35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
#include <cmath> |
43 |
+ |
#include <sstream> |
44 |
+ |
#include <string> |
45 |
+ |
|
46 |
|
#include "rnemd/RNEMD.hpp" |
47 |
|
#include "math/Vector3.hpp" |
48 |
|
#include "math/Vector.hpp" |
52 |
|
#include "primitives/StuntDouble.hpp" |
53 |
|
#include "utils/PhysicalConstants.hpp" |
54 |
|
#include "utils/Tuple.hpp" |
55 |
+ |
#include "brains/Thermo.hpp" |
56 |
+ |
#include "math/ConvexHull.hpp" |
57 |
|
#ifdef IS_MPI |
58 |
|
#include <mpi.h> |
59 |
|
#endif |
60 |
|
|
61 |
+ |
#ifdef _MSC_VER |
62 |
+ |
#define isnan(x) _isnan((x)) |
63 |
+ |
#define isinf(x) (!_finite(x) && !_isnan(x)) |
64 |
+ |
#endif |
65 |
+ |
|
66 |
|
#define HONKING_LARGE_VALUE 1.0e10 |
67 |
|
|
68 |
|
using namespace std; |
69 |
|
namespace OpenMD { |
70 |
|
|
71 |
|
RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), |
72 |
+ |
evaluatorA_(info), seleManA_(info), |
73 |
+ |
commonA_(info), evaluatorB_(info), |
74 |
+ |
seleManB_(info), commonB_(info), |
75 |
|
usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { |
76 |
|
|
77 |
|
trialCount_ = 0; |
78 |
|
failTrialCount_ = 0; |
79 |
|
failRootCount_ = 0; |
80 |
|
|
81 |
< |
int seedValue; |
69 |
< |
Globals * simParams = info->getSimParams(); |
81 |
> |
Globals* simParams = info->getSimParams(); |
82 |
|
RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); |
83 |
|
|
84 |
+ |
doRNEMD_ = rnemdParams->getUseRNEMD(); |
85 |
+ |
if (!doRNEMD_) return; |
86 |
+ |
|
87 |
|
stringToMethod_["Swap"] = rnemdSwap; |
88 |
|
stringToMethod_["NIVS"] = rnemdNIVS; |
89 |
|
stringToMethod_["VSS"] = rnemdVSS; |
92 |
|
stringToFluxType_["Px"] = rnemdPx; |
93 |
|
stringToFluxType_["Py"] = rnemdPy; |
94 |
|
stringToFluxType_["Pz"] = rnemdPz; |
95 |
+ |
stringToFluxType_["Pvector"] = rnemdPvector; |
96 |
+ |
stringToFluxType_["Lx"] = rnemdLx; |
97 |
+ |
stringToFluxType_["Ly"] = rnemdLy; |
98 |
+ |
stringToFluxType_["Lz"] = rnemdLz; |
99 |
+ |
stringToFluxType_["Lvector"] = rnemdLvector; |
100 |
|
stringToFluxType_["KE+Px"] = rnemdKePx; |
101 |
|
stringToFluxType_["KE+Py"] = rnemdKePy; |
102 |
|
stringToFluxType_["KE+Pvector"] = rnemdKePvector; |
103 |
+ |
stringToFluxType_["KE+Lx"] = rnemdKeLx; |
104 |
+ |
stringToFluxType_["KE+Ly"] = rnemdKeLy; |
105 |
+ |
stringToFluxType_["KE+Lz"] = rnemdKeLz; |
106 |
+ |
stringToFluxType_["KE+Lvector"] = rnemdKeLvector; |
107 |
|
|
108 |
|
runTime_ = simParams->getRunTime(); |
109 |
|
statusTime_ = simParams->getStatusTime(); |
110 |
|
|
87 |
– |
rnemdObjectSelection_ = rnemdParams->getObjectSelection(); |
88 |
– |
evaluator_.loadScriptString(rnemdObjectSelection_); |
89 |
– |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
90 |
– |
|
111 |
|
const string methStr = rnemdParams->getMethod(); |
112 |
|
bool hasFluxType = rnemdParams->haveFluxType(); |
113 |
|
|
114 |
+ |
rnemdObjectSelection_ = rnemdParams->getObjectSelection(); |
115 |
+ |
|
116 |
|
string fluxStr; |
117 |
|
if (hasFluxType) { |
118 |
|
fluxStr = rnemdParams->getFluxType(); |
120 |
|
sprintf(painCave.errMsg, |
121 |
|
"RNEMD: No fluxType was set in the md file. This parameter,\n" |
122 |
|
"\twhich must be one of the following values:\n" |
123 |
< |
"\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n" |
124 |
< |
"\tuse RNEMD\n"); |
123 |
> |
"\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n" |
124 |
> |
"\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n" |
125 |
> |
"\tmust be set to use RNEMD\n"); |
126 |
|
painCave.isFatal = 1; |
127 |
|
painCave.severity = OPENMD_ERROR; |
128 |
|
simError(); |
131 |
|
bool hasKineticFlux = rnemdParams->haveKineticFlux(); |
132 |
|
bool hasMomentumFlux = rnemdParams->haveMomentumFlux(); |
133 |
|
bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector(); |
134 |
+ |
bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux(); |
135 |
+ |
bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector(); |
136 |
+ |
hasSelectionA_ = rnemdParams->haveSelectionA(); |
137 |
+ |
hasSelectionB_ = rnemdParams->haveSelectionB(); |
138 |
|
bool hasSlabWidth = rnemdParams->haveSlabWidth(); |
139 |
|
bool hasSlabACenter = rnemdParams->haveSlabACenter(); |
140 |
|
bool hasSlabBCenter = rnemdParams->haveSlabBCenter(); |
141 |
+ |
bool hasSphereARadius = rnemdParams->haveSphereARadius(); |
142 |
+ |
hasSphereBRadius_ = rnemdParams->haveSphereBRadius(); |
143 |
+ |
bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin(); |
144 |
|
bool hasOutputFileName = rnemdParams->haveOutputFileName(); |
145 |
|
bool hasOutputFields = rnemdParams->haveOutputFields(); |
146 |
|
|
225 |
|
case rnemdPz: |
226 |
|
hasCorrectFlux = hasMomentumFlux; |
227 |
|
break; |
228 |
+ |
case rnemdLx: |
229 |
+ |
case rnemdLy: |
230 |
+ |
case rnemdLz: |
231 |
+ |
hasCorrectFlux = hasAngularMomentumFlux; |
232 |
+ |
break; |
233 |
|
case rnemdPvector: |
234 |
|
hasCorrectFlux = hasMomentumFluxVector; |
235 |
+ |
break; |
236 |
+ |
case rnemdLvector: |
237 |
+ |
hasCorrectFlux = hasAngularMomentumFluxVector; |
238 |
+ |
break; |
239 |
|
case rnemdKePx: |
240 |
|
case rnemdKePy: |
241 |
|
hasCorrectFlux = hasMomentumFlux && hasKineticFlux; |
242 |
|
break; |
243 |
+ |
case rnemdKeLx: |
244 |
+ |
case rnemdKeLy: |
245 |
+ |
case rnemdKeLz: |
246 |
+ |
hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux; |
247 |
+ |
break; |
248 |
|
case rnemdKePvector: |
249 |
|
hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux; |
250 |
|
break; |
251 |
+ |
case rnemdKeLvector: |
252 |
+ |
hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux; |
253 |
+ |
break; |
254 |
|
default: |
255 |
|
methodFluxMismatch = true; |
256 |
|
break; |
271 |
|
} |
272 |
|
if (!hasCorrectFlux) { |
273 |
|
sprintf(painCave.errMsg, |
274 |
< |
"RNEMD: The current method,\n" |
228 |
< |
"\t%s, and flux type %s\n" |
274 |
> |
"RNEMD: The current method, %s, and flux type, %s,\n" |
275 |
|
"\tdid not have the correct flux value specified. Options\n" |
276 |
< |
"\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n", |
276 |
> |
"\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n" |
277 |
> |
"\tmomentumFluxVector, and angularMomentumFluxVector.\n", |
278 |
|
methStr.c_str(), fluxStr.c_str()); |
279 |
|
painCave.isFatal = 1; |
280 |
|
painCave.severity = OPENMD_ERROR; |
282 |
|
} |
283 |
|
|
284 |
|
if (hasKineticFlux) { |
285 |
< |
kineticFlux_ = rnemdParams->getKineticFlux(); |
285 |
> |
// convert the kcal / mol / Angstroms^2 / fs values in the md file |
286 |
> |
// into amu / fs^3: |
287 |
> |
kineticFlux_ = rnemdParams->getKineticFlux() |
288 |
> |
* PhysicalConstants::energyConvert; |
289 |
|
} else { |
290 |
|
kineticFlux_ = 0.0; |
291 |
|
} |
314 |
|
default: |
315 |
|
break; |
316 |
|
} |
317 |
< |
} |
318 |
< |
} |
319 |
< |
|
320 |
< |
// do some sanity checking |
321 |
< |
|
322 |
< |
int selectionCount = seleMan_.getSelectionCount(); |
323 |
< |
int nIntegrable = info->getNGlobalIntegrableObjects(); |
324 |
< |
|
325 |
< |
if (selectionCount > nIntegrable) { |
326 |
< |
sprintf(painCave.errMsg, |
327 |
< |
"RNEMD: The current objectSelection,\n" |
328 |
< |
"\t\t%s\n" |
329 |
< |
"\thas resulted in %d selected objects. However,\n" |
330 |
< |
"\tthe total number of integrable objects in the system\n" |
331 |
< |
"\tis only %d. This is almost certainly not what you want\n" |
332 |
< |
"\tto do. A likely cause of this is forgetting the _RB_0\n" |
333 |
< |
"\tselector in the selection script!\n", |
334 |
< |
rnemdObjectSelection_.c_str(), |
335 |
< |
selectionCount, nIntegrable); |
336 |
< |
painCave.isFatal = 0; |
337 |
< |
painCave.severity = OPENMD_WARNING; |
338 |
< |
simError(); |
339 |
< |
} |
340 |
< |
|
341 |
< |
nBins_ = rnemdParams->getOutputBins(); |
317 |
> |
} |
318 |
> |
if (hasAngularMomentumFluxVector) { |
319 |
> |
angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector(); |
320 |
> |
} else { |
321 |
> |
angularMomentumFluxVector_ = V3Zero; |
322 |
> |
if (hasAngularMomentumFlux) { |
323 |
> |
RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux(); |
324 |
> |
switch (rnemdFluxType_) { |
325 |
> |
case rnemdLx: |
326 |
> |
angularMomentumFluxVector_.x() = angularMomentumFlux; |
327 |
> |
break; |
328 |
> |
case rnemdLy: |
329 |
> |
angularMomentumFluxVector_.y() = angularMomentumFlux; |
330 |
> |
break; |
331 |
> |
case rnemdLz: |
332 |
> |
angularMomentumFluxVector_.z() = angularMomentumFlux; |
333 |
> |
break; |
334 |
> |
case rnemdKeLx: |
335 |
> |
angularMomentumFluxVector_.x() = angularMomentumFlux; |
336 |
> |
break; |
337 |
> |
case rnemdKeLy: |
338 |
> |
angularMomentumFluxVector_.y() = angularMomentumFlux; |
339 |
> |
break; |
340 |
> |
case rnemdKeLz: |
341 |
> |
angularMomentumFluxVector_.z() = angularMomentumFlux; |
342 |
> |
break; |
343 |
> |
default: |
344 |
> |
break; |
345 |
> |
} |
346 |
> |
} |
347 |
> |
} |
348 |
|
|
349 |
< |
data_.resize(RNEMD::ENDINDEX); |
350 |
< |
OutputData z; |
351 |
< |
z.units = "Angstroms"; |
352 |
< |
z.title = "Z"; |
353 |
< |
z.dataType = "RealType"; |
298 |
< |
z.accumulator.reserve(nBins_); |
299 |
< |
for (unsigned int i = 0; i < nBins_; i++) |
300 |
< |
z.accumulator.push_back( new Accumulator() ); |
301 |
< |
data_[Z] = z; |
302 |
< |
outputMap_["Z"] = Z; |
349 |
> |
if (hasCoordinateOrigin) { |
350 |
> |
coordinateOrigin_ = rnemdParams->getCoordinateOrigin(); |
351 |
> |
} else { |
352 |
> |
coordinateOrigin_ = V3Zero; |
353 |
> |
} |
354 |
|
|
355 |
< |
OutputData temperature; |
305 |
< |
temperature.units = "K"; |
306 |
< |
temperature.title = "Temperature"; |
307 |
< |
temperature.dataType = "RealType"; |
308 |
< |
temperature.accumulator.reserve(nBins_); |
309 |
< |
for (unsigned int i = 0; i < nBins_; i++) |
310 |
< |
temperature.accumulator.push_back( new Accumulator() ); |
311 |
< |
data_[TEMPERATURE] = temperature; |
312 |
< |
outputMap_["TEMPERATURE"] = TEMPERATURE; |
355 |
> |
// do some sanity checking |
356 |
|
|
357 |
< |
OutputData velocity; |
315 |
< |
velocity.units = "amu/fs"; |
316 |
< |
velocity.title = "Velocity"; |
317 |
< |
velocity.dataType = "Vector3d"; |
318 |
< |
velocity.accumulator.reserve(nBins_); |
319 |
< |
for (unsigned int i = 0; i < nBins_; i++) |
320 |
< |
velocity.accumulator.push_back( new VectorAccumulator() ); |
321 |
< |
data_[VELOCITY] = velocity; |
322 |
< |
outputMap_["VELOCITY"] = VELOCITY; |
357 |
> |
int selectionCount = seleMan_.getSelectionCount(); |
358 |
|
|
359 |
< |
OutputData density; |
325 |
< |
density.units = "g cm^-3"; |
326 |
< |
density.title = "Density"; |
327 |
< |
density.dataType = "RealType"; |
328 |
< |
density.accumulator.reserve(nBins_); |
329 |
< |
for (unsigned int i = 0; i < nBins_; i++) |
330 |
< |
density.accumulator.push_back( new Accumulator() ); |
331 |
< |
data_[DENSITY] = density; |
332 |
< |
outputMap_["DENSITY"] = DENSITY; |
359 |
> |
int nIntegrable = info->getNGlobalIntegrableObjects(); |
360 |
|
|
361 |
< |
if (hasOutputFields) { |
362 |
< |
parseOutputFileFormat(rnemdParams->getOutputFields()); |
363 |
< |
} else { |
364 |
< |
outputMask_.set(Z); |
365 |
< |
switch (rnemdFluxType_) { |
366 |
< |
case rnemdKE: |
367 |
< |
case rnemdRotKE: |
368 |
< |
case rnemdFullKE: |
369 |
< |
outputMask_.set(TEMPERATURE); |
370 |
< |
break; |
371 |
< |
case rnemdPx: |
372 |
< |
case rnemdPy: |
373 |
< |
outputMask_.set(VELOCITY); |
374 |
< |
break; |
375 |
< |
case rnemdPz: |
376 |
< |
case rnemdPvector: |
377 |
< |
outputMask_.set(VELOCITY); |
378 |
< |
outputMask_.set(DENSITY); |
379 |
< |
break; |
380 |
< |
case rnemdKePx: |
381 |
< |
case rnemdKePy: |
382 |
< |
outputMask_.set(TEMPERATURE); |
383 |
< |
outputMask_.set(VELOCITY); |
384 |
< |
break; |
385 |
< |
case rnemdKePvector: |
386 |
< |
outputMask_.set(TEMPERATURE); |
387 |
< |
outputMask_.set(VELOCITY); |
388 |
< |
outputMask_.set(DENSITY); |
389 |
< |
break; |
390 |
< |
default: |
391 |
< |
break; |
392 |
< |
} |
393 |
< |
} |
394 |
< |
|
395 |
< |
if (hasOutputFileName) { |
396 |
< |
rnemdFileName_ = rnemdParams->getOutputFileName(); |
397 |
< |
} else { |
398 |
< |
rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; |
399 |
< |
} |
361 |
> |
if (selectionCount > nIntegrable) { |
362 |
> |
sprintf(painCave.errMsg, |
363 |
> |
"RNEMD: The current objectSelection,\n" |
364 |
> |
"\t\t%s\n" |
365 |
> |
"\thas resulted in %d selected objects. However,\n" |
366 |
> |
"\tthe total number of integrable objects in the system\n" |
367 |
> |
"\tis only %d. This is almost certainly not what you want\n" |
368 |
> |
"\tto do. A likely cause of this is forgetting the _RB_0\n" |
369 |
> |
"\tselector in the selection script!\n", |
370 |
> |
rnemdObjectSelection_.c_str(), |
371 |
> |
selectionCount, nIntegrable); |
372 |
> |
painCave.isFatal = 0; |
373 |
> |
painCave.severity = OPENMD_WARNING; |
374 |
> |
simError(); |
375 |
> |
} |
376 |
> |
|
377 |
> |
areaAccumulator_ = new Accumulator(); |
378 |
> |
|
379 |
> |
nBins_ = rnemdParams->getOutputBins(); |
380 |
> |
binWidth_ = rnemdParams->getOutputBinWidth(); |
381 |
> |
|
382 |
> |
data_.resize(RNEMD::ENDINDEX); |
383 |
> |
OutputData z; |
384 |
> |
z.units = "Angstroms"; |
385 |
> |
z.title = "Z"; |
386 |
> |
z.dataType = "RealType"; |
387 |
> |
z.accumulator.reserve(nBins_); |
388 |
> |
for (int i = 0; i < nBins_; i++) |
389 |
> |
z.accumulator.push_back( new Accumulator() ); |
390 |
> |
data_[Z] = z; |
391 |
> |
outputMap_["Z"] = Z; |
392 |
> |
|
393 |
> |
OutputData r; |
394 |
> |
r.units = "Angstroms"; |
395 |
> |
r.title = "R"; |
396 |
> |
r.dataType = "RealType"; |
397 |
> |
r.accumulator.reserve(nBins_); |
398 |
> |
for (int i = 0; i < nBins_; i++) |
399 |
> |
r.accumulator.push_back( new Accumulator() ); |
400 |
> |
data_[R] = r; |
401 |
> |
outputMap_["R"] = R; |
402 |
|
|
403 |
< |
exchangeTime_ = rnemdParams->getExchangeTime(); |
403 |
> |
OutputData temperature; |
404 |
> |
temperature.units = "K"; |
405 |
> |
temperature.title = "Temperature"; |
406 |
> |
temperature.dataType = "RealType"; |
407 |
> |
temperature.accumulator.reserve(nBins_); |
408 |
> |
for (int i = 0; i < nBins_; i++) |
409 |
> |
temperature.accumulator.push_back( new Accumulator() ); |
410 |
> |
data_[TEMPERATURE] = temperature; |
411 |
> |
outputMap_["TEMPERATURE"] = TEMPERATURE; |
412 |
|
|
413 |
< |
Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); |
414 |
< |
Mat3x3d hmat = currentSnap_->getHmat(); |
415 |
< |
|
416 |
< |
// Target exchange quantities (in each exchange) = 2 Lx Ly dt flux |
417 |
< |
// Lx, Ly = box dimensions in x & y |
418 |
< |
// dt = exchange time interval |
419 |
< |
// flux = target flux |
413 |
> |
OutputData velocity; |
414 |
> |
velocity.units = "angstroms/fs"; |
415 |
> |
velocity.title = "Velocity"; |
416 |
> |
velocity.dataType = "Vector3d"; |
417 |
> |
velocity.accumulator.reserve(nBins_); |
418 |
> |
for (int i = 0; i < nBins_; i++) |
419 |
> |
velocity.accumulator.push_back( new VectorAccumulator() ); |
420 |
> |
data_[VELOCITY] = velocity; |
421 |
> |
outputMap_["VELOCITY"] = VELOCITY; |
422 |
|
|
423 |
< |
kineticTarget_ = 2.0*kineticFlux_*exchangeTime_*hmat(0,0)*hmat(1,1); |
424 |
< |
momentumTarget_ = 2.0*momentumFluxVector_*exchangeTime_*hmat(0,0)*hmat(1,1); |
423 |
> |
OutputData angularVelocity; |
424 |
> |
angularVelocity.units = "angstroms^2/fs"; |
425 |
> |
angularVelocity.title = "AngularVelocity"; |
426 |
> |
angularVelocity.dataType = "Vector3d"; |
427 |
> |
angularVelocity.accumulator.reserve(nBins_); |
428 |
> |
for (int i = 0; i < nBins_; i++) |
429 |
> |
angularVelocity.accumulator.push_back( new VectorAccumulator() ); |
430 |
> |
data_[ANGULARVELOCITY] = angularVelocity; |
431 |
> |
outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY; |
432 |
|
|
433 |
< |
// total exchange sums are zeroed out at the beginning: |
433 |
> |
OutputData density; |
434 |
> |
density.units = "g cm^-3"; |
435 |
> |
density.title = "Density"; |
436 |
> |
density.dataType = "RealType"; |
437 |
> |
density.accumulator.reserve(nBins_); |
438 |
> |
for (int i = 0; i < nBins_; i++) |
439 |
> |
density.accumulator.push_back( new Accumulator() ); |
440 |
> |
data_[DENSITY] = density; |
441 |
> |
outputMap_["DENSITY"] = DENSITY; |
442 |
|
|
443 |
< |
kineticExchange_ = 0.0; |
444 |
< |
momentumExchange_ = V3Zero; |
443 |
> |
if (hasOutputFields) { |
444 |
> |
parseOutputFileFormat(rnemdParams->getOutputFields()); |
445 |
> |
} else { |
446 |
> |
if (usePeriodicBoundaryConditions_) |
447 |
> |
outputMask_.set(Z); |
448 |
> |
else |
449 |
> |
outputMask_.set(R); |
450 |
> |
switch (rnemdFluxType_) { |
451 |
> |
case rnemdKE: |
452 |
> |
case rnemdRotKE: |
453 |
> |
case rnemdFullKE: |
454 |
> |
outputMask_.set(TEMPERATURE); |
455 |
> |
break; |
456 |
> |
case rnemdPx: |
457 |
> |
case rnemdPy: |
458 |
> |
outputMask_.set(VELOCITY); |
459 |
> |
break; |
460 |
> |
case rnemdPz: |
461 |
> |
case rnemdPvector: |
462 |
> |
outputMask_.set(VELOCITY); |
463 |
> |
outputMask_.set(DENSITY); |
464 |
> |
break; |
465 |
> |
case rnemdLx: |
466 |
> |
case rnemdLy: |
467 |
> |
case rnemdLz: |
468 |
> |
case rnemdLvector: |
469 |
> |
outputMask_.set(ANGULARVELOCITY); |
470 |
> |
break; |
471 |
> |
case rnemdKeLx: |
472 |
> |
case rnemdKeLy: |
473 |
> |
case rnemdKeLz: |
474 |
> |
case rnemdKeLvector: |
475 |
> |
outputMask_.set(TEMPERATURE); |
476 |
> |
outputMask_.set(ANGULARVELOCITY); |
477 |
> |
break; |
478 |
> |
case rnemdKePx: |
479 |
> |
case rnemdKePy: |
480 |
> |
outputMask_.set(TEMPERATURE); |
481 |
> |
outputMask_.set(VELOCITY); |
482 |
> |
break; |
483 |
> |
case rnemdKePvector: |
484 |
> |
outputMask_.set(TEMPERATURE); |
485 |
> |
outputMask_.set(VELOCITY); |
486 |
> |
outputMask_.set(DENSITY); |
487 |
> |
break; |
488 |
> |
default: |
489 |
> |
break; |
490 |
> |
} |
491 |
> |
} |
492 |
> |
|
493 |
> |
if (hasOutputFileName) { |
494 |
> |
rnemdFileName_ = rnemdParams->getOutputFileName(); |
495 |
> |
} else { |
496 |
> |
rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; |
497 |
> |
} |
498 |
|
|
499 |
< |
if (hasSlabWidth) |
500 |
< |
slabWidth_ = rnemdParams->getSlabWidth(); |
501 |
< |
else |
502 |
< |
slabWidth_ = hmat(2,2) / 10.0; |
503 |
< |
|
504 |
< |
if (hasSlabACenter) |
505 |
< |
slabACenter_ = rnemdParams->getSlabACenter(); |
506 |
< |
else |
507 |
< |
slabACenter_ = 0.0; |
499 |
> |
exchangeTime_ = rnemdParams->getExchangeTime(); |
500 |
> |
|
501 |
> |
Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); |
502 |
> |
// total exchange sums are zeroed out at the beginning: |
503 |
> |
|
504 |
> |
kineticExchange_ = 0.0; |
505 |
> |
momentumExchange_ = V3Zero; |
506 |
> |
angularMomentumExchange_ = V3Zero; |
507 |
> |
|
508 |
> |
std::ostringstream selectionAstream; |
509 |
> |
std::ostringstream selectionBstream; |
510 |
|
|
511 |
< |
if (hasSlabBCenter) |
512 |
< |
slabBCenter_ = rnemdParams->getSlabBCenter(); |
513 |
< |
else |
514 |
< |
slabBCenter_ = hmat(2,2) / 2.0; |
511 |
> |
if (hasSelectionA_) { |
512 |
> |
selectionA_ = rnemdParams->getSelectionA(); |
513 |
> |
} else { |
514 |
> |
if (usePeriodicBoundaryConditions_) { |
515 |
> |
Mat3x3d hmat = currentSnap_->getHmat(); |
516 |
> |
|
517 |
> |
if (hasSlabWidth) |
518 |
> |
slabWidth_ = rnemdParams->getSlabWidth(); |
519 |
> |
else |
520 |
> |
slabWidth_ = hmat(2,2) / 10.0; |
521 |
> |
|
522 |
> |
if (hasSlabACenter) |
523 |
> |
slabACenter_ = rnemdParams->getSlabACenter(); |
524 |
> |
else |
525 |
> |
slabACenter_ = 0.0; |
526 |
> |
|
527 |
> |
selectionAstream << "select wrappedz > " |
528 |
> |
<< slabACenter_ - 0.5*slabWidth_ |
529 |
> |
<< " && wrappedz < " |
530 |
> |
<< slabACenter_ + 0.5*slabWidth_; |
531 |
> |
selectionA_ = selectionAstream.str(); |
532 |
> |
} else { |
533 |
> |
if (hasSphereARadius) |
534 |
> |
sphereARadius_ = rnemdParams->getSphereARadius(); |
535 |
> |
else { |
536 |
> |
// use an initial guess to the size of the inner slab to be 1/10 the |
537 |
> |
// radius of an approximately spherical hull: |
538 |
> |
Thermo thermo(info); |
539 |
> |
RealType hVol = thermo.getHullVolume(); |
540 |
> |
sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0); |
541 |
> |
} |
542 |
> |
selectionAstream << "select r < " << sphereARadius_; |
543 |
> |
selectionA_ = selectionAstream.str(); |
544 |
> |
} |
545 |
> |
} |
546 |
|
|
547 |
+ |
if (hasSelectionB_) { |
548 |
+ |
selectionB_ = rnemdParams->getSelectionB(); |
549 |
+ |
} else { |
550 |
+ |
if (usePeriodicBoundaryConditions_) { |
551 |
+ |
Mat3x3d hmat = currentSnap_->getHmat(); |
552 |
+ |
|
553 |
+ |
if (hasSlabWidth) |
554 |
+ |
slabWidth_ = rnemdParams->getSlabWidth(); |
555 |
+ |
else |
556 |
+ |
slabWidth_ = hmat(2,2) / 10.0; |
557 |
+ |
|
558 |
+ |
if (hasSlabBCenter) |
559 |
+ |
slabBCenter_ = rnemdParams->getSlabBCenter(); |
560 |
+ |
else |
561 |
+ |
slabBCenter_ = hmat(2,2) / 2.0; |
562 |
+ |
|
563 |
+ |
selectionBstream << "select wrappedz > " |
564 |
+ |
<< slabBCenter_ - 0.5*slabWidth_ |
565 |
+ |
<< " && wrappedz < " |
566 |
+ |
<< slabBCenter_ + 0.5*slabWidth_; |
567 |
+ |
selectionB_ = selectionBstream.str(); |
568 |
+ |
} else { |
569 |
+ |
if (hasSphereBRadius_) { |
570 |
+ |
sphereBRadius_ = rnemdParams->getSphereBRadius(); |
571 |
+ |
selectionBstream << "select r > " << sphereBRadius_; |
572 |
+ |
selectionB_ = selectionBstream.str(); |
573 |
+ |
} else { |
574 |
+ |
selectionB_ = "select hull"; |
575 |
+ |
hasSelectionB_ = true; |
576 |
+ |
} |
577 |
+ |
} |
578 |
+ |
} |
579 |
+ |
} |
580 |
+ |
|
581 |
+ |
// object evaluator: |
582 |
+ |
evaluator_.loadScriptString(rnemdObjectSelection_); |
583 |
+ |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
584 |
+ |
evaluatorA_.loadScriptString(selectionA_); |
585 |
+ |
evaluatorB_.loadScriptString(selectionB_); |
586 |
+ |
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
587 |
+ |
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
588 |
+ |
commonA_ = seleManA_ & seleMan_; |
589 |
+ |
commonB_ = seleManB_ & seleMan_; |
590 |
|
} |
591 |
< |
|
409 |
< |
RNEMD::~RNEMD() { |
591 |
> |
|
592 |
|
|
593 |
+ |
RNEMD::~RNEMD() { |
594 |
+ |
if (!doRNEMD_) return; |
595 |
|
#ifdef IS_MPI |
596 |
|
if (worldRank == 0) { |
597 |
|
#endif |
605 |
|
#endif |
606 |
|
} |
607 |
|
|
608 |
< |
bool RNEMD::inSlabA(Vector3d pos) { |
609 |
< |
return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_); |
610 |
< |
} |
611 |
< |
bool RNEMD::inSlabB(Vector3d pos) { |
428 |
< |
return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_); |
429 |
< |
} |
608 |
> |
void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) { |
609 |
> |
if (!doRNEMD_) return; |
610 |
> |
int selei; |
611 |
> |
int selej; |
612 |
|
|
431 |
– |
void RNEMD::doSwap() { |
432 |
– |
|
613 |
|
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
614 |
|
Mat3x3d hmat = currentSnap_->getHmat(); |
615 |
|
|
436 |
– |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
437 |
– |
|
438 |
– |
int selei; |
616 |
|
StuntDouble* sd; |
440 |
– |
int idx; |
617 |
|
|
618 |
|
RealType min_val; |
619 |
|
bool min_found = false; |
623 |
|
bool max_found = false; |
624 |
|
StuntDouble* max_sd; |
625 |
|
|
626 |
< |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
627 |
< |
sd = seleMan_.nextSelected(selei)) { |
626 |
> |
for (sd = seleManA_.beginSelected(selei); sd != NULL; |
627 |
> |
sd = seleManA_.nextSelected(selei)) { |
628 |
|
|
453 |
– |
idx = sd->getLocalIndex(); |
454 |
– |
|
629 |
|
Vector3d pos = sd->getPos(); |
630 |
< |
|
630 |
> |
|
631 |
|
// wrap the stuntdouble's position back into the box: |
632 |
< |
|
632 |
> |
|
633 |
|
if (usePeriodicBoundaryConditions_) |
634 |
|
currentSnap_->wrapVector(pos); |
635 |
< |
bool inA = inSlabA(pos); |
636 |
< |
bool inB = inSlabB(pos); |
637 |
< |
|
638 |
< |
if (inA || inB) { |
635 |
> |
|
636 |
> |
RealType mass = sd->getMass(); |
637 |
> |
Vector3d vel = sd->getVel(); |
638 |
> |
RealType value; |
639 |
> |
|
640 |
> |
switch(rnemdFluxType_) { |
641 |
> |
case rnemdKE : |
642 |
|
|
643 |
< |
RealType mass = sd->getMass(); |
644 |
< |
Vector3d vel = sd->getVel(); |
645 |
< |
RealType value; |
646 |
< |
|
647 |
< |
switch(rnemdFluxType_) { |
471 |
< |
case rnemdKE : |
643 |
> |
value = mass * vel.lengthSquare(); |
644 |
> |
|
645 |
> |
if (sd->isDirectional()) { |
646 |
> |
Vector3d angMom = sd->getJ(); |
647 |
> |
Mat3x3d I = sd->getI(); |
648 |
|
|
649 |
< |
value = mass * vel.lengthSquare(); |
650 |
< |
|
651 |
< |
if (sd->isDirectional()) { |
652 |
< |
Vector3d angMom = sd->getJ(); |
653 |
< |
Mat3x3d I = sd->getI(); |
654 |
< |
|
655 |
< |
if (sd->isLinear()) { |
656 |
< |
int i = sd->linearAxis(); |
657 |
< |
int j = (i + 1) % 3; |
658 |
< |
int k = (i + 2) % 3; |
659 |
< |
value += angMom[j] * angMom[j] / I(j, j) + |
660 |
< |
angMom[k] * angMom[k] / I(k, k); |
661 |
< |
} else { |
662 |
< |
value += angMom[0]*angMom[0]/I(0, 0) |
663 |
< |
+ angMom[1]*angMom[1]/I(1, 1) |
664 |
< |
+ angMom[2]*angMom[2]/I(2, 2); |
665 |
< |
} |
666 |
< |
} //angular momenta exchange enabled |
667 |
< |
//energyConvert temporarily disabled |
668 |
< |
//make kineticExchange_ comparable between swap & scale |
669 |
< |
//value = value * 0.5 / PhysicalConstants::energyConvert; |
670 |
< |
value *= 0.5; |
671 |
< |
break; |
672 |
< |
case rnemdPx : |
673 |
< |
value = mass * vel[0]; |
674 |
< |
break; |
675 |
< |
case rnemdPy : |
676 |
< |
value = mass * vel[1]; |
677 |
< |
break; |
678 |
< |
case rnemdPz : |
679 |
< |
value = mass * vel[2]; |
680 |
< |
break; |
681 |
< |
default : |
682 |
< |
break; |
649 |
> |
if (sd->isLinear()) { |
650 |
> |
int i = sd->linearAxis(); |
651 |
> |
int j = (i + 1) % 3; |
652 |
> |
int k = (i + 2) % 3; |
653 |
> |
value += angMom[j] * angMom[j] / I(j, j) + |
654 |
> |
angMom[k] * angMom[k] / I(k, k); |
655 |
> |
} else { |
656 |
> |
value += angMom[0]*angMom[0]/I(0, 0) |
657 |
> |
+ angMom[1]*angMom[1]/I(1, 1) |
658 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
659 |
> |
} |
660 |
> |
} //angular momenta exchange enabled |
661 |
> |
value *= 0.5; |
662 |
> |
break; |
663 |
> |
case rnemdPx : |
664 |
> |
value = mass * vel[0]; |
665 |
> |
break; |
666 |
> |
case rnemdPy : |
667 |
> |
value = mass * vel[1]; |
668 |
> |
break; |
669 |
> |
case rnemdPz : |
670 |
> |
value = mass * vel[2]; |
671 |
> |
break; |
672 |
> |
default : |
673 |
> |
break; |
674 |
> |
} |
675 |
> |
if (!max_found) { |
676 |
> |
max_val = value; |
677 |
> |
max_sd = sd; |
678 |
> |
max_found = true; |
679 |
> |
} else { |
680 |
> |
if (max_val < value) { |
681 |
> |
max_val = value; |
682 |
> |
max_sd = sd; |
683 |
|
} |
684 |
+ |
} |
685 |
+ |
} |
686 |
|
|
687 |
< |
if (inA == 0) { |
688 |
< |
if (!min_found) { |
689 |
< |
min_val = value; |
690 |
< |
min_sd = sd; |
691 |
< |
min_found = true; |
692 |
< |
} else { |
693 |
< |
if (min_val > value) { |
694 |
< |
min_val = value; |
695 |
< |
min_sd = sd; |
696 |
< |
} |
697 |
< |
} |
698 |
< |
} else { |
699 |
< |
if (!max_found) { |
700 |
< |
max_val = value; |
701 |
< |
max_sd = sd; |
702 |
< |
max_found = true; |
703 |
< |
} else { |
704 |
< |
if (max_val < value) { |
705 |
< |
max_val = value; |
706 |
< |
max_sd = sd; |
707 |
< |
} |
708 |
< |
} |
709 |
< |
} |
687 |
> |
for (sd = seleManB_.beginSelected(selej); sd != NULL; |
688 |
> |
sd = seleManB_.nextSelected(selej)) { |
689 |
> |
|
690 |
> |
Vector3d pos = sd->getPos(); |
691 |
> |
|
692 |
> |
// wrap the stuntdouble's position back into the box: |
693 |
> |
|
694 |
> |
if (usePeriodicBoundaryConditions_) |
695 |
> |
currentSnap_->wrapVector(pos); |
696 |
> |
|
697 |
> |
RealType mass = sd->getMass(); |
698 |
> |
Vector3d vel = sd->getVel(); |
699 |
> |
RealType value; |
700 |
> |
|
701 |
> |
switch(rnemdFluxType_) { |
702 |
> |
case rnemdKE : |
703 |
> |
|
704 |
> |
value = mass * vel.lengthSquare(); |
705 |
> |
|
706 |
> |
if (sd->isDirectional()) { |
707 |
> |
Vector3d angMom = sd->getJ(); |
708 |
> |
Mat3x3d I = sd->getI(); |
709 |
> |
|
710 |
> |
if (sd->isLinear()) { |
711 |
> |
int i = sd->linearAxis(); |
712 |
> |
int j = (i + 1) % 3; |
713 |
> |
int k = (i + 2) % 3; |
714 |
> |
value += angMom[j] * angMom[j] / I(j, j) + |
715 |
> |
angMom[k] * angMom[k] / I(k, k); |
716 |
> |
} else { |
717 |
> |
value += angMom[0]*angMom[0]/I(0, 0) |
718 |
> |
+ angMom[1]*angMom[1]/I(1, 1) |
719 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
720 |
> |
} |
721 |
> |
} //angular momenta exchange enabled |
722 |
> |
value *= 0.5; |
723 |
> |
break; |
724 |
> |
case rnemdPx : |
725 |
> |
value = mass * vel[0]; |
726 |
> |
break; |
727 |
> |
case rnemdPy : |
728 |
> |
value = mass * vel[1]; |
729 |
> |
break; |
730 |
> |
case rnemdPz : |
731 |
> |
value = mass * vel[2]; |
732 |
> |
break; |
733 |
> |
default : |
734 |
> |
break; |
735 |
|
} |
736 |
+ |
|
737 |
+ |
if (!min_found) { |
738 |
+ |
min_val = value; |
739 |
+ |
min_sd = sd; |
740 |
+ |
min_found = true; |
741 |
+ |
} else { |
742 |
+ |
if (min_val > value) { |
743 |
+ |
min_val = value; |
744 |
+ |
min_sd = sd; |
745 |
+ |
} |
746 |
+ |
} |
747 |
|
} |
748 |
|
|
749 |
< |
#ifdef IS_MPI |
750 |
< |
int nProc, worldRank; |
749 |
> |
#ifdef IS_MPI |
750 |
> |
int worldRank = MPI::COMM_WORLD.Get_rank(); |
751 |
|
|
538 |
– |
nProc = MPI::COMM_WORLD.Get_size(); |
539 |
– |
worldRank = MPI::COMM_WORLD.Get_rank(); |
540 |
– |
|
752 |
|
bool my_min_found = min_found; |
753 |
|
bool my_max_found = max_found; |
754 |
|
|
939 |
|
|
940 |
|
switch(rnemdFluxType_) { |
941 |
|
case rnemdKE: |
731 |
– |
cerr << "KE\n"; |
942 |
|
kineticExchange_ += max_val - min_val; |
943 |
|
break; |
944 |
|
case rnemdPx: |
951 |
|
momentumExchange_.z() += max_val - min_val; |
952 |
|
break; |
953 |
|
default: |
744 |
– |
cerr << "default\n"; |
954 |
|
break; |
955 |
|
} |
956 |
|
} else { |
972 |
|
} |
973 |
|
} |
974 |
|
|
975 |
< |
void RNEMD::doNIVS() { |
975 |
> |
void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) { |
976 |
> |
if (!doRNEMD_) return; |
977 |
> |
int selei; |
978 |
> |
int selej; |
979 |
|
|
980 |
|
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
981 |
+ |
RealType time = currentSnap_->getTime(); |
982 |
|
Mat3x3d hmat = currentSnap_->getHmat(); |
983 |
|
|
771 |
– |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
772 |
– |
|
773 |
– |
int selei; |
984 |
|
StuntDouble* sd; |
775 |
– |
int idx; |
985 |
|
|
986 |
|
vector<StuntDouble*> hotBin, coldBin; |
987 |
|
|
1000 |
|
RealType Kcz = 0.0; |
1001 |
|
RealType Kcw = 0.0; |
1002 |
|
|
1003 |
< |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1004 |
< |
sd = seleMan_.nextSelected(selei)) { |
1003 |
> |
for (sd = smanA.beginSelected(selei); sd != NULL; |
1004 |
> |
sd = smanA.nextSelected(selei)) { |
1005 |
|
|
797 |
– |
idx = sd->getLocalIndex(); |
798 |
– |
|
1006 |
|
Vector3d pos = sd->getPos(); |
1007 |
< |
|
1007 |
> |
|
1008 |
|
// wrap the stuntdouble's position back into the box: |
1009 |
< |
|
1009 |
> |
|
1010 |
|
if (usePeriodicBoundaryConditions_) |
1011 |
|
currentSnap_->wrapVector(pos); |
1012 |
< |
|
1013 |
< |
// which bin is this stuntdouble in? |
1014 |
< |
bool inA = inSlabA(pos); |
1015 |
< |
bool inB = inSlabB(pos); |
1012 |
> |
|
1013 |
> |
|
1014 |
> |
RealType mass = sd->getMass(); |
1015 |
> |
Vector3d vel = sd->getVel(); |
1016 |
> |
|
1017 |
> |
hotBin.push_back(sd); |
1018 |
> |
Phx += mass * vel.x(); |
1019 |
> |
Phy += mass * vel.y(); |
1020 |
> |
Phz += mass * vel.z(); |
1021 |
> |
Khx += mass * vel.x() * vel.x(); |
1022 |
> |
Khy += mass * vel.y() * vel.y(); |
1023 |
> |
Khz += mass * vel.z() * vel.z(); |
1024 |
> |
if (sd->isDirectional()) { |
1025 |
> |
Vector3d angMom = sd->getJ(); |
1026 |
> |
Mat3x3d I = sd->getI(); |
1027 |
> |
if (sd->isLinear()) { |
1028 |
> |
int i = sd->linearAxis(); |
1029 |
> |
int j = (i + 1) % 3; |
1030 |
> |
int k = (i + 2) % 3; |
1031 |
> |
Khw += angMom[j] * angMom[j] / I(j, j) + |
1032 |
> |
angMom[k] * angMom[k] / I(k, k); |
1033 |
> |
} else { |
1034 |
> |
Khw += angMom[0]*angMom[0]/I(0, 0) |
1035 |
> |
+ angMom[1]*angMom[1]/I(1, 1) |
1036 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
1037 |
> |
} |
1038 |
> |
} |
1039 |
> |
} |
1040 |
> |
for (sd = smanB.beginSelected(selej); sd != NULL; |
1041 |
> |
sd = smanB.nextSelected(selej)) { |
1042 |
> |
Vector3d pos = sd->getPos(); |
1043 |
> |
|
1044 |
> |
// wrap the stuntdouble's position back into the box: |
1045 |
> |
|
1046 |
> |
if (usePeriodicBoundaryConditions_) |
1047 |
> |
currentSnap_->wrapVector(pos); |
1048 |
> |
|
1049 |
> |
RealType mass = sd->getMass(); |
1050 |
> |
Vector3d vel = sd->getVel(); |
1051 |
|
|
1052 |
< |
if (inA || inB) { |
1053 |
< |
|
1054 |
< |
RealType mass = sd->getMass(); |
1055 |
< |
Vector3d vel = sd->getVel(); |
1056 |
< |
|
1057 |
< |
if (inA) { |
1058 |
< |
hotBin.push_back(sd); |
1059 |
< |
Phx += mass * vel.x(); |
1060 |
< |
Phy += mass * vel.y(); |
1061 |
< |
Phz += mass * vel.z(); |
1062 |
< |
Khx += mass * vel.x() * vel.x(); |
1063 |
< |
Khy += mass * vel.y() * vel.y(); |
1064 |
< |
Khz += mass * vel.z() * vel.z(); |
1065 |
< |
if (sd->isDirectional()) { |
1066 |
< |
Vector3d angMom = sd->getJ(); |
1067 |
< |
Mat3x3d I = sd->getI(); |
1068 |
< |
if (sd->isLinear()) { |
1069 |
< |
int i = sd->linearAxis(); |
1070 |
< |
int j = (i + 1) % 3; |
1071 |
< |
int k = (i + 2) % 3; |
1072 |
< |
Khw += angMom[j] * angMom[j] / I(j, j) + |
831 |
< |
angMom[k] * angMom[k] / I(k, k); |
832 |
< |
} else { |
833 |
< |
Khw += angMom[0]*angMom[0]/I(0, 0) |
834 |
< |
+ angMom[1]*angMom[1]/I(1, 1) |
835 |
< |
+ angMom[2]*angMom[2]/I(2, 2); |
836 |
< |
} |
837 |
< |
} |
838 |
< |
} else { |
839 |
< |
coldBin.push_back(sd); |
840 |
< |
Pcx += mass * vel.x(); |
841 |
< |
Pcy += mass * vel.y(); |
842 |
< |
Pcz += mass * vel.z(); |
843 |
< |
Kcx += mass * vel.x() * vel.x(); |
844 |
< |
Kcy += mass * vel.y() * vel.y(); |
845 |
< |
Kcz += mass * vel.z() * vel.z(); |
846 |
< |
if (sd->isDirectional()) { |
847 |
< |
Vector3d angMom = sd->getJ(); |
848 |
< |
Mat3x3d I = sd->getI(); |
849 |
< |
if (sd->isLinear()) { |
850 |
< |
int i = sd->linearAxis(); |
851 |
< |
int j = (i + 1) % 3; |
852 |
< |
int k = (i + 2) % 3; |
853 |
< |
Kcw += angMom[j] * angMom[j] / I(j, j) + |
854 |
< |
angMom[k] * angMom[k] / I(k, k); |
855 |
< |
} else { |
856 |
< |
Kcw += angMom[0]*angMom[0]/I(0, 0) |
857 |
< |
+ angMom[1]*angMom[1]/I(1, 1) |
858 |
< |
+ angMom[2]*angMom[2]/I(2, 2); |
859 |
< |
} |
860 |
< |
} |
861 |
< |
} |
1052 |
> |
coldBin.push_back(sd); |
1053 |
> |
Pcx += mass * vel.x(); |
1054 |
> |
Pcy += mass * vel.y(); |
1055 |
> |
Pcz += mass * vel.z(); |
1056 |
> |
Kcx += mass * vel.x() * vel.x(); |
1057 |
> |
Kcy += mass * vel.y() * vel.y(); |
1058 |
> |
Kcz += mass * vel.z() * vel.z(); |
1059 |
> |
if (sd->isDirectional()) { |
1060 |
> |
Vector3d angMom = sd->getJ(); |
1061 |
> |
Mat3x3d I = sd->getI(); |
1062 |
> |
if (sd->isLinear()) { |
1063 |
> |
int i = sd->linearAxis(); |
1064 |
> |
int j = (i + 1) % 3; |
1065 |
> |
int k = (i + 2) % 3; |
1066 |
> |
Kcw += angMom[j] * angMom[j] / I(j, j) + |
1067 |
> |
angMom[k] * angMom[k] / I(k, k); |
1068 |
> |
} else { |
1069 |
> |
Kcw += angMom[0]*angMom[0]/I(0, 0) |
1070 |
> |
+ angMom[1]*angMom[1]/I(1, 1) |
1071 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
1072 |
> |
} |
1073 |
|
} |
1074 |
|
} |
1075 |
|
|
1119 |
|
|
1120 |
|
if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients |
1121 |
|
c = sqrt(c); |
1122 |
< |
//std::cerr << "cold slab scaling coefficient: " << c << endl; |
912 |
< |
//now convert to hotBin coefficient |
1122 |
> |
|
1123 |
|
RealType w = 0.0; |
1124 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1125 |
|
x = 1.0 + px * (1.0 - c); |
1157 |
|
} |
1158 |
|
} |
1159 |
|
w = sqrt(w); |
950 |
– |
// std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z |
951 |
– |
// << "\twh= " << w << endl; |
1160 |
|
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1161 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1162 |
|
vel = (*sdi)->getVel(); |
1419 |
|
failTrialCount_++; |
1420 |
|
} |
1421 |
|
} |
1422 |
< |
|
1423 |
< |
void RNEMD::doVSS() { |
1422 |
> |
|
1423 |
> |
void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) { |
1424 |
> |
if (!doRNEMD_) return; |
1425 |
> |
int selei; |
1426 |
> |
int selej; |
1427 |
|
|
1428 |
|
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1429 |
|
RealType time = currentSnap_->getTime(); |
1430 |
|
Mat3x3d hmat = currentSnap_->getHmat(); |
1431 |
|
|
1221 |
– |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1222 |
– |
|
1223 |
– |
int selei; |
1432 |
|
StuntDouble* sd; |
1225 |
– |
int idx; |
1433 |
|
|
1434 |
|
vector<StuntDouble*> hotBin, coldBin; |
1435 |
|
|
1436 |
|
Vector3d Ph(V3Zero); |
1437 |
+ |
Vector3d Lh(V3Zero); |
1438 |
|
RealType Mh = 0.0; |
1439 |
+ |
Mat3x3d Ih(0.0); |
1440 |
|
RealType Kh = 0.0; |
1441 |
|
Vector3d Pc(V3Zero); |
1442 |
+ |
Vector3d Lc(V3Zero); |
1443 |
|
RealType Mc = 0.0; |
1444 |
+ |
Mat3x3d Ic(0.0); |
1445 |
|
RealType Kc = 0.0; |
1235 |
– |
|
1446 |
|
|
1447 |
< |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1448 |
< |
sd = seleMan_.nextSelected(selei)) { |
1447 |
> |
// Constraints can be on only the linear or angular momentum, but |
1448 |
> |
// not both. Usually, the user will specify which they want, but |
1449 |
> |
// in case they don't, the use of periodic boundaries should make |
1450 |
> |
// the choice for us. |
1451 |
> |
bool doLinearPart = false; |
1452 |
> |
bool doAngularPart = false; |
1453 |
|
|
1454 |
< |
idx = sd->getLocalIndex(); |
1454 |
> |
switch (rnemdFluxType_) { |
1455 |
> |
case rnemdPx: |
1456 |
> |
case rnemdPy: |
1457 |
> |
case rnemdPz: |
1458 |
> |
case rnemdPvector: |
1459 |
> |
case rnemdKePx: |
1460 |
> |
case rnemdKePy: |
1461 |
> |
case rnemdKePvector: |
1462 |
> |
doLinearPart = true; |
1463 |
> |
break; |
1464 |
> |
case rnemdLx: |
1465 |
> |
case rnemdLy: |
1466 |
> |
case rnemdLz: |
1467 |
> |
case rnemdLvector: |
1468 |
> |
case rnemdKeLx: |
1469 |
> |
case rnemdKeLy: |
1470 |
> |
case rnemdKeLz: |
1471 |
> |
case rnemdKeLvector: |
1472 |
> |
doAngularPart = true; |
1473 |
> |
break; |
1474 |
> |
case rnemdKE: |
1475 |
> |
case rnemdRotKE: |
1476 |
> |
case rnemdFullKE: |
1477 |
> |
default: |
1478 |
> |
if (usePeriodicBoundaryConditions_) |
1479 |
> |
doLinearPart = true; |
1480 |
> |
else |
1481 |
> |
doAngularPart = true; |
1482 |
> |
break; |
1483 |
> |
} |
1484 |
> |
|
1485 |
> |
for (sd = smanA.beginSelected(selei); sd != NULL; |
1486 |
> |
sd = smanA.nextSelected(selei)) { |
1487 |
|
|
1488 |
|
Vector3d pos = sd->getPos(); |
1489 |
|
|
1490 |
|
// wrap the stuntdouble's position back into the box: |
1491 |
+ |
|
1492 |
+ |
if (usePeriodicBoundaryConditions_) |
1493 |
+ |
currentSnap_->wrapVector(pos); |
1494 |
+ |
|
1495 |
+ |
RealType mass = sd->getMass(); |
1496 |
+ |
Vector3d vel = sd->getVel(); |
1497 |
+ |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1498 |
+ |
RealType r2; |
1499 |
+ |
|
1500 |
+ |
hotBin.push_back(sd); |
1501 |
+ |
Ph += mass * vel; |
1502 |
+ |
Mh += mass; |
1503 |
+ |
Kh += mass * vel.lengthSquare(); |
1504 |
+ |
Lh += mass * cross(rPos, vel); |
1505 |
+ |
Ih -= outProduct(rPos, rPos) * mass; |
1506 |
+ |
r2 = rPos.lengthSquare(); |
1507 |
+ |
Ih(0, 0) += mass * r2; |
1508 |
+ |
Ih(1, 1) += mass * r2; |
1509 |
+ |
Ih(2, 2) += mass * r2; |
1510 |
+ |
|
1511 |
+ |
if (rnemdFluxType_ == rnemdFullKE) { |
1512 |
+ |
if (sd->isDirectional()) { |
1513 |
+ |
Vector3d angMom = sd->getJ(); |
1514 |
+ |
Mat3x3d I = sd->getI(); |
1515 |
+ |
if (sd->isLinear()) { |
1516 |
+ |
int i = sd->linearAxis(); |
1517 |
+ |
int j = (i + 1) % 3; |
1518 |
+ |
int k = (i + 2) % 3; |
1519 |
+ |
Kh += angMom[j] * angMom[j] / I(j, j) + |
1520 |
+ |
angMom[k] * angMom[k] / I(k, k); |
1521 |
+ |
} else { |
1522 |
+ |
Kh += angMom[0] * angMom[0] / I(0, 0) + |
1523 |
+ |
angMom[1] * angMom[1] / I(1, 1) + |
1524 |
+ |
angMom[2] * angMom[2] / I(2, 2); |
1525 |
+ |
} |
1526 |
+ |
} |
1527 |
+ |
} |
1528 |
+ |
} |
1529 |
+ |
for (sd = smanB.beginSelected(selej); sd != NULL; |
1530 |
+ |
sd = smanB.nextSelected(selej)) { |
1531 |
|
|
1532 |
+ |
Vector3d pos = sd->getPos(); |
1533 |
+ |
|
1534 |
+ |
// wrap the stuntdouble's position back into the box: |
1535 |
+ |
|
1536 |
|
if (usePeriodicBoundaryConditions_) |
1537 |
|
currentSnap_->wrapVector(pos); |
1538 |
+ |
|
1539 |
+ |
RealType mass = sd->getMass(); |
1540 |
+ |
Vector3d vel = sd->getVel(); |
1541 |
+ |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1542 |
+ |
RealType r2; |
1543 |
|
|
1544 |
< |
// which bin is this stuntdouble in? |
1545 |
< |
bool inA = inSlabA(pos); |
1546 |
< |
bool inB = inSlabB(pos); |
1544 |
> |
coldBin.push_back(sd); |
1545 |
> |
Pc += mass * vel; |
1546 |
> |
Mc += mass; |
1547 |
> |
Kc += mass * vel.lengthSquare(); |
1548 |
> |
Lc += mass * cross(rPos, vel); |
1549 |
> |
Ic -= outProduct(rPos, rPos) * mass; |
1550 |
> |
r2 = rPos.lengthSquare(); |
1551 |
> |
Ic(0, 0) += mass * r2; |
1552 |
> |
Ic(1, 1) += mass * r2; |
1553 |
> |
Ic(2, 2) += mass * r2; |
1554 |
|
|
1555 |
< |
if (inA || inB) { |
1556 |
< |
|
1557 |
< |
RealType mass = sd->getMass(); |
1558 |
< |
Vector3d vel = sd->getVel(); |
1559 |
< |
|
1560 |
< |
if (inA) { |
1561 |
< |
hotBin.push_back(sd); |
1562 |
< |
//std::cerr << "before, velocity = " << vel << endl; |
1563 |
< |
Ph += mass * vel; |
1564 |
< |
//std::cerr << "after, velocity = " << vel << endl; |
1565 |
< |
Mh += mass; |
1566 |
< |
Kh += mass * vel.lengthSquare(); |
1567 |
< |
if (rnemdFluxType_ == rnemdFullKE) { |
1568 |
< |
if (sd->isDirectional()) { |
1569 |
< |
Vector3d angMom = sd->getJ(); |
1570 |
< |
Mat3x3d I = sd->getI(); |
1269 |
< |
if (sd->isLinear()) { |
1270 |
< |
int i = sd->linearAxis(); |
1271 |
< |
int j = (i + 1) % 3; |
1272 |
< |
int k = (i + 2) % 3; |
1273 |
< |
Kh += angMom[j] * angMom[j] / I(j, j) + |
1274 |
< |
angMom[k] * angMom[k] / I(k, k); |
1275 |
< |
} else { |
1276 |
< |
Kh += angMom[0] * angMom[0] / I(0, 0) + |
1277 |
< |
angMom[1] * angMom[1] / I(1, 1) + |
1278 |
< |
angMom[2] * angMom[2] / I(2, 2); |
1279 |
< |
} |
1280 |
< |
} |
1281 |
< |
} |
1282 |
< |
} else { //midBin_ |
1283 |
< |
coldBin.push_back(sd); |
1284 |
< |
Pc += mass * vel; |
1285 |
< |
Mc += mass; |
1286 |
< |
Kc += mass * vel.lengthSquare(); |
1287 |
< |
if (rnemdFluxType_ == rnemdFullKE) { |
1288 |
< |
if (sd->isDirectional()) { |
1289 |
< |
Vector3d angMom = sd->getJ(); |
1290 |
< |
Mat3x3d I = sd->getI(); |
1291 |
< |
if (sd->isLinear()) { |
1292 |
< |
int i = sd->linearAxis(); |
1293 |
< |
int j = (i + 1) % 3; |
1294 |
< |
int k = (i + 2) % 3; |
1295 |
< |
Kc += angMom[j] * angMom[j] / I(j, j) + |
1296 |
< |
angMom[k] * angMom[k] / I(k, k); |
1297 |
< |
} else { |
1298 |
< |
Kc += angMom[0] * angMom[0] / I(0, 0) + |
1299 |
< |
angMom[1] * angMom[1] / I(1, 1) + |
1300 |
< |
angMom[2] * angMom[2] / I(2, 2); |
1301 |
< |
} |
1302 |
< |
} |
1303 |
< |
} |
1304 |
< |
} |
1555 |
> |
if (rnemdFluxType_ == rnemdFullKE) { |
1556 |
> |
if (sd->isDirectional()) { |
1557 |
> |
Vector3d angMom = sd->getJ(); |
1558 |
> |
Mat3x3d I = sd->getI(); |
1559 |
> |
if (sd->isLinear()) { |
1560 |
> |
int i = sd->linearAxis(); |
1561 |
> |
int j = (i + 1) % 3; |
1562 |
> |
int k = (i + 2) % 3; |
1563 |
> |
Kc += angMom[j] * angMom[j] / I(j, j) + |
1564 |
> |
angMom[k] * angMom[k] / I(k, k); |
1565 |
> |
} else { |
1566 |
> |
Kc += angMom[0] * angMom[0] / I(0, 0) + |
1567 |
> |
angMom[1] * angMom[1] / I(1, 1) + |
1568 |
> |
angMom[2] * angMom[2] / I(2, 2); |
1569 |
> |
} |
1570 |
> |
} |
1571 |
|
} |
1572 |
|
} |
1573 |
|
|
1574 |
|
Kh *= 0.5; |
1575 |
|
Kc *= 0.5; |
1310 |
– |
|
1311 |
– |
// std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc |
1312 |
– |
// << "\tKc= " << Kc << endl; |
1313 |
– |
// std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl; |
1576 |
|
|
1577 |
|
#ifdef IS_MPI |
1578 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM); |
1579 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM); |
1580 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM); |
1581 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM); |
1582 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM); |
1583 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM); |
1584 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM); |
1585 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM); |
1586 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9, |
1587 |
+ |
MPI::REALTYPE, MPI::SUM); |
1588 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9, |
1589 |
+ |
MPI::REALTYPE, MPI::SUM); |
1590 |
|
#endif |
1591 |
+ |
|
1592 |
|
|
1593 |
+ |
Vector3d ac, acrec, bc, bcrec; |
1594 |
+ |
Vector3d ah, ahrec, bh, bhrec; |
1595 |
+ |
RealType cNumerator, cDenominator; |
1596 |
+ |
RealType hNumerator, hDenominator; |
1597 |
+ |
|
1598 |
+ |
|
1599 |
|
bool successfulExchange = false; |
1600 |
|
if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty |
1601 |
|
Vector3d vc = Pc / Mc; |
1602 |
< |
Vector3d ac = -momentumTarget_ / Mc + vc; |
1603 |
< |
Vector3d acrec = -momentumTarget_ / Mc; |
1604 |
< |
RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare(); |
1602 |
> |
ac = -momentumTarget_ / Mc + vc; |
1603 |
> |
acrec = -momentumTarget_ / Mc; |
1604 |
> |
|
1605 |
> |
// We now need the inverse of the inertia tensor to calculate the |
1606 |
> |
// angular velocity of the cold slab; |
1607 |
> |
Mat3x3d Ici = Ic.inverse(); |
1608 |
> |
Vector3d omegac = Ici * Lc; |
1609 |
> |
bc = -(Ici * angularMomentumTarget_) + omegac; |
1610 |
> |
bcrec = bc - omegac; |
1611 |
> |
|
1612 |
> |
cNumerator = Kc - kineticTarget_; |
1613 |
> |
if (doLinearPart) |
1614 |
> |
cNumerator -= 0.5 * Mc * ac.lengthSquare(); |
1615 |
> |
|
1616 |
> |
if (doAngularPart) |
1617 |
> |
cNumerator -= 0.5 * ( dot(bc, Ic * bc)); |
1618 |
> |
|
1619 |
|
if (cNumerator > 0.0) { |
1620 |
< |
RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare(); |
1620 |
> |
|
1621 |
> |
cDenominator = Kc; |
1622 |
> |
|
1623 |
> |
if (doLinearPart) |
1624 |
> |
cDenominator -= 0.5 * Mc * vc.lengthSquare(); |
1625 |
> |
|
1626 |
> |
if (doAngularPart) |
1627 |
> |
cDenominator -= 0.5*(dot(omegac, Ic * omegac)); |
1628 |
> |
|
1629 |
|
if (cDenominator > 0.0) { |
1630 |
|
RealType c = sqrt(cNumerator / cDenominator); |
1631 |
|
if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients |
1632 |
+ |
|
1633 |
|
Vector3d vh = Ph / Mh; |
1634 |
< |
Vector3d ah = momentumTarget_ / Mh + vh; |
1635 |
< |
Vector3d ahrec = momentumTarget_ / Mh; |
1636 |
< |
RealType hNumerator = Kh + kineticTarget_ |
1637 |
< |
- 0.5 * Mh * ah.lengthSquare(); |
1638 |
< |
if (hNumerator > 0.0) { |
1639 |
< |
RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare(); |
1634 |
> |
ah = momentumTarget_ / Mh + vh; |
1635 |
> |
ahrec = momentumTarget_ / Mh; |
1636 |
> |
|
1637 |
> |
// We now need the inverse of the inertia tensor to |
1638 |
> |
// calculate the angular velocity of the hot slab; |
1639 |
> |
Mat3x3d Ihi = Ih.inverse(); |
1640 |
> |
Vector3d omegah = Ihi * Lh; |
1641 |
> |
bh = (Ihi * angularMomentumTarget_) + omegah; |
1642 |
> |
bhrec = bh - omegah; |
1643 |
> |
|
1644 |
> |
hNumerator = Kh + kineticTarget_; |
1645 |
> |
if (doLinearPart) |
1646 |
> |
hNumerator -= 0.5 * Mh * ah.lengthSquare(); |
1647 |
> |
|
1648 |
> |
if (doAngularPart) |
1649 |
> |
hNumerator -= 0.5 * ( dot(bh, Ih * bh)); |
1650 |
> |
|
1651 |
> |
if (hNumerator > 0.0) { |
1652 |
> |
|
1653 |
> |
hDenominator = Kh; |
1654 |
> |
if (doLinearPart) |
1655 |
> |
hDenominator -= 0.5 * Mh * vh.lengthSquare(); |
1656 |
> |
if (doAngularPart) |
1657 |
> |
hDenominator -= 0.5*(dot(omegah, Ih * omegah)); |
1658 |
> |
|
1659 |
|
if (hDenominator > 0.0) { |
1660 |
|
RealType h = sqrt(hNumerator / hDenominator); |
1661 |
|
if ((h > 0.9) && (h < 1.1)) { |
1662 |
< |
// std::cerr << "cold slab scaling coefficient: " << c << "\n"; |
1346 |
< |
// std::cerr << "hot slab scaling coefficient: " << h << "\n"; |
1662 |
> |
|
1663 |
|
vector<StuntDouble*>::iterator sdi; |
1664 |
|
Vector3d vel; |
1665 |
+ |
Vector3d rPos; |
1666 |
+ |
|
1667 |
|
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1668 |
|
//vel = (*sdi)->getVel(); |
1669 |
< |
vel = ((*sdi)->getVel() - vc) * c + ac; |
1669 |
> |
rPos = (*sdi)->getPos() - coordinateOrigin_; |
1670 |
> |
if (doLinearPart) |
1671 |
> |
vel = ((*sdi)->getVel() - vc) * c + ac; |
1672 |
> |
if (doAngularPart) |
1673 |
> |
vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos); |
1674 |
> |
|
1675 |
|
(*sdi)->setVel(vel); |
1676 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1677 |
|
if ((*sdi)->isDirectional()) { |
1682 |
|
} |
1683 |
|
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1684 |
|
//vel = (*sdi)->getVel(); |
1685 |
< |
vel = ((*sdi)->getVel() - vh) * h + ah; |
1685 |
> |
rPos = (*sdi)->getPos() - coordinateOrigin_; |
1686 |
> |
if (doLinearPart) |
1687 |
> |
vel = ((*sdi)->getVel() - vh) * h + ah; |
1688 |
> |
if (doAngularPart) |
1689 |
> |
vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos); |
1690 |
> |
|
1691 |
|
(*sdi)->setVel(vel); |
1692 |
|
if (rnemdFluxType_ == rnemdFullKE) { |
1693 |
|
if ((*sdi)->isDirectional()) { |
1699 |
|
successfulExchange = true; |
1700 |
|
kineticExchange_ += kineticTarget_; |
1701 |
|
momentumExchange_ += momentumTarget_; |
1702 |
+ |
angularMomentumExchange_ += angularMomentumTarget_; |
1703 |
|
} |
1704 |
|
} |
1705 |
|
} |
1719 |
|
} |
1720 |
|
} |
1721 |
|
|
1722 |
< |
void RNEMD::doRNEMD() { |
1722 |
> |
RealType RNEMD::getDividingArea() { |
1723 |
|
|
1724 |
+ |
if (hasDividingArea_) return dividingArea_; |
1725 |
+ |
|
1726 |
+ |
RealType areaA, areaB; |
1727 |
+ |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
1728 |
+ |
|
1729 |
+ |
if (hasSelectionA_) { |
1730 |
+ |
int isd; |
1731 |
+ |
StuntDouble* sd; |
1732 |
+ |
vector<StuntDouble*> aSites; |
1733 |
+ |
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1734 |
+ |
for (sd = seleManA_.beginSelected(isd); sd != NULL; |
1735 |
+ |
sd = seleManA_.nextSelected(isd)) { |
1736 |
+ |
aSites.push_back(sd); |
1737 |
+ |
} |
1738 |
+ |
ConvexHull* surfaceMeshA = new ConvexHull(); |
1739 |
+ |
surfaceMeshA->computeHull(aSites); |
1740 |
+ |
areaA = surfaceMeshA->getArea(); |
1741 |
+ |
delete surfaceMeshA; |
1742 |
+ |
|
1743 |
+ |
} else { |
1744 |
+ |
if (usePeriodicBoundaryConditions_) { |
1745 |
+ |
// in periodic boundaries, the surface area is twice the x-y |
1746 |
+ |
// area of the current box: |
1747 |
+ |
areaA = 2.0 * snap->getXYarea(); |
1748 |
+ |
} else { |
1749 |
+ |
// in non-periodic simulations, without explicitly setting |
1750 |
+ |
// selections, the sphere radius sets the surface area of the |
1751 |
+ |
// dividing surface: |
1752 |
+ |
areaA = 4.0 * M_PI * pow(sphereARadius_, 2); |
1753 |
+ |
} |
1754 |
+ |
} |
1755 |
+ |
|
1756 |
+ |
|
1757 |
+ |
|
1758 |
+ |
if (hasSelectionB_) { |
1759 |
+ |
int isd; |
1760 |
+ |
StuntDouble* sd; |
1761 |
+ |
vector<StuntDouble*> bSites; |
1762 |
+ |
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1763 |
+ |
for (sd = seleManB_.beginSelected(isd); sd != NULL; |
1764 |
+ |
sd = seleManB_.nextSelected(isd)) { |
1765 |
+ |
bSites.push_back(sd); |
1766 |
+ |
} |
1767 |
+ |
ConvexHull* surfaceMeshB = new ConvexHull(); |
1768 |
+ |
surfaceMeshB->computeHull(bSites); |
1769 |
+ |
areaB = surfaceMeshB->getArea(); |
1770 |
+ |
delete surfaceMeshB; |
1771 |
+ |
|
1772 |
+ |
} else { |
1773 |
+ |
if (usePeriodicBoundaryConditions_) { |
1774 |
+ |
// in periodic boundaries, the surface area is twice the x-y |
1775 |
+ |
// area of the current box: |
1776 |
+ |
areaB = 2.0 * snap->getXYarea(); |
1777 |
+ |
} else { |
1778 |
+ |
// in non-periodic simulations, without explicitly setting |
1779 |
+ |
// selections, but if a sphereBradius has been set, just use that: |
1780 |
+ |
areaB = 4.0 * M_PI * pow(sphereBRadius_, 2); |
1781 |
+ |
} |
1782 |
+ |
} |
1783 |
+ |
|
1784 |
+ |
dividingArea_ = min(areaA, areaB); |
1785 |
+ |
hasDividingArea_ = true; |
1786 |
+ |
return dividingArea_; |
1787 |
+ |
} |
1788 |
+ |
|
1789 |
+ |
void RNEMD::doRNEMD() { |
1790 |
+ |
if (!doRNEMD_) return; |
1791 |
|
trialCount_++; |
1792 |
+ |
|
1793 |
+ |
// object evaluator: |
1794 |
+ |
evaluator_.loadScriptString(rnemdObjectSelection_); |
1795 |
+ |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1796 |
+ |
|
1797 |
+ |
evaluatorA_.loadScriptString(selectionA_); |
1798 |
+ |
evaluatorB_.loadScriptString(selectionB_); |
1799 |
+ |
|
1800 |
+ |
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1801 |
+ |
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1802 |
+ |
|
1803 |
+ |
commonA_ = seleManA_ & seleMan_; |
1804 |
+ |
commonB_ = seleManB_ & seleMan_; |
1805 |
+ |
|
1806 |
+ |
// Target exchange quantities (in each exchange) = dividingArea * dt * flux |
1807 |
+ |
// dt = exchange time interval |
1808 |
+ |
// flux = target flux |
1809 |
+ |
// dividingArea = smallest dividing surface between the two regions |
1810 |
+ |
|
1811 |
+ |
hasDividingArea_ = false; |
1812 |
+ |
RealType area = getDividingArea(); |
1813 |
+ |
|
1814 |
+ |
kineticTarget_ = kineticFlux_ * exchangeTime_ * area; |
1815 |
+ |
momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area; |
1816 |
+ |
angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area; |
1817 |
+ |
|
1818 |
|
switch(rnemdMethod_) { |
1819 |
|
case rnemdSwap: |
1820 |
< |
doSwap(); |
1820 |
> |
doSwap(commonA_, commonB_); |
1821 |
|
break; |
1822 |
|
case rnemdNIVS: |
1823 |
< |
doNIVS(); |
1823 |
> |
doNIVS(commonA_, commonB_); |
1824 |
|
break; |
1825 |
|
case rnemdVSS: |
1826 |
< |
doVSS(); |
1826 |
> |
doVSS(commonA_, commonB_); |
1827 |
|
break; |
1828 |
|
case rnemdUnkownMethod: |
1829 |
|
default : |
1832 |
|
} |
1833 |
|
|
1834 |
|
void RNEMD::collectData() { |
1835 |
< |
|
1835 |
> |
if (!doRNEMD_) return; |
1836 |
|
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1837 |
+ |
|
1838 |
+ |
// collectData can be called more frequently than the doRNEMD, so use the |
1839 |
+ |
// computed area from the last exchange time: |
1840 |
+ |
RealType area = getDividingArea(); |
1841 |
+ |
areaAccumulator_->add(area); |
1842 |
|
Mat3x3d hmat = currentSnap_->getHmat(); |
1416 |
– |
|
1843 |
|
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1844 |
|
|
1845 |
< |
int selei; |
1845 |
> |
int selei(0); |
1846 |
|
StuntDouble* sd; |
1847 |
< |
int idx; |
1847 |
> |
int binNo; |
1848 |
|
|
1849 |
|
vector<RealType> binMass(nBins_, 0.0); |
1850 |
|
vector<RealType> binPx(nBins_, 0.0); |
1851 |
|
vector<RealType> binPy(nBins_, 0.0); |
1852 |
|
vector<RealType> binPz(nBins_, 0.0); |
1853 |
+ |
vector<RealType> binOmegax(nBins_, 0.0); |
1854 |
+ |
vector<RealType> binOmegay(nBins_, 0.0); |
1855 |
+ |
vector<RealType> binOmegaz(nBins_, 0.0); |
1856 |
|
vector<RealType> binKE(nBins_, 0.0); |
1857 |
|
vector<int> binDOF(nBins_, 0); |
1858 |
|
vector<int> binCount(nBins_, 0); |
1860 |
|
// alternative approach, track all molecules instead of only those |
1861 |
|
// selected for scaling/swapping: |
1862 |
|
/* |
1863 |
< |
SimInfo::MoleculeIterator miter; |
1864 |
< |
vector<StuntDouble*>::iterator iiter; |
1865 |
< |
Molecule* mol; |
1866 |
< |
StuntDouble* sd; |
1867 |
< |
for (mol = info_->beginMolecule(miter); mol != NULL; |
1863 |
> |
SimInfo::MoleculeIterator miter; |
1864 |
> |
vector<StuntDouble*>::iterator iiter; |
1865 |
> |
Molecule* mol; |
1866 |
> |
StuntDouble* sd; |
1867 |
> |
for (mol = info_->beginMolecule(miter); mol != NULL; |
1868 |
|
mol = info_->nextMolecule(miter)) |
1869 |
|
sd is essentially sd |
1870 |
< |
for (sd = mol->beginIntegrableObject(iiter); |
1871 |
< |
sd != NULL; |
1872 |
< |
sd = mol->nextIntegrableObject(iiter)) |
1870 |
> |
for (sd = mol->beginIntegrableObject(iiter); |
1871 |
> |
sd != NULL; |
1872 |
> |
sd = mol->nextIntegrableObject(iiter)) |
1873 |
|
*/ |
1874 |
+ |
|
1875 |
|
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1876 |
< |
sd = seleMan_.nextSelected(selei)) { |
1877 |
< |
|
1448 |
< |
idx = sd->getLocalIndex(); |
1449 |
< |
|
1876 |
> |
sd = seleMan_.nextSelected(selei)) { |
1877 |
> |
|
1878 |
|
Vector3d pos = sd->getPos(); |
1879 |
|
|
1880 |
|
// wrap the stuntdouble's position back into the box: |
1881 |
|
|
1882 |
< |
if (usePeriodicBoundaryConditions_) |
1882 |
> |
if (usePeriodicBoundaryConditions_) { |
1883 |
|
currentSnap_->wrapVector(pos); |
1884 |
+ |
// which bin is this stuntdouble in? |
1885 |
+ |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1886 |
+ |
// Shift molecules by half a box to have bins start at 0 |
1887 |
+ |
// The modulo operator is used to wrap the case when we are |
1888 |
+ |
// beyond the end of the bins back to the beginning. |
1889 |
+ |
binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
1890 |
+ |
} else { |
1891 |
+ |
Vector3d rPos = pos - coordinateOrigin_; |
1892 |
+ |
binNo = int(rPos.length() / binWidth_); |
1893 |
+ |
} |
1894 |
|
|
1457 |
– |
// which bin is this stuntdouble in? |
1458 |
– |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1459 |
– |
// Shift molecules by half a box to have bins start at 0 |
1460 |
– |
// The modulo operator is used to wrap the case when we are |
1461 |
– |
// beyond the end of the bins back to the beginning. |
1462 |
– |
int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
1463 |
– |
|
1895 |
|
RealType mass = sd->getMass(); |
1896 |
|
Vector3d vel = sd->getVel(); |
1897 |
< |
|
1898 |
< |
binCount[binNo]++; |
1899 |
< |
binMass[binNo] += mass; |
1900 |
< |
binPx[binNo] += mass*vel.x(); |
1901 |
< |
binPy[binNo] += mass*vel.y(); |
1902 |
< |
binPz[binNo] += mass*vel.z(); |
1903 |
< |
binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); |
1904 |
< |
binDOF[binNo] += 3; |
1905 |
< |
|
1906 |
< |
if (sd->isDirectional()) { |
1907 |
< |
Vector3d angMom = sd->getJ(); |
1908 |
< |
Mat3x3d I = sd->getI(); |
1909 |
< |
if (sd->isLinear()) { |
1910 |
< |
int i = sd->linearAxis(); |
1911 |
< |
int j = (i + 1) % 3; |
1912 |
< |
int k = (i + 2) % 3; |
1913 |
< |
binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
1914 |
< |
angMom[k] * angMom[k] / I(k, k)); |
1915 |
< |
binDOF[binNo] += 2; |
1916 |
< |
} else { |
1917 |
< |
binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
1918 |
< |
angMom[1] * angMom[1] / I(1, 1) + |
1919 |
< |
angMom[2] * angMom[2] / I(2, 2)); |
1920 |
< |
binDOF[binNo] += 3; |
1897 |
> |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1898 |
> |
Vector3d aVel = cross(rPos, vel); |
1899 |
> |
|
1900 |
> |
if (binNo >= 0 && binNo < nBins_) { |
1901 |
> |
binCount[binNo]++; |
1902 |
> |
binMass[binNo] += mass; |
1903 |
> |
binPx[binNo] += mass*vel.x(); |
1904 |
> |
binPy[binNo] += mass*vel.y(); |
1905 |
> |
binPz[binNo] += mass*vel.z(); |
1906 |
> |
binOmegax[binNo] += aVel.x(); |
1907 |
> |
binOmegay[binNo] += aVel.y(); |
1908 |
> |
binOmegaz[binNo] += aVel.z(); |
1909 |
> |
binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); |
1910 |
> |
binDOF[binNo] += 3; |
1911 |
> |
|
1912 |
> |
if (sd->isDirectional()) { |
1913 |
> |
Vector3d angMom = sd->getJ(); |
1914 |
> |
Mat3x3d I = sd->getI(); |
1915 |
> |
if (sd->isLinear()) { |
1916 |
> |
int i = sd->linearAxis(); |
1917 |
> |
int j = (i + 1) % 3; |
1918 |
> |
int k = (i + 2) % 3; |
1919 |
> |
binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
1920 |
> |
angMom[k] * angMom[k] / I(k, k)); |
1921 |
> |
binDOF[binNo] += 2; |
1922 |
> |
} else { |
1923 |
> |
binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
1924 |
> |
angMom[1] * angMom[1] / I(1, 1) + |
1925 |
> |
angMom[2] * angMom[2] / I(2, 2)); |
1926 |
> |
binDOF[binNo] += 3; |
1927 |
> |
} |
1928 |
|
} |
1929 |
|
} |
1930 |
|
} |
1931 |
|
|
1494 |
– |
|
1932 |
|
#ifdef IS_MPI |
1933 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0], |
1934 |
|
nBins_, MPI::INT, MPI::SUM); |
1940 |
|
nBins_, MPI::REALTYPE, MPI::SUM); |
1941 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0], |
1942 |
|
nBins_, MPI::REALTYPE, MPI::SUM); |
1943 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0], |
1944 |
+ |
nBins_, MPI::REALTYPE, MPI::SUM); |
1945 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0], |
1946 |
+ |
nBins_, MPI::REALTYPE, MPI::SUM); |
1947 |
+ |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0], |
1948 |
+ |
nBins_, MPI::REALTYPE, MPI::SUM); |
1949 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0], |
1950 |
|
nBins_, MPI::REALTYPE, MPI::SUM); |
1951 |
|
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0], |
1953 |
|
#endif |
1954 |
|
|
1955 |
|
Vector3d vel; |
1956 |
+ |
Vector3d aVel; |
1957 |
|
RealType den; |
1958 |
|
RealType temp; |
1959 |
|
RealType z; |
1960 |
+ |
RealType r; |
1961 |
|
for (int i = 0; i < nBins_; i++) { |
1962 |
< |
z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); |
1962 |
> |
if (usePeriodicBoundaryConditions_) { |
1963 |
> |
z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); |
1964 |
> |
den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
1965 |
> |
/ currentSnap_->getVolume() ; |
1966 |
> |
} else { |
1967 |
> |
r = (((RealType)i + 0.5) * binWidth_); |
1968 |
> |
RealType rinner = (RealType)i * binWidth_; |
1969 |
> |
RealType router = (RealType)(i+1) * binWidth_; |
1970 |
> |
den = binMass[i] * 3.0 * PhysicalConstants::densityConvert |
1971 |
> |
/ (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
1972 |
> |
} |
1973 |
|
vel.x() = binPx[i] / binMass[i]; |
1974 |
|
vel.y() = binPy[i] / binMass[i]; |
1975 |
|
vel.z() = binPz[i] / binMass[i]; |
1976 |
< |
den = binCount[i] * nBins_ / (hmat(0,0) * hmat(1,1) * hmat(2,2)); |
1977 |
< |
temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * |
1978 |
< |
PhysicalConstants::energyConvert); |
1976 |
> |
aVel.x() = binOmegax[i] / binCount[i]; |
1977 |
> |
aVel.y() = binOmegay[i] / binCount[i]; |
1978 |
> |
aVel.z() = binOmegaz[i] / binCount[i]; |
1979 |
|
|
1980 |
< |
for (unsigned int j = 0; j < outputMask_.size(); ++j) { |
1981 |
< |
if(outputMask_[j]) { |
1982 |
< |
switch(j) { |
1983 |
< |
case Z: |
1984 |
< |
(data_[j].accumulator[i])->add(z); |
1985 |
< |
break; |
1986 |
< |
case TEMPERATURE: |
1987 |
< |
data_[j].accumulator[i]->add(temp); |
1988 |
< |
break; |
1989 |
< |
case VELOCITY: |
1990 |
< |
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); |
1991 |
< |
break; |
1992 |
< |
case DENSITY: |
1993 |
< |
data_[j].accumulator[i]->add(den); |
1994 |
< |
break; |
1980 |
> |
if (binCount[i] > 0) { |
1981 |
> |
// only add values if there are things to add |
1982 |
> |
temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * |
1983 |
> |
PhysicalConstants::energyConvert); |
1984 |
> |
|
1985 |
> |
for (unsigned int j = 0; j < outputMask_.size(); ++j) { |
1986 |
> |
if(outputMask_[j]) { |
1987 |
> |
switch(j) { |
1988 |
> |
case Z: |
1989 |
> |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z); |
1990 |
> |
break; |
1991 |
> |
case R: |
1992 |
> |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r); |
1993 |
> |
break; |
1994 |
> |
case TEMPERATURE: |
1995 |
> |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp); |
1996 |
> |
break; |
1997 |
> |
case VELOCITY: |
1998 |
> |
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); |
1999 |
> |
break; |
2000 |
> |
case ANGULARVELOCITY: |
2001 |
> |
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel); |
2002 |
> |
break; |
2003 |
> |
case DENSITY: |
2004 |
> |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den); |
2005 |
> |
break; |
2006 |
> |
} |
2007 |
|
} |
2008 |
|
} |
2009 |
|
} |
2011 |
|
} |
2012 |
|
|
2013 |
|
void RNEMD::getStarted() { |
2014 |
+ |
if (!doRNEMD_) return; |
2015 |
+ |
hasDividingArea_ = false; |
2016 |
|
collectData(); |
2017 |
|
writeOutputFile(); |
2018 |
|
} |
2019 |
|
|
2020 |
|
void RNEMD::parseOutputFileFormat(const std::string& format) { |
2021 |
+ |
if (!doRNEMD_) return; |
2022 |
|
StringTokenizer tokenizer(format, " ,;|\t\n\r"); |
2023 |
|
|
2024 |
|
while(tokenizer.hasMoreTokens()) { |
2039 |
|
} |
2040 |
|
|
2041 |
|
void RNEMD::writeOutputFile() { |
2042 |
+ |
if (!doRNEMD_) return; |
2043 |
|
|
2044 |
|
#ifdef IS_MPI |
2045 |
|
// If we're the root node, should we print out the results |
2059 |
|
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
2060 |
|
|
2061 |
|
RealType time = currentSnap_->getTime(); |
2062 |
< |
|
2063 |
< |
|
2062 |
> |
RealType avgArea; |
2063 |
> |
areaAccumulator_->getAverage(avgArea); |
2064 |
> |
RealType Jz = kineticExchange_ / (time * avgArea) |
2065 |
> |
/ PhysicalConstants::energyConvert; |
2066 |
> |
Vector3d JzP = momentumExchange_ / (time * avgArea); |
2067 |
> |
Vector3d JzL = angularMomentumExchange_ / (time * avgArea); |
2068 |
> |
|
2069 |
|
rnemdFile_ << "#######################################################\n"; |
2070 |
|
rnemdFile_ << "# RNEMD {\n"; |
2071 |
|
|
2072 |
|
map<string, RNEMDMethod>::iterator mi; |
2073 |
|
for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) { |
2074 |
|
if ( (*mi).second == rnemdMethod_) |
2075 |
< |
rnemdFile_ << "# exchangeMethod = " << (*mi).first << "\n"; |
2075 |
> |
rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n"; |
2076 |
|
} |
2077 |
|
map<string, RNEMDFluxType>::iterator fi; |
2078 |
|
for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) { |
2079 |
|
if ( (*fi).second == rnemdFluxType_) |
2080 |
< |
rnemdFile_ << "# fluxType = " << (*fi).first << "\n"; |
2080 |
> |
rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n"; |
2081 |
|
} |
2082 |
|
|
2083 |
< |
rnemdFile_ << "# exchangeTime = " << exchangeTime_ << " fs\n"; |
2083 |
> |
rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n"; |
2084 |
|
|
2085 |
|
rnemdFile_ << "# objectSelection = \"" |
2086 |
< |
<< rnemdObjectSelection_ << "\"\n"; |
2087 |
< |
rnemdFile_ << "# slabWidth = " << slabWidth_ << " angstroms\n"; |
2088 |
< |
rnemdFile_ << "# slabAcenter = " << slabACenter_ << " angstroms\n"; |
1613 |
< |
rnemdFile_ << "# slabBcenter = " << slabBCenter_ << " angstroms\n"; |
2086 |
> |
<< rnemdObjectSelection_ << "\";\n"; |
2087 |
> |
rnemdFile_ << "# selectionA = \"" << selectionA_ << "\";\n"; |
2088 |
> |
rnemdFile_ << "# selectionB = \"" << selectionB_ << "\";\n"; |
2089 |
|
rnemdFile_ << "# }\n"; |
2090 |
|
rnemdFile_ << "#######################################################\n"; |
2091 |
< |
|
2092 |
< |
rnemdFile_ << "# running time = " << time << " fs\n"; |
2093 |
< |
rnemdFile_ << "# target kinetic flux = " << kineticFlux_ << "\n"; |
2094 |
< |
rnemdFile_ << "# target momentum flux = " << momentumFluxVector_ << "\n"; |
2095 |
< |
|
2096 |
< |
rnemdFile_ << "# target one-time kinetic exchange = " << kineticTarget_ |
2097 |
< |
<< "\n"; |
2098 |
< |
rnemdFile_ << "# target one-time momentum exchange = " << momentumTarget_ |
2099 |
< |
<< "\n"; |
2100 |
< |
|
2101 |
< |
rnemdFile_ << "# actual kinetic exchange = " << kineticExchange_ << "\n"; |
2102 |
< |
rnemdFile_ << "# actual momentum exchange = " << momentumExchange_ |
2103 |
< |
<< "\n"; |
2104 |
< |
|
2105 |
< |
rnemdFile_ << "# attempted exchanges: " << trialCount_ << "\n"; |
2106 |
< |
rnemdFile_ << "# failed exchanges: " << failTrialCount_ << "\n"; |
2107 |
< |
|
2108 |
< |
|
2091 |
> |
rnemdFile_ << "# RNEMD report:\n"; |
2092 |
> |
rnemdFile_ << "# running time = " << time << " fs\n"; |
2093 |
> |
rnemdFile_ << "# Target flux:\n"; |
2094 |
> |
rnemdFile_ << "# kinetic = " |
2095 |
> |
<< kineticFlux_ / PhysicalConstants::energyConvert |
2096 |
> |
<< " (kcal/mol/A^2/fs)\n"; |
2097 |
> |
rnemdFile_ << "# momentum = " << momentumFluxVector_ |
2098 |
> |
<< " (amu/A/fs^2)\n"; |
2099 |
> |
rnemdFile_ << "# angular momentum = " << angularMomentumFluxVector_ |
2100 |
> |
<< " (amu/A^2/fs^2)\n"; |
2101 |
> |
rnemdFile_ << "# Target one-time exchanges:\n"; |
2102 |
> |
rnemdFile_ << "# kinetic = " |
2103 |
> |
<< kineticTarget_ / PhysicalConstants::energyConvert |
2104 |
> |
<< " (kcal/mol)\n"; |
2105 |
> |
rnemdFile_ << "# momentum = " << momentumTarget_ |
2106 |
> |
<< " (amu*A/fs)\n"; |
2107 |
> |
rnemdFile_ << "# angular momentum = " << angularMomentumTarget_ |
2108 |
> |
<< " (amu*A^2/fs)\n"; |
2109 |
> |
rnemdFile_ << "# Actual exchange totals:\n"; |
2110 |
> |
rnemdFile_ << "# kinetic = " |
2111 |
> |
<< kineticExchange_ / PhysicalConstants::energyConvert |
2112 |
> |
<< " (kcal/mol)\n"; |
2113 |
> |
rnemdFile_ << "# momentum = " << momentumExchange_ |
2114 |
> |
<< " (amu*A/fs)\n"; |
2115 |
> |
rnemdFile_ << "# angular momentum = " << angularMomentumExchange_ |
2116 |
> |
<< " (amu*A^2/fs)\n"; |
2117 |
> |
rnemdFile_ << "# Actual flux:\n"; |
2118 |
> |
rnemdFile_ << "# kinetic = " << Jz |
2119 |
> |
<< " (kcal/mol/A^2/fs)\n"; |
2120 |
> |
rnemdFile_ << "# momentum = " << JzP |
2121 |
> |
<< " (amu/A/fs^2)\n"; |
2122 |
> |
rnemdFile_ << "# angular momentum = " << JzL |
2123 |
> |
<< " (amu/A^2/fs^2)\n"; |
2124 |
> |
rnemdFile_ << "# Exchange statistics:\n"; |
2125 |
> |
rnemdFile_ << "# attempted = " << trialCount_ << "\n"; |
2126 |
> |
rnemdFile_ << "# failed = " << failTrialCount_ << "\n"; |
2127 |
|
if (rnemdMethod_ == rnemdNIVS) { |
2128 |
< |
rnemdFile_ << "# NIVS root-check warnings: " << failRootCount_ << "\n"; |
2128 |
> |
rnemdFile_ << "# NIVS root-check errors = " |
2129 |
> |
<< failRootCount_ << "\n"; |
2130 |
|
} |
1637 |
– |
|
2131 |
|
rnemdFile_ << "#######################################################\n"; |
2132 |
|
|
2133 |
|
|
2138 |
|
if (outputMask_[i]) { |
2139 |
|
rnemdFile_ << "\t" << data_[i].title << |
2140 |
|
"(" << data_[i].units << ")"; |
2141 |
+ |
// add some extra tabs for column alignment |
2142 |
+ |
if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t"; |
2143 |
|
} |
2144 |
|
} |
2145 |
|
rnemdFile_ << std::endl; |
2146 |
|
|
2147 |
|
rnemdFile_.precision(8); |
2148 |
|
|
2149 |
< |
for (unsigned int j = 0; j < nBins_; j++) { |
2149 |
> |
for (int j = 0; j < nBins_; j++) { |
2150 |
|
|
2151 |
|
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
2152 |
|
if (outputMask_[i]) { |
2153 |
|
if (data_[i].dataType == "RealType") |
2154 |
|
writeReal(i,j); |
2155 |
< |
else if (data_[i].dataType == "Vector3d") |
2155 |
> |
else if (data_[i].dataType == "Vector3d") |
2156 |
|
writeVector(i,j); |
2157 |
|
else { |
2158 |
|
sprintf( painCave.errMsg, |
2166 |
|
rnemdFile_ << std::endl; |
2167 |
|
|
2168 |
|
} |
2169 |
+ |
|
2170 |
+ |
rnemdFile_ << "#######################################################\n"; |
2171 |
+ |
rnemdFile_ << "# Standard Deviations in those quantities follow:\n"; |
2172 |
+ |
rnemdFile_ << "#######################################################\n"; |
2173 |
+ |
|
2174 |
+ |
|
2175 |
+ |
for (int j = 0; j < nBins_; j++) { |
2176 |
+ |
rnemdFile_ << "#"; |
2177 |
+ |
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
2178 |
+ |
if (outputMask_[i]) { |
2179 |
+ |
if (data_[i].dataType == "RealType") |
2180 |
+ |
writeRealStdDev(i,j); |
2181 |
+ |
else if (data_[i].dataType == "Vector3d") |
2182 |
+ |
writeVectorStdDev(i,j); |
2183 |
+ |
else { |
2184 |
+ |
sprintf( painCave.errMsg, |
2185 |
+ |
"RNEMD found an unknown data type for: %s ", |
2186 |
+ |
data_[i].title.c_str()); |
2187 |
+ |
painCave.isFatal = 1; |
2188 |
+ |
simError(); |
2189 |
+ |
} |
2190 |
+ |
} |
2191 |
+ |
} |
2192 |
+ |
rnemdFile_ << std::endl; |
2193 |
+ |
|
2194 |
+ |
} |
2195 |
|
|
2196 |
|
rnemdFile_.flush(); |
2197 |
|
rnemdFile_.close(); |
2203 |
|
} |
2204 |
|
|
2205 |
|
void RNEMD::writeReal(int index, unsigned int bin) { |
2206 |
+ |
if (!doRNEMD_) return; |
2207 |
|
assert(index >=0 && index < ENDINDEX); |
2208 |
< |
assert(bin >=0 && bin < nBins_); |
2208 |
> |
assert(int(bin) < nBins_); |
2209 |
|
RealType s; |
2210 |
+ |
int count; |
2211 |
|
|
2212 |
< |
data_[index].accumulator[bin]->getAverage(s); |
2212 |
> |
count = data_[index].accumulator[bin]->count(); |
2213 |
> |
if (count == 0) return; |
2214 |
|
|
2215 |
+ |
dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s); |
2216 |
+ |
|
2217 |
|
if (! isinf(s) && ! isnan(s)) { |
2218 |
|
rnemdFile_ << "\t" << s; |
2219 |
|
} else{ |
2226 |
|
} |
2227 |
|
|
2228 |
|
void RNEMD::writeVector(int index, unsigned int bin) { |
2229 |
+ |
if (!doRNEMD_) return; |
2230 |
|
assert(index >=0 && index < ENDINDEX); |
2231 |
< |
assert(bin >=0 && bin < nBins_); |
2231 |
> |
assert(int(bin) < nBins_); |
2232 |
|
Vector3d s; |
2233 |
+ |
int count; |
2234 |
+ |
|
2235 |
+ |
count = data_[index].accumulator[bin]->count(); |
2236 |
+ |
|
2237 |
+ |
if (count == 0) return; |
2238 |
+ |
|
2239 |
|
dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s); |
2240 |
|
if (isinf(s[0]) || isnan(s[0]) || |
2241 |
|
isinf(s[1]) || isnan(s[1]) || |
2249 |
|
rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; |
2250 |
|
} |
2251 |
|
} |
2252 |
+ |
|
2253 |
+ |
void RNEMD::writeRealStdDev(int index, unsigned int bin) { |
2254 |
+ |
if (!doRNEMD_) return; |
2255 |
+ |
assert(index >=0 && index < ENDINDEX); |
2256 |
+ |
assert(int(bin) < nBins_); |
2257 |
+ |
RealType s; |
2258 |
+ |
int count; |
2259 |
+ |
|
2260 |
+ |
count = data_[index].accumulator[bin]->count(); |
2261 |
+ |
if (count == 0) return; |
2262 |
+ |
|
2263 |
+ |
dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s); |
2264 |
+ |
|
2265 |
+ |
if (! isinf(s) && ! isnan(s)) { |
2266 |
+ |
rnemdFile_ << "\t" << s; |
2267 |
+ |
} else{ |
2268 |
+ |
sprintf( painCave.errMsg, |
2269 |
+ |
"RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2270 |
+ |
data_[index].title.c_str(), bin); |
2271 |
+ |
painCave.isFatal = 1; |
2272 |
+ |
simError(); |
2273 |
+ |
} |
2274 |
+ |
} |
2275 |
+ |
|
2276 |
+ |
void RNEMD::writeVectorStdDev(int index, unsigned int bin) { |
2277 |
+ |
if (!doRNEMD_) return; |
2278 |
+ |
assert(index >=0 && index < ENDINDEX); |
2279 |
+ |
assert(int(bin) < nBins_); |
2280 |
+ |
Vector3d s; |
2281 |
+ |
int count; |
2282 |
+ |
|
2283 |
+ |
count = data_[index].accumulator[bin]->count(); |
2284 |
+ |
if (count == 0) return; |
2285 |
+ |
|
2286 |
+ |
dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s); |
2287 |
+ |
if (isinf(s[0]) || isnan(s[0]) || |
2288 |
+ |
isinf(s[1]) || isnan(s[1]) || |
2289 |
+ |
isinf(s[2]) || isnan(s[2]) ) { |
2290 |
+ |
sprintf( painCave.errMsg, |
2291 |
+ |
"RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2292 |
+ |
data_[index].title.c_str(), bin); |
2293 |
+ |
painCave.isFatal = 1; |
2294 |
+ |
simError(); |
2295 |
+ |
} else { |
2296 |
+ |
rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; |
2297 |
+ |
} |
2298 |
+ |
} |
2299 |
|
} |
2300 |
|
|