ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1776 by gezelter, Thu Aug 9 15:52:59 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 < #include "integrators/RNEMD.hpp"
42 > #include <cmath>
43 > #include "rnemd/RNEMD.hpp"
44   #include "math/Vector3.hpp"
45 + #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47 + #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50 < #include "utils/OOPSEConstant.hpp"
50 > #include "utils/PhysicalConstants.hpp"
51   #include "utils/Tuple.hpp"
52 <
53 < #ifndef IS_MPI
51 < #include "math/SeqRandNumGen.hpp"
52 < #else
53 < #include "math/ParallelRandNumGen.hpp"
52 > #ifdef IS_MPI
53 > #include <mpi.h>
54   #endif
55  
56   #define HONKING_LARGE_VALUE 1.0e10
57  
58 < namespace oopse {
58 > using namespace std;
59 > namespace OpenMD {
60    
61 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
62 <    
61 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
62 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63 >
64 >    trialCount_ = 0;
65 >    failTrialCount_ = 0;
66 >    failRootCount_ = 0;
67 >
68      int seedValue;
69      Globals * simParams = info->getSimParams();
70 +    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
71  
72 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
73 <    stringToEnumMap_["Px"] = rnemdPx;
67 <    stringToEnumMap_["Py"] = rnemdPy;
68 <    stringToEnumMap_["Pz"] = rnemdPz;
69 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
72 >    doRNEMD_ = rnemdParams->getUseRNEMD();
73 >    if (!doRNEMD_) return;
74  
75 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
75 >    stringToMethod_["Swap"]  = rnemdSwap;
76 >    stringToMethod_["NIVS"]  = rnemdNIVS;
77 >    stringToMethod_["VSS"]   = rnemdVSS;
78 >
79 >    stringToFluxType_["KE"]  = rnemdKE;
80 >    stringToFluxType_["Px"]  = rnemdPx;
81 >    stringToFluxType_["Py"]  = rnemdPy;
82 >    stringToFluxType_["Pz"]  = rnemdPz;
83 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
84 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
85 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
86 >
87 >    runTime_ = simParams->getRunTime();
88 >    statusTime_ = simParams->getStatusTime();
89 >
90 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
91      evaluator_.loadScriptString(rnemdObjectSelection_);
92      seleMan_.setSelectionSet(evaluator_.evaluate());
93  
94 +    const string methStr = rnemdParams->getMethod();
95 +    bool hasFluxType = rnemdParams->haveFluxType();
96  
97 +    string fluxStr;
98 +    if (hasFluxType) {
99 +      fluxStr = rnemdParams->getFluxType();
100 +    } else {
101 +      sprintf(painCave.errMsg,
102 +              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
103 +              "\twhich must be one of the following values:\n"
104 +              "\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n"
105 +              "\tuse RNEMD\n");
106 +      painCave.isFatal = 1;
107 +      painCave.severity = OPENMD_ERROR;
108 +      simError();
109 +    }
110 +
111 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
112 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
113 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
114 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
115 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
116 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
117 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
118 +    bool hasOutputFields = rnemdParams->haveOutputFields();
119 +    
120 +    map<string, RNEMDMethod>::iterator i;
121 +    i = stringToMethod_.find(methStr);
122 +    if (i != stringToMethod_.end())
123 +      rnemdMethod_ = i->second;
124 +    else {
125 +      sprintf(painCave.errMsg,
126 +              "RNEMD: The current method,\n"
127 +              "\t\t%s is not one of the recognized\n"
128 +              "\texchange methods: Swap, NIVS, or VSS\n",
129 +              methStr.c_str());
130 +      painCave.isFatal = 1;
131 +      painCave.severity = OPENMD_ERROR;
132 +      simError();
133 +    }
134 +
135 +    map<string, RNEMDFluxType>::iterator j;
136 +    j = stringToFluxType_.find(fluxStr);
137 +    if (j != stringToFluxType_.end())
138 +      rnemdFluxType_ = j->second;
139 +    else {
140 +      sprintf(painCave.errMsg,
141 +              "RNEMD: The current fluxType,\n"
142 +              "\t\t%s\n"
143 +              "\tis not one of the recognized flux types.\n",
144 +              fluxStr.c_str());
145 +      painCave.isFatal = 1;
146 +      painCave.severity = OPENMD_ERROR;
147 +      simError();
148 +    }
149 +
150 +    bool methodFluxMismatch = false;
151 +    bool hasCorrectFlux = false;
152 +    switch(rnemdMethod_) {
153 +    case rnemdSwap:
154 +      switch (rnemdFluxType_) {
155 +      case rnemdKE:
156 +        hasCorrectFlux = hasKineticFlux;
157 +        break;
158 +      case rnemdPx:
159 +      case rnemdPy:
160 +      case rnemdPz:
161 +        hasCorrectFlux = hasMomentumFlux;
162 +        break;
163 +      default :
164 +        methodFluxMismatch = true;
165 +        break;
166 +      }
167 +      break;
168 +    case rnemdNIVS:
169 +      switch (rnemdFluxType_) {
170 +      case rnemdKE:
171 +      case rnemdRotKE:
172 +      case rnemdFullKE:
173 +        hasCorrectFlux = hasKineticFlux;
174 +        break;
175 +      case rnemdPx:
176 +      case rnemdPy:
177 +      case rnemdPz:
178 +        hasCorrectFlux = hasMomentumFlux;
179 +        break;
180 +      case rnemdKePx:
181 +      case rnemdKePy:
182 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
183 +        break;
184 +      default:
185 +        methodFluxMismatch = true;
186 +        break;
187 +      }
188 +      break;
189 +    case rnemdVSS:
190 +      switch (rnemdFluxType_) {
191 +      case rnemdKE:
192 +      case rnemdRotKE:
193 +      case rnemdFullKE:
194 +        hasCorrectFlux = hasKineticFlux;
195 +        break;
196 +      case rnemdPx:
197 +      case rnemdPy:
198 +      case rnemdPz:
199 +        hasCorrectFlux = hasMomentumFlux;
200 +        break;
201 +      case rnemdPvector:
202 +        hasCorrectFlux = hasMomentumFluxVector;
203 +      case rnemdKePx:
204 +      case rnemdKePy:
205 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
206 +        break;
207 +      case rnemdKePvector:
208 +        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
209 +        break;
210 +      default:
211 +        methodFluxMismatch = true;
212 +        break;
213 +      }
214 +    default:
215 +      break;
216 +    }
217 +
218 +    if (methodFluxMismatch) {
219 +      sprintf(painCave.errMsg,
220 +              "RNEMD: The current method,\n"
221 +              "\t\t%s\n"
222 +              "\tcannot be used with the current flux type, %s\n",
223 +              methStr.c_str(), fluxStr.c_str());
224 +      painCave.isFatal = 1;
225 +      painCave.severity = OPENMD_ERROR;
226 +      simError();        
227 +    }
228 +    if (!hasCorrectFlux) {
229 +      sprintf(painCave.errMsg,
230 +              "RNEMD: The current method,\n"
231 +              "\t%s, and flux type %s\n"
232 +              "\tdid not have the correct flux value specified. Options\n"
233 +              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
234 +              methStr.c_str(), fluxStr.c_str());
235 +      painCave.isFatal = 1;
236 +      painCave.severity = OPENMD_ERROR;
237 +      simError();        
238 +    }
239 +
240 +    if (hasKineticFlux) {
241 +      kineticFlux_ = rnemdParams->getKineticFlux();
242 +    } else {
243 +      kineticFlux_ = 0.0;
244 +    }
245 +    if (hasMomentumFluxVector) {
246 +      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
247 +    } else {
248 +      momentumFluxVector_ = V3Zero;
249 +      if (hasMomentumFlux) {
250 +        RealType momentumFlux = rnemdParams->getMomentumFlux();
251 +        switch (rnemdFluxType_) {
252 +        case rnemdPx:
253 +          momentumFluxVector_.x() = momentumFlux;
254 +          break;
255 +        case rnemdPy:
256 +          momentumFluxVector_.y() = momentumFlux;
257 +          break;
258 +        case rnemdPz:
259 +          momentumFluxVector_.z() = momentumFlux;
260 +          break;
261 +        case rnemdKePx:
262 +          momentumFluxVector_.x() = momentumFlux;
263 +          break;
264 +        case rnemdKePy:
265 +          momentumFluxVector_.y() = momentumFlux;
266 +          break;
267 +        default:
268 +          break;
269 +        }
270 +      }    
271 +    }
272 +
273      // do some sanity checking
274  
275      int selectionCount = seleMan_.getSelectionCount();
# Line 80 | Line 277 | namespace oopse {
277  
278      if (selectionCount > nIntegrable) {
279        sprintf(painCave.errMsg,
280 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
280 >              "RNEMD: The current objectSelection,\n"
281                "\t\t%s\n"
282                "\thas resulted in %d selected objects.  However,\n"
283                "\tthe total number of integrable objects in the system\n"
# Line 90 | Line 287 | namespace oopse {
287                rnemdObjectSelection_.c_str(),
288                selectionCount, nIntegrable);
289        painCave.isFatal = 0;
290 +      painCave.severity = OPENMD_WARNING;
291        simError();
292 +    }
293  
294 +    areaAccumulator_ = new Accumulator();
295 +
296 +    nBins_ = rnemdParams->getOutputBins();
297 +
298 +    data_.resize(RNEMD::ENDINDEX);
299 +    OutputData z;
300 +    z.units =  "Angstroms";
301 +    z.title =  "Z";
302 +    z.dataType = "RealType";
303 +    z.accumulator.reserve(nBins_);
304 +    for (unsigned int i = 0; i < nBins_; i++)
305 +      z.accumulator.push_back( new Accumulator() );
306 +    data_[Z] = z;
307 +    outputMap_["Z"] =  Z;
308 +
309 +    OutputData temperature;
310 +    temperature.units =  "K";
311 +    temperature.title =  "Temperature";
312 +    temperature.dataType = "RealType";
313 +    temperature.accumulator.reserve(nBins_);
314 +    for (unsigned int i = 0; i < nBins_; i++)
315 +      temperature.accumulator.push_back( new Accumulator() );
316 +    data_[TEMPERATURE] = temperature;
317 +    outputMap_["TEMPERATURE"] =  TEMPERATURE;
318 +
319 +    OutputData velocity;
320 +    velocity.units = "amu/fs";
321 +    velocity.title =  "Velocity";  
322 +    velocity.dataType = "Vector3d";
323 +    velocity.accumulator.reserve(nBins_);
324 +    for (unsigned int i = 0; i < nBins_; i++)
325 +      velocity.accumulator.push_back( new VectorAccumulator() );
326 +    data_[VELOCITY] = velocity;
327 +    outputMap_["VELOCITY"] = VELOCITY;
328 +
329 +    OutputData density;
330 +    density.units =  "g cm^-3";
331 +    density.title =  "Density";
332 +    density.dataType = "RealType";
333 +    density.accumulator.reserve(nBins_);
334 +    for (unsigned int i = 0; i < nBins_; i++)
335 +      density.accumulator.push_back( new Accumulator() );
336 +    data_[DENSITY] = density;
337 +    outputMap_["DENSITY"] =  DENSITY;
338 +
339 +    if (hasOutputFields) {
340 +      parseOutputFileFormat(rnemdParams->getOutputFields());
341 +    } else {
342 +      outputMask_.set(Z);
343 +      switch (rnemdFluxType_) {
344 +      case rnemdKE:
345 +      case rnemdRotKE:
346 +      case rnemdFullKE:
347 +        outputMask_.set(TEMPERATURE);
348 +        break;
349 +      case rnemdPx:
350 +      case rnemdPy:
351 +        outputMask_.set(VELOCITY);
352 +        break;
353 +      case rnemdPz:        
354 +      case rnemdPvector:
355 +        outputMask_.set(VELOCITY);
356 +        outputMask_.set(DENSITY);
357 +        break;
358 +      case rnemdKePx:
359 +      case rnemdKePy:
360 +        outputMask_.set(TEMPERATURE);
361 +        outputMask_.set(VELOCITY);
362 +        break;
363 +      case rnemdKePvector:
364 +        outputMask_.set(TEMPERATURE);
365 +        outputMask_.set(VELOCITY);
366 +        outputMask_.set(DENSITY);        
367 +        break;
368 +      default:
369 +        break;
370 +      }
371      }
372 <    
373 <    const std::string st = simParams->getRNEMD_swapType();
372 >      
373 >    if (hasOutputFileName) {
374 >      rnemdFileName_ = rnemdParams->getOutputFileName();
375 >    } else {
376 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
377 >    }          
378  
379 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
100 <    i = stringToEnumMap_.find(st);
101 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
379 >    exchangeTime_ = rnemdParams->getExchangeTime();
380  
381 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
382 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
383 <    exchangeSum_ = 0.0;
381 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
382 >    Mat3x3d hmat = currentSnap_->getHmat();
383 >  
384 >    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
385 >    // Lx, Ly = box dimensions in x & y
386 >    // dt = exchange time interval
387 >    // flux = target flux
388  
389 < #ifndef IS_MPI
390 <    if (simParams->haveSeed()) {
391 <      seedValue = simParams->getSeed();
392 <      randNumGen_ = new SeqRandNumGen(seedValue);
393 <    }else {
394 <      randNumGen_ = new SeqRandNumGen();
395 <    }    
396 < #else
397 <    if (simParams->haveSeed()) {
398 <      seedValue = simParams->getSeed();
399 <      randNumGen_ = new ParallelRandNumGen(seedValue);
400 <    }else {
401 <      randNumGen_ = new ParallelRandNumGen();
120 <    }    
121 < #endif
122 <  }
389 >    RealType area = currentSnap_->getXYarea();
390 >    kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
391 >    momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
392 >
393 >    // total exchange sums are zeroed out at the beginning:
394 >
395 >    kineticExchange_ = 0.0;
396 >    momentumExchange_ = V3Zero;
397 >
398 >    if (hasSlabWidth)
399 >      slabWidth_ = rnemdParams->getSlabWidth();
400 >    else
401 >      slabWidth_ = hmat(2,2) / 10.0;
402    
403 +    if (hasSlabACenter)
404 +      slabACenter_ = rnemdParams->getSlabACenter();
405 +    else
406 +      slabACenter_ = 0.0;
407 +    
408 +    if (hasSlabBCenter)
409 +      slabBCenter_ = rnemdParams->getSlabBCenter();
410 +    else
411 +      slabBCenter_ = hmat(2,2) / 2.0;
412 +    
413 +  }
414 +  
415    RNEMD::~RNEMD() {
416 <    delete randNumGen_;
416 >    if (!doRNEMD_) return;
417 > #ifdef IS_MPI
418 >    if (worldRank == 0) {
419 > #endif
420 >
421 >      writeOutputFile();
422 >
423 >      rnemdFile_.close();
424 >      
425 > #ifdef IS_MPI
426 >    }
427 > #endif
428    }
429 +  
430 +  bool RNEMD::inSlabA(Vector3d pos) {
431 +    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
432 +  }
433 +  bool RNEMD::inSlabB(Vector3d pos) {
434 +    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
435 +  }
436  
437    void RNEMD::doSwap() {
438 <    int midBin = nBins_ / 2;
130 <
438 >    if (!doRNEMD_) return;
439      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
440      Mat3x3d hmat = currentSnap_->getHmat();
441  
# Line 156 | Line 464 | namespace oopse {
464  
465        if (usePeriodicBoundaryConditions_)
466          currentSnap_->wrapVector(pos);
467 +      bool inA = inSlabA(pos);
468 +      bool inB = inSlabB(pos);
469  
470 <      // which bin is this stuntdouble in?
161 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
162 <
163 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
164 <
165 <
166 <      // if we're in bin 0 or the middleBin
167 <      if (binNo == 0 || binNo == midBin) {
470 >      if (inA || inB) {
471          
472          RealType mass = sd->getMass();
473          Vector3d vel = sd->getVel();
474          RealType value;
475 <
476 <        switch(rnemdType_) {
477 <        case rnemdKinetic :
475 >        
476 >        switch(rnemdFluxType_) {
477 >        case rnemdKE :
478            
479 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
480 <                          vel[2]*vel[2]);
481 <          if (sd->isDirectional()) {
479 >          value = mass * vel.lengthSquare();
480 >          
481 >          if (sd->isDirectional()) {
482              Vector3d angMom = sd->getJ();
483              Mat3x3d I = sd->getI();
484              
485              if (sd->isLinear()) {
486 <              int i = sd->linearAxis();
487 <              int j = (i + 1) % 3;
488 <              int k = (i + 2) % 3;
489 <              value += angMom[j] * angMom[j] / I(j, j) +
490 <                angMom[k] * angMom[k] / I(k, k);
486 >              int i = sd->linearAxis();
487 >              int j = (i + 1) % 3;
488 >              int k = (i + 2) % 3;
489 >              value += angMom[j] * angMom[j] / I(j, j) +
490 >                angMom[k] * angMom[k] / I(k, k);
491              } else {                        
492 <              value += angMom[0]*angMom[0]/I(0, 0)
493 <                + angMom[1]*angMom[1]/I(1, 1)
494 <                + angMom[2]*angMom[2]/I(2, 2);
492 >              value += angMom[0]*angMom[0]/I(0, 0)
493 >                + angMom[1]*angMom[1]/I(1, 1)
494 >                + angMom[2]*angMom[2]/I(2, 2);
495              }
496 <          }
497 <          value = value * 0.5 / OOPSEConstant::energyConvert;
496 >          } //angular momenta exchange enabled
497 >          //energyConvert temporarily disabled
498 >          //make kineticExchange_ comparable between swap & scale
499 >          //value = value * 0.5 / PhysicalConstants::energyConvert;
500 >          value *= 0.5;
501            break;
502          case rnemdPx :
503            value = mass * vel[0];
# Line 202 | Line 508 | namespace oopse {
508          case rnemdPz :
509            value = mass * vel[2];
510            break;
205        case rnemdUnknown :
511          default :
512            break;
513          }
514          
515 <        if (binNo == 0) {
515 >        if (inA == 0) {
516            if (!min_found) {
517              min_val = value;
518              min_sd = sd;
# Line 218 | Line 523 | namespace oopse {
523                min_sd = sd;
524              }
525            }
526 <        } else {
526 >        } else {
527            if (!max_found) {
528              max_val = value;
529              max_sd = sd;
# Line 232 | Line 537 | namespace oopse {
537          }
538        }
539      }
540 <
540 >    
541   #ifdef IS_MPI
542      int nProc, worldRank;
543 <
543 >    
544      nProc = MPI::COMM_WORLD.Get_size();
545      worldRank = MPI::COMM_WORLD.Get_rank();
546  
# Line 243 | Line 548 | namespace oopse {
548      bool my_max_found = max_found;
549  
550      // Even if we didn't find a minimum, did someone else?
551 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
247 <                              1, MPI::BOOL, MPI::LAND);
248 <    
551 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
552      // Even if we didn't find a maximum, did someone else?
553 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
554 <                              1, MPI::BOOL, MPI::LAND);
555 <    
556 <    struct {
557 <      RealType val;
558 <      int rank;
559 <    } max_vals, min_vals;
560 <    
561 <    if (min_found) {
562 <      if (my_min_found)
553 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
554 > #endif
555 >
556 >    if (max_found && min_found) {
557 >
558 > #ifdef IS_MPI
559 >      struct {
560 >        RealType val;
561 >        int rank;
562 >      } max_vals, min_vals;
563 >      
564 >      if (my_min_found) {
565          min_vals.val = min_val;
566 <      else
566 >      } else {
567          min_vals.val = HONKING_LARGE_VALUE;
568 <      
568 >      }
569        min_vals.rank = worldRank;    
570        
571        // Who had the minimum?
572        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
573                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
574        min_val = min_vals.val;
270    }
575        
576 <    if (max_found) {
273 <      if (my_max_found)
576 >      if (my_max_found) {
577          max_vals.val = max_val;
578 <      else
578 >      } else {
579          max_vals.val = -HONKING_LARGE_VALUE;
580 <      
580 >      }
581        max_vals.rank = worldRank;    
582        
583        // Who had the maximum?
584        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
585                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
586        max_val = max_vals.val;
284    }
587   #endif
588 <
589 <    if (max_found && min_found) {
590 <      if (min_val< max_val) {
289 <
588 >      
589 >      if (min_val < max_val) {
590 >        
591   #ifdef IS_MPI      
592          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
593            // I have both maximum and minimum, so proceed like a single
594            // processor version:
595   #endif
596 <          // objects to be swapped: velocity & angular velocity
596 >
597            Vector3d min_vel = min_sd->getVel();
598            Vector3d max_vel = max_sd->getVel();
599            RealType temp_vel;
600            
601 <          switch(rnemdType_) {
602 <          case rnemdKinetic :
601 >          switch(rnemdFluxType_) {
602 >          case rnemdKE :
603              min_sd->setVel(max_vel);
604              max_sd->setVel(min_vel);
605 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
605 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
606                Vector3d min_angMom = min_sd->getJ();
607                Vector3d max_angMom = max_sd->getJ();
608                min_sd->setJ(max_angMom);
609                max_sd->setJ(min_angMom);
610 <            }
610 >            }//angular momenta exchange enabled
611 >            //assumes same rigid body identity
612              break;
613            case rnemdPx :
614              temp_vel = min_vel.x();
# Line 329 | Line 631 | namespace oopse {
631              min_sd->setVel(min_vel);
632              max_sd->setVel(max_vel);
633              break;
332          case rnemdUnknown :
634            default :
635              break;
636            }
637 +
638   #ifdef IS_MPI
639            // the rest of the cases only apply in parallel simulations:
640          } else if (max_vals.rank == worldRank) {
# Line 348 | Line 650 | namespace oopse {
650                                     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
651                                     min_vals.rank, 0, status);
652            
653 <          switch(rnemdType_) {
654 <          case rnemdKinetic :
653 >          switch(rnemdFluxType_) {
654 >          case rnemdKE :
655              max_sd->setVel(min_vel);
656 <            
656 >            //angular momenta exchange enabled
657              if (max_sd->isDirectional()) {
658                Vector3d min_angMom;
659                Vector3d max_angMom = max_sd->getJ();
660 <
660 >              
661                // point-to-point swap of the angular momentum vector
662                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
663                                         MPI::REALTYPE, min_vals.rank, 1,
664                                         min_angMom.getArrayPointer(), 3,
665                                         MPI::REALTYPE, min_vals.rank, 1,
666                                         status);
667 <
667 >              
668                max_sd->setJ(min_angMom);
669 <            }
669 >            }
670              break;
671            case rnemdPx :
672              max_vel.x() = min_vel.x();
# Line 378 | Line 680 | namespace oopse {
680              max_vel.z() = min_vel.z();
681              max_sd->setVel(max_vel);
682              break;
381          case rnemdUnknown :
683            default :
684              break;
685            }
# Line 395 | Line 696 | namespace oopse {
696                                     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
697                                     max_vals.rank, 0, status);
698            
699 <          switch(rnemdType_) {
700 <          case rnemdKinetic :
699 >          switch(rnemdFluxType_) {
700 >          case rnemdKE :
701              min_sd->setVel(max_vel);
702 <            
702 >            //angular momenta exchange enabled
703              if (min_sd->isDirectional()) {
704                Vector3d min_angMom = min_sd->getJ();
705                Vector3d max_angMom;
706 <
706 >              
707                // point-to-point swap of the angular momentum vector
708                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
709                                         MPI::REALTYPE, max_vals.rank, 1,
710                                         max_angMom.getArrayPointer(), 3,
711                                         MPI::REALTYPE, max_vals.rank, 1,
712                                         status);
713 <
713 >              
714                min_sd->setJ(max_angMom);
715              }
716              break;
# Line 425 | Line 726 | namespace oopse {
726              min_vel.z() = max_vel.z();
727              min_sd->setVel(min_vel);
728              break;
428          case rnemdUnknown :
729            default :
730              break;
731            }
732          }
733   #endif
734 <        exchangeSum_ += max_val - min_val;
735 <      } else {
736 <        std::cerr << "exchange NOT performed.\nmin_val > max_val.\n";
734 >        
735 >        switch(rnemdFluxType_) {
736 >        case rnemdKE:
737 >          cerr << "KE\n";
738 >          kineticExchange_ += max_val - min_val;
739 >          break;
740 >        case rnemdPx:
741 >          momentumExchange_.x() += max_val - min_val;
742 >          break;
743 >        case rnemdPy:
744 >          momentumExchange_.y() += max_val - min_val;
745 >          break;
746 >        case rnemdPz:
747 >          momentumExchange_.z() += max_val - min_val;
748 >          break;
749 >        default:
750 >          cerr << "default\n";
751 >          break;
752 >        }
753 >      } else {        
754 >        sprintf(painCave.errMsg,
755 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
756 >        painCave.isFatal = 0;
757 >        painCave.severity = OPENMD_INFO;
758 >        simError();        
759 >        failTrialCount_++;
760        }
761      } else {
762 <      std::cerr << "exchange NOT performed.\none of the two slabs empty.\n";
763 <    }
764 <    
762 >      sprintf(painCave.errMsg,
763 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
764 >              "\twas not present in at least one of the two slabs.\n");
765 >      painCave.isFatal = 0;
766 >      painCave.severity = OPENMD_INFO;
767 >      simError();        
768 >      failTrialCount_++;
769 >    }    
770    }
771    
772 <  void RNEMD::getStatus() {
773 <
772 >  void RNEMD::doNIVS() {
773 >    if (!doRNEMD_) return;
774      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
775      Mat3x3d hmat = currentSnap_->getHmat();
448    Stats& stat = currentSnap_->statData;
449    RealType time = currentSnap_->getTime();
776  
451    stat[Stats::RNEMD_SWAP_TOTAL] = exchangeSum_;
452
777      seleMan_.setSelectionSet(evaluator_.evaluate());
778  
779      int selei;
780      StuntDouble* sd;
781      int idx;
782  
783 <    std::vector<RealType> valueHist(nBins_, 0.0); // keeps track of what's
460 <                                                  // being averaged
461 <    std::vector<int> valueCount(nBins_, 0);       // keeps track of the
462 <                                                  // number of degrees of
463 <                                                  // freedom being averaged
783 >    vector<StuntDouble*> hotBin, coldBin;
784  
785 +    RealType Phx = 0.0;
786 +    RealType Phy = 0.0;
787 +    RealType Phz = 0.0;
788 +    RealType Khx = 0.0;
789 +    RealType Khy = 0.0;
790 +    RealType Khz = 0.0;
791 +    RealType Khw = 0.0;
792 +    RealType Pcx = 0.0;
793 +    RealType Pcy = 0.0;
794 +    RealType Pcz = 0.0;
795 +    RealType Kcx = 0.0;
796 +    RealType Kcy = 0.0;
797 +    RealType Kcz = 0.0;
798 +    RealType Kcw = 0.0;
799 +
800      for (sd = seleMan_.beginSelected(selei); sd != NULL;
801           sd = seleMan_.nextSelected(selei)) {
802 <      
802 >
803        idx = sd->getLocalIndex();
804 <      
804 >
805        Vector3d pos = sd->getPos();
806  
807        // wrap the stuntdouble's position back into the box:
808 <      
808 >
809        if (usePeriodicBoundaryConditions_)
810          currentSnap_->wrapVector(pos);
811 <      
811 >
812        // which bin is this stuntdouble in?
813 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
814 <      
480 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;    
481 <      
482 <      RealType mass = sd->getMass();
483 <      Vector3d vel = sd->getVel();
484 <      RealType value;
813 >      bool inA = inSlabA(pos);
814 >      bool inB = inSlabB(pos);
815  
816 <      switch(rnemdType_) {
817 <      case rnemdKinetic :
818 <        
819 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
820 <                        vel[2]*vel[2]);
821 <        
822 <        valueCount[binNo] += 3;
823 <        if (sd->isDirectional()) {
824 <          Vector3d angMom = sd->getJ();
825 <          Mat3x3d I = sd->getI();
826 <          
827 <          if (sd->isLinear()) {
828 <            int i = sd->linearAxis();
829 <            int j = (i + 1) % 3;
830 <            int k = (i + 2) % 3;
831 <            value += angMom[j] * angMom[j] / I(j, j) +
832 <              angMom[k] * angMom[k] / I(k, k);
816 >      if (inA || inB) {
817 >              
818 >        RealType mass = sd->getMass();
819 >        Vector3d vel = sd->getVel();
820 >      
821 >        if (inA) {
822 >          hotBin.push_back(sd);
823 >          Phx += mass * vel.x();
824 >          Phy += mass * vel.y();
825 >          Phz += mass * vel.z();
826 >          Khx += mass * vel.x() * vel.x();
827 >          Khy += mass * vel.y() * vel.y();
828 >          Khz += mass * vel.z() * vel.z();
829 >          if (sd->isDirectional()) {
830 >            Vector3d angMom = sd->getJ();
831 >            Mat3x3d I = sd->getI();
832 >            if (sd->isLinear()) {
833 >              int i = sd->linearAxis();
834 >              int j = (i + 1) % 3;
835 >              int k = (i + 2) % 3;
836 >              Khw += angMom[j] * angMom[j] / I(j, j) +
837 >                angMom[k] * angMom[k] / I(k, k);
838 >            } else {
839 >              Khw += angMom[0]*angMom[0]/I(0, 0)
840 >                + angMom[1]*angMom[1]/I(1, 1)
841 >                + angMom[2]*angMom[2]/I(2, 2);
842 >            }
843 >          }
844 >        } else {
845 >          coldBin.push_back(sd);
846 >          Pcx += mass * vel.x();
847 >          Pcy += mass * vel.y();
848 >          Pcz += mass * vel.z();
849 >          Kcx += mass * vel.x() * vel.x();
850 >          Kcy += mass * vel.y() * vel.y();
851 >          Kcz += mass * vel.z() * vel.z();
852 >          if (sd->isDirectional()) {
853 >            Vector3d angMom = sd->getJ();
854 >            Mat3x3d I = sd->getI();
855 >            if (sd->isLinear()) {
856 >              int i = sd->linearAxis();
857 >              int j = (i + 1) % 3;
858 >              int k = (i + 2) % 3;
859 >              Kcw += angMom[j] * angMom[j] / I(j, j) +
860 >                angMom[k] * angMom[k] / I(k, k);
861 >            } else {
862 >              Kcw += angMom[0]*angMom[0]/I(0, 0)
863 >                + angMom[1]*angMom[1]/I(1, 1)
864 >                + angMom[2]*angMom[2]/I(2, 2);
865 >            }
866 >          }
867 >        }
868 >      }
869 >    }
870 >    
871 >    Khx *= 0.5;
872 >    Khy *= 0.5;
873 >    Khz *= 0.5;
874 >    Khw *= 0.5;
875 >    Kcx *= 0.5;
876 >    Kcy *= 0.5;
877 >    Kcz *= 0.5;
878 >    Kcw *= 0.5;
879  
880 <            valueCount[binNo] +=2;
880 > #ifdef IS_MPI
881 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
882 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
883 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
884 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
885 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
886 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
887  
888 <          } else {
889 <            value += angMom[0]*angMom[0]/I(0, 0)
890 <              + angMom[1]*angMom[1]/I(1, 1)
891 <              + angMom[2]*angMom[2]/I(2, 2);
892 <            valueCount[binNo] +=3;
888 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
889 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
890 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
891 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
892 >
893 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
894 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
895 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
896 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
897 > #endif
898 >
899 >    //solve coldBin coeff's first
900 >    RealType px = Pcx / Phx;
901 >    RealType py = Pcy / Phy;
902 >    RealType pz = Pcz / Phz;
903 >    RealType c, x, y, z;
904 >    bool successfulScale = false;
905 >    if ((rnemdFluxType_ == rnemdFullKE) ||
906 >        (rnemdFluxType_ == rnemdRotKE)) {
907 >      //may need sanity check Khw & Kcw > 0
908 >
909 >      if (rnemdFluxType_ == rnemdFullKE) {
910 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
911 >      } else {
912 >        c = 1.0 - kineticTarget_ / Kcw;
913 >      }
914 >
915 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
916 >        c = sqrt(c);
917 >        //std::cerr << "cold slab scaling coefficient: " << c << endl;
918 >        //now convert to hotBin coefficient
919 >        RealType w = 0.0;
920 >        if (rnemdFluxType_ ==  rnemdFullKE) {
921 >          x = 1.0 + px * (1.0 - c);
922 >          y = 1.0 + py * (1.0 - c);
923 >          z = 1.0 + pz * (1.0 - c);
924 >          /* more complicated way
925 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
926 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
927 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
928 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
929 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
930 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
931 >          */
932 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
933 >              (fabs(z - 1.0) < 0.1)) {
934 >            w = 1.0 + (kineticTarget_
935 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
936 >                       + Khz * (1.0 - z * z)) / Khw;
937 >          }//no need to calculate w if x, y or z is out of range
938 >        } else {
939 >          w = 1.0 + kineticTarget_ / Khw;
940 >        }
941 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
942 >          //if w is in the right range, so should be x, y, z.
943 >          vector<StuntDouble*>::iterator sdi;
944 >          Vector3d vel;
945 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
946 >            if (rnemdFluxType_ == rnemdFullKE) {
947 >              vel = (*sdi)->getVel() * c;
948 >              (*sdi)->setVel(vel);
949 >            }
950 >            if ((*sdi)->isDirectional()) {
951 >              Vector3d angMom = (*sdi)->getJ() * c;
952 >              (*sdi)->setJ(angMom);
953 >            }
954            }
955 +          w = sqrt(w);
956 +          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
957 +          //           << "\twh= " << w << endl;
958 +          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
959 +            if (rnemdFluxType_ == rnemdFullKE) {
960 +              vel = (*sdi)->getVel();
961 +              vel.x() *= x;
962 +              vel.y() *= y;
963 +              vel.z() *= z;
964 +              (*sdi)->setVel(vel);
965 +            }
966 +            if ((*sdi)->isDirectional()) {
967 +              Vector3d angMom = (*sdi)->getJ() * w;
968 +              (*sdi)->setJ(angMom);
969 +            }
970 +          }
971 +          successfulScale = true;
972 +          kineticExchange_ += kineticTarget_;
973          }
974 <        value = value / OOPSEConstant::energyConvert / OOPSEConstant::kb;
975 <
976 <        break;
977 <      case rnemdPx :
978 <        value = mass * vel[0];
979 <        valueCount[binNo]++;
974 >      }
975 >    } else {
976 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
977 >      switch(rnemdFluxType_) {
978 >      case rnemdKE :
979 >        /* used hotBin coeff's & only scale x & y dimensions
980 >           RealType px = Phx / Pcx;
981 >           RealType py = Phy / Pcy;
982 >           a110 = Khy;
983 >           c0 = - Khx - Khy - kineticTarget_;
984 >           a000 = Khx;
985 >           a111 = Kcy * py * py;
986 >           b11 = -2.0 * Kcy * py * (1.0 + py);
987 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
988 >           b01 = -2.0 * Kcx * px * (1.0 + px);
989 >           a001 = Kcx * px * px;
990 >        */
991 >        //scale all three dimensions, let c_x = c_y
992 >        a000 = Kcx + Kcy;
993 >        a110 = Kcz;
994 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
995 >        a001 = Khx * px * px + Khy * py * py;
996 >        a111 = Khz * pz * pz;
997 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
998 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
999 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1000 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1001          break;
1002 +      case rnemdPx :
1003 +        c = 1 - momentumTarget_.x() / Pcx;
1004 +        a000 = Kcy;
1005 +        a110 = Kcz;
1006 +        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1007 +        a001 = py * py * Khy;
1008 +        a111 = pz * pz * Khz;
1009 +        b01 = -2.0 * Khy * py * (1.0 + py);
1010 +        b11 = -2.0 * Khz * pz * (1.0 + pz);
1011 +        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1012 +          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1013 +        break;
1014        case rnemdPy :
1015 <        value = mass * vel[1];
1016 <        valueCount[binNo]++;
1015 >        c = 1 - momentumTarget_.y() / Pcy;
1016 >        a000 = Kcx;
1017 >        a110 = Kcz;
1018 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1019 >        a001 = px * px * Khx;
1020 >        a111 = pz * pz * Khz;
1021 >        b01 = -2.0 * Khx * px * (1.0 + px);
1022 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1023 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1024 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1025          break;
1026 <      case rnemdPz :
1027 <        value = mass * vel[2];
1028 <        valueCount[binNo]++;
1026 >      case rnemdPz ://we don't really do this, do we?
1027 >        c = 1 - momentumTarget_.z() / Pcz;
1028 >        a000 = Kcx;
1029 >        a110 = Kcy;
1030 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1031 >        a001 = px * px * Khx;
1032 >        a111 = py * py * Khy;
1033 >        b01 = -2.0 * Khx * px * (1.0 + px);
1034 >        b11 = -2.0 * Khy * py * (1.0 + py);
1035 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1036 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1037          break;
528      case rnemdUnknown :
1038        default :
1039          break;
1040        }
1041 <      valueHist[binNo] += value;
1041 >      
1042 >      RealType v1 = a000 * a111 - a001 * a110;
1043 >      RealType v2 = a000 * b01;
1044 >      RealType v3 = a000 * b11;
1045 >      RealType v4 = a000 * c1 - a001 * c0;
1046 >      RealType v8 = a110 * b01;
1047 >      RealType v10 = - b01 * c0;
1048 >      
1049 >      RealType u0 = v2 * v10 - v4 * v4;
1050 >      RealType u1 = -2.0 * v3 * v4;
1051 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1052 >      RealType u3 = -2.0 * v1 * v3;
1053 >      RealType u4 = - v1 * v1;
1054 >      //rescale coefficients
1055 >      RealType maxAbs = fabs(u0);
1056 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1057 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1058 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1059 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1060 >      u0 /= maxAbs;
1061 >      u1 /= maxAbs;
1062 >      u2 /= maxAbs;
1063 >      u3 /= maxAbs;
1064 >      u4 /= maxAbs;
1065 >      //max_element(start, end) is also available.
1066 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1067 >      poly.setCoefficient(4, u4);
1068 >      poly.setCoefficient(3, u3);
1069 >      poly.setCoefficient(2, u2);
1070 >      poly.setCoefficient(1, u1);
1071 >      poly.setCoefficient(0, u0);
1072 >      vector<RealType> realRoots = poly.FindRealRoots();
1073 >      
1074 >      vector<RealType>::iterator ri;
1075 >      RealType r1, r2, alpha0;
1076 >      vector<pair<RealType,RealType> > rps;
1077 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1078 >        r2 = *ri;
1079 >        //check if FindRealRoots() give the right answer
1080 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1081 >          sprintf(painCave.errMsg,
1082 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1083 >          painCave.isFatal = 0;
1084 >          simError();
1085 >          failRootCount_++;
1086 >        }
1087 >        //might not be useful w/o rescaling coefficients
1088 >        alpha0 = -c0 - a110 * r2 * r2;
1089 >        if (alpha0 >= 0.0) {
1090 >          r1 = sqrt(alpha0 / a000);
1091 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1092 >              < 1e-6)
1093 >            { rps.push_back(make_pair(r1, r2)); }
1094 >          if (r1 > 1e-6) { //r1 non-negative
1095 >            r1 = -r1;
1096 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1097 >                < 1e-6)
1098 >              { rps.push_back(make_pair(r1, r2)); }
1099 >          }
1100 >        }
1101 >      }
1102 >      // Consider combining together the solving pair part w/ the searching
1103 >      // best solution part so that we don't need the pairs vector
1104 >      if (!rps.empty()) {
1105 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1106 >        RealType diff;
1107 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1108 >        vector<pair<RealType,RealType> >::iterator rpi;
1109 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1110 >          r1 = (*rpi).first;
1111 >          r2 = (*rpi).second;
1112 >          switch(rnemdFluxType_) {
1113 >          case rnemdKE :
1114 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1115 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1116 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1117 >            break;
1118 >          case rnemdPx :
1119 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1120 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1121 >            break;
1122 >          case rnemdPy :
1123 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1124 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1125 >            break;
1126 >          case rnemdPz :
1127 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1128 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1129 >          default :
1130 >            break;
1131 >          }
1132 >          if (diff < smallestDiff) {
1133 >            smallestDiff = diff;
1134 >            bestPair = *rpi;
1135 >          }
1136 >        }
1137 > #ifdef IS_MPI
1138 >        if (worldRank == 0) {
1139 > #endif
1140 >          // sprintf(painCave.errMsg,
1141 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1142 >          //         bestPair.first, bestPair.second);
1143 >          // painCave.isFatal = 0;
1144 >          // painCave.severity = OPENMD_INFO;
1145 >          // simError();
1146 > #ifdef IS_MPI
1147 >        }
1148 > #endif
1149 >        
1150 >        switch(rnemdFluxType_) {
1151 >        case rnemdKE :
1152 >          x = bestPair.first;
1153 >          y = bestPair.first;
1154 >          z = bestPair.second;
1155 >          break;
1156 >        case rnemdPx :
1157 >          x = c;
1158 >          y = bestPair.first;
1159 >          z = bestPair.second;
1160 >          break;
1161 >        case rnemdPy :
1162 >          x = bestPair.first;
1163 >          y = c;
1164 >          z = bestPair.second;
1165 >          break;
1166 >        case rnemdPz :
1167 >          x = bestPair.first;
1168 >          y = bestPair.second;
1169 >          z = c;
1170 >          break;          
1171 >        default :
1172 >          break;
1173 >        }
1174 >        vector<StuntDouble*>::iterator sdi;
1175 >        Vector3d vel;
1176 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1177 >          vel = (*sdi)->getVel();
1178 >          vel.x() *= x;
1179 >          vel.y() *= y;
1180 >          vel.z() *= z;
1181 >          (*sdi)->setVel(vel);
1182 >        }
1183 >        //convert to hotBin coefficient
1184 >        x = 1.0 + px * (1.0 - x);
1185 >        y = 1.0 + py * (1.0 - y);
1186 >        z = 1.0 + pz * (1.0 - z);
1187 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1188 >          vel = (*sdi)->getVel();
1189 >          vel.x() *= x;
1190 >          vel.y() *= y;
1191 >          vel.z() *= z;
1192 >          (*sdi)->setVel(vel);
1193 >        }
1194 >        successfulScale = true;
1195 >        switch(rnemdFluxType_) {
1196 >        case rnemdKE :
1197 >          kineticExchange_ += kineticTarget_;
1198 >          break;
1199 >        case rnemdPx :
1200 >        case rnemdPy :
1201 >        case rnemdPz :
1202 >          momentumExchange_ += momentumTarget_;
1203 >          break;          
1204 >        default :
1205 >          break;
1206 >        }      
1207 >      }
1208      }
1209 +    if (successfulScale != true) {
1210 +      sprintf(painCave.errMsg,
1211 +              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1212 +              "\tthe constraint equations may not exist or there may be\n"
1213 +              "\tno selected objects in one or both slabs.\n");
1214 +      painCave.isFatal = 0;
1215 +      painCave.severity = OPENMD_INFO;
1216 +      simError();        
1217 +      failTrialCount_++;
1218 +    }
1219 +  }
1220  
1221 < #ifdef IS_MPI
1221 >  void RNEMD::doVSS() {
1222 >    if (!doRNEMD_) return;
1223 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1224 >    RealType time = currentSnap_->getTime();    
1225 >    Mat3x3d hmat = currentSnap_->getHmat();
1226  
1227 <    // all processors have the same number of bins, and STL vectors pack their
538 <    // arrays, so in theory, this should be safe:
1227 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1228  
1229 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist[0],
1230 <                              nBins_, MPI::REALTYPE, MPI::SUM);
1231 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount[0],
543 <                              nBins_, MPI::INT, MPI::SUM);
1229 >    int selei;
1230 >    StuntDouble* sd;
1231 >    int idx;
1232  
1233 +    vector<StuntDouble*> hotBin, coldBin;
1234 +
1235 +    Vector3d Ph(V3Zero);
1236 +    RealType Mh = 0.0;
1237 +    RealType Kh = 0.0;
1238 +    Vector3d Pc(V3Zero);
1239 +    RealType Mc = 0.0;
1240 +    RealType Kc = 0.0;
1241 +    
1242 +
1243 +    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1244 +         sd = seleMan_.nextSelected(selei)) {
1245 +
1246 +      idx = sd->getLocalIndex();
1247 +
1248 +      Vector3d pos = sd->getPos();
1249 +
1250 +      // wrap the stuntdouble's position back into the box:
1251 +
1252 +      if (usePeriodicBoundaryConditions_)
1253 +        currentSnap_->wrapVector(pos);
1254 +
1255 +      // which bin is this stuntdouble in?
1256 +      bool inA = inSlabA(pos);
1257 +      bool inB = inSlabB(pos);
1258 +      
1259 +      if (inA || inB) {
1260 +        
1261 +        RealType mass = sd->getMass();
1262 +        Vector3d vel = sd->getVel();
1263 +      
1264 +        if (inA) {
1265 +          hotBin.push_back(sd);
1266 +          //std::cerr << "before, velocity = " << vel << endl;
1267 +          Ph += mass * vel;
1268 +          //std::cerr << "after, velocity = " << vel << endl;
1269 +          Mh += mass;
1270 +          Kh += mass * vel.lengthSquare();
1271 +          if (rnemdFluxType_ == rnemdFullKE) {
1272 +            if (sd->isDirectional()) {
1273 +              Vector3d angMom = sd->getJ();
1274 +              Mat3x3d I = sd->getI();
1275 +              if (sd->isLinear()) {
1276 +                int i = sd->linearAxis();
1277 +                int j = (i + 1) % 3;
1278 +                int k = (i + 2) % 3;
1279 +                Kh += angMom[j] * angMom[j] / I(j, j) +
1280 +                  angMom[k] * angMom[k] / I(k, k);
1281 +              } else {
1282 +                Kh += angMom[0] * angMom[0] / I(0, 0) +
1283 +                  angMom[1] * angMom[1] / I(1, 1) +
1284 +                  angMom[2] * angMom[2] / I(2, 2);
1285 +              }
1286 +            }
1287 +          }
1288 +        } else { //midBin_
1289 +          coldBin.push_back(sd);
1290 +          Pc += mass * vel;
1291 +          Mc += mass;
1292 +          Kc += mass * vel.lengthSquare();
1293 +          if (rnemdFluxType_ == rnemdFullKE) {
1294 +            if (sd->isDirectional()) {
1295 +              Vector3d angMom = sd->getJ();
1296 +              Mat3x3d I = sd->getI();
1297 +              if (sd->isLinear()) {
1298 +                int i = sd->linearAxis();
1299 +                int j = (i + 1) % 3;
1300 +                int k = (i + 2) % 3;
1301 +                Kc += angMom[j] * angMom[j] / I(j, j) +
1302 +                  angMom[k] * angMom[k] / I(k, k);
1303 +              } else {
1304 +                Kc += angMom[0] * angMom[0] / I(0, 0) +
1305 +                  angMom[1] * angMom[1] / I(1, 1) +
1306 +                  angMom[2] * angMom[2] / I(2, 2);
1307 +              }
1308 +            }
1309 +          }
1310 +        }
1311 +      }
1312 +    }
1313 +    
1314 +    Kh *= 0.5;
1315 +    Kc *= 0.5;
1316 +
1317 +    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1318 +    //        << "\tKc= " << Kc << endl;
1319 +    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1320 +    
1321 + #ifdef IS_MPI
1322 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1323 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1324 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1325 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1326 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1327 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1328 + #endif
1329 +
1330 +    bool successfulExchange = false;
1331 +    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1332 +      Vector3d vc = Pc / Mc;
1333 +      Vector3d ac = -momentumTarget_ / Mc + vc;
1334 +      Vector3d acrec = -momentumTarget_ / Mc;
1335 +      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1336 +      if (cNumerator > 0.0) {
1337 +        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1338 +        if (cDenominator > 0.0) {
1339 +          RealType c = sqrt(cNumerator / cDenominator);
1340 +          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1341 +            Vector3d vh = Ph / Mh;
1342 +            Vector3d ah = momentumTarget_ / Mh + vh;
1343 +            Vector3d ahrec = momentumTarget_ / Mh;
1344 +            RealType hNumerator = Kh + kineticTarget_
1345 +              - 0.5 * Mh * ah.lengthSquare();
1346 +            if (hNumerator > 0.0) {
1347 +              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1348 +              if (hDenominator > 0.0) {
1349 +                RealType h = sqrt(hNumerator / hDenominator);
1350 +                if ((h > 0.9) && (h < 1.1)) {
1351 +                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1352 +                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1353 +                  vector<StuntDouble*>::iterator sdi;
1354 +                  Vector3d vel;
1355 +                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1356 +                    //vel = (*sdi)->getVel();
1357 +                    vel = ((*sdi)->getVel() - vc) * c + ac;
1358 +                    (*sdi)->setVel(vel);
1359 +                    if (rnemdFluxType_ == rnemdFullKE) {
1360 +                      if ((*sdi)->isDirectional()) {
1361 +                        Vector3d angMom = (*sdi)->getJ() * c;
1362 +                        (*sdi)->setJ(angMom);
1363 +                      }
1364 +                    }
1365 +                  }
1366 +                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1367 +                    //vel = (*sdi)->getVel();
1368 +                    vel = ((*sdi)->getVel() - vh) * h + ah;
1369 +                    (*sdi)->setVel(vel);
1370 +                    if (rnemdFluxType_ == rnemdFullKE) {
1371 +                      if ((*sdi)->isDirectional()) {
1372 +                        Vector3d angMom = (*sdi)->getJ() * h;
1373 +                        (*sdi)->setJ(angMom);
1374 +                      }
1375 +                    }
1376 +                  }
1377 +                  successfulExchange = true;
1378 +                  kineticExchange_ += kineticTarget_;
1379 +                  momentumExchange_ += momentumTarget_;
1380 +                }
1381 +              }
1382 +            }
1383 +          }
1384 +        }
1385 +      }
1386 +    }
1387 +    if (successfulExchange != true) {
1388 +      sprintf(painCave.errMsg,
1389 +              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1390 +              "\tthe constraint equations may not exist or there may be\n"
1391 +              "\tno selected objects in one or both slabs.\n");
1392 +      painCave.isFatal = 0;
1393 +      painCave.severity = OPENMD_INFO;
1394 +      simError();        
1395 +      failTrialCount_++;
1396 +    }
1397 +  }
1398 +
1399 +  void RNEMD::doRNEMD() {
1400 +    if (!doRNEMD_) return;
1401 +    trialCount_++;
1402 +    switch(rnemdMethod_) {
1403 +    case rnemdSwap:
1404 +      doSwap();
1405 +      break;
1406 +    case rnemdNIVS:
1407 +      doNIVS();
1408 +      break;
1409 +    case rnemdVSS:
1410 +      doVSS();
1411 +      break;
1412 +    case rnemdUnkownMethod:
1413 +    default :
1414 +      break;
1415 +    }
1416 +  }
1417 +
1418 +  void RNEMD::collectData() {
1419 +    if (!doRNEMD_) return;
1420 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1421 +    Mat3x3d hmat = currentSnap_->getHmat();
1422 +
1423 +    areaAccumulator_->add(currentSnap_->getXYarea());
1424 +
1425 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1426 +
1427 +    int selei;
1428 +    StuntDouble* sd;
1429 +    int idx;
1430 +
1431 +    vector<RealType> binMass(nBins_, 0.0);
1432 +    vector<RealType> binPx(nBins_, 0.0);
1433 +    vector<RealType> binPy(nBins_, 0.0);
1434 +    vector<RealType> binPz(nBins_, 0.0);
1435 +    vector<RealType> binKE(nBins_, 0.0);
1436 +    vector<int> binDOF(nBins_, 0);
1437 +    vector<int> binCount(nBins_, 0);
1438 +
1439 +    // alternative approach, track all molecules instead of only those
1440 +    // selected for scaling/swapping:
1441 +    /*
1442 +    SimInfo::MoleculeIterator miter;
1443 +    vector<StuntDouble*>::iterator iiter;
1444 +    Molecule* mol;
1445 +    StuntDouble* sd;
1446 +    for (mol = info_->beginMolecule(miter); mol != NULL;
1447 +      mol = info_->nextMolecule(miter))
1448 +      sd is essentially sd
1449 +        for (sd = mol->beginIntegrableObject(iiter);
1450 +             sd != NULL;
1451 +             sd = mol->nextIntegrableObject(iiter))
1452 +    */
1453 +    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1454 +         sd = seleMan_.nextSelected(selei)) {
1455 +      
1456 +      idx = sd->getLocalIndex();
1457 +      
1458 +      Vector3d pos = sd->getPos();
1459 +
1460 +      // wrap the stuntdouble's position back into the box:
1461 +      
1462 +      if (usePeriodicBoundaryConditions_)
1463 +        currentSnap_->wrapVector(pos);
1464 +
1465 +
1466 +      // which bin is this stuntdouble in?
1467 +      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1468 +      // Shift molecules by half a box to have bins start at 0
1469 +      // The modulo operator is used to wrap the case when we are
1470 +      // beyond the end of the bins back to the beginning.
1471 +      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1472 +    
1473 +      RealType mass = sd->getMass();
1474 +      Vector3d vel = sd->getVel();
1475 +
1476 +      binCount[binNo]++;
1477 +      binMass[binNo] += mass;
1478 +      binPx[binNo] += mass*vel.x();
1479 +      binPy[binNo] += mass*vel.y();
1480 +      binPz[binNo] += mass*vel.z();
1481 +      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1482 +      binDOF[binNo] += 3;
1483 +
1484 +      if (sd->isDirectional()) {
1485 +        Vector3d angMom = sd->getJ();
1486 +        Mat3x3d I = sd->getI();
1487 +        if (sd->isLinear()) {
1488 +          int i = sd->linearAxis();
1489 +          int j = (i + 1) % 3;
1490 +          int k = (i + 2) % 3;
1491 +          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1492 +                                 angMom[k] * angMom[k] / I(k, k));
1493 +          binDOF[binNo] += 2;
1494 +        } else {
1495 +          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1496 +                                 angMom[1] * angMom[1] / I(1, 1) +
1497 +                                 angMom[2] * angMom[2] / I(2, 2));
1498 +          binDOF[binNo] += 3;
1499 +        }
1500 +      }
1501 +    }
1502 +    
1503 +
1504 + #ifdef IS_MPI
1505 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1506 +                              nBins_, MPI::INT, MPI::SUM);
1507 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1508 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1509 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1510 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1511 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1512 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1513 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1514 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1515 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1516 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1517 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1518 +                              nBins_, MPI::INT, MPI::SUM);
1519 + #endif
1520 +
1521 +    Vector3d vel;
1522 +    RealType den;
1523 +    RealType temp;
1524 +    RealType z;
1525 +    for (int i = 0; i < nBins_; i++) {
1526 +      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1527 +      vel.x() = binPx[i] / binMass[i];
1528 +      vel.y() = binPy[i] / binMass[i];
1529 +      vel.z() = binPz[i] / binMass[i];
1530 +      den = binCount[i] * nBins_ / currentSnap_->getVolume();
1531 +      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1532 +                               PhysicalConstants::energyConvert);
1533 +
1534 +      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1535 +        if(outputMask_[j]) {
1536 +          switch(j) {
1537 +          case Z:
1538 +            (data_[j].accumulator[i])->add(z);
1539 +            break;
1540 +          case TEMPERATURE:
1541 +            data_[j].accumulator[i]->add(temp);
1542 +            break;
1543 +          case VELOCITY:
1544 +            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1545 +            break;
1546 +          case DENSITY:
1547 +            data_[j].accumulator[i]->add(den);
1548 +            break;
1549 +          }
1550 +        }
1551 +      }
1552 +    }
1553 +  }
1554 +
1555 +  void RNEMD::getStarted() {
1556 +    if (!doRNEMD_) return;
1557 +    collectData();
1558 +    writeOutputFile();
1559 +  }
1560 +
1561 +  void RNEMD::parseOutputFileFormat(const std::string& format) {
1562 +    if (!doRNEMD_) return;
1563 +    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1564 +    
1565 +    while(tokenizer.hasMoreTokens()) {
1566 +      std::string token(tokenizer.nextToken());
1567 +      toUpper(token);
1568 +      OutputMapType::iterator i = outputMap_.find(token);
1569 +      if (i != outputMap_.end()) {
1570 +        outputMask_.set(i->second);
1571 +      } else {
1572 +        sprintf( painCave.errMsg,
1573 +                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1574 +                 "\toutputFileFormat keyword.\n", token.c_str() );
1575 +        painCave.isFatal = 0;
1576 +        painCave.severity = OPENMD_ERROR;
1577 +        simError();            
1578 +      }
1579 +    }  
1580 +  }
1581 +  
1582 +  void RNEMD::writeOutputFile() {
1583 +    if (!doRNEMD_) return;
1584 +    
1585 + #ifdef IS_MPI
1586      // If we're the root node, should we print out the results
1587      int worldRank = MPI::COMM_WORLD.Get_rank();
1588      if (worldRank == 0) {
1589   #endif
1590 <      
550 <      std::cout << time;
551 <      for (int j = 0; j < nBins_; j++)
552 <        std::cout << "\t" << valueHist[j] / (RealType)valueCount[j];
553 <      std::cout << "\n";
1590 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1591        
1592 +      if( !rnemdFile_ ){        
1593 +        sprintf( painCave.errMsg,
1594 +                 "Could not open \"%s\" for RNEMD output.\n",
1595 +                 rnemdFileName_.c_str());
1596 +        painCave.isFatal = 1;
1597 +        simError();
1598 +      }
1599 +
1600 +      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1601 +
1602 +      RealType time = currentSnap_->getTime();
1603 +      RealType avgArea;
1604 +      areaAccumulator_->getAverage(avgArea);
1605 +      RealType Jz = kineticExchange_ / (2.0 * time * avgArea);
1606 +      Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);      
1607 +
1608 +      rnemdFile_ << "#######################################################\n";
1609 +      rnemdFile_ << "# RNEMD {\n";
1610 +
1611 +      map<string, RNEMDMethod>::iterator mi;
1612 +      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1613 +        if ( (*mi).second == rnemdMethod_)
1614 +          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
1615 +      }
1616 +      map<string, RNEMDFluxType>::iterator fi;
1617 +      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1618 +        if ( (*fi).second == rnemdFluxType_)
1619 +          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
1620 +      }
1621 +      
1622 +      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
1623 +
1624 +      rnemdFile_ << "#    objectSelection = \""
1625 +                 << rnemdObjectSelection_ << "\";\n";
1626 +      rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n";
1627 +      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n";
1628 +      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n";
1629 +      rnemdFile_ << "# }\n";
1630 +      rnemdFile_ << "#######################################################\n";
1631 +      rnemdFile_ << "# RNEMD report:\n";      
1632 +      rnemdFile_ << "#     running time = " << time << " fs\n";
1633 +      rnemdFile_ << "#     target flux:\n";
1634 +      rnemdFile_ << "#         kinetic = " << kineticFlux_ << "\n";
1635 +      rnemdFile_ << "#         momentum = " << momentumFluxVector_ << "\n";
1636 +      rnemdFile_ << "#     target one-time exchanges:\n";
1637 +      rnemdFile_ << "#         kinetic = " << kineticTarget_ << "\n";
1638 +      rnemdFile_ << "#         momentum = " << momentumTarget_ << "\n";
1639 +      rnemdFile_ << "#     actual exchange totals:\n";
1640 +      rnemdFile_ << "#         kinetic = " << kineticExchange_ << "\n";
1641 +      rnemdFile_ << "#         momentum = " << momentumExchange_  << "\n";
1642 +      rnemdFile_ << "#     actual flux:\n";
1643 +      rnemdFile_ << "#         kinetic = " << Jz << "\n";
1644 +      rnemdFile_ << "#         momentum = " << JzP  << "\n";
1645 +      rnemdFile_ << "#     exchange statistics:\n";
1646 +      rnemdFile_ << "#         attempted = " << trialCount_ << "\n";
1647 +      rnemdFile_ << "#         failed = " << failTrialCount_ << "\n";    
1648 +      if (rnemdMethod_ == rnemdNIVS) {
1649 +        rnemdFile_ << "#         NIVS root-check errors = "
1650 +                   << failRootCount_ << "\n";
1651 +      }
1652 +      rnemdFile_ << "#######################################################\n";
1653 +      
1654 +      
1655 +      
1656 +      //write title
1657 +      rnemdFile_ << "#";
1658 +      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1659 +        if (outputMask_[i]) {
1660 +          rnemdFile_ << "\t" << data_[i].title <<
1661 +            "(" << data_[i].units << ")";
1662 +        }
1663 +      }
1664 +      rnemdFile_ << std::endl;
1665 +      
1666 +      rnemdFile_.precision(8);
1667 +      
1668 +      for (unsigned int j = 0; j < nBins_; j++) {        
1669 +        
1670 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1671 +          if (outputMask_[i]) {
1672 +            if (data_[i].dataType == "RealType")
1673 +              writeReal(i,j);
1674 +            else if (data_[i].dataType == "Vector3d")
1675 +              writeVector(i,j);
1676 +            else {
1677 +              sprintf( painCave.errMsg,
1678 +                       "RNEMD found an unknown data type for: %s ",
1679 +                       data_[i].title.c_str());
1680 +              painCave.isFatal = 1;
1681 +              simError();
1682 +            }
1683 +          }
1684 +        }
1685 +        rnemdFile_ << std::endl;
1686 +        
1687 +      }        
1688 +
1689 +      rnemdFile_ << "#######################################################\n";
1690 +      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1691 +      rnemdFile_ << "#######################################################\n";
1692 +
1693 +
1694 +      for (unsigned int j = 0; j < nBins_; j++) {        
1695 +        rnemdFile_ << "#";
1696 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1697 +          if (outputMask_[i]) {
1698 +            if (data_[i].dataType == "RealType")
1699 +              writeRealStdDev(i,j);
1700 +            else if (data_[i].dataType == "Vector3d")
1701 +              writeVectorStdDev(i,j);
1702 +            else {
1703 +              sprintf( painCave.errMsg,
1704 +                       "RNEMD found an unknown data type for: %s ",
1705 +                       data_[i].title.c_str());
1706 +              painCave.isFatal = 1;
1707 +              simError();
1708 +            }
1709 +          }
1710 +        }
1711 +        rnemdFile_ << std::endl;
1712 +        
1713 +      }        
1714 +      
1715 +      rnemdFile_.flush();
1716 +      rnemdFile_.close();
1717 +      
1718   #ifdef IS_MPI
1719      }
1720   #endif
1721 +    
1722    }
1723 +  
1724 +  void RNEMD::writeReal(int index, unsigned int bin) {
1725 +    if (!doRNEMD_) return;
1726 +    assert(index >=0 && index < ENDINDEX);
1727 +    assert(bin < nBins_);
1728 +    RealType s;
1729 +    
1730 +    data_[index].accumulator[bin]->getAverage(s);
1731 +    
1732 +    if (! isinf(s) && ! isnan(s)) {
1733 +      rnemdFile_ << "\t" << s;
1734 +    } else{
1735 +      sprintf( painCave.errMsg,
1736 +               "RNEMD detected a numerical error writing: %s for bin %d",
1737 +               data_[index].title.c_str(), bin);
1738 +      painCave.isFatal = 1;
1739 +      simError();
1740 +    }    
1741 +  }
1742 +  
1743 +  void RNEMD::writeVector(int index, unsigned int bin) {
1744 +    if (!doRNEMD_) return;
1745 +    assert(index >=0 && index < ENDINDEX);
1746 +    assert(bin < nBins_);
1747 +    Vector3d s;
1748 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1749 +    if (isinf(s[0]) || isnan(s[0]) ||
1750 +        isinf(s[1]) || isnan(s[1]) ||
1751 +        isinf(s[2]) || isnan(s[2]) ) {      
1752 +      sprintf( painCave.errMsg,
1753 +               "RNEMD detected a numerical error writing: %s for bin %d",
1754 +               data_[index].title.c_str(), bin);
1755 +      painCave.isFatal = 1;
1756 +      simError();
1757 +    } else {
1758 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1759 +    }
1760 +  }  
1761 +
1762 +  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1763 +    if (!doRNEMD_) return;
1764 +    assert(index >=0 && index < ENDINDEX);
1765 +    assert(bin < nBins_);
1766 +    RealType s;
1767 +    
1768 +    data_[index].accumulator[bin]->getStdDev(s);
1769 +    
1770 +    if (! isinf(s) && ! isnan(s)) {
1771 +      rnemdFile_ << "\t" << s;
1772 +    } else{
1773 +      sprintf( painCave.errMsg,
1774 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1775 +               data_[index].title.c_str(), bin);
1776 +      painCave.isFatal = 1;
1777 +      simError();
1778 +    }    
1779 +  }
1780 +  
1781 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1782 +    if (!doRNEMD_) return;
1783 +    assert(index >=0 && index < ENDINDEX);
1784 +    assert(bin < nBins_);
1785 +    Vector3d s;
1786 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1787 +    if (isinf(s[0]) || isnan(s[0]) ||
1788 +        isinf(s[1]) || isnan(s[1]) ||
1789 +        isinf(s[2]) || isnan(s[2]) ) {      
1790 +      sprintf( painCave.errMsg,
1791 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1792 +               data_[index].title.c_str(), bin);
1793 +      painCave.isFatal = 1;
1794 +      simError();
1795 +    } else {
1796 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1797 +    }
1798 +  }  
1799   }
1800 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (property svn:keywords), Revision 1776 by gezelter, Thu Aug 9 15:52:59 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines