ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1627 by gezelter, Tue Sep 13 22:05:04 2011 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1777 by gezelter, Thu Aug 9 18:35:09 2012 UTC

# Line 40 | Line 40
40   */
41  
42   #include <cmath>
43 < #include "integrators/RNEMD.hpp"
43 > #include "rnemd/RNEMD.hpp"
44   #include "math/Vector3.hpp"
45 + #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47   #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50   #include "utils/PhysicalConstants.hpp"
51   #include "utils/Tuple.hpp"
52 <
52 < #ifndef IS_MPI
53 < #include "math/SeqRandNumGen.hpp"
54 < #else
52 > #ifdef IS_MPI
53   #include <mpi.h>
56 #include "math/ParallelRandNumGen.hpp"
54   #endif
55  
56   #define HONKING_LARGE_VALUE 1.0e10
57  
58 + using namespace std;
59   namespace OpenMD {
60    
61 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
61 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
62 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63  
64 +    trialCount_ = 0;
65      failTrialCount_ = 0;
66      failRootCount_ = 0;
67  
68      int seedValue;
69      Globals * simParams = info->getSimParams();
70 +    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
71  
72 <    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
73 <    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
73 <    stringToEnumMap_["PxScale"] = rnemdPxScale;
74 <    stringToEnumMap_["PyScale"] = rnemdPyScale;
75 <    stringToEnumMap_["PzScale"] = rnemdPzScale;
76 <    stringToEnumMap_["Px"] = rnemdPx;
77 <    stringToEnumMap_["Py"] = rnemdPy;
78 <    stringToEnumMap_["Pz"] = rnemdPz;
79 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
72 >    doRNEMD_ = rnemdParams->getUseRNEMD();
73 >    if (!doRNEMD_) return;
74  
75 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
75 >    stringToMethod_["Swap"]  = rnemdSwap;
76 >    stringToMethod_["NIVS"]  = rnemdNIVS;
77 >    stringToMethod_["VSS"]   = rnemdVSS;
78 >
79 >    stringToFluxType_["KE"]  = rnemdKE;
80 >    stringToFluxType_["Px"]  = rnemdPx;
81 >    stringToFluxType_["Py"]  = rnemdPy;
82 >    stringToFluxType_["Pz"]  = rnemdPz;
83 >    stringToFluxType_["Pvector"]  = rnemdPvector;
84 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
85 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
86 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
87 >
88 >    runTime_ = simParams->getRunTime();
89 >    statusTime_ = simParams->getStatusTime();
90 >
91 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
92      evaluator_.loadScriptString(rnemdObjectSelection_);
93      seleMan_.setSelectionSet(evaluator_.evaluate());
94  
95 +    const string methStr = rnemdParams->getMethod();
96 +    bool hasFluxType = rnemdParams->haveFluxType();
97 +
98 +    string fluxStr;
99 +    if (hasFluxType) {
100 +      fluxStr = rnemdParams->getFluxType();
101 +    } else {
102 +      sprintf(painCave.errMsg,
103 +              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
104 +              "\twhich must be one of the following values:\n"
105 +              "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n"
106 +              "\tmust be set to use RNEMD\n");
107 +      painCave.isFatal = 1;
108 +      painCave.severity = OPENMD_ERROR;
109 +      simError();
110 +    }
111 +
112 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
113 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
114 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
115 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
116 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
117 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
118 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
119 +    bool hasOutputFields = rnemdParams->haveOutputFields();
120 +    
121 +    map<string, RNEMDMethod>::iterator i;
122 +    i = stringToMethod_.find(methStr);
123 +    if (i != stringToMethod_.end())
124 +      rnemdMethod_ = i->second;
125 +    else {
126 +      sprintf(painCave.errMsg,
127 +              "RNEMD: The current method,\n"
128 +              "\t\t%s is not one of the recognized\n"
129 +              "\texchange methods: Swap, NIVS, or VSS\n",
130 +              methStr.c_str());
131 +      painCave.isFatal = 1;
132 +      painCave.severity = OPENMD_ERROR;
133 +      simError();
134 +    }
135 +
136 +    map<string, RNEMDFluxType>::iterator j;
137 +    j = stringToFluxType_.find(fluxStr);
138 +    if (j != stringToFluxType_.end())
139 +      rnemdFluxType_ = j->second;
140 +    else {
141 +      sprintf(painCave.errMsg,
142 +              "RNEMD: The current fluxType,\n"
143 +              "\t\t%s\n"
144 +              "\tis not one of the recognized flux types.\n",
145 +              fluxStr.c_str());
146 +      painCave.isFatal = 1;
147 +      painCave.severity = OPENMD_ERROR;
148 +      simError();
149 +    }
150 +
151 +    bool methodFluxMismatch = false;
152 +    bool hasCorrectFlux = false;
153 +    switch(rnemdMethod_) {
154 +    case rnemdSwap:
155 +      switch (rnemdFluxType_) {
156 +      case rnemdKE:
157 +        hasCorrectFlux = hasKineticFlux;
158 +        break;
159 +      case rnemdPx:
160 +      case rnemdPy:
161 +      case rnemdPz:
162 +        hasCorrectFlux = hasMomentumFlux;
163 +        break;
164 +      default :
165 +        methodFluxMismatch = true;
166 +        break;
167 +      }
168 +      break;
169 +    case rnemdNIVS:
170 +      switch (rnemdFluxType_) {
171 +      case rnemdKE:
172 +      case rnemdRotKE:
173 +      case rnemdFullKE:
174 +        hasCorrectFlux = hasKineticFlux;
175 +        break;
176 +      case rnemdPx:
177 +      case rnemdPy:
178 +      case rnemdPz:
179 +        hasCorrectFlux = hasMomentumFlux;
180 +        break;
181 +      case rnemdKePx:
182 +      case rnemdKePy:
183 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
184 +        break;
185 +      default:
186 +        methodFluxMismatch = true;
187 +        break;
188 +      }
189 +      break;
190 +    case rnemdVSS:
191 +      switch (rnemdFluxType_) {
192 +      case rnemdKE:
193 +      case rnemdRotKE:
194 +      case rnemdFullKE:
195 +        hasCorrectFlux = hasKineticFlux;
196 +        break;
197 +      case rnemdPx:
198 +      case rnemdPy:
199 +      case rnemdPz:
200 +        hasCorrectFlux = hasMomentumFlux;
201 +        break;
202 +      case rnemdPvector:
203 +        hasCorrectFlux = hasMomentumFluxVector;
204 +        break;
205 +      case rnemdKePx:
206 +      case rnemdKePy:
207 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
208 +        break;
209 +      case rnemdKePvector:
210 +        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
211 +        break;
212 +      default:
213 +        methodFluxMismatch = true;
214 +        break;
215 +      }
216 +    default:
217 +      break;
218 +    }
219 +
220 +    if (methodFluxMismatch) {
221 +      sprintf(painCave.errMsg,
222 +              "RNEMD: The current method,\n"
223 +              "\t\t%s\n"
224 +              "\tcannot be used with the current flux type, %s\n",
225 +              methStr.c_str(), fluxStr.c_str());
226 +      painCave.isFatal = 1;
227 +      painCave.severity = OPENMD_ERROR;
228 +      simError();        
229 +    }
230 +    if (!hasCorrectFlux) {
231 +      sprintf(painCave.errMsg,
232 +              "RNEMD: The current method, %s, and flux type, %s,\n"
233 +              "\tdid not have the correct flux value specified. Options\n"
234 +              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
235 +              methStr.c_str(), fluxStr.c_str());
236 +      painCave.isFatal = 1;
237 +      painCave.severity = OPENMD_ERROR;
238 +      simError();        
239 +    }
240 +
241 +    if (hasKineticFlux) {
242 +      // convert the kcal / mol / Angstroms^2 / fs values in the md file
243 +      // into  amu / fs^3:
244 +      kineticFlux_ = rnemdParams->getKineticFlux()
245 +        * PhysicalConstants::energyConvert;
246 +    } else {
247 +      kineticFlux_ = 0.0;
248 +    }
249 +    if (hasMomentumFluxVector) {
250 +      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
251 +    } else {
252 +      momentumFluxVector_ = V3Zero;
253 +      if (hasMomentumFlux) {
254 +        RealType momentumFlux = rnemdParams->getMomentumFlux();
255 +        switch (rnemdFluxType_) {
256 +        case rnemdPx:
257 +          momentumFluxVector_.x() = momentumFlux;
258 +          break;
259 +        case rnemdPy:
260 +          momentumFluxVector_.y() = momentumFlux;
261 +          break;
262 +        case rnemdPz:
263 +          momentumFluxVector_.z() = momentumFlux;
264 +          break;
265 +        case rnemdKePx:
266 +          momentumFluxVector_.x() = momentumFlux;
267 +          break;
268 +        case rnemdKePy:
269 +          momentumFluxVector_.y() = momentumFlux;
270 +          break;
271 +        default:
272 +          break;
273 +        }
274 +      }    
275 +    }
276 +
277      // do some sanity checking
278  
279      int selectionCount = seleMan_.getSelectionCount();
# Line 89 | Line 281 | namespace OpenMD {
281  
282      if (selectionCount > nIntegrable) {
283        sprintf(painCave.errMsg,
284 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
284 >              "RNEMD: The current objectSelection,\n"
285                "\t\t%s\n"
286                "\thas resulted in %d selected objects.  However,\n"
287                "\tthe total number of integrable objects in the system\n"
# Line 99 | Line 291 | namespace OpenMD {
291                rnemdObjectSelection_.c_str(),
292                selectionCount, nIntegrable);
293        painCave.isFatal = 0;
294 +      painCave.severity = OPENMD_WARNING;
295        simError();
103
296      }
105    
106    const std::string st = simParams->getRNEMD_exchangeType();
297  
298 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
109 <    i = stringToEnumMap_.find(st);
110 <    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
111 <    if (rnemdType_ == rnemdUnknown) {
112 <      std::cerr << "WARNING! RNEMD Type Unknown!\n";
113 <    }
298 >    areaAccumulator_ = new Accumulator();
299  
300 < #ifdef IS_MPI
116 <    if (worldRank == 0) {
117 < #endif
300 >    nBins_ = rnemdParams->getOutputBins();
301  
302 <      std::string rnemdFileName;
303 <      std::string xTempFileName;
304 <      std::string yTempFileName;
305 <      std::string zTempFileName;
306 <      switch(rnemdType_) {
307 <      case rnemdKineticSwap :
308 <      case rnemdKineticScale :
309 <        rnemdFileName = "temperature.log";
302 >    data_.resize(RNEMD::ENDINDEX);
303 >    OutputData z;
304 >    z.units =  "Angstroms";
305 >    z.title =  "Z";
306 >    z.dataType = "RealType";
307 >    z.accumulator.reserve(nBins_);
308 >    for (unsigned int i = 0; i < nBins_; i++)
309 >      z.accumulator.push_back( new Accumulator() );
310 >    data_[Z] = z;
311 >    outputMap_["Z"] =  Z;
312 >
313 >    OutputData temperature;
314 >    temperature.units =  "K";
315 >    temperature.title =  "Temperature";
316 >    temperature.dataType = "RealType";
317 >    temperature.accumulator.reserve(nBins_);
318 >    for (unsigned int i = 0; i < nBins_; i++)
319 >      temperature.accumulator.push_back( new Accumulator() );
320 >    data_[TEMPERATURE] = temperature;
321 >    outputMap_["TEMPERATURE"] =  TEMPERATURE;
322 >
323 >    OutputData velocity;
324 >    velocity.units = "angstroms/fs";
325 >    velocity.title =  "Velocity";  
326 >    velocity.dataType = "Vector3d";
327 >    velocity.accumulator.reserve(nBins_);
328 >    for (unsigned int i = 0; i < nBins_; i++)
329 >      velocity.accumulator.push_back( new VectorAccumulator() );
330 >    data_[VELOCITY] = velocity;
331 >    outputMap_["VELOCITY"] = VELOCITY;
332 >
333 >    OutputData density;
334 >    density.units =  "g cm^-3";
335 >    density.title =  "Density";
336 >    density.dataType = "RealType";
337 >    density.accumulator.reserve(nBins_);
338 >    for (unsigned int i = 0; i < nBins_; i++)
339 >      density.accumulator.push_back( new Accumulator() );
340 >    data_[DENSITY] = density;
341 >    outputMap_["DENSITY"] =  DENSITY;
342 >
343 >    if (hasOutputFields) {
344 >      parseOutputFileFormat(rnemdParams->getOutputFields());
345 >    } else {
346 >      outputMask_.set(Z);
347 >      switch (rnemdFluxType_) {
348 >      case rnemdKE:
349 >      case rnemdRotKE:
350 >      case rnemdFullKE:
351 >        outputMask_.set(TEMPERATURE);
352          break;
353 <      case rnemdPx :
354 <      case rnemdPxScale :
355 <      case rnemdPy :
131 <      case rnemdPyScale :
132 <        rnemdFileName = "momemtum.log";
133 <        xTempFileName = "temperatureX.log";
134 <        yTempFileName = "temperatureY.log";
135 <        zTempFileName = "temperatureZ.log";
136 <        xTempLog_.open(xTempFileName.c_str());
137 <        yTempLog_.open(yTempFileName.c_str());
138 <        zTempLog_.open(zTempFileName.c_str());
353 >      case rnemdPx:
354 >      case rnemdPy:
355 >        outputMask_.set(VELOCITY);
356          break;
357 <      case rnemdPz :
358 <      case rnemdPzScale :
359 <      case rnemdUnknown :
360 <      default :
144 <        rnemdFileName = "rnemd.log";
357 >      case rnemdPz:        
358 >      case rnemdPvector:
359 >        outputMask_.set(VELOCITY);
360 >        outputMask_.set(DENSITY);
361          break;
362 +      case rnemdKePx:
363 +      case rnemdKePy:
364 +        outputMask_.set(TEMPERATURE);
365 +        outputMask_.set(VELOCITY);
366 +        break;
367 +      case rnemdKePvector:
368 +        outputMask_.set(TEMPERATURE);
369 +        outputMask_.set(VELOCITY);
370 +        outputMask_.set(DENSITY);        
371 +        break;
372 +      default:
373 +        break;
374        }
147      rnemdLog_.open(rnemdFileName.c_str());
148
149 #ifdef IS_MPI
375      }
376 < #endif
377 <
378 <    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
154 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
155 <    midBin_ = nBins_ / 2;
156 <    if (simParams->haveRNEMD_logWidth()) {
157 <      rnemdLogWidth_ = simParams->getRNEMD_logWidth();
158 <      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
159 <        std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
160 <        std::cerr << "Automaically set back to default.\n";
161 <        rnemdLogWidth_ = nBins_;
162 <      }
376 >      
377 >    if (hasOutputFileName) {
378 >      rnemdFileName_ = rnemdParams->getOutputFileName();
379      } else {
380 <      rnemdLogWidth_ = nBins_;
381 <    }
166 <    valueHist_.resize(rnemdLogWidth_, 0.0);
167 <    valueCount_.resize(rnemdLogWidth_, 0);
168 <    xTempHist_.resize(rnemdLogWidth_, 0.0);
169 <    yTempHist_.resize(rnemdLogWidth_, 0.0);
170 <    zTempHist_.resize(rnemdLogWidth_, 0.0);
380 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
381 >    }          
382  
383 <    set_RNEMD_exchange_total(0.0);
173 <    if (simParams->haveRNEMD_targetFlux()) {
174 <      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
175 <    } else {
176 <      set_RNEMD_target_flux(0.0);
177 <    }
383 >    exchangeTime_ = rnemdParams->getExchangeTime();
384  
385 < #ifndef IS_MPI
386 <    if (simParams->haveSeed()) {
181 <      seedValue = simParams->getSeed();
182 <      randNumGen_ = new SeqRandNumGen(seedValue);
183 <    }else {
184 <      randNumGen_ = new SeqRandNumGen();
185 <    }    
186 < #else
187 <    if (simParams->haveSeed()) {
188 <      seedValue = simParams->getSeed();
189 <      randNumGen_ = new ParallelRandNumGen(seedValue);
190 <    }else {
191 <      randNumGen_ = new ParallelRandNumGen();
192 <    }    
193 < #endif
194 <  }
385 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
386 >    Mat3x3d hmat = currentSnap_->getHmat();
387    
388 <  RNEMD::~RNEMD() {
389 <    delete randNumGen_;
388 >    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
389 >    // Lx, Ly = box dimensions in x & y
390 >    // dt = exchange time interval
391 >    // flux = target flux
392 >
393 >    RealType area = currentSnap_->getXYarea();
394 >    kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
395 >    momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
396 >
397 >    // total exchange sums are zeroed out at the beginning:
398 >
399 >    kineticExchange_ = 0.0;
400 >    momentumExchange_ = V3Zero;
401 >
402 >    if (hasSlabWidth)
403 >      slabWidth_ = rnemdParams->getSlabWidth();
404 >    else
405 >      slabWidth_ = hmat(2,2) / 10.0;
406 >  
407 >    if (hasSlabACenter)
408 >      slabACenter_ = rnemdParams->getSlabACenter();
409 >    else
410 >      slabACenter_ = 0.0;
411      
412 +    if (hasSlabBCenter)
413 +      slabBCenter_ = rnemdParams->getSlabBCenter();
414 +    else
415 +      slabBCenter_ = hmat(2,2) / 2.0;
416 +    
417 +  }
418 +  
419 +  RNEMD::~RNEMD() {
420 +    if (!doRNEMD_) return;
421   #ifdef IS_MPI
422      if (worldRank == 0) {
423   #endif
424 <      std::cerr << "total fail trials: " << failTrialCount_ << "\n";
425 <      rnemdLog_.close();
426 <      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
427 <        std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
428 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) {
207 <        xTempLog_.close();
208 <        yTempLog_.close();
209 <        zTempLog_.close();
210 <      }
424 >
425 >      writeOutputFile();
426 >
427 >      rnemdFile_.close();
428 >      
429   #ifdef IS_MPI
430      }
431   #endif
432    }
433 +  
434 +  bool RNEMD::inSlabA(Vector3d pos) {
435 +    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
436 +  }
437 +  bool RNEMD::inSlabB(Vector3d pos) {
438 +    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
439 +  }
440  
441    void RNEMD::doSwap() {
442 <
442 >    if (!doRNEMD_) return;
443      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
444      Mat3x3d hmat = currentSnap_->getHmat();
445  
# Line 243 | Line 468 | namespace OpenMD {
468  
469        if (usePeriodicBoundaryConditions_)
470          currentSnap_->wrapVector(pos);
471 +      bool inA = inSlabA(pos);
472 +      bool inB = inSlabB(pos);
473  
474 <      // which bin is this stuntdouble in?
248 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
249 <
250 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
251 <
252 <
253 <      // if we're in bin 0 or the middleBin
254 <      if (binNo == 0 || binNo == midBin_) {
474 >      if (inA || inB) {
475          
476          RealType mass = sd->getMass();
477          Vector3d vel = sd->getVel();
478          RealType value;
479 <
480 <        switch(rnemdType_) {
481 <        case rnemdKineticSwap :
479 >        
480 >        switch(rnemdFluxType_) {
481 >        case rnemdKE :
482            
483 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
484 <                          vel[2]*vel[2]);
485 <          if (sd->isDirectional()) {
483 >          value = mass * vel.lengthSquare();
484 >          
485 >          if (sd->isDirectional()) {
486              Vector3d angMom = sd->getJ();
487              Mat3x3d I = sd->getI();
488              
489              if (sd->isLinear()) {
490 <              int i = sd->linearAxis();
491 <              int j = (i + 1) % 3;
492 <              int k = (i + 2) % 3;
493 <              value += angMom[j] * angMom[j] / I(j, j) +
494 <                angMom[k] * angMom[k] / I(k, k);
490 >              int i = sd->linearAxis();
491 >              int j = (i + 1) % 3;
492 >              int k = (i + 2) % 3;
493 >              value += angMom[j] * angMom[j] / I(j, j) +
494 >                angMom[k] * angMom[k] / I(k, k);
495              } else {                        
496 <              value += angMom[0]*angMom[0]/I(0, 0)
497 <                + angMom[1]*angMom[1]/I(1, 1)
498 <                + angMom[2]*angMom[2]/I(2, 2);
496 >              value += angMom[0]*angMom[0]/I(0, 0)
497 >                + angMom[1]*angMom[1]/I(1, 1)
498 >                + angMom[2]*angMom[2]/I(2, 2);
499              }
500 <          }
281 <          //make exchangeSum_ comparable between swap & scale
282 <          //temporarily without using energyConvert
283 <          //value = value * 0.5 / PhysicalConstants::energyConvert;
500 >          } //angular momenta exchange enabled
501            value *= 0.5;
502            break;
503          case rnemdPx :
# Line 296 | Line 513 | namespace OpenMD {
513            break;
514          }
515          
516 <        if (binNo == 0) {
516 >        if (inA == 0) {
517            if (!min_found) {
518              min_val = value;
519              min_sd = sd;
# Line 307 | Line 524 | namespace OpenMD {
524                min_sd = sd;
525              }
526            }
527 <        } else { //midBin_
527 >        } else {
528            if (!max_found) {
529              max_val = value;
530              max_sd = sd;
# Line 321 | Line 538 | namespace OpenMD {
538          }
539        }
540      }
541 <
541 >    
542   #ifdef IS_MPI
543      int nProc, worldRank;
544 <
544 >    
545      nProc = MPI::COMM_WORLD.Get_size();
546      worldRank = MPI::COMM_WORLD.Get_rank();
547  
# Line 332 | Line 549 | namespace OpenMD {
549      bool my_max_found = max_found;
550  
551      // Even if we didn't find a minimum, did someone else?
552 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
336 <                              1, MPI::BOOL, MPI::LAND);
337 <    
552 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
553      // Even if we didn't find a maximum, did someone else?
554 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
555 <                              1, MPI::BOOL, MPI::LAND);
556 <    
557 <    struct {
558 <      RealType val;
559 <      int rank;
560 <    } max_vals, min_vals;
561 <    
562 <    if (min_found) {
563 <      if (my_min_found)
554 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
555 > #endif
556 >
557 >    if (max_found && min_found) {
558 >
559 > #ifdef IS_MPI
560 >      struct {
561 >        RealType val;
562 >        int rank;
563 >      } max_vals, min_vals;
564 >      
565 >      if (my_min_found) {
566          min_vals.val = min_val;
567 <      else
567 >      } else {
568          min_vals.val = HONKING_LARGE_VALUE;
569 <      
569 >      }
570        min_vals.rank = worldRank;    
571        
572        // Who had the minimum?
573        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
574                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
575        min_val = min_vals.val;
359    }
576        
577 <    if (max_found) {
362 <      if (my_max_found)
577 >      if (my_max_found) {
578          max_vals.val = max_val;
579 <      else
579 >      } else {
580          max_vals.val = -HONKING_LARGE_VALUE;
581 <      
581 >      }
582        max_vals.rank = worldRank;    
583        
584        // Who had the maximum?
585        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
586                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
587        max_val = max_vals.val;
373    }
588   #endif
589 <
590 <    if (max_found && min_found) {
591 <      if (min_val< max_val) {
378 <
589 >      
590 >      if (min_val < max_val) {
591 >        
592   #ifdef IS_MPI      
593          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
594            // I have both maximum and minimum, so proceed like a single
595            // processor version:
596   #endif
597 <          // objects to be swapped: velocity & angular velocity
597 >
598            Vector3d min_vel = min_sd->getVel();
599            Vector3d max_vel = max_sd->getVel();
600            RealType temp_vel;
601            
602 <          switch(rnemdType_) {
603 <          case rnemdKineticSwap :
602 >          switch(rnemdFluxType_) {
603 >          case rnemdKE :
604              min_sd->setVel(max_vel);
605              max_sd->setVel(min_vel);
606 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
606 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
607                Vector3d min_angMom = min_sd->getJ();
608                Vector3d max_angMom = max_sd->getJ();
609                min_sd->setJ(max_angMom);
610                max_sd->setJ(min_angMom);
611 <            }
611 >            }//angular momenta exchange enabled
612 >            //assumes same rigid body identity
613              break;
614            case rnemdPx :
615              temp_vel = min_vel.x();
# Line 421 | Line 635 | namespace OpenMD {
635            default :
636              break;
637            }
638 +
639   #ifdef IS_MPI
640            // the rest of the cases only apply in parallel simulations:
641          } else if (max_vals.rank == worldRank) {
# Line 436 | Line 651 | namespace OpenMD {
651                                     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
652                                     min_vals.rank, 0, status);
653            
654 <          switch(rnemdType_) {
655 <          case rnemdKineticSwap :
654 >          switch(rnemdFluxType_) {
655 >          case rnemdKE :
656              max_sd->setVel(min_vel);
657 <            
657 >            //angular momenta exchange enabled
658              if (max_sd->isDirectional()) {
659                Vector3d min_angMom;
660                Vector3d max_angMom = max_sd->getJ();
661 <
661 >              
662                // point-to-point swap of the angular momentum vector
663                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
664                                         MPI::REALTYPE, min_vals.rank, 1,
665                                         min_angMom.getArrayPointer(), 3,
666                                         MPI::REALTYPE, min_vals.rank, 1,
667                                         status);
668 <
668 >              
669                max_sd->setJ(min_angMom);
670 <            }
670 >            }
671              break;
672            case rnemdPx :
673              max_vel.x() = min_vel.x();
# Line 482 | Line 697 | namespace OpenMD {
697                                     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
698                                     max_vals.rank, 0, status);
699            
700 <          switch(rnemdType_) {
701 <          case rnemdKineticSwap :
700 >          switch(rnemdFluxType_) {
701 >          case rnemdKE :
702              min_sd->setVel(max_vel);
703 <            
703 >            //angular momenta exchange enabled
704              if (min_sd->isDirectional()) {
705                Vector3d min_angMom = min_sd->getJ();
706                Vector3d max_angMom;
707 <
707 >              
708                // point-to-point swap of the angular momentum vector
709                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
710                                         MPI::REALTYPE, max_vals.rank, 1,
711                                         max_angMom.getArrayPointer(), 3,
712                                         MPI::REALTYPE, max_vals.rank, 1,
713                                         status);
714 <
714 >              
715                min_sd->setJ(max_angMom);
716              }
717              break;
# Line 517 | Line 732 | namespace OpenMD {
732            }
733          }
734   #endif
735 <        exchangeSum_ += max_val - min_val;
736 <      } else {
737 <        std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
735 >        
736 >        switch(rnemdFluxType_) {
737 >        case rnemdKE:
738 >          kineticExchange_ += max_val - min_val;
739 >          break;
740 >        case rnemdPx:
741 >          momentumExchange_.x() += max_val - min_val;
742 >          break;
743 >        case rnemdPy:
744 >          momentumExchange_.y() += max_val - min_val;
745 >          break;
746 >        case rnemdPz:
747 >          momentumExchange_.z() += max_val - min_val;
748 >          break;
749 >        default:
750 >          break;
751 >        }
752 >      } else {        
753 >        sprintf(painCave.errMsg,
754 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
755 >        painCave.isFatal = 0;
756 >        painCave.severity = OPENMD_INFO;
757 >        simError();        
758          failTrialCount_++;
759        }
760      } else {
761 <      std::cerr << "exchange NOT performed!\n";
762 <      std::cerr << "at least one of the two slabs empty.\n";
761 >      sprintf(painCave.errMsg,
762 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
763 >              "\twas not present in at least one of the two slabs.\n");
764 >      painCave.isFatal = 0;
765 >      painCave.severity = OPENMD_INFO;
766 >      simError();        
767        failTrialCount_++;
768 <    }
530 <    
768 >    }    
769    }
770    
771 <  void RNEMD::doScale() {
772 <
771 >  void RNEMD::doNIVS() {
772 >    if (!doRNEMD_) return;
773      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
774      Mat3x3d hmat = currentSnap_->getHmat();
775  
# Line 541 | Line 779 | namespace OpenMD {
779      StuntDouble* sd;
780      int idx;
781  
782 <    std::vector<StuntDouble*> hotBin, coldBin;
782 >    vector<StuntDouble*> hotBin, coldBin;
783  
784      RealType Phx = 0.0;
785      RealType Phy = 0.0;
# Line 549 | Line 787 | namespace OpenMD {
787      RealType Khx = 0.0;
788      RealType Khy = 0.0;
789      RealType Khz = 0.0;
790 +    RealType Khw = 0.0;
791      RealType Pcx = 0.0;
792      RealType Pcy = 0.0;
793      RealType Pcz = 0.0;
794      RealType Kcx = 0.0;
795      RealType Kcy = 0.0;
796      RealType Kcz = 0.0;
797 +    RealType Kcw = 0.0;
798  
799      for (sd = seleMan_.beginSelected(selei); sd != NULL;
800           sd = seleMan_.nextSelected(selei)) {
# Line 569 | Line 809 | namespace OpenMD {
809          currentSnap_->wrapVector(pos);
810  
811        // which bin is this stuntdouble in?
812 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
812 >      bool inA = inSlabA(pos);
813 >      bool inB = inSlabB(pos);
814  
815 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
816 <
576 <      // if we're in bin 0 or the middleBin
577 <      if (binNo == 0 || binNo == midBin_) {
578 <        
815 >      if (inA || inB) {
816 >              
817          RealType mass = sd->getMass();
818          Vector3d vel = sd->getVel();
819        
820 <        if (binNo == 0) {
820 >        if (inA) {
821            hotBin.push_back(sd);
822            Phx += mass * vel.x();
823            Phy += mass * vel.y();
# Line 587 | Line 825 | namespace OpenMD {
825            Khx += mass * vel.x() * vel.x();
826            Khy += mass * vel.y() * vel.y();
827            Khz += mass * vel.z() * vel.z();
828 <        } else { //midBin_
828 >          if (sd->isDirectional()) {
829 >            Vector3d angMom = sd->getJ();
830 >            Mat3x3d I = sd->getI();
831 >            if (sd->isLinear()) {
832 >              int i = sd->linearAxis();
833 >              int j = (i + 1) % 3;
834 >              int k = (i + 2) % 3;
835 >              Khw += angMom[j] * angMom[j] / I(j, j) +
836 >                angMom[k] * angMom[k] / I(k, k);
837 >            } else {
838 >              Khw += angMom[0]*angMom[0]/I(0, 0)
839 >                + angMom[1]*angMom[1]/I(1, 1)
840 >                + angMom[2]*angMom[2]/I(2, 2);
841 >            }
842 >          }
843 >        } else {
844            coldBin.push_back(sd);
845            Pcx += mass * vel.x();
846            Pcy += mass * vel.y();
# Line 595 | Line 848 | namespace OpenMD {
848            Kcx += mass * vel.x() * vel.x();
849            Kcy += mass * vel.y() * vel.y();
850            Kcz += mass * vel.z() * vel.z();
851 +          if (sd->isDirectional()) {
852 +            Vector3d angMom = sd->getJ();
853 +            Mat3x3d I = sd->getI();
854 +            if (sd->isLinear()) {
855 +              int i = sd->linearAxis();
856 +              int j = (i + 1) % 3;
857 +              int k = (i + 2) % 3;
858 +              Kcw += angMom[j] * angMom[j] / I(j, j) +
859 +                angMom[k] * angMom[k] / I(k, k);
860 +            } else {
861 +              Kcw += angMom[0]*angMom[0]/I(0, 0)
862 +                + angMom[1]*angMom[1]/I(1, 1)
863 +                + angMom[2]*angMom[2]/I(2, 2);
864 +            }
865 +          }
866          }
867        }
868      }
869 <
869 >    
870      Khx *= 0.5;
871      Khy *= 0.5;
872      Khz *= 0.5;
873 +    Khw *= 0.5;
874      Kcx *= 0.5;
875      Kcy *= 0.5;
876      Kcz *= 0.5;
877 +    Kcw *= 0.5;
878  
879   #ifdef IS_MPI
880      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
# Line 617 | Line 887 | namespace OpenMD {
887      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
888      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
889      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
890 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
891 +
892      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
893      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
894      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
895 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
896   #endif
897  
898 <    //use coldBin coeff's
898 >    //solve coldBin coeff's first
899      RealType px = Pcx / Phx;
900      RealType py = Pcy / Phy;
901      RealType pz = Pcz / Phz;
902 +    RealType c, x, y, z;
903 +    bool successfulScale = false;
904 +    if ((rnemdFluxType_ == rnemdFullKE) ||
905 +        (rnemdFluxType_ == rnemdRotKE)) {
906 +      //may need sanity check Khw & Kcw > 0
907  
908 <    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
909 <    switch(rnemdType_) {
910 <    case rnemdKineticScale :
911 <    /*used hotBin coeff's & only scale x & y dimensions
912 <      RealType px = Phx / Pcx;
635 <      RealType py = Phy / Pcy;
636 <      a110 = Khy;
637 <      c0 = - Khx - Khy - targetFlux_;
638 <      a000 = Khx;
639 <      a111 = Kcy * py * py
640 <      b11 = -2.0 * Kcy * py * (1.0 + py);
641 <      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
642 <      b01 = -2.0 * Kcx * px * (1.0 + px);
643 <      a001 = Kcx * px * px;
644 <    */
908 >      if (rnemdFluxType_ == rnemdFullKE) {
909 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
910 >      } else {
911 >        c = 1.0 - kineticTarget_ / Kcw;
912 >      }
913  
914 <      //scale all three dimensions, let c_x = c_y
915 <      a000 = Kcx + Kcy;
916 <      a110 = Kcz;
917 <      c0 = targetFlux_ - Kcx - Kcy - Kcz;
918 <      a001 = Khx * px * px + Khy * py * py;
919 <      a111 = Khz * pz * pz;
920 <      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
921 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
922 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
923 <         + Khz * pz * (2.0 + pz) - targetFlux_;
924 <      break;
925 <    case rnemdPxScale :
926 <      c = 1 - targetFlux_ / Pcx;
927 <      a000 = Kcy;
928 <      a110 = Kcz;
929 <      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
930 <      a001 = py * py * Khy;
931 <      a111 = pz * pz * Khz;
932 <      b01 = -2.0 * Khy * py * (1.0 + py);
933 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
934 <      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
935 <         + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
936 <      break;
937 <    case rnemdPyScale :
938 <      c = 1 - targetFlux_ / Pcy;
939 <      a000 = Kcx;
940 <      a110 = Kcz;
941 <      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
942 <      a001 = px * px * Khx;
943 <      a111 = pz * pz * Khz;
944 <      b01 = -2.0 * Khx * px * (1.0 + px);
945 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
946 <      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
947 <         + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
948 <      break;
949 <    case rnemdPzScale ://we don't really do this, do we?
950 <      c = 1 - targetFlux_ / Pcz;
951 <      a000 = Kcx;
952 <      a110 = Kcy;
953 <      c0 = Kcz * c * c - Kcx - Kcy - Kcz;
954 <      a001 = px * px * Khx;
955 <      a111 = py * py * Khy;
956 <      b01 = -2.0 * Khx * px * (1.0 + px);
957 <      b11 = -2.0 * Khy * py * (1.0 + py);
958 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
959 <        + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
960 <      break;      
961 <    default :
962 <      break;
914 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
915 >        c = sqrt(c);
916 >        //std::cerr << "cold slab scaling coefficient: " << c << endl;
917 >        //now convert to hotBin coefficient
918 >        RealType w = 0.0;
919 >        if (rnemdFluxType_ ==  rnemdFullKE) {
920 >          x = 1.0 + px * (1.0 - c);
921 >          y = 1.0 + py * (1.0 - c);
922 >          z = 1.0 + pz * (1.0 - c);
923 >          /* more complicated way
924 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
925 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
926 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
927 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
928 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
929 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
930 >          */
931 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
932 >              (fabs(z - 1.0) < 0.1)) {
933 >            w = 1.0 + (kineticTarget_
934 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
935 >                       + Khz * (1.0 - z * z)) / Khw;
936 >          }//no need to calculate w if x, y or z is out of range
937 >        } else {
938 >          w = 1.0 + kineticTarget_ / Khw;
939 >        }
940 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
941 >          //if w is in the right range, so should be x, y, z.
942 >          vector<StuntDouble*>::iterator sdi;
943 >          Vector3d vel;
944 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
945 >            if (rnemdFluxType_ == rnemdFullKE) {
946 >              vel = (*sdi)->getVel() * c;
947 >              (*sdi)->setVel(vel);
948 >            }
949 >            if ((*sdi)->isDirectional()) {
950 >              Vector3d angMom = (*sdi)->getJ() * c;
951 >              (*sdi)->setJ(angMom);
952 >            }
953 >          }
954 >          w = sqrt(w);
955 >          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
956 >          //           << "\twh= " << w << endl;
957 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
958 >            if (rnemdFluxType_ == rnemdFullKE) {
959 >              vel = (*sdi)->getVel();
960 >              vel.x() *= x;
961 >              vel.y() *= y;
962 >              vel.z() *= z;
963 >              (*sdi)->setVel(vel);
964 >            }
965 >            if ((*sdi)->isDirectional()) {
966 >              Vector3d angMom = (*sdi)->getJ() * w;
967 >              (*sdi)->setJ(angMom);
968 >            }
969 >          }
970 >          successfulScale = true;
971 >          kineticExchange_ += kineticTarget_;
972 >        }
973 >      }
974 >    } else {
975 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
976 >      switch(rnemdFluxType_) {
977 >      case rnemdKE :
978 >        /* used hotBin coeff's & only scale x & y dimensions
979 >           RealType px = Phx / Pcx;
980 >           RealType py = Phy / Pcy;
981 >           a110 = Khy;
982 >           c0 = - Khx - Khy - kineticTarget_;
983 >           a000 = Khx;
984 >           a111 = Kcy * py * py;
985 >           b11 = -2.0 * Kcy * py * (1.0 + py);
986 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
987 >           b01 = -2.0 * Kcx * px * (1.0 + px);
988 >           a001 = Kcx * px * px;
989 >        */
990 >        //scale all three dimensions, let c_x = c_y
991 >        a000 = Kcx + Kcy;
992 >        a110 = Kcz;
993 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
994 >        a001 = Khx * px * px + Khy * py * py;
995 >        a111 = Khz * pz * pz;
996 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
997 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
998 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
999 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1000 >        break;
1001 >      case rnemdPx :
1002 >        c = 1 - momentumTarget_.x() / Pcx;
1003 >        a000 = Kcy;
1004 >        a110 = Kcz;
1005 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1006 >        a001 = py * py * Khy;
1007 >        a111 = pz * pz * Khz;
1008 >        b01 = -2.0 * Khy * py * (1.0 + py);
1009 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1010 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1011 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1012 >        break;
1013 >      case rnemdPy :
1014 >        c = 1 - momentumTarget_.y() / Pcy;
1015 >        a000 = Kcx;
1016 >        a110 = Kcz;
1017 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1018 >        a001 = px * px * Khx;
1019 >        a111 = pz * pz * Khz;
1020 >        b01 = -2.0 * Khx * px * (1.0 + px);
1021 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1022 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1023 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1024 >        break;
1025 >      case rnemdPz ://we don't really do this, do we?
1026 >        c = 1 - momentumTarget_.z() / Pcz;
1027 >        a000 = Kcx;
1028 >        a110 = Kcy;
1029 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1030 >        a001 = px * px * Khx;
1031 >        a111 = py * py * Khy;
1032 >        b01 = -2.0 * Khx * px * (1.0 + px);
1033 >        b11 = -2.0 * Khy * py * (1.0 + py);
1034 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1035 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1036 >        break;
1037 >      default :
1038 >        break;
1039 >      }
1040 >      
1041 >      RealType v1 = a000 * a111 - a001 * a110;
1042 >      RealType v2 = a000 * b01;
1043 >      RealType v3 = a000 * b11;
1044 >      RealType v4 = a000 * c1 - a001 * c0;
1045 >      RealType v8 = a110 * b01;
1046 >      RealType v10 = - b01 * c0;
1047 >      
1048 >      RealType u0 = v2 * v10 - v4 * v4;
1049 >      RealType u1 = -2.0 * v3 * v4;
1050 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1051 >      RealType u3 = -2.0 * v1 * v3;
1052 >      RealType u4 = - v1 * v1;
1053 >      //rescale coefficients
1054 >      RealType maxAbs = fabs(u0);
1055 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1056 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1057 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1058 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1059 >      u0 /= maxAbs;
1060 >      u1 /= maxAbs;
1061 >      u2 /= maxAbs;
1062 >      u3 /= maxAbs;
1063 >      u4 /= maxAbs;
1064 >      //max_element(start, end) is also available.
1065 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1066 >      poly.setCoefficient(4, u4);
1067 >      poly.setCoefficient(3, u3);
1068 >      poly.setCoefficient(2, u2);
1069 >      poly.setCoefficient(1, u1);
1070 >      poly.setCoefficient(0, u0);
1071 >      vector<RealType> realRoots = poly.FindRealRoots();
1072 >      
1073 >      vector<RealType>::iterator ri;
1074 >      RealType r1, r2, alpha0;
1075 >      vector<pair<RealType,RealType> > rps;
1076 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1077 >        r2 = *ri;
1078 >        //check if FindRealRoots() give the right answer
1079 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1080 >          sprintf(painCave.errMsg,
1081 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1082 >          painCave.isFatal = 0;
1083 >          simError();
1084 >          failRootCount_++;
1085 >        }
1086 >        //might not be useful w/o rescaling coefficients
1087 >        alpha0 = -c0 - a110 * r2 * r2;
1088 >        if (alpha0 >= 0.0) {
1089 >          r1 = sqrt(alpha0 / a000);
1090 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1091 >              < 1e-6)
1092 >            { rps.push_back(make_pair(r1, r2)); }
1093 >          if (r1 > 1e-6) { //r1 non-negative
1094 >            r1 = -r1;
1095 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1096 >                < 1e-6)
1097 >              { rps.push_back(make_pair(r1, r2)); }
1098 >          }
1099 >        }
1100 >      }
1101 >      // Consider combining together the solving pair part w/ the searching
1102 >      // best solution part so that we don't need the pairs vector
1103 >      if (!rps.empty()) {
1104 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1105 >        RealType diff;
1106 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1107 >        vector<pair<RealType,RealType> >::iterator rpi;
1108 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1109 >          r1 = (*rpi).first;
1110 >          r2 = (*rpi).second;
1111 >          switch(rnemdFluxType_) {
1112 >          case rnemdKE :
1113 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1114 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1115 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1116 >            break;
1117 >          case rnemdPx :
1118 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1119 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1120 >            break;
1121 >          case rnemdPy :
1122 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1123 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1124 >            break;
1125 >          case rnemdPz :
1126 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1127 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1128 >          default :
1129 >            break;
1130 >          }
1131 >          if (diff < smallestDiff) {
1132 >            smallestDiff = diff;
1133 >            bestPair = *rpi;
1134 >          }
1135 >        }
1136 > #ifdef IS_MPI
1137 >        if (worldRank == 0) {
1138 > #endif
1139 >          // sprintf(painCave.errMsg,
1140 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1141 >          //         bestPair.first, bestPair.second);
1142 >          // painCave.isFatal = 0;
1143 >          // painCave.severity = OPENMD_INFO;
1144 >          // simError();
1145 > #ifdef IS_MPI
1146 >        }
1147 > #endif
1148 >        
1149 >        switch(rnemdFluxType_) {
1150 >        case rnemdKE :
1151 >          x = bestPair.first;
1152 >          y = bestPair.first;
1153 >          z = bestPair.second;
1154 >          break;
1155 >        case rnemdPx :
1156 >          x = c;
1157 >          y = bestPair.first;
1158 >          z = bestPair.second;
1159 >          break;
1160 >        case rnemdPy :
1161 >          x = bestPair.first;
1162 >          y = c;
1163 >          z = bestPair.second;
1164 >          break;
1165 >        case rnemdPz :
1166 >          x = bestPair.first;
1167 >          y = bestPair.second;
1168 >          z = c;
1169 >          break;          
1170 >        default :
1171 >          break;
1172 >        }
1173 >        vector<StuntDouble*>::iterator sdi;
1174 >        Vector3d vel;
1175 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1176 >          vel = (*sdi)->getVel();
1177 >          vel.x() *= x;
1178 >          vel.y() *= y;
1179 >          vel.z() *= z;
1180 >          (*sdi)->setVel(vel);
1181 >        }
1182 >        //convert to hotBin coefficient
1183 >        x = 1.0 + px * (1.0 - x);
1184 >        y = 1.0 + py * (1.0 - y);
1185 >        z = 1.0 + pz * (1.0 - z);
1186 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1187 >          vel = (*sdi)->getVel();
1188 >          vel.x() *= x;
1189 >          vel.y() *= y;
1190 >          vel.z() *= z;
1191 >          (*sdi)->setVel(vel);
1192 >        }
1193 >        successfulScale = true;
1194 >        switch(rnemdFluxType_) {
1195 >        case rnemdKE :
1196 >          kineticExchange_ += kineticTarget_;
1197 >          break;
1198 >        case rnemdPx :
1199 >        case rnemdPy :
1200 >        case rnemdPz :
1201 >          momentumExchange_ += momentumTarget_;
1202 >          break;          
1203 >        default :
1204 >          break;
1205 >        }      
1206 >      }
1207      }
1208 +    if (successfulScale != true) {
1209 +      sprintf(painCave.errMsg,
1210 +              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1211 +              "\tthe constraint equations may not exist or there may be\n"
1212 +              "\tno selected objects in one or both slabs.\n");
1213 +      painCave.isFatal = 0;
1214 +      painCave.severity = OPENMD_INFO;
1215 +      simError();        
1216 +      failTrialCount_++;
1217 +    }
1218 +  }
1219  
1220 <    RealType v1 = a000 * a111 - a001 * a110;
1221 <    RealType v2 = a000 * b01;
1222 <    RealType v3 = a000 * b11;
1223 <    RealType v4 = a000 * c1 - a001 * c0;
1224 <    RealType v8 = a110 * b01;
702 <    RealType v10 = - b01 * c0;
1220 >  void RNEMD::doVSS() {
1221 >    if (!doRNEMD_) return;
1222 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1223 >    RealType time = currentSnap_->getTime();    
1224 >    Mat3x3d hmat = currentSnap_->getHmat();
1225  
1226 <    RealType u0 = v2 * v10 - v4 * v4;
705 <    RealType u1 = -2.0 * v3 * v4;
706 <    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
707 <    RealType u3 = -2.0 * v1 * v3;
708 <    RealType u4 = - v1 * v1;
709 <    //rescale coefficients
710 <    RealType maxAbs = fabs(u0);
711 <    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
712 <    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
713 <    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
714 <    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
715 <    u0 /= maxAbs;
716 <    u1 /= maxAbs;
717 <    u2 /= maxAbs;
718 <    u3 /= maxAbs;
719 <    u4 /= maxAbs;
720 <    //max_element(start, end) is also available.
721 <    Polynomial<RealType> poly; //same as DoublePolynomial poly;
722 <    poly.setCoefficient(4, u4);
723 <    poly.setCoefficient(3, u3);
724 <    poly.setCoefficient(2, u2);
725 <    poly.setCoefficient(1, u1);
726 <    poly.setCoefficient(0, u0);
727 <    std::vector<RealType> realRoots = poly.FindRealRoots();
1226 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1227  
1228 <    std::vector<RealType>::iterator ri;
1229 <    RealType r1, r2, alpha0;
1230 <    std::vector<std::pair<RealType,RealType> > rps;
1231 <    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1232 <      r2 = *ri;
1233 <      //check if FindRealRoots() give the right answer
1234 <      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1235 <        sprintf(painCave.errMsg,
1236 <                "RNEMD Warning: polynomial solve seems to have an error!");
1237 <        painCave.isFatal = 0;
1238 <        simError();
1239 <        failRootCount_++;
1240 <      }
1241 <      //might not be useful w/o rescaling coefficients
1242 <      alpha0 = -c0 - a110 * r2 * r2;
1243 <      if (alpha0 >= 0.0) {
1244 <        r1 = sqrt(alpha0 / a000);
1245 <        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
1246 <          { rps.push_back(std::make_pair(r1, r2)); }
1247 <        if (r1 > 1e-6) { //r1 non-negative
1248 <          r1 = -r1;
1249 <          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
1250 <            { rps.push_back(std::make_pair(r1, r2)); }
1251 <        }
1228 >    int selei;
1229 >    StuntDouble* sd;
1230 >    int idx;
1231 >
1232 >    vector<StuntDouble*> hotBin, coldBin;
1233 >
1234 >    Vector3d Ph(V3Zero);
1235 >    RealType Mh = 0.0;
1236 >    RealType Kh = 0.0;
1237 >    Vector3d Pc(V3Zero);
1238 >    RealType Mc = 0.0;
1239 >    RealType Kc = 0.0;
1240 >    
1241 >
1242 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1243 >         sd = seleMan_.nextSelected(selei)) {
1244 >
1245 >      idx = sd->getLocalIndex();
1246 >
1247 >      Vector3d pos = sd->getPos();
1248 >
1249 >      // wrap the stuntdouble's position back into the box:
1250 >
1251 >      if (usePeriodicBoundaryConditions_)
1252 >        currentSnap_->wrapVector(pos);
1253 >
1254 >      // which bin is this stuntdouble in?
1255 >      bool inA = inSlabA(pos);
1256 >      bool inB = inSlabB(pos);
1257 >      
1258 >      if (inA || inB) {
1259 >        
1260 >        RealType mass = sd->getMass();
1261 >        Vector3d vel = sd->getVel();
1262 >      
1263 >        if (inA) {
1264 >          hotBin.push_back(sd);
1265 >          //std::cerr << "before, velocity = " << vel << endl;
1266 >          Ph += mass * vel;
1267 >          //std::cerr << "after, velocity = " << vel << endl;
1268 >          Mh += mass;
1269 >          Kh += mass * vel.lengthSquare();
1270 >          if (rnemdFluxType_ == rnemdFullKE) {
1271 >            if (sd->isDirectional()) {
1272 >              Vector3d angMom = sd->getJ();
1273 >              Mat3x3d I = sd->getI();
1274 >              if (sd->isLinear()) {
1275 >                int i = sd->linearAxis();
1276 >                int j = (i + 1) % 3;
1277 >                int k = (i + 2) % 3;
1278 >                Kh += angMom[j] * angMom[j] / I(j, j) +
1279 >                  angMom[k] * angMom[k] / I(k, k);
1280 >              } else {
1281 >                Kh += angMom[0] * angMom[0] / I(0, 0) +
1282 >                  angMom[1] * angMom[1] / I(1, 1) +
1283 >                  angMom[2] * angMom[2] / I(2, 2);
1284 >              }
1285 >            }
1286 >          }
1287 >        } else { //midBin_
1288 >          coldBin.push_back(sd);
1289 >          Pc += mass * vel;
1290 >          Mc += mass;
1291 >          Kc += mass * vel.lengthSquare();
1292 >          if (rnemdFluxType_ == rnemdFullKE) {
1293 >            if (sd->isDirectional()) {
1294 >              Vector3d angMom = sd->getJ();
1295 >              Mat3x3d I = sd->getI();
1296 >              if (sd->isLinear()) {
1297 >                int i = sd->linearAxis();
1298 >                int j = (i + 1) % 3;
1299 >                int k = (i + 2) % 3;
1300 >                Kc += angMom[j] * angMom[j] / I(j, j) +
1301 >                  angMom[k] * angMom[k] / I(k, k);
1302 >              } else {
1303 >                Kc += angMom[0] * angMom[0] / I(0, 0) +
1304 >                  angMom[1] * angMom[1] / I(1, 1) +
1305 >                  angMom[2] * angMom[2] / I(2, 2);
1306 >              }
1307 >            }
1308 >          }
1309 >        }
1310        }
1311      }
1312 <    // Consider combininig together the solving pair part w/ the searching
1313 <    // best solution part so that we don't need the pairs vector
1314 <    if (!rps.empty()) {
1315 <      RealType smallestDiff = HONKING_LARGE_VALUE;
1316 <      RealType diff;
1317 <      std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
1318 <      std::vector<std::pair<RealType,RealType> >::iterator rpi;
1319 <      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
763 <        r1 = (*rpi).first;
764 <        r2 = (*rpi).second;
765 <        switch(rnemdType_) {
766 <        case rnemdKineticScale :
767 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
768 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
769 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
770 <          break;
771 <        case rnemdPxScale :
772 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
773 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
774 <          break;
775 <        case rnemdPyScale :
776 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
777 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
778 <          break;
779 <        case rnemdPzScale :
780 <        default :
781 <          break;
782 <        }
783 <        if (diff < smallestDiff) {
784 <          smallestDiff = diff;
785 <          bestPair = *rpi;
786 <        }
787 <      }
1312 >    
1313 >    Kh *= 0.5;
1314 >    Kc *= 0.5;
1315 >
1316 >    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1317 >    //        << "\tKc= " << Kc << endl;
1318 >    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1319 >    
1320   #ifdef IS_MPI
1321 <      if (worldRank == 0) {
1321 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1322 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1323 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1324 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1325 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1326 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1327   #endif
791        std::cerr << "we choose r1 = " << bestPair.first
792                  << " and r2 = " << bestPair.second << "\n";
793 #ifdef IS_MPI
794      }
795 #endif
1328  
1329 <      RealType x, y, z;
1330 <        switch(rnemdType_) {
1331 <        case rnemdKineticScale :
1332 <          x = bestPair.first;
1333 <          y = bestPair.first;
1334 <          z = bestPair.second;
1335 <          break;
1336 <        case rnemdPxScale :
1337 <          x = c;
1338 <          y = bestPair.first;
1339 <          z = bestPair.second;
1340 <          break;
1341 <        case rnemdPyScale :
1342 <          x = bestPair.first;
1343 <          y = c;
1344 <          z = bestPair.second;
1345 <          break;
1346 <        case rnemdPzScale :
1347 <          x = bestPair.first;
1348 <          y = bestPair.second;
1349 <          z = c;
1350 <          break;          
1351 <        default :
1352 <          break;
1353 <        }
1354 <      std::vector<StuntDouble*>::iterator sdi;
1355 <      Vector3d vel;
1356 <      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1357 <        vel = (*sdi)->getVel();
1358 <        vel.x() *= x;
1359 <        vel.y() *= y;
1360 <        vel.z() *= z;
1361 <        (*sdi)->setVel(vel);
1329 >    bool successfulExchange = false;
1330 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1331 >      Vector3d vc = Pc / Mc;
1332 >      Vector3d ac = -momentumTarget_ / Mc + vc;
1333 >      Vector3d acrec = -momentumTarget_ / Mc;
1334 >      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1335 >      if (cNumerator > 0.0) {
1336 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1337 >        if (cDenominator > 0.0) {
1338 >          RealType c = sqrt(cNumerator / cDenominator);
1339 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1340 >            Vector3d vh = Ph / Mh;
1341 >            Vector3d ah = momentumTarget_ / Mh + vh;
1342 >            Vector3d ahrec = momentumTarget_ / Mh;
1343 >            RealType hNumerator = Kh + kineticTarget_
1344 >              - 0.5 * Mh * ah.lengthSquare();
1345 >            if (hNumerator > 0.0) {
1346 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1347 >              if (hDenominator > 0.0) {
1348 >                RealType h = sqrt(hNumerator / hDenominator);
1349 >                if ((h > 0.9) && (h < 1.1)) {
1350 >                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1351 >                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1352 >                  vector<StuntDouble*>::iterator sdi;
1353 >                  Vector3d vel;
1354 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1355 >                    //vel = (*sdi)->getVel();
1356 >                    vel = ((*sdi)->getVel() - vc) * c + ac;
1357 >                    (*sdi)->setVel(vel);
1358 >                    if (rnemdFluxType_ == rnemdFullKE) {
1359 >                      if ((*sdi)->isDirectional()) {
1360 >                        Vector3d angMom = (*sdi)->getJ() * c;
1361 >                        (*sdi)->setJ(angMom);
1362 >                      }
1363 >                    }
1364 >                  }
1365 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1366 >                    //vel = (*sdi)->getVel();
1367 >                    vel = ((*sdi)->getVel() - vh) * h + ah;
1368 >                    (*sdi)->setVel(vel);
1369 >                    if (rnemdFluxType_ == rnemdFullKE) {
1370 >                      if ((*sdi)->isDirectional()) {
1371 >                        Vector3d angMom = (*sdi)->getJ() * h;
1372 >                        (*sdi)->setJ(angMom);
1373 >                      }
1374 >                    }
1375 >                  }
1376 >                  successfulExchange = true;
1377 >                  kineticExchange_ += kineticTarget_;
1378 >                  momentumExchange_ += momentumTarget_;
1379 >                }
1380 >              }
1381 >            }
1382 >          }
1383 >        }
1384        }
1385 <      //convert to hotBin coefficient
1386 <      x = 1.0 + px * (1.0 - x);
1387 <      y = 1.0 + py * (1.0 - y);
1388 <      z = 1.0 + pz * (1.0 - z);
1389 <      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1390 <        vel = (*sdi)->getVel();
1391 <        vel.x() *= x;
1392 <        vel.y() *= y;
1393 <        vel.z() *= z;
840 <        (*sdi)->setVel(vel);
841 <      }
842 <      exchangeSum_ += targetFlux_;
843 <      //we may want to check whether the exchange has been successful
844 <    } else {
845 <      std::cerr << "exchange NOT performed!\n";//MPI incompatible
1385 >    }
1386 >    if (successfulExchange != true) {
1387 >      sprintf(painCave.errMsg,
1388 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1389 >              "\tthe constraint equations may not exist or there may be\n"
1390 >              "\tno selected objects in one or both slabs.\n");
1391 >      painCave.isFatal = 0;
1392 >      painCave.severity = OPENMD_INFO;
1393 >      simError();        
1394        failTrialCount_++;
1395      }
848
1396    }
1397  
1398    void RNEMD::doRNEMD() {
1399 <
1400 <    switch(rnemdType_) {
1401 <    case rnemdKineticScale :
1402 <    case rnemdPxScale :
856 <    case rnemdPyScale :
857 <    case rnemdPzScale :
858 <      doScale();
859 <      break;
860 <    case rnemdKineticSwap :
861 <    case rnemdPx :
862 <    case rnemdPy :
863 <    case rnemdPz :
1399 >    if (!doRNEMD_) return;
1400 >    trialCount_++;
1401 >    switch(rnemdMethod_) {
1402 >    case rnemdSwap:
1403        doSwap();
1404        break;
1405 <    case rnemdUnknown :
1405 >    case rnemdNIVS:
1406 >      doNIVS();
1407 >      break;
1408 >    case rnemdVSS:
1409 >      doVSS();
1410 >      break;
1411 >    case rnemdUnkownMethod:
1412      default :
1413        break;
1414      }
1415    }
1416  
1417    void RNEMD::collectData() {
1418 <
1418 >    if (!doRNEMD_) return;
1419      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1420      Mat3x3d hmat = currentSnap_->getHmat();
1421  
1422 +    areaAccumulator_->add(currentSnap_->getXYarea());
1423 +
1424      seleMan_.setSelectionSet(evaluator_.evaluate());
1425  
1426      int selei;
1427      StuntDouble* sd;
1428      int idx;
1429  
1430 +    vector<RealType> binMass(nBins_, 0.0);
1431 +    vector<RealType> binPx(nBins_, 0.0);
1432 +    vector<RealType> binPy(nBins_, 0.0);
1433 +    vector<RealType> binPz(nBins_, 0.0);
1434 +    vector<RealType> binKE(nBins_, 0.0);
1435 +    vector<int> binDOF(nBins_, 0);
1436 +    vector<int> binCount(nBins_, 0);
1437 +
1438 +    // alternative approach, track all molecules instead of only those
1439 +    // selected for scaling/swapping:
1440 +    /*
1441 +    SimInfo::MoleculeIterator miter;
1442 +    vector<StuntDouble*>::iterator iiter;
1443 +    Molecule* mol;
1444 +    StuntDouble* sd;
1445 +    for (mol = info_->beginMolecule(miter); mol != NULL;
1446 +      mol = info_->nextMolecule(miter))
1447 +      sd is essentially sd
1448 +        for (sd = mol->beginIntegrableObject(iiter);
1449 +             sd != NULL;
1450 +             sd = mol->nextIntegrableObject(iiter))
1451 +    */
1452      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1453           sd = seleMan_.nextSelected(selei)) {
1454        
# Line 891 | Line 1460 | namespace OpenMD {
1460        
1461        if (usePeriodicBoundaryConditions_)
1462          currentSnap_->wrapVector(pos);
1463 <      
1463 >
1464 >
1465        // which bin is this stuntdouble in?
1466        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1467 <      
1467 >      // Shift molecules by half a box to have bins start at 0
1468 >      // The modulo operator is used to wrap the case when we are
1469 >      // beyond the end of the bins back to the beginning.
1470        int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1471 <
900 <      if (rnemdLogWidth_ == midBin_ + 1)
901 <        if (binNo > midBin_)
902 <          binNo = nBins_ - binNo;
903 <
1471 >    
1472        RealType mass = sd->getMass();
1473        Vector3d vel = sd->getVel();
906      RealType value;
907      RealType xVal, yVal, zVal;
1474  
1475 <      switch(rnemdType_) {
1476 <      case rnemdKineticSwap :
1477 <      case rnemdKineticScale :
1478 <        
1479 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
1480 <                        vel[2]*vel[2]);
1481 <        
916 <        valueCount_[binNo] += 3;
917 <        if (sd->isDirectional()) {
918 <          Vector3d angMom = sd->getJ();
919 <          Mat3x3d I = sd->getI();
920 <          
921 <          if (sd->isLinear()) {
922 <            int i = sd->linearAxis();
923 <            int j = (i + 1) % 3;
924 <            int k = (i + 2) % 3;
925 <            value += angMom[j] * angMom[j] / I(j, j) +
926 <              angMom[k] * angMom[k] / I(k, k);
1475 >      binCount[binNo]++;
1476 >      binMass[binNo] += mass;
1477 >      binPx[binNo] += mass*vel.x();
1478 >      binPy[binNo] += mass*vel.y();
1479 >      binPz[binNo] += mass*vel.z();
1480 >      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1481 >      binDOF[binNo] += 3;
1482  
1483 <            valueCount_[binNo] +=2;
1483 >      if (sd->isDirectional()) {
1484 >        Vector3d angMom = sd->getJ();
1485 >        Mat3x3d I = sd->getI();
1486 >        if (sd->isLinear()) {
1487 >          int i = sd->linearAxis();
1488 >          int j = (i + 1) % 3;
1489 >          int k = (i + 2) % 3;
1490 >          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1491 >                                 angMom[k] * angMom[k] / I(k, k));
1492 >          binDOF[binNo] += 2;
1493 >        } else {
1494 >          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1495 >                                 angMom[1] * angMom[1] / I(1, 1) +
1496 >                                 angMom[2] * angMom[2] / I(2, 2));
1497 >          binDOF[binNo] += 3;
1498 >        }
1499 >      }
1500 >    }
1501 >    
1502  
1503 <          } else {
1504 <            value += angMom[0]*angMom[0]/I(0, 0)
1505 <              + angMom[1]*angMom[1]/I(1, 1)
1506 <              + angMom[2]*angMom[2]/I(2, 2);
1507 <            valueCount_[binNo] +=3;
1508 <          }
1509 <        }
1510 <        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1503 > #ifdef IS_MPI
1504 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1505 >                              nBins_, MPI::INT, MPI::SUM);
1506 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1507 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1508 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1509 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1510 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1511 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1512 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1513 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1514 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1515 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1516 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1517 >                              nBins_, MPI::INT, MPI::SUM);
1518 > #endif
1519  
1520 <        break;
1521 <      case rnemdPx :
1522 <      case rnemdPxScale :
1523 <        value = mass * vel[0];
1524 <        valueCount_[binNo]++;
1525 <        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
1526 <          / PhysicalConstants::kb;
1527 <        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1528 <          / PhysicalConstants::kb;
1529 <        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1530 <          / PhysicalConstants::kb;
1531 <        xTempHist_[binNo] += xVal;
1532 <        yTempHist_[binNo] += yVal;
1533 <        zTempHist_[binNo] += zVal;
1534 <        break;
1535 <      case rnemdPy :
1536 <      case rnemdPyScale :
1537 <        value = mass * vel[1];
1538 <        valueCount_[binNo]++;
1539 <        break;
1540 <      case rnemdPz :
1541 <      case rnemdPzScale :
1542 <        value = mass * vel[2];
1543 <        valueCount_[binNo]++;
1544 <        break;
1545 <      case rnemdUnknown :
1546 <      default :
1547 <        break;
1520 >    Vector3d vel;
1521 >    RealType den;
1522 >    RealType temp;
1523 >    RealType z;
1524 >    for (int i = 0; i < nBins_; i++) {
1525 >      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1526 >      vel.x() = binPx[i] / binMass[i];
1527 >      vel.y() = binPy[i] / binMass[i];
1528 >      vel.z() = binPz[i] / binMass[i];
1529 >
1530 >      den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1531 >        / currentSnap_->getVolume() ;
1532 >
1533 >      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1534 >                               PhysicalConstants::energyConvert);
1535 >
1536 >      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1537 >        if(outputMask_[j]) {
1538 >          switch(j) {
1539 >          case Z:
1540 >            (data_[j].accumulator[i])->add(z);
1541 >            break;
1542 >          case TEMPERATURE:
1543 >            data_[j].accumulator[i]->add(temp);
1544 >            break;
1545 >          case VELOCITY:
1546 >            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1547 >            break;
1548 >          case DENSITY:
1549 >            data_[j].accumulator[i]->add(den);
1550 >            break;
1551 >          }
1552 >        }
1553        }
968      valueHist_[binNo] += value;
1554      }
970
1555    }
1556  
1557    void RNEMD::getStarted() {
1558 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1559 <    Stats& stat = currentSnap_->statData;
1560 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1558 >    if (!doRNEMD_) return;
1559 >    collectData();
1560 >    writeOutputFile();
1561    }
1562  
1563 <  void RNEMD::getStatus() {
1564 <
1565 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1566 <    Stats& stat = currentSnap_->statData;
1567 <    RealType time = currentSnap_->getTime();
1568 <
1569 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1570 <    //or to be more meaningful, define another item as exchangeSum_ / time
1571 <    int j;
1572 <
1563 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
1564 >    if (!doRNEMD_) return;
1565 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1566 >    
1567 >    while(tokenizer.hasMoreTokens()) {
1568 >      std::string token(tokenizer.nextToken());
1569 >      toUpper(token);
1570 >      OutputMapType::iterator i = outputMap_.find(token);
1571 >      if (i != outputMap_.end()) {
1572 >        outputMask_.set(i->second);
1573 >      } else {
1574 >        sprintf( painCave.errMsg,
1575 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1576 >                 "\toutputFileFormat keyword.\n", token.c_str() );
1577 >        painCave.isFatal = 0;
1578 >        painCave.severity = OPENMD_ERROR;
1579 >        simError();            
1580 >      }
1581 >    }  
1582 >  }
1583 >  
1584 >  void RNEMD::writeOutputFile() {
1585 >    if (!doRNEMD_) return;
1586 >    
1587   #ifdef IS_MPI
990
991    // all processors have the same number of bins, and STL vectors pack their
992    // arrays, so in theory, this should be safe:
993
994    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
995                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
996    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
997                              rnemdLogWidth_, MPI::INT, MPI::SUM);
998    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) {
999      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1000                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1001      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1002                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1003      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1004                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1005    }
1588      // If we're the root node, should we print out the results
1589      int worldRank = MPI::COMM_WORLD.Get_rank();
1590      if (worldRank == 0) {
1591   #endif
1592 <      rnemdLog_ << time;
1593 <      for (j = 0; j < rnemdLogWidth_; j++) {
1594 <        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
1592 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1593 >      
1594 >      if( !rnemdFile_ ){        
1595 >        sprintf( painCave.errMsg,
1596 >                 "Could not open \"%s\" for RNEMD output.\n",
1597 >                 rnemdFileName_.c_str());
1598 >        painCave.isFatal = 1;
1599 >        simError();
1600        }
1601 <      rnemdLog_ << "\n";
1602 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) {
1603 <        xTempLog_ << time;      
1604 <        for (j = 0; j < rnemdLogWidth_; j++) {
1605 <          xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j];
1601 >
1602 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1603 >
1604 >      RealType time = currentSnap_->getTime();
1605 >      RealType avgArea;
1606 >      areaAccumulator_->getAverage(avgArea);
1607 >      RealType Jz = kineticExchange_ / (2.0 * time * avgArea)
1608 >        / PhysicalConstants::energyConvert;
1609 >      Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);      
1610 >
1611 >      rnemdFile_ << "#######################################################\n";
1612 >      rnemdFile_ << "# RNEMD {\n";
1613 >
1614 >      map<string, RNEMDMethod>::iterator mi;
1615 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1616 >        if ( (*mi).second == rnemdMethod_)
1617 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
1618 >      }
1619 >      map<string, RNEMDFluxType>::iterator fi;
1620 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1621 >        if ( (*fi).second == rnemdFluxType_)
1622 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
1623 >      }
1624 >      
1625 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
1626 >
1627 >      rnemdFile_ << "#    objectSelection = \""
1628 >                 << rnemdObjectSelection_ << "\";\n";
1629 >      rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n";
1630 >      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n";
1631 >      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n";
1632 >      rnemdFile_ << "# }\n";
1633 >      rnemdFile_ << "#######################################################\n";
1634 >      rnemdFile_ << "# RNEMD report:\n";      
1635 >      rnemdFile_ << "#     running time = " << time << " fs\n";
1636 >      rnemdFile_ << "#     target flux:\n";
1637 >      rnemdFile_ << "#         kinetic = "
1638 >                 << kineticFlux_ / PhysicalConstants::energyConvert
1639 >                 << " (kcal/mol/A^2/fs)\n";
1640 >      rnemdFile_ << "#         momentum = " << momentumFluxVector_
1641 >                 << " (amu/A/fs^2)\n";
1642 >      rnemdFile_ << "#     target one-time exchanges:\n";
1643 >      rnemdFile_ << "#         kinetic = "
1644 >                 << kineticTarget_ / PhysicalConstants::energyConvert
1645 >                 << " (kcal/mol)\n";
1646 >      rnemdFile_ << "#         momentum = " << momentumTarget_
1647 >                 << " (amu*A/fs)\n";
1648 >      rnemdFile_ << "#     actual exchange totals:\n";
1649 >      rnemdFile_ << "#         kinetic = "
1650 >                 << kineticExchange_ / PhysicalConstants::energyConvert
1651 >                 << " (kcal/mol)\n";
1652 >      rnemdFile_ << "#         momentum = " << momentumExchange_
1653 >                 << " (amu*A/fs)\n";      
1654 >      rnemdFile_ << "#     actual flux:\n";
1655 >      rnemdFile_ << "#         kinetic = " << Jz
1656 >                 << " (kcal/mol/A^2/fs)\n";
1657 >      rnemdFile_ << "#         momentum = " << JzP
1658 >                 << " (amu/A/fs^2)\n";
1659 >      rnemdFile_ << "#     exchange statistics:\n";
1660 >      rnemdFile_ << "#         attempted = " << trialCount_ << "\n";
1661 >      rnemdFile_ << "#         failed = " << failTrialCount_ << "\n";    
1662 >      if (rnemdMethod_ == rnemdNIVS) {
1663 >        rnemdFile_ << "#         NIVS root-check errors = "
1664 >                   << failRootCount_ << "\n";
1665 >      }
1666 >      rnemdFile_ << "#######################################################\n";
1667 >      
1668 >      
1669 >      
1670 >      //write title
1671 >      rnemdFile_ << "#";
1672 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1673 >        if (outputMask_[i]) {
1674 >          rnemdFile_ << "\t" << data_[i].title <<
1675 >            "(" << data_[i].units << ")";
1676 >          // add some extra tabs for column alignment
1677 >          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
1678          }
1679 <        xTempLog_ << "\n";
1680 <        yTempLog_ << time;
1681 <        for (j = 0; j < rnemdLogWidth_; j++) {
1682 <          yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j];
1679 >      }
1680 >      rnemdFile_ << std::endl;
1681 >      
1682 >      rnemdFile_.precision(8);
1683 >      
1684 >      for (unsigned int j = 0; j < nBins_; j++) {        
1685 >        
1686 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1687 >          if (outputMask_[i]) {
1688 >            if (data_[i].dataType == "RealType")
1689 >              writeReal(i,j);
1690 >            else if (data_[i].dataType == "Vector3d")
1691 >              writeVector(i,j);
1692 >            else {
1693 >              sprintf( painCave.errMsg,
1694 >                       "RNEMD found an unknown data type for: %s ",
1695 >                       data_[i].title.c_str());
1696 >              painCave.isFatal = 1;
1697 >              simError();
1698 >            }
1699 >          }
1700          }
1701 <        yTempLog_ << "\n";
1702 <        zTempLog_ << time;
1703 <        for (j = 0; j < rnemdLogWidth_; j++) {
1704 <          zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j];
1701 >        rnemdFile_ << std::endl;
1702 >        
1703 >      }        
1704 >
1705 >      rnemdFile_ << "#######################################################\n";
1706 >      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1707 >      rnemdFile_ << "#######################################################\n";
1708 >
1709 >
1710 >      for (unsigned int j = 0; j < nBins_; j++) {        
1711 >        rnemdFile_ << "#";
1712 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1713 >          if (outputMask_[i]) {
1714 >            if (data_[i].dataType == "RealType")
1715 >              writeRealStdDev(i,j);
1716 >            else if (data_[i].dataType == "Vector3d")
1717 >              writeVectorStdDev(i,j);
1718 >            else {
1719 >              sprintf( painCave.errMsg,
1720 >                       "RNEMD found an unknown data type for: %s ",
1721 >                       data_[i].title.c_str());
1722 >              painCave.isFatal = 1;
1723 >              simError();
1724 >            }
1725 >          }
1726          }
1727 <        zTempLog_ << "\n";
1728 <      }
1727 >        rnemdFile_ << std::endl;
1728 >        
1729 >      }        
1730 >      
1731 >      rnemdFile_.flush();
1732 >      rnemdFile_.close();
1733 >      
1734   #ifdef IS_MPI
1735      }
1736   #endif
1737 <    for (j = 0; j < rnemdLogWidth_; j++) {
1738 <      valueCount_[j] = 0;
1739 <      valueHist_[j] = 0.0;
1737 >    
1738 >  }
1739 >  
1740 >  void RNEMD::writeReal(int index, unsigned int bin) {
1741 >    if (!doRNEMD_) return;
1742 >    assert(index >=0 && index < ENDINDEX);
1743 >    assert(bin < nBins_);
1744 >    RealType s;
1745 >    
1746 >    data_[index].accumulator[bin]->getAverage(s);
1747 >    
1748 >    if (! isinf(s) && ! isnan(s)) {
1749 >      rnemdFile_ << "\t" << s;
1750 >    } else{
1751 >      sprintf( painCave.errMsg,
1752 >               "RNEMD detected a numerical error writing: %s for bin %d",
1753 >               data_[index].title.c_str(), bin);
1754 >      painCave.isFatal = 1;
1755 >      simError();
1756 >    }    
1757 >  }
1758 >  
1759 >  void RNEMD::writeVector(int index, unsigned int bin) {
1760 >    if (!doRNEMD_) return;
1761 >    assert(index >=0 && index < ENDINDEX);
1762 >    assert(bin < nBins_);
1763 >    Vector3d s;
1764 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1765 >    if (isinf(s[0]) || isnan(s[0]) ||
1766 >        isinf(s[1]) || isnan(s[1]) ||
1767 >        isinf(s[2]) || isnan(s[2]) ) {      
1768 >      sprintf( painCave.errMsg,
1769 >               "RNEMD detected a numerical error writing: %s for bin %d",
1770 >               data_[index].title.c_str(), bin);
1771 >      painCave.isFatal = 1;
1772 >      simError();
1773 >    } else {
1774 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1775      }
1776 <    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale)
1777 <      for (j = 0; j < rnemdLogWidth_; j++) {
1778 <        xTempHist_[j] = 0.0;
1779 <        yTempHist_[j] = 0.0;
1780 <        zTempHist_[j] = 0.0;
1781 <      }
1776 >  }  
1777 >
1778 >  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1779 >    if (!doRNEMD_) return;
1780 >    assert(index >=0 && index < ENDINDEX);
1781 >    assert(bin < nBins_);
1782 >    RealType s;
1783 >    
1784 >    data_[index].accumulator[bin]->getStdDev(s);
1785 >    
1786 >    if (! isinf(s) && ! isnan(s)) {
1787 >      rnemdFile_ << "\t" << s;
1788 >    } else{
1789 >      sprintf( painCave.errMsg,
1790 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1791 >               data_[index].title.c_str(), bin);
1792 >      painCave.isFatal = 1;
1793 >      simError();
1794 >    }    
1795    }
1796 +  
1797 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1798 +    if (!doRNEMD_) return;
1799 +    assert(index >=0 && index < ENDINDEX);
1800 +    assert(bin < nBins_);
1801 +    Vector3d s;
1802 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1803 +    if (isinf(s[0]) || isnan(s[0]) ||
1804 +        isinf(s[1]) || isnan(s[1]) ||
1805 +        isinf(s[2]) || isnan(s[2]) ) {      
1806 +      sprintf( painCave.errMsg,
1807 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1808 +               data_[index].title.c_str(), bin);
1809 +      painCave.isFatal = 1;
1810 +      simError();
1811 +    } else {
1812 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1813 +    }
1814 +  }  
1815   }
1816 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines