ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1830 by gezelter, Wed Jan 9 22:02:30 2013 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 < #include "integrators/RNEMD.hpp"
42 > #include <cmath>
43 > #include "rnemd/RNEMD.hpp"
44   #include "math/Vector3.hpp"
45 + #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47 + #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50 < #include "utils/OOPSEConstant.hpp"
50 > #include "utils/PhysicalConstants.hpp"
51   #include "utils/Tuple.hpp"
52 + #ifdef IS_MPI
53 + #include <mpi.h>
54 + #endif
55  
56 < #ifndef IS_MPI
57 < #include "math/SeqRandNumGen.hpp"
58 < #else
53 < #include "math/ParallelRandNumGen.hpp"
56 > #ifdef _MSC_VER
57 > #define isnan(x) _isnan((x))
58 > #define isinf(x) (!_finite(x) && !_isnan(x))
59   #endif
60  
61   #define HONKING_LARGE_VALUE 1.0e10
62  
63 < namespace oopse {
63 > using namespace std;
64 > namespace OpenMD {
65    
66 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
67 <    
68 <    int seedValue;
66 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
67 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
68 >
69 >    trialCount_ = 0;
70 >    failTrialCount_ = 0;
71 >    failRootCount_ = 0;
72 >
73      Globals * simParams = info->getSimParams();
74 +    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
75  
76 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
77 <    stringToEnumMap_["Px"] = rnemdPx;
67 <    stringToEnumMap_["Py"] = rnemdPy;
68 <    stringToEnumMap_["Pz"] = rnemdPz;
69 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
76 >    doRNEMD_ = rnemdParams->getUseRNEMD();
77 >    if (!doRNEMD_) return;
78  
79 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
79 >    stringToMethod_["Swap"]  = rnemdSwap;
80 >    stringToMethod_["NIVS"]  = rnemdNIVS;
81 >    stringToMethod_["VSS"]   = rnemdVSS;
82 >
83 >    stringToFluxType_["KE"]  = rnemdKE;
84 >    stringToFluxType_["Px"]  = rnemdPx;
85 >    stringToFluxType_["Py"]  = rnemdPy;
86 >    stringToFluxType_["Pz"]  = rnemdPz;
87 >    stringToFluxType_["Pvector"]  = rnemdPvector;
88 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
89 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
90 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
91 >
92 >    runTime_ = simParams->getRunTime();
93 >    statusTime_ = simParams->getStatusTime();
94 >
95 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
96      evaluator_.loadScriptString(rnemdObjectSelection_);
97      seleMan_.setSelectionSet(evaluator_.evaluate());
98  
99 +    const string methStr = rnemdParams->getMethod();
100 +    bool hasFluxType = rnemdParams->haveFluxType();
101  
102 +    string fluxStr;
103 +    if (hasFluxType) {
104 +      fluxStr = rnemdParams->getFluxType();
105 +    } else {
106 +      sprintf(painCave.errMsg,
107 +              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
108 +              "\twhich must be one of the following values:\n"
109 +              "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n"
110 +              "\tmust be set to use RNEMD\n");
111 +      painCave.isFatal = 1;
112 +      painCave.severity = OPENMD_ERROR;
113 +      simError();
114 +    }
115 +
116 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
117 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
118 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
119 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
120 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
121 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
122 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
123 +    bool hasOutputFields = rnemdParams->haveOutputFields();
124 +    
125 +    map<string, RNEMDMethod>::iterator i;
126 +    i = stringToMethod_.find(methStr);
127 +    if (i != stringToMethod_.end())
128 +      rnemdMethod_ = i->second;
129 +    else {
130 +      sprintf(painCave.errMsg,
131 +              "RNEMD: The current method,\n"
132 +              "\t\t%s is not one of the recognized\n"
133 +              "\texchange methods: Swap, NIVS, or VSS\n",
134 +              methStr.c_str());
135 +      painCave.isFatal = 1;
136 +      painCave.severity = OPENMD_ERROR;
137 +      simError();
138 +    }
139 +
140 +    map<string, RNEMDFluxType>::iterator j;
141 +    j = stringToFluxType_.find(fluxStr);
142 +    if (j != stringToFluxType_.end())
143 +      rnemdFluxType_ = j->second;
144 +    else {
145 +      sprintf(painCave.errMsg,
146 +              "RNEMD: The current fluxType,\n"
147 +              "\t\t%s\n"
148 +              "\tis not one of the recognized flux types.\n",
149 +              fluxStr.c_str());
150 +      painCave.isFatal = 1;
151 +      painCave.severity = OPENMD_ERROR;
152 +      simError();
153 +    }
154 +
155 +    bool methodFluxMismatch = false;
156 +    bool hasCorrectFlux = false;
157 +    switch(rnemdMethod_) {
158 +    case rnemdSwap:
159 +      switch (rnemdFluxType_) {
160 +      case rnemdKE:
161 +        hasCorrectFlux = hasKineticFlux;
162 +        break;
163 +      case rnemdPx:
164 +      case rnemdPy:
165 +      case rnemdPz:
166 +        hasCorrectFlux = hasMomentumFlux;
167 +        break;
168 +      default :
169 +        methodFluxMismatch = true;
170 +        break;
171 +      }
172 +      break;
173 +    case rnemdNIVS:
174 +      switch (rnemdFluxType_) {
175 +      case rnemdKE:
176 +      case rnemdRotKE:
177 +      case rnemdFullKE:
178 +        hasCorrectFlux = hasKineticFlux;
179 +        break;
180 +      case rnemdPx:
181 +      case rnemdPy:
182 +      case rnemdPz:
183 +        hasCorrectFlux = hasMomentumFlux;
184 +        break;
185 +      case rnemdKePx:
186 +      case rnemdKePy:
187 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
188 +        break;
189 +      default:
190 +        methodFluxMismatch = true;
191 +        break;
192 +      }
193 +      break;
194 +    case rnemdVSS:
195 +      switch (rnemdFluxType_) {
196 +      case rnemdKE:
197 +      case rnemdRotKE:
198 +      case rnemdFullKE:
199 +        hasCorrectFlux = hasKineticFlux;
200 +        break;
201 +      case rnemdPx:
202 +      case rnemdPy:
203 +      case rnemdPz:
204 +        hasCorrectFlux = hasMomentumFlux;
205 +        break;
206 +      case rnemdPvector:
207 +        hasCorrectFlux = hasMomentumFluxVector;
208 +        break;
209 +      case rnemdKePx:
210 +      case rnemdKePy:
211 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
212 +        break;
213 +      case rnemdKePvector:
214 +        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
215 +        break;
216 +      default:
217 +        methodFluxMismatch = true;
218 +        break;
219 +      }
220 +    default:
221 +      break;
222 +    }
223 +
224 +    if (methodFluxMismatch) {
225 +      sprintf(painCave.errMsg,
226 +              "RNEMD: The current method,\n"
227 +              "\t\t%s\n"
228 +              "\tcannot be used with the current flux type, %s\n",
229 +              methStr.c_str(), fluxStr.c_str());
230 +      painCave.isFatal = 1;
231 +      painCave.severity = OPENMD_ERROR;
232 +      simError();        
233 +    }
234 +    if (!hasCorrectFlux) {
235 +      sprintf(painCave.errMsg,
236 +              "RNEMD: The current method, %s, and flux type, %s,\n"
237 +              "\tdid not have the correct flux value specified. Options\n"
238 +              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
239 +              methStr.c_str(), fluxStr.c_str());
240 +      painCave.isFatal = 1;
241 +      painCave.severity = OPENMD_ERROR;
242 +      simError();        
243 +    }
244 +
245 +    if (hasKineticFlux) {
246 +      // convert the kcal / mol / Angstroms^2 / fs values in the md file
247 +      // into  amu / fs^3:
248 +      kineticFlux_ = rnemdParams->getKineticFlux()
249 +        * PhysicalConstants::energyConvert;
250 +    } else {
251 +      kineticFlux_ = 0.0;
252 +    }
253 +    if (hasMomentumFluxVector) {
254 +      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
255 +    } else {
256 +      momentumFluxVector_ = V3Zero;
257 +      if (hasMomentumFlux) {
258 +        RealType momentumFlux = rnemdParams->getMomentumFlux();
259 +        switch (rnemdFluxType_) {
260 +        case rnemdPx:
261 +          momentumFluxVector_.x() = momentumFlux;
262 +          break;
263 +        case rnemdPy:
264 +          momentumFluxVector_.y() = momentumFlux;
265 +          break;
266 +        case rnemdPz:
267 +          momentumFluxVector_.z() = momentumFlux;
268 +          break;
269 +        case rnemdKePx:
270 +          momentumFluxVector_.x() = momentumFlux;
271 +          break;
272 +        case rnemdKePy:
273 +          momentumFluxVector_.y() = momentumFlux;
274 +          break;
275 +        default:
276 +          break;
277 +        }
278 +      }    
279 +    }
280 +
281      // do some sanity checking
282  
283      int selectionCount = seleMan_.getSelectionCount();
284 +
285      int nIntegrable = info->getNGlobalIntegrableObjects();
286  
287      if (selectionCount > nIntegrable) {
288        sprintf(painCave.errMsg,
289 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
289 >              "RNEMD: The current objectSelection,\n"
290                "\t\t%s\n"
291                "\thas resulted in %d selected objects.  However,\n"
292                "\tthe total number of integrable objects in the system\n"
# Line 90 | Line 296 | namespace oopse {
296                rnemdObjectSelection_.c_str(),
297                selectionCount, nIntegrable);
298        painCave.isFatal = 0;
299 +      painCave.severity = OPENMD_WARNING;
300        simError();
301 +    }
302  
303 +    areaAccumulator_ = new Accumulator();
304 +
305 +    nBins_ = rnemdParams->getOutputBins();
306 +
307 +    data_.resize(RNEMD::ENDINDEX);
308 +    OutputData z;
309 +    z.units =  "Angstroms";
310 +    z.title =  "Z";
311 +    z.dataType = "RealType";
312 +    z.accumulator.reserve(nBins_);
313 +    for (int i = 0; i < nBins_; i++)
314 +      z.accumulator.push_back( new Accumulator() );
315 +    data_[Z] = z;
316 +    outputMap_["Z"] =  Z;
317 +
318 +    OutputData temperature;
319 +    temperature.units =  "K";
320 +    temperature.title =  "Temperature";
321 +    temperature.dataType = "RealType";
322 +    temperature.accumulator.reserve(nBins_);
323 +    for (int i = 0; i < nBins_; i++)
324 +      temperature.accumulator.push_back( new Accumulator() );
325 +    data_[TEMPERATURE] = temperature;
326 +    outputMap_["TEMPERATURE"] =  TEMPERATURE;
327 +
328 +    OutputData velocity;
329 +    velocity.units = "angstroms/fs";
330 +    velocity.title =  "Velocity";  
331 +    velocity.dataType = "Vector3d";
332 +    velocity.accumulator.reserve(nBins_);
333 +    for (int i = 0; i < nBins_; i++)
334 +      velocity.accumulator.push_back( new VectorAccumulator() );
335 +    data_[VELOCITY] = velocity;
336 +    outputMap_["VELOCITY"] = VELOCITY;
337 +
338 +    OutputData density;
339 +    density.units =  "g cm^-3";
340 +    density.title =  "Density";
341 +    density.dataType = "RealType";
342 +    density.accumulator.reserve(nBins_);
343 +    for (int i = 0; i < nBins_; i++)
344 +      density.accumulator.push_back( new Accumulator() );
345 +    data_[DENSITY] = density;
346 +    outputMap_["DENSITY"] =  DENSITY;
347 +
348 +    if (hasOutputFields) {
349 +      parseOutputFileFormat(rnemdParams->getOutputFields());
350 +    } else {
351 +      outputMask_.set(Z);
352 +      switch (rnemdFluxType_) {
353 +      case rnemdKE:
354 +      case rnemdRotKE:
355 +      case rnemdFullKE:
356 +        outputMask_.set(TEMPERATURE);
357 +        break;
358 +      case rnemdPx:
359 +      case rnemdPy:
360 +        outputMask_.set(VELOCITY);
361 +        break;
362 +      case rnemdPz:        
363 +      case rnemdPvector:
364 +        outputMask_.set(VELOCITY);
365 +        outputMask_.set(DENSITY);
366 +        break;
367 +      case rnemdKePx:
368 +      case rnemdKePy:
369 +        outputMask_.set(TEMPERATURE);
370 +        outputMask_.set(VELOCITY);
371 +        break;
372 +      case rnemdKePvector:
373 +        outputMask_.set(TEMPERATURE);
374 +        outputMask_.set(VELOCITY);
375 +        outputMask_.set(DENSITY);        
376 +        break;
377 +      default:
378 +        break;
379 +      }
380      }
381 <    
382 <    const std::string st = simParams->getRNEMD_swapType();
381 >      
382 >    if (hasOutputFileName) {
383 >      rnemdFileName_ = rnemdParams->getOutputFileName();
384 >    } else {
385 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
386 >    }          
387  
388 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
100 <    i = stringToEnumMap_.find(st);
101 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
388 >    exchangeTime_ = rnemdParams->getExchangeTime();
389  
390 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
391 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
392 <    exchangeSum_ = 0.0;
390 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
391 >    Mat3x3d hmat = currentSnap_->getHmat();
392 >  
393 >    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
394 >    // Lx, Ly = box dimensions in x & y
395 >    // dt = exchange time interval
396 >    // flux = target flux
397  
398 < #ifndef IS_MPI
399 <    if (simParams->haveSeed()) {
400 <      seedValue = simParams->getSeed();
401 <      randNumGen_ = new SeqRandNumGen(seedValue);
402 <    }else {
403 <      randNumGen_ = new SeqRandNumGen();
404 <    }    
405 < #else
406 <    if (simParams->haveSeed()) {
407 <      seedValue = simParams->getSeed();
408 <      randNumGen_ = new ParallelRandNumGen(seedValue);
409 <    }else {
410 <      randNumGen_ = new ParallelRandNumGen();
120 <    }    
121 < #endif
122 <  }
398 >    RealType area = currentSnap_->getXYarea();
399 >    kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
400 >    momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
401 >
402 >    // total exchange sums are zeroed out at the beginning:
403 >
404 >    kineticExchange_ = 0.0;
405 >    momentumExchange_ = V3Zero;
406 >
407 >    if (hasSlabWidth)
408 >      slabWidth_ = rnemdParams->getSlabWidth();
409 >    else
410 >      slabWidth_ = hmat(2,2) / 10.0;
411    
412 +    if (hasSlabACenter)
413 +      slabACenter_ = rnemdParams->getSlabACenter();
414 +    else
415 +      slabACenter_ = 0.0;
416 +    
417 +    if (hasSlabBCenter)
418 +      slabBCenter_ = rnemdParams->getSlabBCenter();
419 +    else
420 +      slabBCenter_ = hmat(2,2) / 2.0;
421 +    
422 +  }
423 +  
424    RNEMD::~RNEMD() {
425 <    delete randNumGen_;
425 >    if (!doRNEMD_) return;
426 > #ifdef IS_MPI
427 >    if (worldRank == 0) {
428 > #endif
429 >
430 >      writeOutputFile();
431 >
432 >      rnemdFile_.close();
433 >      
434 > #ifdef IS_MPI
435 >    }
436 > #endif
437    }
438 +  
439 +  bool RNEMD::inSlabA(Vector3d pos) {
440 +    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
441 +  }
442 +  bool RNEMD::inSlabB(Vector3d pos) {
443 +    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
444 +  }
445  
446    void RNEMD::doSwap() {
447 <    int midBin = nBins_ / 2;
130 <
447 >    if (!doRNEMD_) return;
448      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
449      Mat3x3d hmat = currentSnap_->getHmat();
450  
# Line 135 | Line 452 | namespace oopse {
452  
453      int selei;
454      StuntDouble* sd;
138    int idx;
455  
456      RealType min_val;
457      bool min_found = false;  
# Line 148 | Line 464 | namespace oopse {
464      for (sd = seleMan_.beginSelected(selei); sd != NULL;
465           sd = seleMan_.nextSelected(selei)) {
466  
151      idx = sd->getLocalIndex();
152
467        Vector3d pos = sd->getPos();
468  
469        // wrap the stuntdouble's position back into the box:
470  
471        if (usePeriodicBoundaryConditions_)
472          currentSnap_->wrapVector(pos);
473 +      bool inA = inSlabA(pos);
474 +      bool inB = inSlabB(pos);
475  
476 <      // which bin is this stuntdouble in?
161 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
162 <
163 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
164 <
165 <
166 <      // if we're in bin 0 or the middleBin
167 <      if (binNo == 0 || binNo == midBin) {
476 >      if (inA || inB) {
477          
478          RealType mass = sd->getMass();
479          Vector3d vel = sd->getVel();
480          RealType value;
481 <
482 <        switch(rnemdType_) {
483 <        case rnemdKinetic :
481 >        
482 >        switch(rnemdFluxType_) {
483 >        case rnemdKE :
484            
485 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
486 <                          vel[2]*vel[2]);
487 <          if (sd->isDirectional()) {
485 >          value = mass * vel.lengthSquare();
486 >          
487 >          if (sd->isDirectional()) {
488              Vector3d angMom = sd->getJ();
489              Mat3x3d I = sd->getI();
490              
491              if (sd->isLinear()) {
492 <              int i = sd->linearAxis();
493 <              int j = (i + 1) % 3;
494 <              int k = (i + 2) % 3;
495 <              value += angMom[j] * angMom[j] / I(j, j) +
496 <                angMom[k] * angMom[k] / I(k, k);
492 >              int i = sd->linearAxis();
493 >              int j = (i + 1) % 3;
494 >              int k = (i + 2) % 3;
495 >              value += angMom[j] * angMom[j] / I(j, j) +
496 >                angMom[k] * angMom[k] / I(k, k);
497              } else {                        
498 <              value += angMom[0]*angMom[0]/I(0, 0)
499 <                + angMom[1]*angMom[1]/I(1, 1)
500 <                + angMom[2]*angMom[2]/I(2, 2);
498 >              value += angMom[0]*angMom[0]/I(0, 0)
499 >                + angMom[1]*angMom[1]/I(1, 1)
500 >                + angMom[2]*angMom[2]/I(2, 2);
501              }
502 <          }
503 <          value = value * 0.5 / OOPSEConstant::energyConvert;
502 >          } //angular momenta exchange enabled
503 >          value *= 0.5;
504            break;
505          case rnemdPx :
506            value = mass * vel[0];
# Line 202 | Line 511 | namespace oopse {
511          case rnemdPz :
512            value = mass * vel[2];
513            break;
205        case rnemdUnknown :
514          default :
515            break;
516          }
517          
518 <        if (binNo == 0) {
518 >        if (inA == 0) {
519            if (!min_found) {
520              min_val = value;
521              min_sd = sd;
# Line 218 | Line 526 | namespace oopse {
526                min_sd = sd;
527              }
528            }
529 <        } else {
529 >        } else {
530            if (!max_found) {
531              max_val = value;
532              max_sd = sd;
# Line 232 | Line 540 | namespace oopse {
540          }
541        }
542      }
543 <
544 < #ifdef IS_MPI
545 <    int nProc, worldRank;
546 <
239 <    nProc = MPI::COMM_WORLD.Get_size();
240 <    worldRank = MPI::COMM_WORLD.Get_rank();
241 <
543 >    
544 > #ifdef IS_MPI    
545 >    int worldRank = MPI::COMM_WORLD.Get_rank();
546 >    
547      bool my_min_found = min_found;
548      bool my_max_found = max_found;
549  
550      // Even if we didn't find a minimum, did someone else?
551 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
247 <                              1, MPI::BOOL, MPI::LAND);
248 <    
551 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
552      // Even if we didn't find a maximum, did someone else?
553 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
554 <                              1, MPI::BOOL, MPI::LAND);
555 <    
556 <    struct {
557 <      RealType val;
558 <      int rank;
559 <    } max_vals, min_vals;
560 <    
561 <    if (min_found) {
562 <      if (my_min_found)
553 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
554 > #endif
555 >
556 >    if (max_found && min_found) {
557 >
558 > #ifdef IS_MPI
559 >      struct {
560 >        RealType val;
561 >        int rank;
562 >      } max_vals, min_vals;
563 >      
564 >      if (my_min_found) {
565          min_vals.val = min_val;
566 <      else
566 >      } else {
567          min_vals.val = HONKING_LARGE_VALUE;
568 <      
568 >      }
569        min_vals.rank = worldRank;    
570        
571        // Who had the minimum?
572        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
573                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
574        min_val = min_vals.val;
270    }
575        
576 <    if (max_found) {
273 <      if (my_max_found)
576 >      if (my_max_found) {
577          max_vals.val = max_val;
578 <      else
578 >      } else {
579          max_vals.val = -HONKING_LARGE_VALUE;
580 <      
580 >      }
581        max_vals.rank = worldRank;    
582        
583        // Who had the maximum?
584        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
585                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
586        max_val = max_vals.val;
284    }
587   #endif
588 <
589 <    if (max_found && min_found) {
590 <      if (min_val< max_val) {
289 <
588 >      
589 >      if (min_val < max_val) {
590 >        
591   #ifdef IS_MPI      
592          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
593            // I have both maximum and minimum, so proceed like a single
594            // processor version:
595   #endif
596 <          // objects to be swapped: velocity & angular velocity
596 >
597            Vector3d min_vel = min_sd->getVel();
598            Vector3d max_vel = max_sd->getVel();
599            RealType temp_vel;
600            
601 <          switch(rnemdType_) {
602 <          case rnemdKinetic :
601 >          switch(rnemdFluxType_) {
602 >          case rnemdKE :
603              min_sd->setVel(max_vel);
604              max_sd->setVel(min_vel);
605 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
605 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
606                Vector3d min_angMom = min_sd->getJ();
607                Vector3d max_angMom = max_sd->getJ();
608                min_sd->setJ(max_angMom);
609                max_sd->setJ(min_angMom);
610 <            }
610 >            }//angular momenta exchange enabled
611 >            //assumes same rigid body identity
612              break;
613            case rnemdPx :
614              temp_vel = min_vel.x();
# Line 329 | Line 631 | namespace oopse {
631              min_sd->setVel(min_vel);
632              max_sd->setVel(max_vel);
633              break;
332          case rnemdUnknown :
634            default :
635              break;
636            }
637 +
638   #ifdef IS_MPI
639            // the rest of the cases only apply in parallel simulations:
640          } else if (max_vals.rank == worldRank) {
# Line 348 | Line 650 | namespace oopse {
650                                     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
651                                     min_vals.rank, 0, status);
652            
653 <          switch(rnemdType_) {
654 <          case rnemdKinetic :
653 >          switch(rnemdFluxType_) {
654 >          case rnemdKE :
655              max_sd->setVel(min_vel);
656 <            
656 >            //angular momenta exchange enabled
657              if (max_sd->isDirectional()) {
658                Vector3d min_angMom;
659                Vector3d max_angMom = max_sd->getJ();
660 <
660 >              
661                // point-to-point swap of the angular momentum vector
662                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
663                                         MPI::REALTYPE, min_vals.rank, 1,
664                                         min_angMom.getArrayPointer(), 3,
665                                         MPI::REALTYPE, min_vals.rank, 1,
666                                         status);
667 <
667 >              
668                max_sd->setJ(min_angMom);
669 <            }
669 >            }
670              break;
671            case rnemdPx :
672              max_vel.x() = min_vel.x();
# Line 378 | Line 680 | namespace oopse {
680              max_vel.z() = min_vel.z();
681              max_sd->setVel(max_vel);
682              break;
381          case rnemdUnknown :
683            default :
684              break;
685            }
# Line 395 | Line 696 | namespace oopse {
696                                     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
697                                     max_vals.rank, 0, status);
698            
699 <          switch(rnemdType_) {
700 <          case rnemdKinetic :
699 >          switch(rnemdFluxType_) {
700 >          case rnemdKE :
701              min_sd->setVel(max_vel);
702 <            
702 >            //angular momenta exchange enabled
703              if (min_sd->isDirectional()) {
704                Vector3d min_angMom = min_sd->getJ();
705                Vector3d max_angMom;
706 <
706 >              
707                // point-to-point swap of the angular momentum vector
708                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
709                                         MPI::REALTYPE, max_vals.rank, 1,
710                                         max_angMom.getArrayPointer(), 3,
711                                         MPI::REALTYPE, max_vals.rank, 1,
712                                         status);
713 <
713 >              
714                min_sd->setJ(max_angMom);
715              }
716              break;
# Line 425 | Line 726 | namespace oopse {
726              min_vel.z() = max_vel.z();
727              min_sd->setVel(min_vel);
728              break;
428          case rnemdUnknown :
729            default :
730              break;
731            }
732          }
733   #endif
734 <        exchangeSum_ += max_val - min_val;
735 <      } else {
736 <        std::cerr << "exchange NOT performed.\nmin_val > max_val.\n";
734 >        
735 >        switch(rnemdFluxType_) {
736 >        case rnemdKE:
737 >          kineticExchange_ += max_val - min_val;
738 >          break;
739 >        case rnemdPx:
740 >          momentumExchange_.x() += max_val - min_val;
741 >          break;
742 >        case rnemdPy:
743 >          momentumExchange_.y() += max_val - min_val;
744 >          break;
745 >        case rnemdPz:
746 >          momentumExchange_.z() += max_val - min_val;
747 >          break;
748 >        default:
749 >          break;
750 >        }
751 >      } else {        
752 >        sprintf(painCave.errMsg,
753 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
754 >        painCave.isFatal = 0;
755 >        painCave.severity = OPENMD_INFO;
756 >        simError();        
757 >        failTrialCount_++;
758        }
759      } else {
760 <      std::cerr << "exchange NOT performed.\none of the two slabs empty.\n";
761 <    }
762 <    
760 >      sprintf(painCave.errMsg,
761 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
762 >              "\twas not present in at least one of the two slabs.\n");
763 >      painCave.isFatal = 0;
764 >      painCave.severity = OPENMD_INFO;
765 >      simError();        
766 >      failTrialCount_++;
767 >    }    
768    }
769    
770 <  void RNEMD::getStatus() {
771 <
770 >  void RNEMD::doNIVS() {
771 >    if (!doRNEMD_) return;
772      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
773      Mat3x3d hmat = currentSnap_->getHmat();
448    Stats& stat = currentSnap_->statData;
449    RealType time = currentSnap_->getTime();
774  
451    stat[Stats::RNEMD_SWAP_TOTAL] = exchangeSum_;
452
775      seleMan_.setSelectionSet(evaluator_.evaluate());
776  
777      int selei;
778      StuntDouble* sd;
457    int idx;
779  
780 <    std::vector<RealType> valueHist(nBins_, 0.0); // keeps track of what's
460 <                                                  // being averaged
461 <    std::vector<int> valueCount(nBins_, 0);       // keeps track of the
462 <                                                  // number of degrees of
463 <                                                  // freedom being averaged
780 >    vector<StuntDouble*> hotBin, coldBin;
781  
782 +    RealType Phx = 0.0;
783 +    RealType Phy = 0.0;
784 +    RealType Phz = 0.0;
785 +    RealType Khx = 0.0;
786 +    RealType Khy = 0.0;
787 +    RealType Khz = 0.0;
788 +    RealType Khw = 0.0;
789 +    RealType Pcx = 0.0;
790 +    RealType Pcy = 0.0;
791 +    RealType Pcz = 0.0;
792 +    RealType Kcx = 0.0;
793 +    RealType Kcy = 0.0;
794 +    RealType Kcz = 0.0;
795 +    RealType Kcw = 0.0;
796 +
797      for (sd = seleMan_.beginSelected(selei); sd != NULL;
798           sd = seleMan_.nextSelected(selei)) {
799 <      
468 <      idx = sd->getLocalIndex();
469 <      
799 >
800        Vector3d pos = sd->getPos();
801  
802        // wrap the stuntdouble's position back into the box:
803 <      
803 >
804        if (usePeriodicBoundaryConditions_)
805          currentSnap_->wrapVector(pos);
806 <      
806 >
807        // which bin is this stuntdouble in?
808 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
809 <      
480 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;    
481 <      
482 <      RealType mass = sd->getMass();
483 <      Vector3d vel = sd->getVel();
484 <      RealType value;
808 >      bool inA = inSlabA(pos);
809 >      bool inB = inSlabB(pos);
810  
811 <      switch(rnemdType_) {
812 <      case rnemdKinetic :
813 <        
814 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
815 <                        vel[2]*vel[2]);
816 <        
817 <        valueCount[binNo] += 3;
818 <        if (sd->isDirectional()) {
819 <          Vector3d angMom = sd->getJ();
820 <          Mat3x3d I = sd->getI();
821 <          
822 <          if (sd->isLinear()) {
823 <            int i = sd->linearAxis();
824 <            int j = (i + 1) % 3;
825 <            int k = (i + 2) % 3;
826 <            value += angMom[j] * angMom[j] / I(j, j) +
827 <              angMom[k] * angMom[k] / I(k, k);
811 >      if (inA || inB) {
812 >              
813 >        RealType mass = sd->getMass();
814 >        Vector3d vel = sd->getVel();
815 >      
816 >        if (inA) {
817 >          hotBin.push_back(sd);
818 >          Phx += mass * vel.x();
819 >          Phy += mass * vel.y();
820 >          Phz += mass * vel.z();
821 >          Khx += mass * vel.x() * vel.x();
822 >          Khy += mass * vel.y() * vel.y();
823 >          Khz += mass * vel.z() * vel.z();
824 >          if (sd->isDirectional()) {
825 >            Vector3d angMom = sd->getJ();
826 >            Mat3x3d I = sd->getI();
827 >            if (sd->isLinear()) {
828 >              int i = sd->linearAxis();
829 >              int j = (i + 1) % 3;
830 >              int k = (i + 2) % 3;
831 >              Khw += angMom[j] * angMom[j] / I(j, j) +
832 >                angMom[k] * angMom[k] / I(k, k);
833 >            } else {
834 >              Khw += angMom[0]*angMom[0]/I(0, 0)
835 >                + angMom[1]*angMom[1]/I(1, 1)
836 >                + angMom[2]*angMom[2]/I(2, 2);
837 >            }
838 >          }
839 >        } else {
840 >          coldBin.push_back(sd);
841 >          Pcx += mass * vel.x();
842 >          Pcy += mass * vel.y();
843 >          Pcz += mass * vel.z();
844 >          Kcx += mass * vel.x() * vel.x();
845 >          Kcy += mass * vel.y() * vel.y();
846 >          Kcz += mass * vel.z() * vel.z();
847 >          if (sd->isDirectional()) {
848 >            Vector3d angMom = sd->getJ();
849 >            Mat3x3d I = sd->getI();
850 >            if (sd->isLinear()) {
851 >              int i = sd->linearAxis();
852 >              int j = (i + 1) % 3;
853 >              int k = (i + 2) % 3;
854 >              Kcw += angMom[j] * angMom[j] / I(j, j) +
855 >                angMom[k] * angMom[k] / I(k, k);
856 >            } else {
857 >              Kcw += angMom[0]*angMom[0]/I(0, 0)
858 >                + angMom[1]*angMom[1]/I(1, 1)
859 >                + angMom[2]*angMom[2]/I(2, 2);
860 >            }
861 >          }
862 >        }
863 >      }
864 >    }
865 >    
866 >    Khx *= 0.5;
867 >    Khy *= 0.5;
868 >    Khz *= 0.5;
869 >    Khw *= 0.5;
870 >    Kcx *= 0.5;
871 >    Kcy *= 0.5;
872 >    Kcz *= 0.5;
873 >    Kcw *= 0.5;
874  
875 <            valueCount[binNo] +=2;
875 > #ifdef IS_MPI
876 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
877 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
878 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
879 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
880 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
881 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
882  
883 <          } else {
884 <            value += angMom[0]*angMom[0]/I(0, 0)
885 <              + angMom[1]*angMom[1]/I(1, 1)
886 <              + angMom[2]*angMom[2]/I(2, 2);
887 <            valueCount[binNo] +=3;
883 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
884 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
885 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
886 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
887 >
888 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
889 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
890 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
891 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
892 > #endif
893 >
894 >    //solve coldBin coeff's first
895 >    RealType px = Pcx / Phx;
896 >    RealType py = Pcy / Phy;
897 >    RealType pz = Pcz / Phz;
898 >    RealType c, x, y, z;
899 >    bool successfulScale = false;
900 >    if ((rnemdFluxType_ == rnemdFullKE) ||
901 >        (rnemdFluxType_ == rnemdRotKE)) {
902 >      //may need sanity check Khw & Kcw > 0
903 >
904 >      if (rnemdFluxType_ == rnemdFullKE) {
905 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
906 >      } else {
907 >        c = 1.0 - kineticTarget_ / Kcw;
908 >      }
909 >
910 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
911 >        c = sqrt(c);
912 >
913 >        RealType w = 0.0;
914 >        if (rnemdFluxType_ ==  rnemdFullKE) {
915 >          x = 1.0 + px * (1.0 - c);
916 >          y = 1.0 + py * (1.0 - c);
917 >          z = 1.0 + pz * (1.0 - c);
918 >          /* more complicated way
919 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
920 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
921 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
922 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
923 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
924 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
925 >          */
926 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
927 >              (fabs(z - 1.0) < 0.1)) {
928 >            w = 1.0 + (kineticTarget_
929 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
930 >                       + Khz * (1.0 - z * z)) / Khw;
931 >          }//no need to calculate w if x, y or z is out of range
932 >        } else {
933 >          w = 1.0 + kineticTarget_ / Khw;
934 >        }
935 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
936 >          //if w is in the right range, so should be x, y, z.
937 >          vector<StuntDouble*>::iterator sdi;
938 >          Vector3d vel;
939 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
940 >            if (rnemdFluxType_ == rnemdFullKE) {
941 >              vel = (*sdi)->getVel() * c;
942 >              (*sdi)->setVel(vel);
943 >            }
944 >            if ((*sdi)->isDirectional()) {
945 >              Vector3d angMom = (*sdi)->getJ() * c;
946 >              (*sdi)->setJ(angMom);
947 >            }
948            }
949 +          w = sqrt(w);
950 +          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
951 +            if (rnemdFluxType_ == rnemdFullKE) {
952 +              vel = (*sdi)->getVel();
953 +              vel.x() *= x;
954 +              vel.y() *= y;
955 +              vel.z() *= z;
956 +              (*sdi)->setVel(vel);
957 +            }
958 +            if ((*sdi)->isDirectional()) {
959 +              Vector3d angMom = (*sdi)->getJ() * w;
960 +              (*sdi)->setJ(angMom);
961 +            }
962 +          }
963 +          successfulScale = true;
964 +          kineticExchange_ += kineticTarget_;
965          }
966 <        value = value / OOPSEConstant::energyConvert / OOPSEConstant::kb;
967 <
968 <        break;
969 <      case rnemdPx :
970 <        value = mass * vel[0];
971 <        valueCount[binNo]++;
966 >      }
967 >    } else {
968 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
969 >      switch(rnemdFluxType_) {
970 >      case rnemdKE :
971 >        /* used hotBin coeff's & only scale x & y dimensions
972 >           RealType px = Phx / Pcx;
973 >           RealType py = Phy / Pcy;
974 >           a110 = Khy;
975 >           c0 = - Khx - Khy - kineticTarget_;
976 >           a000 = Khx;
977 >           a111 = Kcy * py * py;
978 >           b11 = -2.0 * Kcy * py * (1.0 + py);
979 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
980 >           b01 = -2.0 * Kcx * px * (1.0 + px);
981 >           a001 = Kcx * px * px;
982 >        */
983 >        //scale all three dimensions, let c_x = c_y
984 >        a000 = Kcx + Kcy;
985 >        a110 = Kcz;
986 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
987 >        a001 = Khx * px * px + Khy * py * py;
988 >        a111 = Khz * pz * pz;
989 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
990 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
991 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
992 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
993          break;
994 +      case rnemdPx :
995 +        c = 1 - momentumTarget_.x() / Pcx;
996 +        a000 = Kcy;
997 +        a110 = Kcz;
998 +        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
999 +        a001 = py * py * Khy;
1000 +        a111 = pz * pz * Khz;
1001 +        b01 = -2.0 * Khy * py * (1.0 + py);
1002 +        b11 = -2.0 * Khz * pz * (1.0 + pz);
1003 +        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1004 +          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1005 +        break;
1006        case rnemdPy :
1007 <        value = mass * vel[1];
1008 <        valueCount[binNo]++;
1007 >        c = 1 - momentumTarget_.y() / Pcy;
1008 >        a000 = Kcx;
1009 >        a110 = Kcz;
1010 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1011 >        a001 = px * px * Khx;
1012 >        a111 = pz * pz * Khz;
1013 >        b01 = -2.0 * Khx * px * (1.0 + px);
1014 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1015 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1016 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1017          break;
1018 <      case rnemdPz :
1019 <        value = mass * vel[2];
1020 <        valueCount[binNo]++;
1018 >      case rnemdPz ://we don't really do this, do we?
1019 >        c = 1 - momentumTarget_.z() / Pcz;
1020 >        a000 = Kcx;
1021 >        a110 = Kcy;
1022 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1023 >        a001 = px * px * Khx;
1024 >        a111 = py * py * Khy;
1025 >        b01 = -2.0 * Khx * px * (1.0 + px);
1026 >        b11 = -2.0 * Khy * py * (1.0 + py);
1027 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1028 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1029          break;
528      case rnemdUnknown :
1030        default :
1031          break;
1032        }
1033 <      valueHist[binNo] += value;
1033 >      
1034 >      RealType v1 = a000 * a111 - a001 * a110;
1035 >      RealType v2 = a000 * b01;
1036 >      RealType v3 = a000 * b11;
1037 >      RealType v4 = a000 * c1 - a001 * c0;
1038 >      RealType v8 = a110 * b01;
1039 >      RealType v10 = - b01 * c0;
1040 >      
1041 >      RealType u0 = v2 * v10 - v4 * v4;
1042 >      RealType u1 = -2.0 * v3 * v4;
1043 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1044 >      RealType u3 = -2.0 * v1 * v3;
1045 >      RealType u4 = - v1 * v1;
1046 >      //rescale coefficients
1047 >      RealType maxAbs = fabs(u0);
1048 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1049 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1050 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1051 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1052 >      u0 /= maxAbs;
1053 >      u1 /= maxAbs;
1054 >      u2 /= maxAbs;
1055 >      u3 /= maxAbs;
1056 >      u4 /= maxAbs;
1057 >      //max_element(start, end) is also available.
1058 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1059 >      poly.setCoefficient(4, u4);
1060 >      poly.setCoefficient(3, u3);
1061 >      poly.setCoefficient(2, u2);
1062 >      poly.setCoefficient(1, u1);
1063 >      poly.setCoefficient(0, u0);
1064 >      vector<RealType> realRoots = poly.FindRealRoots();
1065 >      
1066 >      vector<RealType>::iterator ri;
1067 >      RealType r1, r2, alpha0;
1068 >      vector<pair<RealType,RealType> > rps;
1069 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1070 >        r2 = *ri;
1071 >        //check if FindRealRoots() give the right answer
1072 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1073 >          sprintf(painCave.errMsg,
1074 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1075 >          painCave.isFatal = 0;
1076 >          simError();
1077 >          failRootCount_++;
1078 >        }
1079 >        //might not be useful w/o rescaling coefficients
1080 >        alpha0 = -c0 - a110 * r2 * r2;
1081 >        if (alpha0 >= 0.0) {
1082 >          r1 = sqrt(alpha0 / a000);
1083 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1084 >              < 1e-6)
1085 >            { rps.push_back(make_pair(r1, r2)); }
1086 >          if (r1 > 1e-6) { //r1 non-negative
1087 >            r1 = -r1;
1088 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1089 >                < 1e-6)
1090 >              { rps.push_back(make_pair(r1, r2)); }
1091 >          }
1092 >        }
1093 >      }
1094 >      // Consider combining together the solving pair part w/ the searching
1095 >      // best solution part so that we don't need the pairs vector
1096 >      if (!rps.empty()) {
1097 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1098 >        RealType diff;
1099 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1100 >        vector<pair<RealType,RealType> >::iterator rpi;
1101 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1102 >          r1 = (*rpi).first;
1103 >          r2 = (*rpi).second;
1104 >          switch(rnemdFluxType_) {
1105 >          case rnemdKE :
1106 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1107 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1108 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1109 >            break;
1110 >          case rnemdPx :
1111 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1112 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1113 >            break;
1114 >          case rnemdPy :
1115 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1116 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1117 >            break;
1118 >          case rnemdPz :
1119 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1120 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1121 >          default :
1122 >            break;
1123 >          }
1124 >          if (diff < smallestDiff) {
1125 >            smallestDiff = diff;
1126 >            bestPair = *rpi;
1127 >          }
1128 >        }
1129 > #ifdef IS_MPI
1130 >        if (worldRank == 0) {
1131 > #endif
1132 >          // sprintf(painCave.errMsg,
1133 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1134 >          //         bestPair.first, bestPair.second);
1135 >          // painCave.isFatal = 0;
1136 >          // painCave.severity = OPENMD_INFO;
1137 >          // simError();
1138 > #ifdef IS_MPI
1139 >        }
1140 > #endif
1141 >        
1142 >        switch(rnemdFluxType_) {
1143 >        case rnemdKE :
1144 >          x = bestPair.first;
1145 >          y = bestPair.first;
1146 >          z = bestPair.second;
1147 >          break;
1148 >        case rnemdPx :
1149 >          x = c;
1150 >          y = bestPair.first;
1151 >          z = bestPair.second;
1152 >          break;
1153 >        case rnemdPy :
1154 >          x = bestPair.first;
1155 >          y = c;
1156 >          z = bestPair.second;
1157 >          break;
1158 >        case rnemdPz :
1159 >          x = bestPair.first;
1160 >          y = bestPair.second;
1161 >          z = c;
1162 >          break;          
1163 >        default :
1164 >          break;
1165 >        }
1166 >        vector<StuntDouble*>::iterator sdi;
1167 >        Vector3d vel;
1168 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1169 >          vel = (*sdi)->getVel();
1170 >          vel.x() *= x;
1171 >          vel.y() *= y;
1172 >          vel.z() *= z;
1173 >          (*sdi)->setVel(vel);
1174 >        }
1175 >        //convert to hotBin coefficient
1176 >        x = 1.0 + px * (1.0 - x);
1177 >        y = 1.0 + py * (1.0 - y);
1178 >        z = 1.0 + pz * (1.0 - z);
1179 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1180 >          vel = (*sdi)->getVel();
1181 >          vel.x() *= x;
1182 >          vel.y() *= y;
1183 >          vel.z() *= z;
1184 >          (*sdi)->setVel(vel);
1185 >        }
1186 >        successfulScale = true;
1187 >        switch(rnemdFluxType_) {
1188 >        case rnemdKE :
1189 >          kineticExchange_ += kineticTarget_;
1190 >          break;
1191 >        case rnemdPx :
1192 >        case rnemdPy :
1193 >        case rnemdPz :
1194 >          momentumExchange_ += momentumTarget_;
1195 >          break;          
1196 >        default :
1197 >          break;
1198 >        }      
1199 >      }
1200      }
1201 +    if (successfulScale != true) {
1202 +      sprintf(painCave.errMsg,
1203 +              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1204 +              "\tthe constraint equations may not exist or there may be\n"
1205 +              "\tno selected objects in one or both slabs.\n");
1206 +      painCave.isFatal = 0;
1207 +      painCave.severity = OPENMD_INFO;
1208 +      simError();        
1209 +      failTrialCount_++;
1210 +    }
1211 +  }
1212  
1213 +  void RNEMD::doVSS() {
1214 +    if (!doRNEMD_) return;
1215 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1216 +    RealType time = currentSnap_->getTime();    
1217 +    Mat3x3d hmat = currentSnap_->getHmat();
1218 +
1219 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1220 +
1221 +    int selei;
1222 +    StuntDouble* sd;
1223 +
1224 +    vector<StuntDouble*> hotBin, coldBin;
1225 +
1226 +    Vector3d Ph(V3Zero);
1227 +    RealType Mh = 0.0;
1228 +    RealType Kh = 0.0;
1229 +    Vector3d Pc(V3Zero);
1230 +    RealType Mc = 0.0;
1231 +    RealType Kc = 0.0;
1232 +    
1233 +
1234 +    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1235 +         sd = seleMan_.nextSelected(selei)) {
1236 +
1237 +      Vector3d pos = sd->getPos();
1238 +
1239 +      // wrap the stuntdouble's position back into the box:
1240 +
1241 +      if (usePeriodicBoundaryConditions_)
1242 +        currentSnap_->wrapVector(pos);
1243 +
1244 +      // which bin is this stuntdouble in?
1245 +      bool inA = inSlabA(pos);
1246 +      bool inB = inSlabB(pos);
1247 +      
1248 +      if (inA || inB) {
1249 +        
1250 +        RealType mass = sd->getMass();
1251 +        Vector3d vel = sd->getVel();
1252 +      
1253 +        if (inA) {
1254 +          hotBin.push_back(sd);
1255 +          Ph += mass * vel;
1256 +          Mh += mass;
1257 +          Kh += mass * vel.lengthSquare();
1258 +          if (rnemdFluxType_ == rnemdFullKE) {
1259 +            if (sd->isDirectional()) {
1260 +              Vector3d angMom = sd->getJ();
1261 +              Mat3x3d I = sd->getI();
1262 +              if (sd->isLinear()) {
1263 +                int i = sd->linearAxis();
1264 +                int j = (i + 1) % 3;
1265 +                int k = (i + 2) % 3;
1266 +                Kh += angMom[j] * angMom[j] / I(j, j) +
1267 +                  angMom[k] * angMom[k] / I(k, k);
1268 +              } else {
1269 +                Kh += angMom[0] * angMom[0] / I(0, 0) +
1270 +                  angMom[1] * angMom[1] / I(1, 1) +
1271 +                  angMom[2] * angMom[2] / I(2, 2);
1272 +              }
1273 +            }
1274 +          }
1275 +        } else { //midBin_
1276 +          coldBin.push_back(sd);
1277 +          Pc += mass * vel;
1278 +          Mc += mass;
1279 +          Kc += mass * vel.lengthSquare();
1280 +          if (rnemdFluxType_ == rnemdFullKE) {
1281 +            if (sd->isDirectional()) {
1282 +              Vector3d angMom = sd->getJ();
1283 +              Mat3x3d I = sd->getI();
1284 +              if (sd->isLinear()) {
1285 +                int i = sd->linearAxis();
1286 +                int j = (i + 1) % 3;
1287 +                int k = (i + 2) % 3;
1288 +                Kc += angMom[j] * angMom[j] / I(j, j) +
1289 +                  angMom[k] * angMom[k] / I(k, k);
1290 +              } else {
1291 +                Kc += angMom[0] * angMom[0] / I(0, 0) +
1292 +                  angMom[1] * angMom[1] / I(1, 1) +
1293 +                  angMom[2] * angMom[2] / I(2, 2);
1294 +              }
1295 +            }
1296 +          }
1297 +        }
1298 +      }
1299 +    }
1300 +    
1301 +    Kh *= 0.5;
1302 +    Kc *= 0.5;
1303 +    
1304   #ifdef IS_MPI
1305 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1306 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1307 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1308 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1309 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1310 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1311 + #endif
1312  
1313 <    // all processors have the same number of bins, and STL vectors pack their
1314 <    // arrays, so in theory, this should be safe:
1313 >    bool successfulExchange = false;
1314 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1315 >      Vector3d vc = Pc / Mc;
1316 >      Vector3d ac = -momentumTarget_ / Mc + vc;
1317 >      Vector3d acrec = -momentumTarget_ / Mc;
1318 >      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1319 >      if (cNumerator > 0.0) {
1320 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1321 >        if (cDenominator > 0.0) {
1322 >          RealType c = sqrt(cNumerator / cDenominator);
1323 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1324 >            Vector3d vh = Ph / Mh;
1325 >            Vector3d ah = momentumTarget_ / Mh + vh;
1326 >            Vector3d ahrec = momentumTarget_ / Mh;
1327 >            RealType hNumerator = Kh + kineticTarget_
1328 >              - 0.5 * Mh * ah.lengthSquare();
1329 >            if (hNumerator > 0.0) {
1330 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1331 >              if (hDenominator > 0.0) {
1332 >                RealType h = sqrt(hNumerator / hDenominator);
1333 >                if ((h > 0.9) && (h < 1.1)) {
1334  
1335 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist[0],
1336 <                              nBins_, MPI::REALTYPE, MPI::SUM);
1337 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount[0],
1338 <                              nBins_, MPI::INT, MPI::SUM);
1335 >                  vector<StuntDouble*>::iterator sdi;
1336 >                  Vector3d vel;
1337 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1338 >                    //vel = (*sdi)->getVel();
1339 >                    vel = ((*sdi)->getVel() - vc) * c + ac;
1340 >                    (*sdi)->setVel(vel);
1341 >                    if (rnemdFluxType_ == rnemdFullKE) {
1342 >                      if ((*sdi)->isDirectional()) {
1343 >                        Vector3d angMom = (*sdi)->getJ() * c;
1344 >                        (*sdi)->setJ(angMom);
1345 >                      }
1346 >                    }
1347 >                  }
1348 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1349 >                    //vel = (*sdi)->getVel();
1350 >                    vel = ((*sdi)->getVel() - vh) * h + ah;
1351 >                    (*sdi)->setVel(vel);
1352 >                    if (rnemdFluxType_ == rnemdFullKE) {
1353 >                      if ((*sdi)->isDirectional()) {
1354 >                        Vector3d angMom = (*sdi)->getJ() * h;
1355 >                        (*sdi)->setJ(angMom);
1356 >                      }
1357 >                    }
1358 >                  }
1359 >                  successfulExchange = true;
1360 >                  kineticExchange_ += kineticTarget_;
1361 >                  momentumExchange_ += momentumTarget_;
1362 >                }
1363 >              }
1364 >            }
1365 >          }
1366 >        }
1367 >      }
1368 >    }
1369 >    if (successfulExchange != true) {
1370 >      sprintf(painCave.errMsg,
1371 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1372 >              "\tthe constraint equations may not exist or there may be\n"
1373 >              "\tno selected objects in one or both slabs.\n");
1374 >      painCave.isFatal = 0;
1375 >      painCave.severity = OPENMD_INFO;
1376 >      simError();        
1377 >      failTrialCount_++;
1378 >    }
1379 >  }
1380 >
1381 >  void RNEMD::doRNEMD() {
1382 >    if (!doRNEMD_) return;
1383 >    trialCount_++;
1384 >    switch(rnemdMethod_) {
1385 >    case rnemdSwap:
1386 >      doSwap();
1387 >      break;
1388 >    case rnemdNIVS:
1389 >      doNIVS();
1390 >      break;
1391 >    case rnemdVSS:
1392 >      doVSS();
1393 >      break;
1394 >    case rnemdUnkownMethod:
1395 >    default :
1396 >      break;
1397 >    }
1398 >  }
1399  
1400 +  void RNEMD::collectData() {
1401 +    if (!doRNEMD_) return;
1402 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1403 +    Mat3x3d hmat = currentSnap_->getHmat();
1404 +
1405 +    areaAccumulator_->add(currentSnap_->getXYarea());
1406 +
1407 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1408 +
1409 +    int selei(0);
1410 +    StuntDouble* sd;
1411 +
1412 +    vector<RealType> binMass(nBins_, 0.0);
1413 +    vector<RealType> binPx(nBins_, 0.0);
1414 +    vector<RealType> binPy(nBins_, 0.0);
1415 +    vector<RealType> binPz(nBins_, 0.0);
1416 +    vector<RealType> binKE(nBins_, 0.0);
1417 +    vector<int> binDOF(nBins_, 0);
1418 +    vector<int> binCount(nBins_, 0);
1419 +
1420 +    // alternative approach, track all molecules instead of only those
1421 +    // selected for scaling/swapping:
1422 +    /*
1423 +    SimInfo::MoleculeIterator miter;
1424 +    vector<StuntDouble*>::iterator iiter;
1425 +    Molecule* mol;
1426 +    StuntDouble* sd;
1427 +    for (mol = info_->beginMolecule(miter); mol != NULL;
1428 +      mol = info_->nextMolecule(miter))
1429 +      sd is essentially sd
1430 +        for (sd = mol->beginIntegrableObject(iiter);
1431 +             sd != NULL;
1432 +             sd = mol->nextIntegrableObject(iiter))
1433 +    */
1434 +
1435 +    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1436 +         sd = seleMan_.nextSelected(selei)) {    
1437 +    
1438 +      Vector3d pos = sd->getPos();
1439 +
1440 +      // wrap the stuntdouble's position back into the box:
1441 +      
1442 +      if (usePeriodicBoundaryConditions_)
1443 +        currentSnap_->wrapVector(pos);
1444 +
1445 +
1446 +      // which bin is this stuntdouble in?
1447 +      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1448 +      // Shift molecules by half a box to have bins start at 0
1449 +      // The modulo operator is used to wrap the case when we are
1450 +      // beyond the end of the bins back to the beginning.
1451 +      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1452 +
1453 +      RealType mass = sd->getMass();
1454 +      Vector3d vel = sd->getVel();
1455 +
1456 +      binCount[binNo]++;
1457 +      binMass[binNo] += mass;
1458 +      binPx[binNo] += mass*vel.x();
1459 +      binPy[binNo] += mass*vel.y();
1460 +      binPz[binNo] += mass*vel.z();
1461 +      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1462 +      binDOF[binNo] += 3;
1463 +
1464 +      if (sd->isDirectional()) {
1465 +        Vector3d angMom = sd->getJ();
1466 +        Mat3x3d I = sd->getI();
1467 +        if (sd->isLinear()) {
1468 +          int i = sd->linearAxis();
1469 +          int j = (i + 1) % 3;
1470 +          int k = (i + 2) % 3;
1471 +          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1472 +                                 angMom[k] * angMom[k] / I(k, k));
1473 +          binDOF[binNo] += 2;
1474 +        } else {
1475 +          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1476 +                                 angMom[1] * angMom[1] / I(1, 1) +
1477 +                                 angMom[2] * angMom[2] / I(2, 2));
1478 +          binDOF[binNo] += 3;
1479 +        }
1480 +      }
1481 +    }
1482 +    
1483 + #ifdef IS_MPI
1484 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1485 +                              nBins_, MPI::INT, MPI::SUM);
1486 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1487 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1488 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1489 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1490 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1491 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1492 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1493 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1494 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1495 +                              nBins_, MPI::REALTYPE, MPI::SUM);
1496 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1497 +                              nBins_, MPI::INT, MPI::SUM);
1498 + #endif
1499 +
1500 +    Vector3d vel;
1501 +    RealType den;
1502 +    RealType temp;
1503 +    RealType z;
1504 +    for (int i = 0; i < nBins_; i++) {
1505 +      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1506 +      vel.x() = binPx[i] / binMass[i];
1507 +      vel.y() = binPy[i] / binMass[i];
1508 +      vel.z() = binPz[i] / binMass[i];
1509 +
1510 +      den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1511 +        / currentSnap_->getVolume() ;
1512 +
1513 +      if (binCount[i] > 0) {
1514 +        // only add values if there are things to add
1515 +        temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1516 +                                 PhysicalConstants::energyConvert);
1517 +        
1518 +        for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1519 +          if(outputMask_[j]) {
1520 +            switch(j) {
1521 +            case Z:
1522 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
1523 +              break;
1524 +            case TEMPERATURE:
1525 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
1526 +              break;
1527 +            case VELOCITY:
1528 +              dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1529 +              break;
1530 +            case DENSITY:
1531 +              dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
1532 +              break;
1533 +            }
1534 +          }
1535 +        }
1536 +      }
1537 +    }
1538 +  }
1539 +
1540 +  void RNEMD::getStarted() {
1541 +    if (!doRNEMD_) return;
1542 +    collectData();
1543 +    writeOutputFile();
1544 +  }
1545 +
1546 +  void RNEMD::parseOutputFileFormat(const std::string& format) {
1547 +    if (!doRNEMD_) return;
1548 +    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1549 +    
1550 +    while(tokenizer.hasMoreTokens()) {
1551 +      std::string token(tokenizer.nextToken());
1552 +      toUpper(token);
1553 +      OutputMapType::iterator i = outputMap_.find(token);
1554 +      if (i != outputMap_.end()) {
1555 +        outputMask_.set(i->second);
1556 +      } else {
1557 +        sprintf( painCave.errMsg,
1558 +                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1559 +                 "\toutputFileFormat keyword.\n", token.c_str() );
1560 +        painCave.isFatal = 0;
1561 +        painCave.severity = OPENMD_ERROR;
1562 +        simError();            
1563 +      }
1564 +    }  
1565 +  }
1566 +  
1567 +  void RNEMD::writeOutputFile() {
1568 +    if (!doRNEMD_) return;
1569 +    
1570 + #ifdef IS_MPI
1571      // If we're the root node, should we print out the results
1572      int worldRank = MPI::COMM_WORLD.Get_rank();
1573      if (worldRank == 0) {
1574   #endif
1575 <      
550 <      std::cout << time;
551 <      for (int j = 0; j < nBins_; j++)
552 <        std::cout << "\t" << valueHist[j] / (RealType)valueCount[j];
553 <      std::cout << "\n";
1575 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1576        
1577 +      if( !rnemdFile_ ){        
1578 +        sprintf( painCave.errMsg,
1579 +                 "Could not open \"%s\" for RNEMD output.\n",
1580 +                 rnemdFileName_.c_str());
1581 +        painCave.isFatal = 1;
1582 +        simError();
1583 +      }
1584 +
1585 +      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1586 +
1587 +      RealType time = currentSnap_->getTime();
1588 +      RealType avgArea;
1589 +      areaAccumulator_->getAverage(avgArea);
1590 +      RealType Jz = kineticExchange_ / (2.0 * time * avgArea)
1591 +        / PhysicalConstants::energyConvert;
1592 +      Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);      
1593 +
1594 +      rnemdFile_ << "#######################################################\n";
1595 +      rnemdFile_ << "# RNEMD {\n";
1596 +
1597 +      map<string, RNEMDMethod>::iterator mi;
1598 +      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1599 +        if ( (*mi).second == rnemdMethod_)
1600 +          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
1601 +      }
1602 +      map<string, RNEMDFluxType>::iterator fi;
1603 +      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1604 +        if ( (*fi).second == rnemdFluxType_)
1605 +          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
1606 +      }
1607 +      
1608 +      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
1609 +
1610 +      rnemdFile_ << "#    objectSelection = \""
1611 +                 << rnemdObjectSelection_ << "\";\n";
1612 +      rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n";
1613 +      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n";
1614 +      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n";
1615 +      rnemdFile_ << "# }\n";
1616 +      rnemdFile_ << "#######################################################\n";
1617 +      rnemdFile_ << "# RNEMD report:\n";      
1618 +      rnemdFile_ << "#     running time = " << time << " fs\n";
1619 +      rnemdFile_ << "#     target flux:\n";
1620 +      rnemdFile_ << "#         kinetic = "
1621 +                 << kineticFlux_ / PhysicalConstants::energyConvert
1622 +                 << " (kcal/mol/A^2/fs)\n";
1623 +      rnemdFile_ << "#         momentum = " << momentumFluxVector_
1624 +                 << " (amu/A/fs^2)\n";
1625 +      rnemdFile_ << "#     target one-time exchanges:\n";
1626 +      rnemdFile_ << "#         kinetic = "
1627 +                 << kineticTarget_ / PhysicalConstants::energyConvert
1628 +                 << " (kcal/mol)\n";
1629 +      rnemdFile_ << "#         momentum = " << momentumTarget_
1630 +                 << " (amu*A/fs)\n";
1631 +      rnemdFile_ << "#     actual exchange totals:\n";
1632 +      rnemdFile_ << "#         kinetic = "
1633 +                 << kineticExchange_ / PhysicalConstants::energyConvert
1634 +                 << " (kcal/mol)\n";
1635 +      rnemdFile_ << "#         momentum = " << momentumExchange_
1636 +                 << " (amu*A/fs)\n";      
1637 +      rnemdFile_ << "#     actual flux:\n";
1638 +      rnemdFile_ << "#         kinetic = " << Jz
1639 +                 << " (kcal/mol/A^2/fs)\n";
1640 +      rnemdFile_ << "#         momentum = " << JzP
1641 +                 << " (amu/A/fs^2)\n";
1642 +      rnemdFile_ << "#     exchange statistics:\n";
1643 +      rnemdFile_ << "#         attempted = " << trialCount_ << "\n";
1644 +      rnemdFile_ << "#         failed = " << failTrialCount_ << "\n";    
1645 +      if (rnemdMethod_ == rnemdNIVS) {
1646 +        rnemdFile_ << "#         NIVS root-check errors = "
1647 +                   << failRootCount_ << "\n";
1648 +      }
1649 +      rnemdFile_ << "#######################################################\n";
1650 +      
1651 +      
1652 +      
1653 +      //write title
1654 +      rnemdFile_ << "#";
1655 +      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1656 +        if (outputMask_[i]) {
1657 +          rnemdFile_ << "\t" << data_[i].title <<
1658 +            "(" << data_[i].units << ")";
1659 +          // add some extra tabs for column alignment
1660 +          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
1661 +        }
1662 +      }
1663 +      rnemdFile_ << std::endl;
1664 +      
1665 +      rnemdFile_.precision(8);
1666 +      
1667 +      for (int j = 0; j < nBins_; j++) {        
1668 +        
1669 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1670 +          if (outputMask_[i]) {
1671 +            if (data_[i].dataType == "RealType")
1672 +              writeReal(i,j);
1673 +            else if (data_[i].dataType == "Vector3d")
1674 +              writeVector(i,j);
1675 +            else {
1676 +              sprintf( painCave.errMsg,
1677 +                       "RNEMD found an unknown data type for: %s ",
1678 +                       data_[i].title.c_str());
1679 +              painCave.isFatal = 1;
1680 +              simError();
1681 +            }
1682 +          }
1683 +        }
1684 +        rnemdFile_ << std::endl;
1685 +        
1686 +      }        
1687 +
1688 +      rnemdFile_ << "#######################################################\n";
1689 +      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1690 +      rnemdFile_ << "#######################################################\n";
1691 +
1692 +
1693 +      for (int j = 0; j < nBins_; j++) {        
1694 +        rnemdFile_ << "#";
1695 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1696 +          if (outputMask_[i]) {
1697 +            if (data_[i].dataType == "RealType")
1698 +              writeRealStdDev(i,j);
1699 +            else if (data_[i].dataType == "Vector3d")
1700 +              writeVectorStdDev(i,j);
1701 +            else {
1702 +              sprintf( painCave.errMsg,
1703 +                       "RNEMD found an unknown data type for: %s ",
1704 +                       data_[i].title.c_str());
1705 +              painCave.isFatal = 1;
1706 +              simError();
1707 +            }
1708 +          }
1709 +        }
1710 +        rnemdFile_ << std::endl;
1711 +        
1712 +      }        
1713 +      
1714 +      rnemdFile_.flush();
1715 +      rnemdFile_.close();
1716 +      
1717   #ifdef IS_MPI
1718      }
1719   #endif
1720 +    
1721    }
1722 +  
1723 +  void RNEMD::writeReal(int index, unsigned int bin) {
1724 +    if (!doRNEMD_) return;
1725 +    assert(index >=0 && index < ENDINDEX);
1726 +    assert(int(bin) < nBins_);
1727 +    RealType s;
1728 +    
1729 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
1730 +    
1731 +    if (! isinf(s) && ! isnan(s)) {
1732 +      rnemdFile_ << "\t" << s;
1733 +    } else{
1734 +      sprintf( painCave.errMsg,
1735 +               "RNEMD detected a numerical error writing: %s for bin %d",
1736 +               data_[index].title.c_str(), bin);
1737 +      painCave.isFatal = 1;
1738 +      simError();
1739 +    }    
1740 +  }
1741 +  
1742 +  void RNEMD::writeVector(int index, unsigned int bin) {
1743 +    if (!doRNEMD_) return;
1744 +    assert(index >=0 && index < ENDINDEX);
1745 +    assert(int(bin) < nBins_);
1746 +    Vector3d s;
1747 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1748 +    if (isinf(s[0]) || isnan(s[0]) ||
1749 +        isinf(s[1]) || isnan(s[1]) ||
1750 +        isinf(s[2]) || isnan(s[2]) ) {      
1751 +      sprintf( painCave.errMsg,
1752 +               "RNEMD detected a numerical error writing: %s for bin %d",
1753 +               data_[index].title.c_str(), bin);
1754 +      painCave.isFatal = 1;
1755 +      simError();
1756 +    } else {
1757 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1758 +    }
1759 +  }  
1760 +
1761 +  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1762 +    if (!doRNEMD_) return;
1763 +    assert(index >=0 && index < ENDINDEX);
1764 +    assert(int(bin) < nBins_);
1765 +    RealType s;
1766 +    
1767 +    dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
1768 +    
1769 +    if (! isinf(s) && ! isnan(s)) {
1770 +      rnemdFile_ << "\t" << s;
1771 +    } else{
1772 +      sprintf( painCave.errMsg,
1773 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1774 +               data_[index].title.c_str(), bin);
1775 +      painCave.isFatal = 1;
1776 +      simError();
1777 +    }    
1778 +  }
1779 +  
1780 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1781 +    if (!doRNEMD_) return;
1782 +    assert(index >=0 && index < ENDINDEX);
1783 +    assert(int(bin) < nBins_);
1784 +    Vector3d s;
1785 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1786 +    if (isinf(s[0]) || isnan(s[0]) ||
1787 +        isinf(s[1]) || isnan(s[1]) ||
1788 +        isinf(s[2]) || isnan(s[2]) ) {      
1789 +      sprintf( painCave.errMsg,
1790 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1791 +               data_[index].title.c_str(), bin);
1792 +      painCave.isFatal = 1;
1793 +      simError();
1794 +    } else {
1795 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1796 +    }
1797 +  }  
1798   }
1799 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (property svn:keywords), Revision 1830 by gezelter, Wed Jan 9 22:02:30 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines