ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1855 by gezelter, Tue Apr 2 18:31:51 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 < #include "integrators/RNEMD.hpp"
42 > #include <cmath>
43 > #include <sstream>
44 > #include <string>
45 >
46 > #include "rnemd/RNEMD.hpp"
47   #include "math/Vector3.hpp"
48 + #include "math/Vector.hpp"
49   #include "math/SquareMatrix3.hpp"
50 + #include "math/Polynomial.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "primitives/StuntDouble.hpp"
53 < #include "utils/OOPSEConstant.hpp"
53 > #include "utils/PhysicalConstants.hpp"
54   #include "utils/Tuple.hpp"
55 + #include "brains/Thermo.hpp"
56 + #include "math/ConvexHull.hpp"
57 + #ifdef IS_MPI
58 + #include <mpi.h>
59 + #endif
60  
61 < #ifndef IS_MPI
62 < #include "math/SeqRandNumGen.hpp"
63 < #else
53 < #include "math/ParallelRandNumGen.hpp"
61 > #ifdef _MSC_VER
62 > #define isnan(x) _isnan((x))
63 > #define isinf(x) (!_finite(x) && !_isnan(x))
64   #endif
65  
66   #define HONKING_LARGE_VALUE 1.0e10
67  
68 < namespace oopse {
68 > using namespace std;
69 > namespace OpenMD {
70    
71 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
72 <    
73 <    int seedValue;
74 <    Globals * simParams = info->getSimParams();
71 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 >                                evaluatorA_(info), seleManA_(info),
73 >                                commonA_(info), evaluatorB_(info),
74 >                                seleManB_(info), commonB_(info),
75 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
76  
77 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
78 <    stringToEnumMap_["Px"] = rnemdPx;
79 <    stringToEnumMap_["Py"] = rnemdPy;
68 <    stringToEnumMap_["Pz"] = rnemdPz;
69 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
77 >    trialCount_ = 0;
78 >    failTrialCount_ = 0;
79 >    failRootCount_ = 0;
80  
81 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
82 <    evaluator_.loadScriptString(rnemdObjectSelection_);
73 <    seleMan_.setSelectionSet(evaluator_.evaluate());
81 >    Globals* simParams = info->getSimParams();
82 >    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
83  
84 +    doRNEMD_ = rnemdParams->getUseRNEMD();
85 +    if (!doRNEMD_) return;
86  
87 <    // do some sanity checking
87 >    stringToMethod_["Swap"]  = rnemdSwap;
88 >    stringToMethod_["NIVS"]  = rnemdNIVS;
89 >    stringToMethod_["VSS"]   = rnemdVSS;
90  
91 <    int selectionCount = seleMan_.getSelectionCount();
92 <    int nIntegrable = info->getNGlobalIntegrableObjects();
91 >    stringToFluxType_["KE"]  = rnemdKE;
92 >    stringToFluxType_["Px"]  = rnemdPx;
93 >    stringToFluxType_["Py"]  = rnemdPy;
94 >    stringToFluxType_["Pz"]  = rnemdPz;
95 >    stringToFluxType_["Pvector"]  = rnemdPvector;
96 >    stringToFluxType_["Lx"]  = rnemdLx;
97 >    stringToFluxType_["Ly"]  = rnemdLy;
98 >    stringToFluxType_["Lz"]  = rnemdLz;
99 >    stringToFluxType_["Lvector"]  = rnemdLvector;
100 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
101 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
102 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
103 >    stringToFluxType_["KE+Lx"]  = rnemdKeLx;
104 >    stringToFluxType_["KE+Ly"]  = rnemdKeLy;
105 >    stringToFluxType_["KE+Lz"]  = rnemdKeLz;
106 >    stringToFluxType_["KE+Lvector"]  = rnemdKeLvector;
107  
108 <    if (selectionCount > nIntegrable) {
108 >    runTime_ = simParams->getRunTime();
109 >    statusTime_ = simParams->getStatusTime();
110 >
111 >    const string methStr = rnemdParams->getMethod();
112 >    bool hasFluxType = rnemdParams->haveFluxType();
113 >
114 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
115 >
116 >    string fluxStr;
117 >    if (hasFluxType) {
118 >      fluxStr = rnemdParams->getFluxType();
119 >    } else {
120        sprintf(painCave.errMsg,
121 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
122 <              "\t\t%s\n"
123 <              "\thas resulted in %d selected objects.  However,\n"
124 <              "\tthe total number of integrable objects in the system\n"
125 <              "\tis only %d.  This is almost certainly not what you want\n"
126 <              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
127 <              "\tselector in the selection script!\n",
90 <              rnemdObjectSelection_.c_str(),
91 <              selectionCount, nIntegrable);
92 <      painCave.isFatal = 0;
121 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
122 >              "\twhich must be one of the following values:\n"
123 >              "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
124 >              "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
125 >              "\tmust be set to use RNEMD\n");
126 >      painCave.isFatal = 1;
127 >      painCave.severity = OPENMD_ERROR;
128        simError();
94
129      }
130 +
131 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
132 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
133 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
134 +    bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
135 +    bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
136 +    hasSelectionA_ = rnemdParams->haveSelectionA();
137 +    hasSelectionB_ = rnemdParams->haveSelectionB();
138 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
139 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
140 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
141 +    bool hasSphereARadius = rnemdParams->haveSphereARadius();
142 +    hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
143 +    bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
144 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
145 +    bool hasOutputFields = rnemdParams->haveOutputFields();
146      
147 <    const std::string st = simParams->getRNEMD_swapType();
147 >    map<string, RNEMDMethod>::iterator i;
148 >    i = stringToMethod_.find(methStr);
149 >    if (i != stringToMethod_.end())
150 >      rnemdMethod_ = i->second;
151 >    else {
152 >      sprintf(painCave.errMsg,
153 >              "RNEMD: The current method,\n"
154 >              "\t\t%s is not one of the recognized\n"
155 >              "\texchange methods: Swap, NIVS, or VSS\n",
156 >              methStr.c_str());
157 >      painCave.isFatal = 1;
158 >      painCave.severity = OPENMD_ERROR;
159 >      simError();
160 >    }
161  
162 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
163 <    i = stringToEnumMap_.find(st);
164 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
162 >    map<string, RNEMDFluxType>::iterator j;
163 >    j = stringToFluxType_.find(fluxStr);
164 >    if (j != stringToFluxType_.end())
165 >      rnemdFluxType_ = j->second;
166 >    else {
167 >      sprintf(painCave.errMsg,
168 >              "RNEMD: The current fluxType,\n"
169 >              "\t\t%s\n"
170 >              "\tis not one of the recognized flux types.\n",
171 >              fluxStr.c_str());
172 >      painCave.isFatal = 1;
173 >      painCave.severity = OPENMD_ERROR;
174 >      simError();
175 >    }
176  
177 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
178 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
179 <    exchangeSum_ = 0.0;
177 >    bool methodFluxMismatch = false;
178 >    bool hasCorrectFlux = false;
179 >    switch(rnemdMethod_) {
180 >    case rnemdSwap:
181 >      switch (rnemdFluxType_) {
182 >      case rnemdKE:
183 >        hasCorrectFlux = hasKineticFlux;
184 >        break;
185 >      case rnemdPx:
186 >      case rnemdPy:
187 >      case rnemdPz:
188 >        hasCorrectFlux = hasMomentumFlux;
189 >        break;
190 >      default :
191 >        methodFluxMismatch = true;
192 >        break;
193 >      }
194 >      break;
195 >    case rnemdNIVS:
196 >      switch (rnemdFluxType_) {
197 >      case rnemdKE:
198 >      case rnemdRotKE:
199 >      case rnemdFullKE:
200 >        hasCorrectFlux = hasKineticFlux;
201 >        break;
202 >      case rnemdPx:
203 >      case rnemdPy:
204 >      case rnemdPz:
205 >        hasCorrectFlux = hasMomentumFlux;
206 >        break;
207 >      case rnemdKePx:
208 >      case rnemdKePy:
209 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
210 >        break;
211 >      default:
212 >        methodFluxMismatch = true;
213 >        break;
214 >      }
215 >      break;
216 >    case rnemdVSS:
217 >      switch (rnemdFluxType_) {
218 >      case rnemdKE:
219 >      case rnemdRotKE:
220 >      case rnemdFullKE:
221 >        hasCorrectFlux = hasKineticFlux;
222 >        break;
223 >      case rnemdPx:
224 >      case rnemdPy:
225 >      case rnemdPz:
226 >        hasCorrectFlux = hasMomentumFlux;
227 >        break;
228 >      case rnemdLx:
229 >      case rnemdLy:
230 >      case rnemdLz:
231 >        hasCorrectFlux = hasAngularMomentumFlux;
232 >        break;
233 >      case rnemdPvector:
234 >        hasCorrectFlux = hasMomentumFluxVector;
235 >        break;
236 >      case rnemdLvector:
237 >        hasCorrectFlux = hasAngularMomentumFluxVector;
238 >        break;
239 >      case rnemdKePx:
240 >      case rnemdKePy:
241 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
242 >        break;
243 >      case rnemdKeLx:
244 >      case rnemdKeLy:
245 >      case rnemdKeLz:
246 >        hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
247 >        break;
248 >      case rnemdKePvector:
249 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
250 >        break;
251 >      case rnemdKeLvector:
252 >        hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
253 >        break;
254 >      default:
255 >        methodFluxMismatch = true;
256 >        break;
257 >      }
258 >    default:
259 >      break;
260 >    }
261  
262 < #ifndef IS_MPI
263 <    if (simParams->haveSeed()) {
264 <      seedValue = simParams->getSeed();
265 <      randNumGen_ = new SeqRandNumGen(seedValue);
266 <    }else {
267 <      randNumGen_ = new SeqRandNumGen();
268 <    }    
269 < #else
270 <    if (simParams->haveSeed()) {
271 <      seedValue = simParams->getSeed();
272 <      randNumGen_ = new ParallelRandNumGen(seedValue);
273 <    }else {
274 <      randNumGen_ = new ParallelRandNumGen();
275 <    }    
276 < #endif
262 >    if (methodFluxMismatch) {
263 >      sprintf(painCave.errMsg,
264 >              "RNEMD: The current method,\n"
265 >              "\t\t%s\n"
266 >              "\tcannot be used with the current flux type, %s\n",
267 >              methStr.c_str(), fluxStr.c_str());
268 >      painCave.isFatal = 1;
269 >      painCave.severity = OPENMD_ERROR;
270 >      simError();        
271 >    }
272 >    if (!hasCorrectFlux) {
273 >      sprintf(painCave.errMsg,
274 >              "RNEMD: The current method, %s, and flux type, %s,\n"
275 >              "\tdid not have the correct flux value specified. Options\n"
276 >              "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
277 >              "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
278 >              methStr.c_str(), fluxStr.c_str());
279 >      painCave.isFatal = 1;
280 >      painCave.severity = OPENMD_ERROR;
281 >      simError();        
282 >    }
283 >
284 >    if (hasKineticFlux) {
285 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
286 >      // into  amu / fs^3:
287 >      kineticFlux_ = rnemdParams->getKineticFlux()
288 >        * PhysicalConstants::energyConvert;
289 >    } else {
290 >      kineticFlux_ = 0.0;
291 >    }
292 >    if (hasMomentumFluxVector) {
293 >      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
294 >    } else {
295 >      momentumFluxVector_ = V3Zero;
296 >      if (hasMomentumFlux) {
297 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
298 >        switch (rnemdFluxType_) {
299 >        case rnemdPx:
300 >          momentumFluxVector_.x() = momentumFlux;
301 >          break;
302 >        case rnemdPy:
303 >          momentumFluxVector_.y() = momentumFlux;
304 >          break;
305 >        case rnemdPz:
306 >          momentumFluxVector_.z() = momentumFlux;
307 >          break;
308 >        case rnemdKePx:
309 >          momentumFluxVector_.x() = momentumFlux;
310 >          break;
311 >        case rnemdKePy:
312 >          momentumFluxVector_.y() = momentumFlux;
313 >          break;
314 >        default:
315 >          break;
316 >        }
317 >      }
318 >      if (hasAngularMomentumFluxVector) {
319 >        angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector();
320 >      } else {
321 >        angularMomentumFluxVector_ = V3Zero;
322 >        if (hasAngularMomentumFlux) {
323 >          RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
324 >          switch (rnemdFluxType_) {
325 >          case rnemdLx:
326 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
327 >            break;
328 >          case rnemdLy:
329 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
330 >            break;
331 >          case rnemdLz:
332 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
333 >            break;
334 >          case rnemdKeLx:
335 >            angularMomentumFluxVector_.x() = angularMomentumFlux;
336 >            break;
337 >          case rnemdKeLy:
338 >            angularMomentumFluxVector_.y() = angularMomentumFlux;
339 >            break;
340 >          case rnemdKeLz:
341 >            angularMomentumFluxVector_.z() = angularMomentumFlux;
342 >            break;
343 >          default:
344 >            break;
345 >          }
346 >        }        
347 >      }
348 >
349 >      if (hasCoordinateOrigin) {
350 >        coordinateOrigin_ = rnemdParams->getCoordinateOrigin();
351 >      } else {
352 >        coordinateOrigin_ = V3Zero;
353 >      }
354 >
355 >      // do some sanity checking
356 >
357 >      int selectionCount = seleMan_.getSelectionCount();
358 >
359 >      int nIntegrable = info->getNGlobalIntegrableObjects();
360 >
361 >      if (selectionCount > nIntegrable) {
362 >        sprintf(painCave.errMsg,
363 >                "RNEMD: The current objectSelection,\n"
364 >                "\t\t%s\n"
365 >                "\thas resulted in %d selected objects.  However,\n"
366 >                "\tthe total number of integrable objects in the system\n"
367 >                "\tis only %d.  This is almost certainly not what you want\n"
368 >                "\tto do.  A likely cause of this is forgetting the _RB_0\n"
369 >                "\tselector in the selection script!\n",
370 >                rnemdObjectSelection_.c_str(),
371 >                selectionCount, nIntegrable);
372 >        painCave.isFatal = 0;
373 >        painCave.severity = OPENMD_WARNING;
374 >        simError();
375 >      }
376 >
377 >      areaAccumulator_ = new Accumulator();
378 >
379 >      nBins_ = rnemdParams->getOutputBins();
380 >      binWidth_ = rnemdParams->getOutputBinWidth();
381 >
382 >      data_.resize(RNEMD::ENDINDEX);
383 >      OutputData z;
384 >      z.units =  "Angstroms";
385 >      z.title =  "Z";
386 >      z.dataType = "RealType";
387 >      z.accumulator.reserve(nBins_);
388 >      for (int i = 0; i < nBins_; i++)
389 >        z.accumulator.push_back( new Accumulator() );
390 >      data_[Z] = z;
391 >      outputMap_["Z"] =  Z;
392 >
393 >      OutputData r;
394 >      r.units =  "Angstroms";
395 >      r.title =  "R";
396 >      r.dataType = "RealType";
397 >      r.accumulator.reserve(nBins_);
398 >      for (int i = 0; i < nBins_; i++)
399 >        r.accumulator.push_back( new Accumulator() );
400 >      data_[R] = r;
401 >      outputMap_["R"] =  R;
402 >
403 >      OutputData temperature;
404 >      temperature.units =  "K";
405 >      temperature.title =  "Temperature";
406 >      temperature.dataType = "RealType";
407 >      temperature.accumulator.reserve(nBins_);
408 >      for (int i = 0; i < nBins_; i++)
409 >        temperature.accumulator.push_back( new Accumulator() );
410 >      data_[TEMPERATURE] = temperature;
411 >      outputMap_["TEMPERATURE"] =  TEMPERATURE;
412 >
413 >      OutputData velocity;
414 >      velocity.units = "angstroms/fs";
415 >      velocity.title =  "Velocity";  
416 >      velocity.dataType = "Vector3d";
417 >      velocity.accumulator.reserve(nBins_);
418 >      for (int i = 0; i < nBins_; i++)
419 >        velocity.accumulator.push_back( new VectorAccumulator() );
420 >      data_[VELOCITY] = velocity;
421 >      outputMap_["VELOCITY"] = VELOCITY;
422 >
423 >      OutputData angularVelocity;
424 >      angularVelocity.units = "angstroms^2/fs";
425 >      angularVelocity.title =  "AngularVelocity";  
426 >      angularVelocity.dataType = "Vector3d";
427 >      angularVelocity.accumulator.reserve(nBins_);
428 >      for (int i = 0; i < nBins_; i++)
429 >        angularVelocity.accumulator.push_back( new VectorAccumulator() );
430 >      data_[ANGULARVELOCITY] = angularVelocity;
431 >      outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
432 >
433 >      OutputData density;
434 >      density.units =  "g cm^-3";
435 >      density.title =  "Density";
436 >      density.dataType = "RealType";
437 >      density.accumulator.reserve(nBins_);
438 >      for (int i = 0; i < nBins_; i++)
439 >        density.accumulator.push_back( new Accumulator() );
440 >      data_[DENSITY] = density;
441 >      outputMap_["DENSITY"] =  DENSITY;
442 >
443 >      if (hasOutputFields) {
444 >        parseOutputFileFormat(rnemdParams->getOutputFields());
445 >      } else {
446 >        if (usePeriodicBoundaryConditions_)
447 >          outputMask_.set(Z);
448 >        else
449 >          outputMask_.set(R);
450 >        switch (rnemdFluxType_) {
451 >        case rnemdKE:
452 >        case rnemdRotKE:
453 >        case rnemdFullKE:
454 >          outputMask_.set(TEMPERATURE);
455 >          break;
456 >        case rnemdPx:
457 >        case rnemdPy:
458 >          outputMask_.set(VELOCITY);
459 >          break;
460 >        case rnemdPz:        
461 >        case rnemdPvector:
462 >          outputMask_.set(VELOCITY);
463 >          outputMask_.set(DENSITY);
464 >          break;
465 >        case rnemdLx:
466 >        case rnemdLy:
467 >        case rnemdLz:
468 >        case rnemdLvector:
469 >          outputMask_.set(ANGULARVELOCITY);
470 >          break;
471 >        case rnemdKeLx:
472 >        case rnemdKeLy:
473 >        case rnemdKeLz:
474 >        case rnemdKeLvector:
475 >          outputMask_.set(TEMPERATURE);
476 >          outputMask_.set(ANGULARVELOCITY);
477 >          break;
478 >        case rnemdKePx:
479 >        case rnemdKePy:
480 >          outputMask_.set(TEMPERATURE);
481 >          outputMask_.set(VELOCITY);
482 >          break;
483 >        case rnemdKePvector:
484 >          outputMask_.set(TEMPERATURE);
485 >          outputMask_.set(VELOCITY);
486 >          outputMask_.set(DENSITY);        
487 >          break;
488 >        default:
489 >          break;
490 >        }
491 >      }
492 >      
493 >      if (hasOutputFileName) {
494 >        rnemdFileName_ = rnemdParams->getOutputFileName();
495 >      } else {
496 >        rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
497 >      }          
498 >
499 >      exchangeTime_ = rnemdParams->getExchangeTime();
500 >
501 >      Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
502 >      // total exchange sums are zeroed out at the beginning:
503 >
504 >      kineticExchange_ = 0.0;
505 >      momentumExchange_ = V3Zero;
506 >      angularMomentumExchange_ = V3Zero;
507 >
508 >      std::ostringstream selectionAstream;
509 >      std::ostringstream selectionBstream;
510 >    
511 >      if (hasSelectionA_) {
512 >        selectionA_ = rnemdParams->getSelectionA();
513 >      } else {
514 >        if (usePeriodicBoundaryConditions_) {    
515 >          Mat3x3d hmat = currentSnap_->getHmat();
516 >        
517 >          if (hasSlabWidth)
518 >            slabWidth_ = rnemdParams->getSlabWidth();
519 >          else
520 >            slabWidth_ = hmat(2,2) / 10.0;
521 >        
522 >          if (hasSlabACenter)
523 >            slabACenter_ = rnemdParams->getSlabACenter();
524 >          else
525 >            slabACenter_ = 0.0;
526 >        
527 >          selectionAstream << "select wrappedz > "
528 >                           << slabACenter_ - 0.5*slabWidth_
529 >                           <<  " && wrappedz < "
530 >                           << slabACenter_ + 0.5*slabWidth_;
531 >          selectionA_ = selectionAstream.str();
532 >        } else {
533 >          if (hasSphereARadius)
534 >            sphereARadius_ = rnemdParams->getSphereARadius();
535 >          else {
536 >            // use an initial guess to the size of the inner slab to be 1/10 the
537 >            // radius of an approximately spherical hull:
538 >            Thermo thermo(info);
539 >            RealType hVol = thermo.getHullVolume();
540 >            sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
541 >          }
542 >          selectionAstream << "select r < " << sphereARadius_;
543 >          selectionA_ = selectionAstream.str();
544 >        }
545 >      }
546 >    
547 >      if (hasSelectionB_) {
548 >        selectionB_ = rnemdParams->getSelectionB();
549 >      } else {
550 >        if (usePeriodicBoundaryConditions_) {    
551 >          Mat3x3d hmat = currentSnap_->getHmat();
552 >        
553 >          if (hasSlabWidth)
554 >            slabWidth_ = rnemdParams->getSlabWidth();
555 >          else
556 >            slabWidth_ = hmat(2,2) / 10.0;
557 >        
558 >          if (hasSlabBCenter)
559 >            slabBCenter_ = rnemdParams->getSlabACenter();
560 >          else
561 >            slabBCenter_ = hmat(2,2) / 2.0;
562 >        
563 >          selectionBstream << "select wrappedz > "
564 >                           << slabBCenter_ - 0.5*slabWidth_
565 >                           <<  " && wrappedz < "
566 >                           << slabBCenter_ + 0.5*slabWidth_;
567 >          selectionB_ = selectionBstream.str();
568 >        } else {
569 >          if (hasSphereBRadius_) {
570 >            sphereBRadius_ = rnemdParams->getSphereBRadius();
571 >            selectionBstream << "select r > " << sphereBRadius_;
572 >            selectionB_ = selectionBstream.str();
573 >          } else {
574 >            selectionB_ = "select hull";
575 >            hasSelectionB_ = true;
576 >          }
577 >        }
578 >      }
579 >    }
580 >    // object evaluator:
581 >    evaluator_.loadScriptString(rnemdObjectSelection_);
582 >    seleMan_.setSelectionSet(evaluator_.evaluate());
583 >    
584 >    evaluatorA_.loadScriptString(selectionA_);
585 >    evaluatorB_.loadScriptString(selectionB_);
586 >    
587 >    seleManA_.setSelectionSet(evaluatorA_.evaluate());
588 >    seleManB_.setSelectionSet(evaluatorB_.evaluate());
589 >    
590 >    commonA_ = seleManA_ & seleMan_;
591 >    commonB_ = seleManB_ & seleMan_;    
592    }
593    
594 +    
595    RNEMD::~RNEMD() {
596 <    delete randNumGen_;
597 <  }
596 >    if (!doRNEMD_) return;
597 > #ifdef IS_MPI
598 >    if (worldRank == 0) {
599 > #endif
600  
601 <  void RNEMD::doSwap() {
129 <    int midBin = nBins_ / 2;
601 >      writeOutputFile();
602  
603 +      rnemdFile_.close();
604 +      
605 + #ifdef IS_MPI
606 +    }
607 + #endif
608 +  }
609 +  
610 +  void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
611 +    if (!doRNEMD_) return;
612 +    int selei;
613 +    int selej;
614 +
615      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
616      Mat3x3d hmat = currentSnap_->getHmat();
617  
134    seleMan_.setSelectionSet(evaluator_.evaluate());
135
136    int selei;
618      StuntDouble* sd;
138    int idx;
619  
620      RealType min_val;
621      bool min_found = false;  
# Line 145 | Line 625 | namespace oopse {
625      bool max_found = false;
626      StuntDouble* max_sd;
627  
628 <    for (sd = seleMan_.beginSelected(selei); sd != NULL;
629 <         sd = seleMan_.nextSelected(selei)) {
628 >    for (sd = seleManA_.beginSelected(selei); sd != NULL;
629 >         sd = seleManA_.nextSelected(selei)) {
630  
151      idx = sd->getLocalIndex();
152
631        Vector3d pos = sd->getPos();
632 <
632 >      
633        // wrap the stuntdouble's position back into the box:
634 <
634 >      
635        if (usePeriodicBoundaryConditions_)
636          currentSnap_->wrapVector(pos);
637 <
638 <      // which bin is this stuntdouble in?
639 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
640 <
641 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
642 <
643 <
166 <      // if we're in bin 0 or the middleBin
167 <      if (binNo == 0 || binNo == midBin) {
637 >      
638 >      RealType mass = sd->getMass();
639 >      Vector3d vel = sd->getVel();
640 >      RealType value;
641 >      
642 >      switch(rnemdFluxType_) {
643 >      case rnemdKE :
644          
645 <        RealType mass = sd->getMass();
646 <        Vector3d vel = sd->getVel();
647 <        RealType value;
648 <
649 <        switch(rnemdType_) {
174 <        case rnemdKinetic :
645 >        value = mass * vel.lengthSquare();
646 >        
647 >        if (sd->isDirectional()) {
648 >          Vector3d angMom = sd->getJ();
649 >          Mat3x3d I = sd->getI();
650            
651 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
652 <                          vel[2]*vel[2]);
653 <          if (sd->isDirectional()) {
654 <            Vector3d angMom = sd->getJ();
655 <            Mat3x3d I = sd->getI();
656 <            
657 <            if (sd->isLinear()) {
658 <              int i = sd->linearAxis();
659 <              int j = (i + 1) % 3;
660 <              int k = (i + 2) % 3;
186 <              value += angMom[j] * angMom[j] / I(j, j) +
187 <                angMom[k] * angMom[k] / I(k, k);
188 <            } else {                        
189 <              value += angMom[0]*angMom[0]/I(0, 0)
190 <                + angMom[1]*angMom[1]/I(1, 1)
191 <                + angMom[2]*angMom[2]/I(2, 2);
192 <            }
651 >          if (sd->isLinear()) {
652 >            int i = sd->linearAxis();
653 >            int j = (i + 1) % 3;
654 >            int k = (i + 2) % 3;
655 >            value += angMom[j] * angMom[j] / I(j, j) +
656 >              angMom[k] * angMom[k] / I(k, k);
657 >          } else {                        
658 >            value += angMom[0]*angMom[0]/I(0, 0)
659 >              + angMom[1]*angMom[1]/I(1, 1)
660 >              + angMom[2]*angMom[2]/I(2, 2);
661            }
662 <          value = value * 0.5 / OOPSEConstant::energyConvert;
663 <          break;
664 <        case rnemdPx :
665 <          value = mass * vel[0];
666 <          break;
667 <        case rnemdPy :
668 <          value = mass * vel[1];
669 <          break;
670 <        case rnemdPz :
671 <          value = mass * vel[2];
672 <          break;
673 <        case rnemdUnknown :
674 <        default :
675 <          break;
662 >        } //angular momenta exchange enabled
663 >        value *= 0.5;
664 >        break;
665 >      case rnemdPx :
666 >        value = mass * vel[0];
667 >        break;
668 >      case rnemdPy :
669 >        value = mass * vel[1];
670 >        break;
671 >      case rnemdPz :
672 >        value = mass * vel[2];
673 >        break;
674 >      default :
675 >        break;
676 >      }
677 >      if (!max_found) {
678 >        max_val = value;
679 >        max_sd = sd;
680 >        max_found = true;
681 >      } else {
682 >        if (max_val < value) {
683 >          max_val = value;
684 >          max_sd = sd;
685          }
686 +      }  
687 +    }
688          
689 <        if (binNo == 0) {
690 <          if (!min_found) {
691 <            min_val = value;
692 <            min_sd = sd;
693 <            min_found = true;
694 <          } else {
695 <            if (min_val > value) {
696 <              min_val = value;
697 <              min_sd = sd;
698 <            }
699 <          }
700 <        } else {
701 <          if (!max_found) {
702 <            max_val = value;
703 <            max_sd = sd;
704 <            max_found = true;
705 <          } else {
706 <            if (max_val < value) {
707 <              max_val = value;
708 <              max_sd = sd;
709 <            }
710 <          }      
711 <        }
689 >    for (sd = seleManB_.beginSelected(selej); sd != NULL;
690 >         sd = seleManB_.nextSelected(selej)) {
691 >
692 >      Vector3d pos = sd->getPos();
693 >      
694 >      // wrap the stuntdouble's position back into the box:
695 >      
696 >      if (usePeriodicBoundaryConditions_)
697 >        currentSnap_->wrapVector(pos);
698 >      
699 >      RealType mass = sd->getMass();
700 >      Vector3d vel = sd->getVel();
701 >      RealType value;
702 >      
703 >      switch(rnemdFluxType_) {
704 >      case rnemdKE :
705 >        
706 >        value = mass * vel.lengthSquare();
707 >        
708 >        if (sd->isDirectional()) {
709 >          Vector3d angMom = sd->getJ();
710 >          Mat3x3d I = sd->getI();
711 >          
712 >          if (sd->isLinear()) {
713 >            int i = sd->linearAxis();
714 >            int j = (i + 1) % 3;
715 >            int k = (i + 2) % 3;
716 >            value += angMom[j] * angMom[j] / I(j, j) +
717 >              angMom[k] * angMom[k] / I(k, k);
718 >          } else {                        
719 >            value += angMom[0]*angMom[0]/I(0, 0)
720 >              + angMom[1]*angMom[1]/I(1, 1)
721 >              + angMom[2]*angMom[2]/I(2, 2);
722 >          }
723 >        } //angular momenta exchange enabled
724 >        value *= 0.5;
725 >        break;
726 >      case rnemdPx :
727 >        value = mass * vel[0];
728 >        break;
729 >      case rnemdPy :
730 >        value = mass * vel[1];
731 >        break;
732 >      case rnemdPz :
733 >        value = mass * vel[2];
734 >        break;
735 >      default :
736 >        break;
737        }
738 +      
739 +      if (!min_found) {
740 +        min_val = value;
741 +        min_sd = sd;
742 +        min_found = true;
743 +      } else {
744 +        if (min_val > value) {
745 +          min_val = value;
746 +          min_sd = sd;
747 +        }
748 +      }
749      }
750 <
751 < #ifdef IS_MPI
752 <    int nProc, worldRank;
753 <
239 <    nProc = MPI::COMM_WORLD.Get_size();
240 <    worldRank = MPI::COMM_WORLD.Get_rank();
241 <
750 >    
751 > #ifdef IS_MPI    
752 >    int worldRank = MPI::COMM_WORLD.Get_rank();
753 >    
754      bool my_min_found = min_found;
755      bool my_max_found = max_found;
756  
757      // Even if we didn't find a minimum, did someone else?
758 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
247 <                              1, MPI::BOOL, MPI::LAND);
248 <    
758 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
759      // Even if we didn't find a maximum, did someone else?
760 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
761 <                              1, MPI::BOOL, MPI::LAND);
762 <    
763 <    struct {
764 <      RealType val;
765 <      int rank;
766 <    } max_vals, min_vals;
767 <    
768 <    if (min_found) {
769 <      if (my_min_found)
760 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
761 > #endif
762 >
763 >    if (max_found && min_found) {
764 >
765 > #ifdef IS_MPI
766 >      struct {
767 >        RealType val;
768 >        int rank;
769 >      } max_vals, min_vals;
770 >      
771 >      if (my_min_found) {
772          min_vals.val = min_val;
773 <      else
773 >      } else {
774          min_vals.val = HONKING_LARGE_VALUE;
775 <      
775 >      }
776        min_vals.rank = worldRank;    
777        
778        // Who had the minimum?
779        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
780                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
781        min_val = min_vals.val;
270    }
782        
783 <    if (max_found) {
273 <      if (my_max_found)
783 >      if (my_max_found) {
784          max_vals.val = max_val;
785 <      else
785 >      } else {
786          max_vals.val = -HONKING_LARGE_VALUE;
787 <      
787 >      }
788        max_vals.rank = worldRank;    
789        
790        // Who had the maximum?
791        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
792                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
793        max_val = max_vals.val;
284    }
794   #endif
795 <
796 <    if (max_found && min_found) {
797 <      if (min_val< max_val) {
289 <
795 >      
796 >      if (min_val < max_val) {
797 >        
798   #ifdef IS_MPI      
799          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
800            // I have both maximum and minimum, so proceed like a single
801            // processor version:
802   #endif
803 <          // objects to be swapped: velocity & angular velocity
803 >
804            Vector3d min_vel = min_sd->getVel();
805            Vector3d max_vel = max_sd->getVel();
806            RealType temp_vel;
807            
808 <          switch(rnemdType_) {
809 <          case rnemdKinetic :
808 >          switch(rnemdFluxType_) {
809 >          case rnemdKE :
810              min_sd->setVel(max_vel);
811              max_sd->setVel(min_vel);
812 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
812 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
813                Vector3d min_angMom = min_sd->getJ();
814                Vector3d max_angMom = max_sd->getJ();
815                min_sd->setJ(max_angMom);
816                max_sd->setJ(min_angMom);
817 <            }
817 >            }//angular momenta exchange enabled
818 >            //assumes same rigid body identity
819              break;
820            case rnemdPx :
821              temp_vel = min_vel.x();
# Line 329 | Line 838 | namespace oopse {
838              min_sd->setVel(min_vel);
839              max_sd->setVel(max_vel);
840              break;
332          case rnemdUnknown :
841            default :
842              break;
843            }
844 +
845   #ifdef IS_MPI
846            // the rest of the cases only apply in parallel simulations:
847          } else if (max_vals.rank == worldRank) {
# Line 348 | Line 857 | namespace oopse {
857                                     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
858                                     min_vals.rank, 0, status);
859            
860 <          switch(rnemdType_) {
861 <          case rnemdKinetic :
860 >          switch(rnemdFluxType_) {
861 >          case rnemdKE :
862              max_sd->setVel(min_vel);
863 <            
863 >            //angular momenta exchange enabled
864              if (max_sd->isDirectional()) {
865                Vector3d min_angMom;
866                Vector3d max_angMom = max_sd->getJ();
867 <
867 >              
868                // point-to-point swap of the angular momentum vector
869                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
870                                         MPI::REALTYPE, min_vals.rank, 1,
871                                         min_angMom.getArrayPointer(), 3,
872                                         MPI::REALTYPE, min_vals.rank, 1,
873                                         status);
874 <
874 >              
875                max_sd->setJ(min_angMom);
876 <            }
876 >            }
877              break;
878            case rnemdPx :
879              max_vel.x() = min_vel.x();
# Line 378 | Line 887 | namespace oopse {
887              max_vel.z() = min_vel.z();
888              max_sd->setVel(max_vel);
889              break;
381          case rnemdUnknown :
890            default :
891              break;
892            }
# Line 395 | Line 903 | namespace oopse {
903                                     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
904                                     max_vals.rank, 0, status);
905            
906 <          switch(rnemdType_) {
907 <          case rnemdKinetic :
906 >          switch(rnemdFluxType_) {
907 >          case rnemdKE :
908              min_sd->setVel(max_vel);
909 <            
909 >            //angular momenta exchange enabled
910              if (min_sd->isDirectional()) {
911                Vector3d min_angMom = min_sd->getJ();
912                Vector3d max_angMom;
913 <
913 >              
914                // point-to-point swap of the angular momentum vector
915                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
916                                         MPI::REALTYPE, max_vals.rank, 1,
917                                         max_angMom.getArrayPointer(), 3,
918                                         MPI::REALTYPE, max_vals.rank, 1,
919                                         status);
920 <
920 >              
921                min_sd->setJ(max_angMom);
922              }
923              break;
# Line 425 | Line 933 | namespace oopse {
933              min_vel.z() = max_vel.z();
934              min_sd->setVel(min_vel);
935              break;
428          case rnemdUnknown :
936            default :
937              break;
938            }
939          }
940   #endif
941 <        exchangeSum_ += max_val - min_val;
942 <      } else {
943 <        std::cerr << "exchange NOT performed.\nmin_val > max_val.\n";
941 >        
942 >        switch(rnemdFluxType_) {
943 >        case rnemdKE:
944 >          kineticExchange_ += max_val - min_val;
945 >          break;
946 >        case rnemdPx:
947 >          momentumExchange_.x() += max_val - min_val;
948 >          break;
949 >        case rnemdPy:
950 >          momentumExchange_.y() += max_val - min_val;
951 >          break;
952 >        case rnemdPz:
953 >          momentumExchange_.z() += max_val - min_val;
954 >          break;
955 >        default:
956 >          break;
957 >        }
958 >      } else {        
959 >        sprintf(painCave.errMsg,
960 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
961 >        painCave.isFatal = 0;
962 >        painCave.severity = OPENMD_INFO;
963 >        simError();        
964 >        failTrialCount_++;
965        }
966      } else {
967 <      std::cerr << "exchange NOT performed.\none of the two slabs empty.\n";
968 <    }
969 <    
967 >      sprintf(painCave.errMsg,
968 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
969 >              "\twas not present in at least one of the two slabs.\n");
970 >      painCave.isFatal = 0;
971 >      painCave.severity = OPENMD_INFO;
972 >      simError();        
973 >      failTrialCount_++;
974 >    }    
975    }
976    
977 <  void RNEMD::getStatus() {
977 >  void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
978 >    if (!doRNEMD_) return;
979 >    int selei;
980 >    int selej;
981  
982      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
983 +    RealType time = currentSnap_->getTime();    
984      Mat3x3d hmat = currentSnap_->getHmat();
448    Stats& stat = currentSnap_->statData;
449    RealType time = currentSnap_->getTime();
985  
986 <    stat[Stats::RNEMD_SWAP_TOTAL] = exchangeSum_;
986 >    StuntDouble* sd;
987  
988 <    seleMan_.setSelectionSet(evaluator_.evaluate());
988 >    vector<StuntDouble*> hotBin, coldBin;
989  
990 <    int selei;
991 <    StuntDouble* sd;
992 <    int idx;
990 >    RealType Phx = 0.0;
991 >    RealType Phy = 0.0;
992 >    RealType Phz = 0.0;
993 >    RealType Khx = 0.0;
994 >    RealType Khy = 0.0;
995 >    RealType Khz = 0.0;
996 >    RealType Khw = 0.0;
997 >    RealType Pcx = 0.0;
998 >    RealType Pcy = 0.0;
999 >    RealType Pcz = 0.0;
1000 >    RealType Kcx = 0.0;
1001 >    RealType Kcy = 0.0;
1002 >    RealType Kcz = 0.0;
1003 >    RealType Kcw = 0.0;
1004  
1005 <    std::vector<RealType> valueHist(nBins_, 0.0); // keeps track of what's
1006 <                                                  // being averaged
461 <    std::vector<int> valueCount(nBins_, 0);       // keeps track of the
462 <                                                  // number of degrees of
463 <                                                  // freedom being averaged
1005 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1006 >         sd = smanA.nextSelected(selei)) {
1007  
465    for (sd = seleMan_.beginSelected(selei); sd != NULL;
466         sd = seleMan_.nextSelected(selei)) {
467      
468      idx = sd->getLocalIndex();
469      
1008        Vector3d pos = sd->getPos();
1009 <
1009 >      
1010        // wrap the stuntdouble's position back into the box:
1011        
1012        if (usePeriodicBoundaryConditions_)
1013          currentSnap_->wrapVector(pos);
1014        
477      // which bin is this stuntdouble in?
478      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1015        
1016 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;    
1016 >      RealType mass = sd->getMass();
1017 >      Vector3d vel = sd->getVel();
1018        
1019 +      hotBin.push_back(sd);
1020 +      Phx += mass * vel.x();
1021 +      Phy += mass * vel.y();
1022 +      Phz += mass * vel.z();
1023 +      Khx += mass * vel.x() * vel.x();
1024 +      Khy += mass * vel.y() * vel.y();
1025 +      Khz += mass * vel.z() * vel.z();
1026 +      if (sd->isDirectional()) {
1027 +        Vector3d angMom = sd->getJ();
1028 +        Mat3x3d I = sd->getI();
1029 +        if (sd->isLinear()) {
1030 +          int i = sd->linearAxis();
1031 +          int j = (i + 1) % 3;
1032 +          int k = (i + 2) % 3;
1033 +          Khw += angMom[j] * angMom[j] / I(j, j) +
1034 +            angMom[k] * angMom[k] / I(k, k);
1035 +        } else {
1036 +          Khw += angMom[0]*angMom[0]/I(0, 0)
1037 +            + angMom[1]*angMom[1]/I(1, 1)
1038 +            + angMom[2]*angMom[2]/I(2, 2);
1039 +        }
1040 +      }
1041 +    }
1042 +    for (sd = smanB.beginSelected(selej); sd != NULL;
1043 +         sd = smanB.nextSelected(selej)) {
1044 +      Vector3d pos = sd->getPos();
1045 +      
1046 +      // wrap the stuntdouble's position back into the box:
1047 +      
1048 +      if (usePeriodicBoundaryConditions_)
1049 +        currentSnap_->wrapVector(pos);
1050 +            
1051        RealType mass = sd->getMass();
1052        Vector3d vel = sd->getVel();
484      RealType value;
1053  
1054 <      switch(rnemdType_) {
1055 <      case rnemdKinetic :
1056 <        
1057 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
1058 <                        vel[2]*vel[2]);
1059 <        
1060 <        valueCount[binNo] += 3;
1061 <        if (sd->isDirectional()) {
1062 <          Vector3d angMom = sd->getJ();
1063 <          Mat3x3d I = sd->getI();
1064 <          
1065 <          if (sd->isLinear()) {
1066 <            int i = sd->linearAxis();
1067 <            int j = (i + 1) % 3;
1068 <            int k = (i + 2) % 3;
1069 <            value += angMom[j] * angMom[j] / I(j, j) +
1070 <              angMom[k] * angMom[k] / I(k, k);
1054 >      coldBin.push_back(sd);
1055 >      Pcx += mass * vel.x();
1056 >      Pcy += mass * vel.y();
1057 >      Pcz += mass * vel.z();
1058 >      Kcx += mass * vel.x() * vel.x();
1059 >      Kcy += mass * vel.y() * vel.y();
1060 >      Kcz += mass * vel.z() * vel.z();
1061 >      if (sd->isDirectional()) {
1062 >        Vector3d angMom = sd->getJ();
1063 >        Mat3x3d I = sd->getI();
1064 >        if (sd->isLinear()) {
1065 >          int i = sd->linearAxis();
1066 >          int j = (i + 1) % 3;
1067 >          int k = (i + 2) % 3;
1068 >          Kcw += angMom[j] * angMom[j] / I(j, j) +
1069 >            angMom[k] * angMom[k] / I(k, k);
1070 >        } else {
1071 >          Kcw += angMom[0]*angMom[0]/I(0, 0)
1072 >            + angMom[1]*angMom[1]/I(1, 1)
1073 >            + angMom[2]*angMom[2]/I(2, 2);
1074 >        }
1075 >      }
1076 >    }
1077 >    
1078 >    Khx *= 0.5;
1079 >    Khy *= 0.5;
1080 >    Khz *= 0.5;
1081 >    Khw *= 0.5;
1082 >    Kcx *= 0.5;
1083 >    Kcy *= 0.5;
1084 >    Kcz *= 0.5;
1085 >    Kcw *= 0.5;
1086  
1087 <            valueCount[binNo] +=2;
1087 > #ifdef IS_MPI
1088 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
1089 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
1090 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
1091 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
1092 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
1093 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
1094  
1095 <          } else {
1096 <            value += angMom[0]*angMom[0]/I(0, 0)
1097 <              + angMom[1]*angMom[1]/I(1, 1)
1098 <              + angMom[2]*angMom[2]/I(2, 2);
1099 <            valueCount[binNo] +=3;
1095 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
1096 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
1097 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
1098 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
1099 >
1100 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
1101 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
1102 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
1103 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
1104 > #endif
1105 >
1106 >    //solve coldBin coeff's first
1107 >    RealType px = Pcx / Phx;
1108 >    RealType py = Pcy / Phy;
1109 >    RealType pz = Pcz / Phz;
1110 >    RealType c, x, y, z;
1111 >    bool successfulScale = false;
1112 >    if ((rnemdFluxType_ == rnemdFullKE) ||
1113 >        (rnemdFluxType_ == rnemdRotKE)) {
1114 >      //may need sanity check Khw & Kcw > 0
1115 >
1116 >      if (rnemdFluxType_ == rnemdFullKE) {
1117 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1118 >      } else {
1119 >        c = 1.0 - kineticTarget_ / Kcw;
1120 >      }
1121 >
1122 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1123 >        c = sqrt(c);
1124 >
1125 >        RealType w = 0.0;
1126 >        if (rnemdFluxType_ ==  rnemdFullKE) {
1127 >          x = 1.0 + px * (1.0 - c);
1128 >          y = 1.0 + py * (1.0 - c);
1129 >          z = 1.0 + pz * (1.0 - c);
1130 >          /* more complicated way
1131 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
1132 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
1133 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
1134 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
1135 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1136 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
1137 >          */
1138 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1139 >              (fabs(z - 1.0) < 0.1)) {
1140 >            w = 1.0 + (kineticTarget_
1141 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1142 >                       + Khz * (1.0 - z * z)) / Khw;
1143 >          }//no need to calculate w if x, y or z is out of range
1144 >        } else {
1145 >          w = 1.0 + kineticTarget_ / Khw;
1146 >        }
1147 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1148 >          //if w is in the right range, so should be x, y, z.
1149 >          vector<StuntDouble*>::iterator sdi;
1150 >          Vector3d vel;
1151 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1152 >            if (rnemdFluxType_ == rnemdFullKE) {
1153 >              vel = (*sdi)->getVel() * c;
1154 >              (*sdi)->setVel(vel);
1155 >            }
1156 >            if ((*sdi)->isDirectional()) {
1157 >              Vector3d angMom = (*sdi)->getJ() * c;
1158 >              (*sdi)->setJ(angMom);
1159 >            }
1160            }
1161 +          w = sqrt(w);
1162 +          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1163 +            if (rnemdFluxType_ == rnemdFullKE) {
1164 +              vel = (*sdi)->getVel();
1165 +              vel.x() *= x;
1166 +              vel.y() *= y;
1167 +              vel.z() *= z;
1168 +              (*sdi)->setVel(vel);
1169 +            }
1170 +            if ((*sdi)->isDirectional()) {
1171 +              Vector3d angMom = (*sdi)->getJ() * w;
1172 +              (*sdi)->setJ(angMom);
1173 +            }
1174 +          }
1175 +          successfulScale = true;
1176 +          kineticExchange_ += kineticTarget_;
1177          }
1178 <        value = value / OOPSEConstant::energyConvert / OOPSEConstant::kb;
1179 <
1178 >      }
1179 >    } else {
1180 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
1181 >      switch(rnemdFluxType_) {
1182 >      case rnemdKE :
1183 >        /* used hotBin coeff's & only scale x & y dimensions
1184 >           RealType px = Phx / Pcx;
1185 >           RealType py = Phy / Pcy;
1186 >           a110 = Khy;
1187 >           c0 = - Khx - Khy - kineticTarget_;
1188 >           a000 = Khx;
1189 >           a111 = Kcy * py * py;
1190 >           b11 = -2.0 * Kcy * py * (1.0 + py);
1191 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1192 >           b01 = -2.0 * Kcx * px * (1.0 + px);
1193 >           a001 = Kcx * px * px;
1194 >        */
1195 >        //scale all three dimensions, let c_x = c_y
1196 >        a000 = Kcx + Kcy;
1197 >        a110 = Kcz;
1198 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1199 >        a001 = Khx * px * px + Khy * py * py;
1200 >        a111 = Khz * pz * pz;
1201 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1202 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1203 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1204 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
1205          break;
1206        case rnemdPx :
1207 <        value = mass * vel[0];
1208 <        valueCount[binNo]++;
1207 >        c = 1 - momentumTarget_.x() / Pcx;
1208 >        a000 = Kcy;
1209 >        a110 = Kcz;
1210 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1211 >        a001 = py * py * Khy;
1212 >        a111 = pz * pz * Khz;
1213 >        b01 = -2.0 * Khy * py * (1.0 + py);
1214 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1215 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1216 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1217          break;
1218        case rnemdPy :
1219 <        value = mass * vel[1];
1220 <        valueCount[binNo]++;
1219 >        c = 1 - momentumTarget_.y() / Pcy;
1220 >        a000 = Kcx;
1221 >        a110 = Kcz;
1222 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1223 >        a001 = px * px * Khx;
1224 >        a111 = pz * pz * Khz;
1225 >        b01 = -2.0 * Khx * px * (1.0 + px);
1226 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1227 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1228 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1229          break;
1230 <      case rnemdPz :
1231 <        value = mass * vel[2];
1232 <        valueCount[binNo]++;
1230 >      case rnemdPz ://we don't really do this, do we?
1231 >        c = 1 - momentumTarget_.z() / Pcz;
1232 >        a000 = Kcx;
1233 >        a110 = Kcy;
1234 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1235 >        a001 = px * px * Khx;
1236 >        a111 = py * py * Khy;
1237 >        b01 = -2.0 * Khx * px * (1.0 + px);
1238 >        b11 = -2.0 * Khy * py * (1.0 + py);
1239 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1240 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1241          break;
528      case rnemdUnknown :
1242        default :
1243          break;
1244        }
1245 <      valueHist[binNo] += value;
1245 >      
1246 >      RealType v1 = a000 * a111 - a001 * a110;
1247 >      RealType v2 = a000 * b01;
1248 >      RealType v3 = a000 * b11;
1249 >      RealType v4 = a000 * c1 - a001 * c0;
1250 >      RealType v8 = a110 * b01;
1251 >      RealType v10 = - b01 * c0;
1252 >      
1253 >      RealType u0 = v2 * v10 - v4 * v4;
1254 >      RealType u1 = -2.0 * v3 * v4;
1255 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1256 >      RealType u3 = -2.0 * v1 * v3;
1257 >      RealType u4 = - v1 * v1;
1258 >      //rescale coefficients
1259 >      RealType maxAbs = fabs(u0);
1260 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1261 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1262 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1263 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1264 >      u0 /= maxAbs;
1265 >      u1 /= maxAbs;
1266 >      u2 /= maxAbs;
1267 >      u3 /= maxAbs;
1268 >      u4 /= maxAbs;
1269 >      //max_element(start, end) is also available.
1270 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1271 >      poly.setCoefficient(4, u4);
1272 >      poly.setCoefficient(3, u3);
1273 >      poly.setCoefficient(2, u2);
1274 >      poly.setCoefficient(1, u1);
1275 >      poly.setCoefficient(0, u0);
1276 >      vector<RealType> realRoots = poly.FindRealRoots();
1277 >      
1278 >      vector<RealType>::iterator ri;
1279 >      RealType r1, r2, alpha0;
1280 >      vector<pair<RealType,RealType> > rps;
1281 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1282 >        r2 = *ri;
1283 >        //check if FindRealRoots() give the right answer
1284 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1285 >          sprintf(painCave.errMsg,
1286 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1287 >          painCave.isFatal = 0;
1288 >          simError();
1289 >          failRootCount_++;
1290 >        }
1291 >        //might not be useful w/o rescaling coefficients
1292 >        alpha0 = -c0 - a110 * r2 * r2;
1293 >        if (alpha0 >= 0.0) {
1294 >          r1 = sqrt(alpha0 / a000);
1295 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1296 >              < 1e-6)
1297 >            { rps.push_back(make_pair(r1, r2)); }
1298 >          if (r1 > 1e-6) { //r1 non-negative
1299 >            r1 = -r1;
1300 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1301 >                < 1e-6)
1302 >              { rps.push_back(make_pair(r1, r2)); }
1303 >          }
1304 >        }
1305 >      }
1306 >      // Consider combining together the solving pair part w/ the searching
1307 >      // best solution part so that we don't need the pairs vector
1308 >      if (!rps.empty()) {
1309 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1310 >        RealType diff;
1311 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1312 >        vector<pair<RealType,RealType> >::iterator rpi;
1313 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1314 >          r1 = (*rpi).first;
1315 >          r2 = (*rpi).second;
1316 >          switch(rnemdFluxType_) {
1317 >          case rnemdKE :
1318 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1319 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1320 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1321 >            break;
1322 >          case rnemdPx :
1323 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1324 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1325 >            break;
1326 >          case rnemdPy :
1327 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1328 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1329 >            break;
1330 >          case rnemdPz :
1331 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1332 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1333 >          default :
1334 >            break;
1335 >          }
1336 >          if (diff < smallestDiff) {
1337 >            smallestDiff = diff;
1338 >            bestPair = *rpi;
1339 >          }
1340 >        }
1341 > #ifdef IS_MPI
1342 >        if (worldRank == 0) {
1343 > #endif
1344 >          // sprintf(painCave.errMsg,
1345 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1346 >          //         bestPair.first, bestPair.second);
1347 >          // painCave.isFatal = 0;
1348 >          // painCave.severity = OPENMD_INFO;
1349 >          // simError();
1350 > #ifdef IS_MPI
1351 >        }
1352 > #endif
1353 >        
1354 >        switch(rnemdFluxType_) {
1355 >        case rnemdKE :
1356 >          x = bestPair.first;
1357 >          y = bestPair.first;
1358 >          z = bestPair.second;
1359 >          break;
1360 >        case rnemdPx :
1361 >          x = c;
1362 >          y = bestPair.first;
1363 >          z = bestPair.second;
1364 >          break;
1365 >        case rnemdPy :
1366 >          x = bestPair.first;
1367 >          y = c;
1368 >          z = bestPair.second;
1369 >          break;
1370 >        case rnemdPz :
1371 >          x = bestPair.first;
1372 >          y = bestPair.second;
1373 >          z = c;
1374 >          break;          
1375 >        default :
1376 >          break;
1377 >        }
1378 >        vector<StuntDouble*>::iterator sdi;
1379 >        Vector3d vel;
1380 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1381 >          vel = (*sdi)->getVel();
1382 >          vel.x() *= x;
1383 >          vel.y() *= y;
1384 >          vel.z() *= z;
1385 >          (*sdi)->setVel(vel);
1386 >        }
1387 >        //convert to hotBin coefficient
1388 >        x = 1.0 + px * (1.0 - x);
1389 >        y = 1.0 + py * (1.0 - y);
1390 >        z = 1.0 + pz * (1.0 - z);
1391 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1392 >          vel = (*sdi)->getVel();
1393 >          vel.x() *= x;
1394 >          vel.y() *= y;
1395 >          vel.z() *= z;
1396 >          (*sdi)->setVel(vel);
1397 >        }
1398 >        successfulScale = true;
1399 >        switch(rnemdFluxType_) {
1400 >        case rnemdKE :
1401 >          kineticExchange_ += kineticTarget_;
1402 >          break;
1403 >        case rnemdPx :
1404 >        case rnemdPy :
1405 >        case rnemdPz :
1406 >          momentumExchange_ += momentumTarget_;
1407 >          break;          
1408 >        default :
1409 >          break;
1410 >        }      
1411 >      }
1412      }
1413 +    if (successfulScale != true) {
1414 +      sprintf(painCave.errMsg,
1415 +              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1416 +              "\tthe constraint equations may not exist or there may be\n"
1417 +              "\tno selected objects in one or both slabs.\n");
1418 +      painCave.isFatal = 0;
1419 +      painCave.severity = OPENMD_INFO;
1420 +      simError();        
1421 +      failTrialCount_++;
1422 +    }
1423 +  }
1424 +  
1425 +  void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1426 +    if (!doRNEMD_) return;
1427 +    int selei;
1428 +    int selej;
1429  
1430 < #ifdef IS_MPI
1430 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1431 >    RealType time = currentSnap_->getTime();    
1432 >    Mat3x3d hmat = currentSnap_->getHmat();
1433  
1434 <    // all processors have the same number of bins, and STL vectors pack their
538 <    // arrays, so in theory, this should be safe:
1434 >    StuntDouble* sd;
1435  
1436 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist[0],
1437 <                              nBins_, MPI::REALTYPE, MPI::SUM);
1438 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount[0],
1439 <                              nBins_, MPI::INT, MPI::SUM);
1436 >    vector<StuntDouble*> hotBin, coldBin;
1437 >
1438 >    Vector3d Ph(V3Zero);
1439 >    Vector3d Lh(V3Zero);
1440 >    RealType Mh = 0.0;
1441 >    Mat3x3d Ih(0.0);
1442 >    RealType Kh = 0.0;
1443 >    Vector3d Pc(V3Zero);
1444 >    Vector3d Lc(V3Zero);
1445 >    RealType Mc = 0.0;
1446 >    Mat3x3d Ic(0.0);
1447 >    RealType Kc = 0.0;
1448 >    
1449 >    for (sd = smanA.beginSelected(selei); sd != NULL;
1450 >         sd = smanA.nextSelected(selei)) {
1451 >
1452 >      Vector3d pos = sd->getPos();
1453 >
1454 >      // wrap the stuntdouble's position back into the box:
1455 >      
1456 >      if (usePeriodicBoundaryConditions_)
1457 >        currentSnap_->wrapVector(pos);
1458 >      
1459 >      RealType mass = sd->getMass();
1460 >      Vector3d vel = sd->getVel();
1461 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1462 >      RealType r2;
1463 >      
1464 >      hotBin.push_back(sd);
1465 >      Ph += mass * vel;
1466 >      Mh += mass;
1467 >      Kh += mass * vel.lengthSquare();
1468 >      Lh += mass * cross(rPos, vel);
1469 >      Ih -= outProduct(rPos, rPos) * mass;
1470 >      r2 = rPos.lengthSquare();
1471 >      Ih(0, 0) += mass * r2;
1472 >      Ih(1, 1) += mass * r2;
1473 >      Ih(2, 2) += mass * r2;
1474 >      
1475 >      if (rnemdFluxType_ == rnemdFullKE) {
1476 >        if (sd->isDirectional()) {
1477 >          Vector3d angMom = sd->getJ();
1478 >          Mat3x3d I = sd->getI();
1479 >          if (sd->isLinear()) {
1480 >            int i = sd->linearAxis();
1481 >            int j = (i + 1) % 3;
1482 >            int k = (i + 2) % 3;
1483 >            Kh += angMom[j] * angMom[j] / I(j, j) +
1484 >              angMom[k] * angMom[k] / I(k, k);
1485 >          } else {
1486 >            Kh += angMom[0] * angMom[0] / I(0, 0) +
1487 >              angMom[1] * angMom[1] / I(1, 1) +
1488 >              angMom[2] * angMom[2] / I(2, 2);
1489 >          }
1490 >        }
1491 >      }
1492 >    }
1493 >    for (sd = smanB.beginSelected(selej); sd != NULL;
1494 >         sd = smanB.nextSelected(selej)) {
1495 >
1496 >      Vector3d pos = sd->getPos();
1497 >      
1498 >      // wrap the stuntdouble's position back into the box:
1499 >      
1500 >      if (usePeriodicBoundaryConditions_)
1501 >        currentSnap_->wrapVector(pos);
1502 >      
1503 >      RealType mass = sd->getMass();
1504 >      Vector3d vel = sd->getVel();
1505 >      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1506 >      RealType r2;
1507 >
1508 >      coldBin.push_back(sd);
1509 >      Pc += mass * vel;
1510 >      Mc += mass;
1511 >      Kc += mass * vel.lengthSquare();
1512 >      Lc += mass * cross(rPos, vel);
1513 >      Ic -= outProduct(rPos, rPos) * mass;
1514 >      r2 = rPos.lengthSquare();
1515 >      Ic(0, 0) += mass * r2;
1516 >      Ic(1, 1) += mass * r2;
1517 >      Ic(2, 2) += mass * r2;
1518 >      
1519 >      if (rnemdFluxType_ == rnemdFullKE) {
1520 >        if (sd->isDirectional()) {
1521 >          Vector3d angMom = sd->getJ();
1522 >          Mat3x3d I = sd->getI();
1523 >          if (sd->isLinear()) {
1524 >            int i = sd->linearAxis();
1525 >            int j = (i + 1) % 3;
1526 >            int k = (i + 2) % 3;
1527 >            Kc += angMom[j] * angMom[j] / I(j, j) +
1528 >              angMom[k] * angMom[k] / I(k, k);
1529 >          } else {
1530 >            Kc += angMom[0] * angMom[0] / I(0, 0) +
1531 >              angMom[1] * angMom[1] / I(1, 1) +
1532 >              angMom[2] * angMom[2] / I(2, 2);
1533 >          }
1534 >        }
1535 >      }
1536 >    }
1537 >    
1538 >    Kh *= 0.5;
1539 >    Kc *= 0.5;
1540 >    
1541 > #ifdef IS_MPI
1542 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1543 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1544 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM);
1545 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM);
1546 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1547 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1548 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1549 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1550 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9,
1551 >                              MPI::REALTYPE, MPI::SUM);
1552 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9,
1553 >                              MPI::REALTYPE, MPI::SUM);
1554 > #endif
1555 >    
1556 >    bool successfulExchange = false;
1557 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1558 >      Vector3d vc = Pc / Mc;
1559 >      Vector3d ac = -momentumTarget_ / Mc + vc;
1560 >      Vector3d acrec = -momentumTarget_ / Mc;
1561 >      
1562 >      // We now need the inverse of the inertia tensor to calculate the
1563 >      // angular velocity of the cold slab;
1564 >      Mat3x3d Ici = Ic.inverse();
1565 >      Vector3d omegac = Ici * Lc;
1566 >      Vector3d bc  = -(Ici * angularMomentumTarget_) + omegac;
1567 >      Vector3d bcrec = bc - omegac;
1568 >      
1569 >      RealType cNumerator = Kc - kineticTarget_
1570 >        - 0.5 * Mc * ac.lengthSquare() - 0.5 * ( dot(bc, Ic * bc));
1571 >      if (cNumerator > 0.0) {
1572 >        
1573 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare()
1574 >          - 0.5*(dot(omegac, Ic * omegac));
1575 >        
1576 >        if (cDenominator > 0.0) {
1577 >          RealType c = sqrt(cNumerator / cDenominator);
1578 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1579 >            
1580 >            Vector3d vh = Ph / Mh;
1581 >            Vector3d ah = momentumTarget_ / Mh + vh;
1582 >            Vector3d ahrec = momentumTarget_ / Mh;
1583 >            
1584 >            // We now need the inverse of the inertia tensor to
1585 >            // calculate the angular velocity of the hot slab;
1586 >            Mat3x3d Ihi = Ih.inverse();
1587 >            Vector3d omegah = Ihi * Lh;
1588 >            Vector3d bh  = (Ihi * angularMomentumTarget_) + omegah;
1589 >            Vector3d bhrec = bh - omegah;
1590 >            
1591 >            RealType hNumerator = Kh + kineticTarget_
1592 >              - 0.5 * Mh * ah.lengthSquare() - 0.5 * ( dot(bh, Ih * bh));;
1593 >            if (hNumerator > 0.0) {
1594 >              
1595 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare()
1596 >                - 0.5*(dot(omegah, Ih * omegah));
1597 >              
1598 >              if (hDenominator > 0.0) {
1599 >                RealType h = sqrt(hNumerator / hDenominator);
1600 >                if ((h > 0.9) && (h < 1.1)) {
1601 >                  
1602 >                  vector<StuntDouble*>::iterator sdi;
1603 >                  Vector3d vel;
1604 >                  Vector3d rPos;
1605 >                  
1606 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1607 >                    //vel = (*sdi)->getVel();
1608 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1609 >                    vel = ((*sdi)->getVel() - vc - cross(omegac, rPos)) * c
1610 >                      + ac + cross(bc, rPos);
1611 >                    (*sdi)->setVel(vel);
1612 >                    if (rnemdFluxType_ == rnemdFullKE) {
1613 >                      if ((*sdi)->isDirectional()) {
1614 >                        Vector3d angMom = (*sdi)->getJ() * c;
1615 >                        (*sdi)->setJ(angMom);
1616 >                      }
1617 >                    }
1618 >                  }
1619 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1620 >                    //vel = (*sdi)->getVel();
1621 >                    rPos = (*sdi)->getPos() - coordinateOrigin_;
1622 >                    vel = ((*sdi)->getVel() - vh - cross(omegah, rPos)) * h
1623 >                      + ah + cross(bh, rPos);    
1624 >                    cerr << "setting vel to " << vel << "\n";
1625 >                    (*sdi)->setVel(vel);
1626 >                    if (rnemdFluxType_ == rnemdFullKE) {
1627 >                      if ((*sdi)->isDirectional()) {
1628 >                        Vector3d angMom = (*sdi)->getJ() * h;
1629 >                        (*sdi)->setJ(angMom);
1630 >                      }
1631 >                    }
1632 >                  }
1633 >                  successfulExchange = true;
1634 >                  kineticExchange_ += kineticTarget_;
1635 >                  momentumExchange_ += momentumTarget_;
1636 >                  angularMomentumExchange_ += angularMomentumTarget_;
1637 >                }
1638 >              }
1639 >            }
1640 >          }
1641 >        }
1642 >      }
1643 >    }
1644 >    if (successfulExchange != true) {
1645 >      sprintf(painCave.errMsg,
1646 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1647 >              "\tthe constraint equations may not exist or there may be\n"
1648 >              "\tno selected objects in one or both slabs.\n");
1649 >      painCave.isFatal = 0;
1650 >      painCave.severity = OPENMD_INFO;
1651 >      simError();        
1652 >      failTrialCount_++;
1653 >    }
1654 >  }
1655  
1656 +  RealType RNEMD::getDividingArea() {
1657 +
1658 +    if (hasDividingArea_) return dividingArea_;
1659 +
1660 +    RealType areaA, areaB;
1661 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1662 +
1663 +    if (hasSelectionA_) {
1664 +      int isd;
1665 +      StuntDouble* sd;
1666 +      vector<StuntDouble*> aSites;
1667 +      ConvexHull* surfaceMeshA = new ConvexHull();
1668 +      seleManA_.setSelectionSet(evaluatorA_.evaluate());
1669 +      for (sd = seleManA_.beginSelected(isd); sd != NULL;
1670 +           sd = seleManA_.nextSelected(isd)) {
1671 +        aSites.push_back(sd);
1672 +      }
1673 +      surfaceMeshA->computeHull(aSites);
1674 +      areaA = surfaceMeshA->getArea();
1675 +    } else {
1676 +      if (usePeriodicBoundaryConditions_) {
1677 +        // in periodic boundaries, the surface area is twice the x-y
1678 +        // area of the current box:
1679 +        areaA = 2.0 * snap->getXYarea();
1680 +      } else {
1681 +        // in non-periodic simulations, without explicitly setting
1682 +        // selections, the sphere radius sets the surface area of the
1683 +        // dividing surface:
1684 +        areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1685 +      }
1686 +    }
1687 +
1688 +    if (hasSelectionB_) {
1689 +      int isd;
1690 +      StuntDouble* sd;
1691 +      vector<StuntDouble*> bSites;
1692 +      ConvexHull* surfaceMeshB = new ConvexHull();
1693 +      seleManB_.setSelectionSet(evaluatorB_.evaluate());
1694 +      for (sd = seleManB_.beginSelected(isd); sd != NULL;
1695 +           sd = seleManB_.nextSelected(isd)) {
1696 +        bSites.push_back(sd);
1697 +      }
1698 +      surfaceMeshB->computeHull(bSites);
1699 +      areaB = surfaceMeshB->getArea();
1700 +    } else {
1701 +      if (usePeriodicBoundaryConditions_) {
1702 +        // in periodic boundaries, the surface area is twice the x-y
1703 +        // area of the current box:
1704 +        areaB = 2.0 * snap->getXYarea();
1705 +      } else {
1706 +        // in non-periodic simulations, without explicitly setting
1707 +        // selections, but if a sphereBradius has been set, just use that:
1708 +        areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1709 +      }
1710 +    }
1711 +    
1712 +    dividingArea_ = min(areaA, areaB);
1713 +    hasDividingArea_ = true;
1714 +    return dividingArea_;
1715 +  }
1716 +  
1717 +  void RNEMD::doRNEMD() {
1718 +    if (!doRNEMD_) return;
1719 +    trialCount_++;
1720 +
1721 +    cerr << "trialCount = " << trialCount_ << "\n";
1722 +    // object evaluator:
1723 +    evaluator_.loadScriptString(rnemdObjectSelection_);
1724 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1725 +
1726 +    evaluatorA_.loadScriptString(selectionA_);
1727 +    evaluatorB_.loadScriptString(selectionB_);
1728 +
1729 +    seleManA_.setSelectionSet(evaluatorA_.evaluate());
1730 +    seleManB_.setSelectionSet(evaluatorB_.evaluate());
1731 +
1732 +    commonA_ = seleManA_ & seleMan_;
1733 +    commonB_ = seleManB_ & seleMan_;
1734 +
1735 +    // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1736 +    // dt = exchange time interval
1737 +    // flux = target flux
1738 +    // dividingArea = smallest dividing surface between the two regions
1739 +
1740 +    hasDividingArea_ = false;
1741 +    RealType area = getDividingArea();
1742 +
1743 +    kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1744 +    momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1745 +    angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1746 +
1747 +    switch(rnemdMethod_) {
1748 +    case rnemdSwap:
1749 +      doSwap(commonA_, commonB_);
1750 +      break;
1751 +    case rnemdNIVS:
1752 +      doNIVS(commonA_, commonB_);
1753 +      break;
1754 +    case rnemdVSS:
1755 +      doVSS(commonA_, commonB_);
1756 +      break;
1757 +    case rnemdUnkownMethod:
1758 +    default :
1759 +      break;
1760 +    }
1761 +  }
1762 +
1763 +  void RNEMD::collectData() {
1764 +    if (!doRNEMD_) return;
1765 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1766 +    
1767 +    cerr << "collecting data\n";
1768 +    // collectData can be called more frequently than the doRNEMD, so use the
1769 +    // computed area from the last exchange time:
1770 +    RealType area = getDividingArea();
1771 +    areaAccumulator_->add(area);
1772 +    Mat3x3d hmat = currentSnap_->getHmat();
1773 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1774 +
1775 +    int selei(0);
1776 +    StuntDouble* sd;
1777 +    int binNo;
1778 +
1779 +    vector<RealType> binMass(nBins_, 0.0);
1780 +    vector<RealType> binPx(nBins_, 0.0);
1781 +    vector<RealType> binPy(nBins_, 0.0);
1782 +    vector<RealType> binPz(nBins_, 0.0);
1783 +    vector<RealType> binOmegax(nBins_, 0.0);
1784 +    vector<RealType> binOmegay(nBins_, 0.0);
1785 +    vector<RealType> binOmegaz(nBins_, 0.0);
1786 +    vector<RealType> binKE(nBins_, 0.0);
1787 +    vector<int> binDOF(nBins_, 0);
1788 +    vector<int> binCount(nBins_, 0);
1789 +
1790 +    // alternative approach, track all molecules instead of only those
1791 +    // selected for scaling/swapping:
1792 +    /*
1793 +      SimInfo::MoleculeIterator miter;
1794 +      vector<StuntDouble*>::iterator iiter;
1795 +      Molecule* mol;
1796 +      StuntDouble* sd;
1797 +      for (mol = info_->beginMolecule(miter); mol != NULL;
1798 +      mol = info_->nextMolecule(miter))
1799 +      sd is essentially sd
1800 +      for (sd = mol->beginIntegrableObject(iiter);
1801 +      sd != NULL;
1802 +      sd = mol->nextIntegrableObject(iiter))
1803 +    */
1804 +
1805 +    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1806 +         sd = seleMan_.nextSelected(selei)) {    
1807 +    
1808 +      Vector3d pos = sd->getPos();
1809 +
1810 +      // wrap the stuntdouble's position back into the box:
1811 +      
1812 +      if (usePeriodicBoundaryConditions_) {
1813 +        currentSnap_->wrapVector(pos);
1814 +        // which bin is this stuntdouble in?
1815 +        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1816 +        // Shift molecules by half a box to have bins start at 0
1817 +        // The modulo operator is used to wrap the case when we are
1818 +        // beyond the end of the bins back to the beginning.
1819 +        binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1820 +      } else {
1821 +        Vector3d rPos = pos - coordinateOrigin_;
1822 +        binNo = int(rPos.length() / binWidth_);
1823 +      }
1824 +
1825 +      RealType mass = sd->getMass();
1826 +      Vector3d vel = sd->getVel();
1827 +      Vector3d rPos = sd->getPos() - coordinateOrigin_;
1828 +      Vector3d aVel = cross(rPos, vel);
1829 +      
1830 +      if (binNo >= 0 && binNo < nBins_)  {
1831 +        binCount[binNo]++;
1832 +        binMass[binNo] += mass;
1833 +        binPx[binNo] += mass*vel.x();
1834 +        binPy[binNo] += mass*vel.y();
1835 +        binPz[binNo] += mass*vel.z();
1836 +        binOmegax[binNo] += aVel.x();
1837 +        binOmegay[binNo] += aVel.y();
1838 +        binOmegaz[binNo] += aVel.z();
1839 +        binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1840 +        binDOF[binNo] += 3;
1841 +        
1842 +        if (sd->isDirectional()) {
1843 +          Vector3d angMom = sd->getJ();
1844 +          Mat3x3d I = sd->getI();
1845 +          if (sd->isLinear()) {
1846 +            int i = sd->linearAxis();
1847 +            int j = (i + 1) % 3;
1848 +            int k = (i + 2) % 3;
1849 +            binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1850 +                                   angMom[k] * angMom[k] / I(k, k));
1851 +            binDOF[binNo] += 2;
1852 +          } else {
1853 +            binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1854 +                                   angMom[1] * angMom[1] / I(1, 1) +
1855 +                                   angMom[2] * angMom[2] / I(2, 2));
1856 +            binDOF[binNo] += 3;
1857 +          }
1858 +        }
1859 +      }
1860 +    }
1861 +    
1862 + #ifdef IS_MPI
1863 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1864 +                              nBins_, MPI::INT, MPI::SUM);
1865 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1866 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1867 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1868 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1869 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1870 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1871 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1872 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1873 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0],
1874 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1875 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0],
1876 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1877 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0],
1878 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1879 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1880 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1881 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1882 +                              nBins_, MPI::INT, MPI::SUM);
1883 + #endif
1884 +
1885 +    Vector3d vel;
1886 +    Vector3d aVel;
1887 +    RealType den;
1888 +    RealType temp;
1889 +    RealType z;
1890 +    RealType r;
1891 +    for (int i = 0; i < nBins_; i++) {
1892 +      if (usePeriodicBoundaryConditions_) {
1893 +        z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1894 +        den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1895 +          / currentSnap_->getVolume() ;
1896 +      } else {
1897 +        r = (((RealType)i + 0.5) * binWidth_);
1898 +        RealType rinner = (RealType)i * binWidth_;
1899 +        RealType router = (RealType)(i+1) * binWidth_;
1900 +        den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
1901 +          / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
1902 +      }
1903 +      vel.x() = binPx[i] / binMass[i];
1904 +      vel.y() = binPy[i] / binMass[i];
1905 +      vel.z() = binPz[i] / binMass[i];
1906 +      aVel.x() = binOmegax[i];
1907 +      aVel.y() = binOmegay[i];
1908 +      aVel.z() = binOmegaz[i];
1909 +
1910 +      if (binCount[i] > 0) {
1911 +        // only add values if there are things to add
1912 +        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1913 +                                 PhysicalConstants::energyConvert);
1914 +        
1915 +        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1916 +          if(outputMask_[j]) {
1917 +            switch(j) {
1918 +            case Z:
1919 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
1920 +              break;
1921 +            case R:
1922 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
1923 +              break;
1924 +            case TEMPERATURE:
1925 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
1926 +              break;
1927 +            case VELOCITY:
1928 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1929 +              break;
1930 +            case ANGULARVELOCITY:  
1931 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel);
1932 +              break;
1933 +            case DENSITY:
1934 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
1935 +              break;
1936 +            }
1937 +          }
1938 +        }
1939 +      }
1940 +    }
1941 +  }
1942 +
1943 +  void RNEMD::getStarted() {
1944 +    if (!doRNEMD_) return;
1945 +    hasDividingArea_ = false;
1946 +    collectData();
1947 +    writeOutputFile();
1948 +  }
1949 +
1950 +  void RNEMD::parseOutputFileFormat(const std::string& format) {
1951 +    if (!doRNEMD_) return;
1952 +    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1953 +    
1954 +    while(tokenizer.hasMoreTokens()) {
1955 +      std::string token(tokenizer.nextToken());
1956 +      toUpper(token);
1957 +      OutputMapType::iterator i = outputMap_.find(token);
1958 +      if (i != outputMap_.end()) {
1959 +        outputMask_.set(i->second);
1960 +      } else {
1961 +        sprintf( painCave.errMsg,
1962 +                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1963 +                 "\toutputFileFormat keyword.\n", token.c_str() );
1964 +        painCave.isFatal = 0;
1965 +        painCave.severity = OPENMD_ERROR;
1966 +        simError();            
1967 +      }
1968 +    }  
1969 +  }
1970 +  
1971 +  void RNEMD::writeOutputFile() {
1972 +    if (!doRNEMD_) return;
1973 +    
1974 + #ifdef IS_MPI
1975      // If we're the root node, should we print out the results
1976      int worldRank = MPI::COMM_WORLD.Get_rank();
1977      if (worldRank == 0) {
1978   #endif
1979 <      
550 <      std::cout << time;
551 <      for (int j = 0; j < nBins_; j++)
552 <        std::cout << "\t" << valueHist[j] / (RealType)valueCount[j];
553 <      std::cout << "\n";
1979 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1980        
1981 +      if( !rnemdFile_ ){        
1982 +        sprintf( painCave.errMsg,
1983 +                 "Could not open \"%s\" for RNEMD output.\n",
1984 +                 rnemdFileName_.c_str());
1985 +        painCave.isFatal = 1;
1986 +        simError();
1987 +      }
1988 +
1989 +      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1990 +
1991 +      RealType time = currentSnap_->getTime();
1992 +      RealType avgArea;
1993 +      areaAccumulator_->getAverage(avgArea);
1994 +      RealType Jz = kineticExchange_ / (time * avgArea)
1995 +        / PhysicalConstants::energyConvert;
1996 +      Vector3d JzP = momentumExchange_ / (time * avgArea);      
1997 +      Vector3d JzL = angularMomentumExchange_ / (time * avgArea);      
1998 +
1999 +      rnemdFile_ << "#######################################################\n";
2000 +      rnemdFile_ << "# RNEMD {\n";
2001 +
2002 +      map<string, RNEMDMethod>::iterator mi;
2003 +      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2004 +        if ( (*mi).second == rnemdMethod_)
2005 +          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
2006 +      }
2007 +      map<string, RNEMDFluxType>::iterator fi;
2008 +      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2009 +        if ( (*fi).second == rnemdFluxType_)
2010 +          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
2011 +      }
2012 +      
2013 +      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
2014 +
2015 +      rnemdFile_ << "#    objectSelection = \""
2016 +                 << rnemdObjectSelection_ << "\";\n";
2017 +      rnemdFile_ << "#    selectionA = \"" << selectionA_ << "\";\n";
2018 +      rnemdFile_ << "#    selectionB = \"" << selectionB_ << "\";\n";
2019 +      rnemdFile_ << "# }\n";
2020 +      rnemdFile_ << "#######################################################\n";
2021 +      rnemdFile_ << "# RNEMD report:\n";      
2022 +      rnemdFile_ << "#      running time = " << time << " fs\n";
2023 +      rnemdFile_ << "# Target flux:\n";
2024 +      rnemdFile_ << "#           kinetic = "
2025 +                 << kineticFlux_ / PhysicalConstants::energyConvert
2026 +                 << " (kcal/mol/A^2/fs)\n";
2027 +      rnemdFile_ << "#          momentum = " << momentumFluxVector_
2028 +                 << " (amu/A/fs^2)\n";
2029 +      rnemdFile_ << "#  angular momentum = " << angularMomentumFluxVector_
2030 +                 << " (amu/A^2/fs^2)\n";
2031 +      rnemdFile_ << "# Target one-time exchanges:\n";
2032 +      rnemdFile_ << "#          kinetic = "
2033 +                 << kineticTarget_ / PhysicalConstants::energyConvert
2034 +                 << " (kcal/mol)\n";
2035 +      rnemdFile_ << "#          momentum = " << momentumTarget_
2036 +                 << " (amu*A/fs)\n";
2037 +      rnemdFile_ << "#  angular momentum = " << angularMomentumTarget_
2038 +                 << " (amu*A^2/fs)\n";
2039 +      rnemdFile_ << "# Actual exchange totals:\n";
2040 +      rnemdFile_ << "#          kinetic = "
2041 +                 << kineticExchange_ / PhysicalConstants::energyConvert
2042 +                 << " (kcal/mol)\n";
2043 +      rnemdFile_ << "#          momentum = " << momentumExchange_
2044 +                 << " (amu*A/fs)\n";      
2045 +      rnemdFile_ << "#  angular momentum = " << angularMomentumExchange_
2046 +                 << " (amu*A^2/fs)\n";      
2047 +      rnemdFile_ << "# Actual flux:\n";
2048 +      rnemdFile_ << "#          kinetic = " << Jz
2049 +                 << " (kcal/mol/A^2/fs)\n";
2050 +      rnemdFile_ << "#          momentum = " << JzP
2051 +                 << " (amu/A/fs^2)\n";
2052 +      rnemdFile_ << "#  angular momentum = " << JzL
2053 +                 << " (amu/A^2/fs^2)\n";
2054 +      rnemdFile_ << "# Exchange statistics:\n";
2055 +      rnemdFile_ << "#               attempted = " << trialCount_ << "\n";
2056 +      rnemdFile_ << "#                  failed = " << failTrialCount_ << "\n";
2057 +      if (rnemdMethod_ == rnemdNIVS) {
2058 +        rnemdFile_ << "#  NIVS root-check errors = "
2059 +                   << failRootCount_ << "\n";
2060 +      }
2061 +      rnemdFile_ << "#######################################################\n";
2062 +      
2063 +      
2064 +      
2065 +      //write title
2066 +      rnemdFile_ << "#";
2067 +      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2068 +        if (outputMask_[i]) {
2069 +          rnemdFile_ << "\t" << data_[i].title <<
2070 +            "(" << data_[i].units << ")";
2071 +          // add some extra tabs for column alignment
2072 +          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2073 +        }
2074 +      }
2075 +      rnemdFile_ << std::endl;
2076 +      
2077 +      rnemdFile_.precision(8);
2078 +      
2079 +      for (int j = 0; j < nBins_; j++) {        
2080 +        
2081 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2082 +          if (outputMask_[i]) {
2083 +            if (data_[i].dataType == "RealType")
2084 +              writeReal(i,j);
2085 +            else if (data_[i].dataType == "Vector3d")
2086 +              writeVector(i,j);
2087 +            else {
2088 +              sprintf( painCave.errMsg,
2089 +                       "RNEMD found an unknown data type for: %s ",
2090 +                       data_[i].title.c_str());
2091 +              painCave.isFatal = 1;
2092 +              simError();
2093 +            }
2094 +          }
2095 +        }
2096 +        rnemdFile_ << std::endl;
2097 +        
2098 +      }        
2099 +
2100 +      rnemdFile_ << "#######################################################\n";
2101 +      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
2102 +      rnemdFile_ << "#######################################################\n";
2103 +
2104 +
2105 +      for (int j = 0; j < nBins_; j++) {        
2106 +        rnemdFile_ << "#";
2107 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2108 +          if (outputMask_[i]) {
2109 +            if (data_[i].dataType == "RealType")
2110 +              writeRealStdDev(i,j);
2111 +            else if (data_[i].dataType == "Vector3d")
2112 +              writeVectorStdDev(i,j);
2113 +            else {
2114 +              sprintf( painCave.errMsg,
2115 +                       "RNEMD found an unknown data type for: %s ",
2116 +                       data_[i].title.c_str());
2117 +              painCave.isFatal = 1;
2118 +              simError();
2119 +            }
2120 +          }
2121 +        }
2122 +        rnemdFile_ << std::endl;
2123 +        
2124 +      }        
2125 +      
2126 +      rnemdFile_.flush();
2127 +      rnemdFile_.close();
2128 +      
2129   #ifdef IS_MPI
2130      }
2131   #endif
2132 +    
2133    }
2134 +  
2135 +  void RNEMD::writeReal(int index, unsigned int bin) {
2136 +    if (!doRNEMD_) return;
2137 +    assert(index >=0 && index < ENDINDEX);
2138 +    assert(int(bin) < nBins_);
2139 +    RealType s;
2140 +    int count;
2141 +    
2142 +    count = data_[index].accumulator[bin]->count();
2143 +    if (count == 0) return;
2144 +    
2145 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2146 +    
2147 +    if (! isinf(s) && ! isnan(s)) {
2148 +      rnemdFile_ << "\t" << s;
2149 +    } else{
2150 +      sprintf( painCave.errMsg,
2151 +               "RNEMD detected a numerical error writing: %s for bin %d",
2152 +               data_[index].title.c_str(), bin);
2153 +      painCave.isFatal = 1;
2154 +      simError();
2155 +    }    
2156 +  }
2157 +  
2158 +  void RNEMD::writeVector(int index, unsigned int bin) {
2159 +    if (!doRNEMD_) return;
2160 +    assert(index >=0 && index < ENDINDEX);
2161 +    assert(int(bin) < nBins_);
2162 +    Vector3d s;
2163 +    int count;
2164 +    
2165 +    count = data_[index].accumulator[bin]->count();
2166 +
2167 +    if (count == 0) return;
2168 +
2169 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2170 +    if (isinf(s[0]) || isnan(s[0]) ||
2171 +        isinf(s[1]) || isnan(s[1]) ||
2172 +        isinf(s[2]) || isnan(s[2]) ) {      
2173 +      sprintf( painCave.errMsg,
2174 +               "RNEMD detected a numerical error writing: %s for bin %d",
2175 +               data_[index].title.c_str(), bin);
2176 +      painCave.isFatal = 1;
2177 +      simError();
2178 +    } else {
2179 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2180 +    }
2181 +  }  
2182 +
2183 +  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
2184 +    if (!doRNEMD_) return;
2185 +    assert(index >=0 && index < ENDINDEX);
2186 +    assert(int(bin) < nBins_);
2187 +    RealType s;
2188 +    int count;
2189 +    
2190 +    count = data_[index].accumulator[bin]->count();
2191 +    if (count == 0) return;
2192 +    
2193 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
2194 +    
2195 +    if (! isinf(s) && ! isnan(s)) {
2196 +      rnemdFile_ << "\t" << s;
2197 +    } else{
2198 +      sprintf( painCave.errMsg,
2199 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
2200 +               data_[index].title.c_str(), bin);
2201 +      painCave.isFatal = 1;
2202 +      simError();
2203 +    }    
2204 +  }
2205 +  
2206 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
2207 +    if (!doRNEMD_) return;
2208 +    assert(index >=0 && index < ENDINDEX);
2209 +    assert(int(bin) < nBins_);
2210 +    Vector3d s;
2211 +    int count;
2212 +    
2213 +    count = data_[index].accumulator[bin]->count();
2214 +    if (count == 0) return;
2215 +
2216 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
2217 +    if (isinf(s[0]) || isnan(s[0]) ||
2218 +        isinf(s[1]) || isnan(s[1]) ||
2219 +        isinf(s[2]) || isnan(s[2]) ) {      
2220 +      sprintf( painCave.errMsg,
2221 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
2222 +               data_[index].title.c_str(), bin);
2223 +      painCave.isFatal = 1;
2224 +      simError();
2225 +    } else {
2226 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2227 +    }
2228 +  }  
2229   }
2230 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (property svn:keywords), Revision 1855 by gezelter, Tue Apr 2 18:31:51 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines