sprintf( painCave.errMsg,
1594 >                 "Could not open \"%s\" for RNEMD output.\n",
1595 >                 rnemdFileName_.c_str());
1596 >        painCave.isFatal = 1;
1597 >        simError();
1598        }
1599 <      rnemdLog_ << "\n";
1600 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) {
1601 <        xTempLog_ << time;      
1602 <        for (j = 0; j < rnemdLogWidth_; j++) {
1603 <          xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j];
1599 >
1600 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1601 >
1602 >      RealType time = currentSnap_->getTime();
1603 >      RealType avgArea;
1604 >      areaAccumulator_->getAverage(avgArea);
1605 >      RealType Jz = kineticExchange_ / (2.0 * time * avgArea);
1606 >      Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);      
1607 >
1608 >      rnemdFile_ << "#######################################################\n";
1609 >      rnemdFile_ << "# RNEMD {\n";
1610 >
1611 >      map<string, RNEMDMethod>::iterator mi;
1612 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1613 >        if ( (*mi).second == rnemdMethod_)
1614 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
1615 >      }
1616 >      map<string, RNEMDFluxType>::iterator fi;
1617 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1618 >        if ( (*fi).second == rnemdFluxType_)
1619 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
1620 >      }
1621 >      
1622 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
1623 >
1624 >      rnemdFile_ << "#    objectSelection = \""
1625 >                 << rnemdObjectSelection_ << "\";\n";
1626 >      rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n";
1627 >      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n";
1628 >      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n";
1629 >      rnemdFile_ << "# }\n";
1630 >      rnemdFile_ << "#######################################################\n";
1631 >      rnemdFile_ << "# RNEMD report:\n";      
1632 >      rnemdFile_ << "#     running time = " << time << " fs\n";
1633 >      rnemdFile_ << "#     target flux:\n";
1634 >      rnemdFile_ << "#         kinetic = " << kineticFlux_ << "\n";
1635 >      rnemdFile_ << "#         momentum = " << momentumFluxVector_ << "\n";
1636 >      rnemdFile_ << "#     target one-time exchanges:\n";
1637 >      rnemdFile_ << "#         kinetic = " << kineticTarget_ << "\n";
1638 >      rnemdFile_ << "#         momentum = " << momentumTarget_ << "\n";
1639 >      rnemdFile_ << "#     actual exchange totals:\n";
1640 >      rnemdFile_ << "#         kinetic = " << kineticExchange_ << "\n";
1641 >      rnemdFile_ << "#         momentum = " << momentumExchange_  << "\n";
1642 >      rnemdFile_ << "#     actual flux:\n";
1643 >      rnemdFile_ << "#         kinetic = " << Jz << "\n";
1644 >      rnemdFile_ << "#         momentum = " << JzP  << "\n";
1645 >      rnemdFile_ << "#     exchange statistics:\n";
1646 >      rnemdFile_ << "#         attempted = " << trialCount_ << "\n";
1647 >      rnemdFile_ << "#         failed = " << failTrialCount_ << "\n";    
1648 >      if (rnemdMethod_ == rnemdNIVS) {
1649 >        rnemdFile_ << "#         NIVS root-check errors = "
1650 >                   << failRootCount_ << "\n";
1651 >      }
1652 >      rnemdFile_ << "#######################################################\n";
1653 >      
1654 >      
1655 >      
1656 >      //write title
1657 >      rnemdFile_ << "#";
1658 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1659 >        if (outputMask_[i]) {
1660 >          rnemdFile_ << "\t" << data_[i].title <<
1661 >            "(" << data_[i].units << ")";
1662          }
1663 <        xTempLog_ << "\n";
1664 <        yTempLog_ << time;
1665 <        for (j = 0; j < rnemdLogWidth_; j++) {
1666 <          yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j];
1663 >      }
1664 >      rnemdFile_ << std::endl;
1665 >      
1666 >      rnemdFile_.precision(8);
1667 >      
1668 >      for (unsigned int j = 0; j < nBins_; j++) {        
1669 >        
1670 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1671 >          if (outputMask_[i]) {
1672 >            if (data_[i].dataType == "RealType")
1673 >              writeReal(i,j);
1674 >            else if (data_[i].dataType == "Vector3d")
1675 >              writeVector(i,j);
1676 >            else {
1677 >              sprintf( painCave.errMsg,
1678 >                       "RNEMD found an unknown data type for: %s ",
1679 >                       data_[i].title.c_str());
1680 >              painCave.isFatal = 1;
1681 >              simError();
1682 >            }
1683 >          }
1684          }
1685 <        yTempLog_ << "\n";
1686 <        zTempLog_ << time;
1687 <        for (j = 0; j < rnemdLogWidth_; j++) {
1688 <          zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j];
1685 >        rnemdFile_ << std::endl;
1686 >        
1687 >      }        
1688 >
1689 >      rnemdFile_ << "#######################################################\n";
1690 >      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1691 >      rnemdFile_ << "#######################################################\n";
1692 >
1693 >
1694 >      for (unsigned int j = 0; j < nBins_; j++) {        
1695 >        rnemdFile_ << "#";
1696 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1697 >          if (outputMask_[i]) {
1698 >            if (data_[i].dataType == "RealType")
1699 >              writeRealStdDev(i,j);
1700 >            else if (data_[i].dataType == "Vector3d")
1701 >              writeVectorStdDev(i,j);
1702 >            else {
1703 >              sprintf( painCave.errMsg,
1704 >                       "RNEMD found an unknown data type for: %s ",
1705 >                       data_[i].title.c_str());
1706 >              painCave.isFatal = 1;
1707 >              simError();
1708 >            }
1709 >          }
1710          }
1711 <        zTempLog_ << "\n";
1712 <      }
1711 >        rnemdFile_ << std::endl;
1712 >        
1713 >      }        
1714 >      
1715 >      rnemdFile_.flush();
1716 >      rnemdFile_.close();
1717 >      
1718   #ifdef IS_MPI
1719      }
1720   #endif
1721 <    for (j = 0; j < rnemdLogWidth_; j++) {
1722 <      valueCount_[j] = 0;
1723 <      valueHist_[j] = 0.0;
1721 >    
1722 >  }
1723 >  
1724 >  void RNEMD::writeReal(int index, unsigned int bin) {
1725 >    if (!doRNEMD_) return;
1726 >    assert(index >=0 && index < ENDINDEX);
1727 >    assert(bin < nBins_);
1728 >    RealType s;
1729 >    
1730 >    data_[index].accumulator[bin]->getAverage(s);
1731 >    
1732 >    if (! isinf(s) && ! isnan(s)) {
1733 >      rnemdFile_ << "\t" << s;
1734 >    } else{
1735 >      sprintf( painCave.errMsg,
1736 >               "RNEMD detected a numerical error writing: %s for bin %d",
1737 >               data_[index].title.c_str(), bin);
1738 >      painCave.isFatal = 1;
1739 >      simError();
1740 >    }    
1741 >  }
1742 >  
1743 >  void RNEMD::writeVector(int index, unsigned int bin) {
1744 >    if (!doRNEMD_) return;
1745 >    assert(index >=0 && index < ENDINDEX);
1746 >    assert(bin < nBins_);
1747 >    Vector3d s;
1748 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1749 >    if (isinf(s[0]) || isnan(s[0]) ||
1750 >        isinf(s[1]) || isnan(s[1]) ||
1751 >        isinf(s[2]) || isnan(s[2]) ) {      
1752 >      sprintf( painCave.errMsg,
1753 >               "RNEMD detected a numerical error writing: %s for bin %d",
1754 >               data_[index].title.c_str(), bin);
1755 >      painCave.isFatal = 1;
1756 >      simError();
1757 >    } else {
1758 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1759      }
1760 <    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale)
1761 <      for (j = 0; j < rnemdLogWidth_; j++) {
1762 <        xTempHist_[j] = 0.0;
1763 <        yTempHist_[j] = 0.0;
1764 <        zTempHist_[j] = 0.0;
1765 <      }
1760 >  }  
1761 >
1762 >  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1763 >    if (!doRNEMD_) return;
1764 >    assert(index >=0 && index < ENDINDEX);
1765 >    assert(bin < nBins_);
1766 >    RealType s;
1767 >    
1768 >    data_[index].accumulator[bin]->getStdDev(s);
1769 >    
1770 >    if (! isinf(s) && ! isnan(s)) {
1771 >      rnemdFile_ << "\t" << s;
1772 >    } else{
1773 >      sprintf( painCave.errMsg,
1774 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1775 >               data_[index].title.c_str(), bin);
1776 >      painCave.isFatal = 1;
1777 >      simError();
1778 >    }    
1779    }
1780 +  
1781 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1782 +    if (!doRNEMD_) return;
1783 +    assert(index >=0 && index < ENDINDEX);
1784 +    assert(bin < nBins_);
1785 +    Vector3d s;
1786 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1787 +    if (isinf(s[0]) || isnan(s[0]) ||
1788 +        isinf(s[1]) || isnan(s[1]) ||
1789 +        isinf(s[2]) || isnan(s[2]) ) {      
1790 +      sprintf( painCave.errMsg,
1791 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1792 +               data_[index].title.c_str(), bin);
1793 +      painCave.isFatal = 1;
1794 +      simError();
1795 +    } else {
1796 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1797 +    }
1798 +  }  
1799   }
1800 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines