ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
Revision: 1868
Committed: Tue Apr 30 15:56:54 2013 UTC (12 years ago) by gezelter
File size: 75092 byte(s)
Log Message:
CLearing out some memory leaks

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include <cmath>
43 #include <sstream>
44 #include <string>
45
46 #include "rnemd/RNEMD.hpp"
47 #include "math/Vector3.hpp"
48 #include "math/Vector.hpp"
49 #include "math/SquareMatrix3.hpp"
50 #include "math/Polynomial.hpp"
51 #include "primitives/Molecule.hpp"
52 #include "primitives/StuntDouble.hpp"
53 #include "utils/PhysicalConstants.hpp"
54 #include "utils/Tuple.hpp"
55 #include "brains/Thermo.hpp"
56 #include "math/ConvexHull.hpp"
57 #ifdef IS_MPI
58 #include <mpi.h>
59 #endif
60
61 #ifdef _MSC_VER
62 #define isnan(x) _isnan((x))
63 #define isinf(x) (!_finite(x) && !_isnan(x))
64 #endif
65
66 #define HONKING_LARGE_VALUE 1.0e10
67
68 using namespace std;
69 namespace OpenMD {
70
71 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
72 evaluatorA_(info), seleManA_(info),
73 commonA_(info), evaluatorB_(info),
74 seleManB_(info), commonB_(info),
75 hasData_(false),
76 usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
77
78 trialCount_ = 0;
79 failTrialCount_ = 0;
80 failRootCount_ = 0;
81
82 Globals* simParams = info->getSimParams();
83 RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
84
85 doRNEMD_ = rnemdParams->getUseRNEMD();
86 if (!doRNEMD_) return;
87
88 stringToMethod_["Swap"] = rnemdSwap;
89 stringToMethod_["NIVS"] = rnemdNIVS;
90 stringToMethod_["VSS"] = rnemdVSS;
91
92 stringToFluxType_["KE"] = rnemdKE;
93 stringToFluxType_["Px"] = rnemdPx;
94 stringToFluxType_["Py"] = rnemdPy;
95 stringToFluxType_["Pz"] = rnemdPz;
96 stringToFluxType_["Pvector"] = rnemdPvector;
97 stringToFluxType_["Lx"] = rnemdLx;
98 stringToFluxType_["Ly"] = rnemdLy;
99 stringToFluxType_["Lz"] = rnemdLz;
100 stringToFluxType_["Lvector"] = rnemdLvector;
101 stringToFluxType_["KE+Px"] = rnemdKePx;
102 stringToFluxType_["KE+Py"] = rnemdKePy;
103 stringToFluxType_["KE+Pvector"] = rnemdKePvector;
104 stringToFluxType_["KE+Lx"] = rnemdKeLx;
105 stringToFluxType_["KE+Ly"] = rnemdKeLy;
106 stringToFluxType_["KE+Lz"] = rnemdKeLz;
107 stringToFluxType_["KE+Lvector"] = rnemdKeLvector;
108
109 runTime_ = simParams->getRunTime();
110 statusTime_ = simParams->getStatusTime();
111
112 const string methStr = rnemdParams->getMethod();
113 bool hasFluxType = rnemdParams->haveFluxType();
114
115 rnemdObjectSelection_ = rnemdParams->getObjectSelection();
116
117 string fluxStr;
118 if (hasFluxType) {
119 fluxStr = rnemdParams->getFluxType();
120 } else {
121 sprintf(painCave.errMsg,
122 "RNEMD: No fluxType was set in the md file. This parameter,\n"
123 "\twhich must be one of the following values:\n"
124 "\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n"
125 "\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n"
126 "\tmust be set to use RNEMD\n");
127 painCave.isFatal = 1;
128 painCave.severity = OPENMD_ERROR;
129 simError();
130 }
131
132 bool hasKineticFlux = rnemdParams->haveKineticFlux();
133 bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
134 bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
135 bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux();
136 bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector();
137 hasSelectionA_ = rnemdParams->haveSelectionA();
138 hasSelectionB_ = rnemdParams->haveSelectionB();
139 bool hasSlabWidth = rnemdParams->haveSlabWidth();
140 bool hasSlabACenter = rnemdParams->haveSlabACenter();
141 bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
142 bool hasSphereARadius = rnemdParams->haveSphereARadius();
143 hasSphereBRadius_ = rnemdParams->haveSphereBRadius();
144 bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin();
145 bool hasOutputFileName = rnemdParams->haveOutputFileName();
146 bool hasOutputFields = rnemdParams->haveOutputFields();
147
148 map<string, RNEMDMethod>::iterator i;
149 i = stringToMethod_.find(methStr);
150 if (i != stringToMethod_.end())
151 rnemdMethod_ = i->second;
152 else {
153 sprintf(painCave.errMsg,
154 "RNEMD: The current method,\n"
155 "\t\t%s is not one of the recognized\n"
156 "\texchange methods: Swap, NIVS, or VSS\n",
157 methStr.c_str());
158 painCave.isFatal = 1;
159 painCave.severity = OPENMD_ERROR;
160 simError();
161 }
162
163 map<string, RNEMDFluxType>::iterator j;
164 j = stringToFluxType_.find(fluxStr);
165 if (j != stringToFluxType_.end())
166 rnemdFluxType_ = j->second;
167 else {
168 sprintf(painCave.errMsg,
169 "RNEMD: The current fluxType,\n"
170 "\t\t%s\n"
171 "\tis not one of the recognized flux types.\n",
172 fluxStr.c_str());
173 painCave.isFatal = 1;
174 painCave.severity = OPENMD_ERROR;
175 simError();
176 }
177
178 bool methodFluxMismatch = false;
179 bool hasCorrectFlux = false;
180 switch(rnemdMethod_) {
181 case rnemdSwap:
182 switch (rnemdFluxType_) {
183 case rnemdKE:
184 hasCorrectFlux = hasKineticFlux;
185 break;
186 case rnemdPx:
187 case rnemdPy:
188 case rnemdPz:
189 hasCorrectFlux = hasMomentumFlux;
190 break;
191 default :
192 methodFluxMismatch = true;
193 break;
194 }
195 break;
196 case rnemdNIVS:
197 switch (rnemdFluxType_) {
198 case rnemdKE:
199 case rnemdRotKE:
200 case rnemdFullKE:
201 hasCorrectFlux = hasKineticFlux;
202 break;
203 case rnemdPx:
204 case rnemdPy:
205 case rnemdPz:
206 hasCorrectFlux = hasMomentumFlux;
207 break;
208 case rnemdKePx:
209 case rnemdKePy:
210 hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
211 break;
212 default:
213 methodFluxMismatch = true;
214 break;
215 }
216 break;
217 case rnemdVSS:
218 switch (rnemdFluxType_) {
219 case rnemdKE:
220 case rnemdRotKE:
221 case rnemdFullKE:
222 hasCorrectFlux = hasKineticFlux;
223 break;
224 case rnemdPx:
225 case rnemdPy:
226 case rnemdPz:
227 hasCorrectFlux = hasMomentumFlux;
228 break;
229 case rnemdLx:
230 case rnemdLy:
231 case rnemdLz:
232 hasCorrectFlux = hasAngularMomentumFlux;
233 break;
234 case rnemdPvector:
235 hasCorrectFlux = hasMomentumFluxVector;
236 break;
237 case rnemdLvector:
238 hasCorrectFlux = hasAngularMomentumFluxVector;
239 break;
240 case rnemdKePx:
241 case rnemdKePy:
242 hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
243 break;
244 case rnemdKeLx:
245 case rnemdKeLy:
246 case rnemdKeLz:
247 hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux;
248 break;
249 case rnemdKePvector:
250 hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
251 break;
252 case rnemdKeLvector:
253 hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux;
254 break;
255 default:
256 methodFluxMismatch = true;
257 break;
258 }
259 default:
260 break;
261 }
262
263 if (methodFluxMismatch) {
264 sprintf(painCave.errMsg,
265 "RNEMD: The current method,\n"
266 "\t\t%s\n"
267 "\tcannot be used with the current flux type, %s\n",
268 methStr.c_str(), fluxStr.c_str());
269 painCave.isFatal = 1;
270 painCave.severity = OPENMD_ERROR;
271 simError();
272 }
273 if (!hasCorrectFlux) {
274 sprintf(painCave.errMsg,
275 "RNEMD: The current method, %s, and flux type, %s,\n"
276 "\tdid not have the correct flux value specified. Options\n"
277 "\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n"
278 "\tmomentumFluxVector, and angularMomentumFluxVector.\n",
279 methStr.c_str(), fluxStr.c_str());
280 painCave.isFatal = 1;
281 painCave.severity = OPENMD_ERROR;
282 simError();
283 }
284
285 if (hasKineticFlux) {
286 // convert the kcal / mol / Angstroms^2 / fs values in the md file
287 // into amu / fs^3:
288 kineticFlux_ = rnemdParams->getKineticFlux()
289 * PhysicalConstants::energyConvert;
290 } else {
291 kineticFlux_ = 0.0;
292 }
293 if (hasMomentumFluxVector) {
294 momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
295 } else {
296 momentumFluxVector_ = V3Zero;
297 if (hasMomentumFlux) {
298 RealType momentumFlux = rnemdParams->getMomentumFlux();
299 switch (rnemdFluxType_) {
300 case rnemdPx:
301 momentumFluxVector_.x() = momentumFlux;
302 break;
303 case rnemdPy:
304 momentumFluxVector_.y() = momentumFlux;
305 break;
306 case rnemdPz:
307 momentumFluxVector_.z() = momentumFlux;
308 break;
309 case rnemdKePx:
310 momentumFluxVector_.x() = momentumFlux;
311 break;
312 case rnemdKePy:
313 momentumFluxVector_.y() = momentumFlux;
314 break;
315 default:
316 break;
317 }
318 }
319 if (hasAngularMomentumFluxVector) {
320 angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector();
321 } else {
322 angularMomentumFluxVector_ = V3Zero;
323 if (hasAngularMomentumFlux) {
324 RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux();
325 switch (rnemdFluxType_) {
326 case rnemdLx:
327 angularMomentumFluxVector_.x() = angularMomentumFlux;
328 break;
329 case rnemdLy:
330 angularMomentumFluxVector_.y() = angularMomentumFlux;
331 break;
332 case rnemdLz:
333 angularMomentumFluxVector_.z() = angularMomentumFlux;
334 break;
335 case rnemdKeLx:
336 angularMomentumFluxVector_.x() = angularMomentumFlux;
337 break;
338 case rnemdKeLy:
339 angularMomentumFluxVector_.y() = angularMomentumFlux;
340 break;
341 case rnemdKeLz:
342 angularMomentumFluxVector_.z() = angularMomentumFlux;
343 break;
344 default:
345 break;
346 }
347 }
348 }
349
350 if (hasCoordinateOrigin) {
351 coordinateOrigin_ = rnemdParams->getCoordinateOrigin();
352 } else {
353 coordinateOrigin_ = V3Zero;
354 }
355
356 // do some sanity checking
357
358 int selectionCount = seleMan_.getSelectionCount();
359
360 int nIntegrable = info->getNGlobalIntegrableObjects();
361
362 if (selectionCount > nIntegrable) {
363 sprintf(painCave.errMsg,
364 "RNEMD: The current objectSelection,\n"
365 "\t\t%s\n"
366 "\thas resulted in %d selected objects. However,\n"
367 "\tthe total number of integrable objects in the system\n"
368 "\tis only %d. This is almost certainly not what you want\n"
369 "\tto do. A likely cause of this is forgetting the _RB_0\n"
370 "\tselector in the selection script!\n",
371 rnemdObjectSelection_.c_str(),
372 selectionCount, nIntegrable);
373 painCave.isFatal = 0;
374 painCave.severity = OPENMD_WARNING;
375 simError();
376 }
377
378 areaAccumulator_ = new Accumulator();
379
380 nBins_ = rnemdParams->getOutputBins();
381 binWidth_ = rnemdParams->getOutputBinWidth();
382
383 data_.resize(RNEMD::ENDINDEX);
384 OutputData z;
385 z.units = "Angstroms";
386 z.title = "Z";
387 z.dataType = "RealType";
388 z.accumulator.reserve(nBins_);
389 for (int i = 0; i < nBins_; i++)
390 z.accumulator.push_back( new Accumulator() );
391 data_[Z] = z;
392 outputMap_["Z"] = Z;
393
394 OutputData r;
395 r.units = "Angstroms";
396 r.title = "R";
397 r.dataType = "RealType";
398 r.accumulator.reserve(nBins_);
399 for (int i = 0; i < nBins_; i++)
400 r.accumulator.push_back( new Accumulator() );
401 data_[R] = r;
402 outputMap_["R"] = R;
403
404 OutputData temperature;
405 temperature.units = "K";
406 temperature.title = "Temperature";
407 temperature.dataType = "RealType";
408 temperature.accumulator.reserve(nBins_);
409 for (int i = 0; i < nBins_; i++)
410 temperature.accumulator.push_back( new Accumulator() );
411 data_[TEMPERATURE] = temperature;
412 outputMap_["TEMPERATURE"] = TEMPERATURE;
413
414 OutputData velocity;
415 velocity.units = "angstroms/fs";
416 velocity.title = "Velocity";
417 velocity.dataType = "Vector3d";
418 velocity.accumulator.reserve(nBins_);
419 for (int i = 0; i < nBins_; i++)
420 velocity.accumulator.push_back( new VectorAccumulator() );
421 data_[VELOCITY] = velocity;
422 outputMap_["VELOCITY"] = VELOCITY;
423
424 OutputData angularVelocity;
425 angularVelocity.units = "angstroms^2/fs";
426 angularVelocity.title = "AngularVelocity";
427 angularVelocity.dataType = "Vector3d";
428 angularVelocity.accumulator.reserve(nBins_);
429 for (int i = 0; i < nBins_; i++)
430 angularVelocity.accumulator.push_back( new VectorAccumulator() );
431 data_[ANGULARVELOCITY] = angularVelocity;
432 outputMap_["ANGULARVELOCITY"] = ANGULARVELOCITY;
433
434 OutputData density;
435 density.units = "g cm^-3";
436 density.title = "Density";
437 density.dataType = "RealType";
438 density.accumulator.reserve(nBins_);
439 for (int i = 0; i < nBins_; i++)
440 density.accumulator.push_back( new Accumulator() );
441 data_[DENSITY] = density;
442 outputMap_["DENSITY"] = DENSITY;
443
444 if (hasOutputFields) {
445 parseOutputFileFormat(rnemdParams->getOutputFields());
446 } else {
447 if (usePeriodicBoundaryConditions_)
448 outputMask_.set(Z);
449 else
450 outputMask_.set(R);
451 switch (rnemdFluxType_) {
452 case rnemdKE:
453 case rnemdRotKE:
454 case rnemdFullKE:
455 outputMask_.set(TEMPERATURE);
456 break;
457 case rnemdPx:
458 case rnemdPy:
459 outputMask_.set(VELOCITY);
460 break;
461 case rnemdPz:
462 case rnemdPvector:
463 outputMask_.set(VELOCITY);
464 outputMask_.set(DENSITY);
465 break;
466 case rnemdLx:
467 case rnemdLy:
468 case rnemdLz:
469 case rnemdLvector:
470 outputMask_.set(ANGULARVELOCITY);
471 break;
472 case rnemdKeLx:
473 case rnemdKeLy:
474 case rnemdKeLz:
475 case rnemdKeLvector:
476 outputMask_.set(TEMPERATURE);
477 outputMask_.set(ANGULARVELOCITY);
478 break;
479 case rnemdKePx:
480 case rnemdKePy:
481 outputMask_.set(TEMPERATURE);
482 outputMask_.set(VELOCITY);
483 break;
484 case rnemdKePvector:
485 outputMask_.set(TEMPERATURE);
486 outputMask_.set(VELOCITY);
487 outputMask_.set(DENSITY);
488 break;
489 default:
490 break;
491 }
492 }
493
494 if (hasOutputFileName) {
495 rnemdFileName_ = rnemdParams->getOutputFileName();
496 } else {
497 rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
498 }
499
500 exchangeTime_ = rnemdParams->getExchangeTime();
501
502 Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
503 // total exchange sums are zeroed out at the beginning:
504
505 kineticExchange_ = 0.0;
506 momentumExchange_ = V3Zero;
507 angularMomentumExchange_ = V3Zero;
508
509 std::ostringstream selectionAstream;
510 std::ostringstream selectionBstream;
511
512 if (hasSelectionA_) {
513 selectionA_ = rnemdParams->getSelectionA();
514 } else {
515 if (usePeriodicBoundaryConditions_) {
516 Mat3x3d hmat = currentSnap_->getHmat();
517
518 if (hasSlabWidth)
519 slabWidth_ = rnemdParams->getSlabWidth();
520 else
521 slabWidth_ = hmat(2,2) / 10.0;
522
523 if (hasSlabACenter)
524 slabACenter_ = rnemdParams->getSlabACenter();
525 else
526 slabACenter_ = 0.0;
527
528 selectionAstream << "select wrappedz > "
529 << slabACenter_ - 0.5*slabWidth_
530 << " && wrappedz < "
531 << slabACenter_ + 0.5*slabWidth_;
532 selectionA_ = selectionAstream.str();
533 } else {
534 if (hasSphereARadius)
535 sphereARadius_ = rnemdParams->getSphereARadius();
536 else {
537 // use an initial guess to the size of the inner slab to be 1/10 the
538 // radius of an approximately spherical hull:
539 Thermo thermo(info);
540 RealType hVol = thermo.getHullVolume();
541 sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0);
542 }
543 selectionAstream << "select r < " << sphereARadius_;
544 selectionA_ = selectionAstream.str();
545 }
546 }
547
548 if (hasSelectionB_) {
549 selectionB_ = rnemdParams->getSelectionB();
550 } else {
551 if (usePeriodicBoundaryConditions_) {
552 Mat3x3d hmat = currentSnap_->getHmat();
553
554 if (hasSlabWidth)
555 slabWidth_ = rnemdParams->getSlabWidth();
556 else
557 slabWidth_ = hmat(2,2) / 10.0;
558
559 if (hasSlabBCenter)
560 slabBCenter_ = rnemdParams->getSlabBCenter();
561 else
562 slabBCenter_ = hmat(2,2) / 2.0;
563
564 selectionBstream << "select wrappedz > "
565 << slabBCenter_ - 0.5*slabWidth_
566 << " && wrappedz < "
567 << slabBCenter_ + 0.5*slabWidth_;
568 selectionB_ = selectionBstream.str();
569 } else {
570 if (hasSphereBRadius_) {
571 sphereBRadius_ = rnemdParams->getSphereBRadius();
572 selectionBstream << "select r > " << sphereBRadius_;
573 selectionB_ = selectionBstream.str();
574 } else {
575 selectionB_ = "select hull";
576 hasSelectionB_ = true;
577 }
578 }
579 }
580 }
581
582 // object evaluator:
583 evaluator_.loadScriptString(rnemdObjectSelection_);
584 seleMan_.setSelectionSet(evaluator_.evaluate());
585 evaluatorA_.loadScriptString(selectionA_);
586 evaluatorB_.loadScriptString(selectionB_);
587 seleManA_.setSelectionSet(evaluatorA_.evaluate());
588 seleManB_.setSelectionSet(evaluatorB_.evaluate());
589 commonA_ = seleManA_ & seleMan_;
590 commonB_ = seleManB_ & seleMan_;
591 }
592
593
594 RNEMD::~RNEMD() {
595 if (!doRNEMD_) return;
596 #ifdef IS_MPI
597 if (worldRank == 0) {
598 #endif
599
600 writeOutputFile();
601
602 rnemdFile_.close();
603
604 #ifdef IS_MPI
605 }
606 #endif
607
608 // delete all of the objects we created:
609 delete areaAccumulator_;
610 data_.clear();
611 }
612
613 void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) {
614 if (!doRNEMD_) return;
615 int selei;
616 int selej;
617
618 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
619 Mat3x3d hmat = currentSnap_->getHmat();
620
621 StuntDouble* sd;
622
623 RealType min_val;
624 bool min_found = false;
625 StuntDouble* min_sd;
626
627 RealType max_val;
628 bool max_found = false;
629 StuntDouble* max_sd;
630
631 for (sd = seleManA_.beginSelected(selei); sd != NULL;
632 sd = seleManA_.nextSelected(selei)) {
633
634 Vector3d pos = sd->getPos();
635
636 // wrap the stuntdouble's position back into the box:
637
638 if (usePeriodicBoundaryConditions_)
639 currentSnap_->wrapVector(pos);
640
641 RealType mass = sd->getMass();
642 Vector3d vel = sd->getVel();
643 RealType value;
644
645 switch(rnemdFluxType_) {
646 case rnemdKE :
647
648 value = mass * vel.lengthSquare();
649
650 if (sd->isDirectional()) {
651 Vector3d angMom = sd->getJ();
652 Mat3x3d I = sd->getI();
653
654 if (sd->isLinear()) {
655 int i = sd->linearAxis();
656 int j = (i + 1) % 3;
657 int k = (i + 2) % 3;
658 value += angMom[j] * angMom[j] / I(j, j) +
659 angMom[k] * angMom[k] / I(k, k);
660 } else {
661 value += angMom[0]*angMom[0]/I(0, 0)
662 + angMom[1]*angMom[1]/I(1, 1)
663 + angMom[2]*angMom[2]/I(2, 2);
664 }
665 } //angular momenta exchange enabled
666 value *= 0.5;
667 break;
668 case rnemdPx :
669 value = mass * vel[0];
670 break;
671 case rnemdPy :
672 value = mass * vel[1];
673 break;
674 case rnemdPz :
675 value = mass * vel[2];
676 break;
677 default :
678 break;
679 }
680 if (!max_found) {
681 max_val = value;
682 max_sd = sd;
683 max_found = true;
684 } else {
685 if (max_val < value) {
686 max_val = value;
687 max_sd = sd;
688 }
689 }
690 }
691
692 for (sd = seleManB_.beginSelected(selej); sd != NULL;
693 sd = seleManB_.nextSelected(selej)) {
694
695 Vector3d pos = sd->getPos();
696
697 // wrap the stuntdouble's position back into the box:
698
699 if (usePeriodicBoundaryConditions_)
700 currentSnap_->wrapVector(pos);
701
702 RealType mass = sd->getMass();
703 Vector3d vel = sd->getVel();
704 RealType value;
705
706 switch(rnemdFluxType_) {
707 case rnemdKE :
708
709 value = mass * vel.lengthSquare();
710
711 if (sd->isDirectional()) {
712 Vector3d angMom = sd->getJ();
713 Mat3x3d I = sd->getI();
714
715 if (sd->isLinear()) {
716 int i = sd->linearAxis();
717 int j = (i + 1) % 3;
718 int k = (i + 2) % 3;
719 value += angMom[j] * angMom[j] / I(j, j) +
720 angMom[k] * angMom[k] / I(k, k);
721 } else {
722 value += angMom[0]*angMom[0]/I(0, 0)
723 + angMom[1]*angMom[1]/I(1, 1)
724 + angMom[2]*angMom[2]/I(2, 2);
725 }
726 } //angular momenta exchange enabled
727 value *= 0.5;
728 break;
729 case rnemdPx :
730 value = mass * vel[0];
731 break;
732 case rnemdPy :
733 value = mass * vel[1];
734 break;
735 case rnemdPz :
736 value = mass * vel[2];
737 break;
738 default :
739 break;
740 }
741
742 if (!min_found) {
743 min_val = value;
744 min_sd = sd;
745 min_found = true;
746 } else {
747 if (min_val > value) {
748 min_val = value;
749 min_sd = sd;
750 }
751 }
752 }
753
754 #ifdef IS_MPI
755 int worldRank = MPI::COMM_WORLD.Get_rank();
756
757 bool my_min_found = min_found;
758 bool my_max_found = max_found;
759
760 // Even if we didn't find a minimum, did someone else?
761 MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
762 // Even if we didn't find a maximum, did someone else?
763 MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
764 #endif
765
766 if (max_found && min_found) {
767
768 #ifdef IS_MPI
769 struct {
770 RealType val;
771 int rank;
772 } max_vals, min_vals;
773
774 if (my_min_found) {
775 min_vals.val = min_val;
776 } else {
777 min_vals.val = HONKING_LARGE_VALUE;
778 }
779 min_vals.rank = worldRank;
780
781 // Who had the minimum?
782 MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
783 1, MPI::REALTYPE_INT, MPI::MINLOC);
784 min_val = min_vals.val;
785
786 if (my_max_found) {
787 max_vals.val = max_val;
788 } else {
789 max_vals.val = -HONKING_LARGE_VALUE;
790 }
791 max_vals.rank = worldRank;
792
793 // Who had the maximum?
794 MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
795 1, MPI::REALTYPE_INT, MPI::MAXLOC);
796 max_val = max_vals.val;
797 #endif
798
799 if (min_val < max_val) {
800
801 #ifdef IS_MPI
802 if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
803 // I have both maximum and minimum, so proceed like a single
804 // processor version:
805 #endif
806
807 Vector3d min_vel = min_sd->getVel();
808 Vector3d max_vel = max_sd->getVel();
809 RealType temp_vel;
810
811 switch(rnemdFluxType_) {
812 case rnemdKE :
813 min_sd->setVel(max_vel);
814 max_sd->setVel(min_vel);
815 if (min_sd->isDirectional() && max_sd->isDirectional()) {
816 Vector3d min_angMom = min_sd->getJ();
817 Vector3d max_angMom = max_sd->getJ();
818 min_sd->setJ(max_angMom);
819 max_sd->setJ(min_angMom);
820 }//angular momenta exchange enabled
821 //assumes same rigid body identity
822 break;
823 case rnemdPx :
824 temp_vel = min_vel.x();
825 min_vel.x() = max_vel.x();
826 max_vel.x() = temp_vel;
827 min_sd->setVel(min_vel);
828 max_sd->setVel(max_vel);
829 break;
830 case rnemdPy :
831 temp_vel = min_vel.y();
832 min_vel.y() = max_vel.y();
833 max_vel.y() = temp_vel;
834 min_sd->setVel(min_vel);
835 max_sd->setVel(max_vel);
836 break;
837 case rnemdPz :
838 temp_vel = min_vel.z();
839 min_vel.z() = max_vel.z();
840 max_vel.z() = temp_vel;
841 min_sd->setVel(min_vel);
842 max_sd->setVel(max_vel);
843 break;
844 default :
845 break;
846 }
847
848 #ifdef IS_MPI
849 // the rest of the cases only apply in parallel simulations:
850 } else if (max_vals.rank == worldRank) {
851 // I had the max, but not the minimum
852
853 Vector3d min_vel;
854 Vector3d max_vel = max_sd->getVel();
855 MPI::Status status;
856
857 // point-to-point swap of the velocity vector
858 MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
859 min_vals.rank, 0,
860 min_vel.getArrayPointer(), 3, MPI::REALTYPE,
861 min_vals.rank, 0, status);
862
863 switch(rnemdFluxType_) {
864 case rnemdKE :
865 max_sd->setVel(min_vel);
866 //angular momenta exchange enabled
867 if (max_sd->isDirectional()) {
868 Vector3d min_angMom;
869 Vector3d max_angMom = max_sd->getJ();
870
871 // point-to-point swap of the angular momentum vector
872 MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
873 MPI::REALTYPE, min_vals.rank, 1,
874 min_angMom.getArrayPointer(), 3,
875 MPI::REALTYPE, min_vals.rank, 1,
876 status);
877
878 max_sd->setJ(min_angMom);
879 }
880 break;
881 case rnemdPx :
882 max_vel.x() = min_vel.x();
883 max_sd->setVel(max_vel);
884 break;
885 case rnemdPy :
886 max_vel.y() = min_vel.y();
887 max_sd->setVel(max_vel);
888 break;
889 case rnemdPz :
890 max_vel.z() = min_vel.z();
891 max_sd->setVel(max_vel);
892 break;
893 default :
894 break;
895 }
896 } else if (min_vals.rank == worldRank) {
897 // I had the minimum but not the maximum:
898
899 Vector3d max_vel;
900 Vector3d min_vel = min_sd->getVel();
901 MPI::Status status;
902
903 // point-to-point swap of the velocity vector
904 MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
905 max_vals.rank, 0,
906 max_vel.getArrayPointer(), 3, MPI::REALTYPE,
907 max_vals.rank, 0, status);
908
909 switch(rnemdFluxType_) {
910 case rnemdKE :
911 min_sd->setVel(max_vel);
912 //angular momenta exchange enabled
913 if (min_sd->isDirectional()) {
914 Vector3d min_angMom = min_sd->getJ();
915 Vector3d max_angMom;
916
917 // point-to-point swap of the angular momentum vector
918 MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
919 MPI::REALTYPE, max_vals.rank, 1,
920 max_angMom.getArrayPointer(), 3,
921 MPI::REALTYPE, max_vals.rank, 1,
922 status);
923
924 min_sd->setJ(max_angMom);
925 }
926 break;
927 case rnemdPx :
928 min_vel.x() = max_vel.x();
929 min_sd->setVel(min_vel);
930 break;
931 case rnemdPy :
932 min_vel.y() = max_vel.y();
933 min_sd->setVel(min_vel);
934 break;
935 case rnemdPz :
936 min_vel.z() = max_vel.z();
937 min_sd->setVel(min_vel);
938 break;
939 default :
940 break;
941 }
942 }
943 #endif
944
945 switch(rnemdFluxType_) {
946 case rnemdKE:
947 kineticExchange_ += max_val - min_val;
948 break;
949 case rnemdPx:
950 momentumExchange_.x() += max_val - min_val;
951 break;
952 case rnemdPy:
953 momentumExchange_.y() += max_val - min_val;
954 break;
955 case rnemdPz:
956 momentumExchange_.z() += max_val - min_val;
957 break;
958 default:
959 break;
960 }
961 } else {
962 sprintf(painCave.errMsg,
963 "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
964 painCave.isFatal = 0;
965 painCave.severity = OPENMD_INFO;
966 simError();
967 failTrialCount_++;
968 }
969 } else {
970 sprintf(painCave.errMsg,
971 "RNEMD::doSwap exchange NOT performed because selected object\n"
972 "\twas not present in at least one of the two slabs.\n");
973 painCave.isFatal = 0;
974 painCave.severity = OPENMD_INFO;
975 simError();
976 failTrialCount_++;
977 }
978 }
979
980 void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) {
981 if (!doRNEMD_) return;
982 int selei;
983 int selej;
984
985 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
986 RealType time = currentSnap_->getTime();
987 Mat3x3d hmat = currentSnap_->getHmat();
988
989 StuntDouble* sd;
990
991 vector<StuntDouble*> hotBin, coldBin;
992
993 RealType Phx = 0.0;
994 RealType Phy = 0.0;
995 RealType Phz = 0.0;
996 RealType Khx = 0.0;
997 RealType Khy = 0.0;
998 RealType Khz = 0.0;
999 RealType Khw = 0.0;
1000 RealType Pcx = 0.0;
1001 RealType Pcy = 0.0;
1002 RealType Pcz = 0.0;
1003 RealType Kcx = 0.0;
1004 RealType Kcy = 0.0;
1005 RealType Kcz = 0.0;
1006 RealType Kcw = 0.0;
1007
1008 for (sd = smanA.beginSelected(selei); sd != NULL;
1009 sd = smanA.nextSelected(selei)) {
1010
1011 Vector3d pos = sd->getPos();
1012
1013 // wrap the stuntdouble's position back into the box:
1014
1015 if (usePeriodicBoundaryConditions_)
1016 currentSnap_->wrapVector(pos);
1017
1018
1019 RealType mass = sd->getMass();
1020 Vector3d vel = sd->getVel();
1021
1022 hotBin.push_back(sd);
1023 Phx += mass * vel.x();
1024 Phy += mass * vel.y();
1025 Phz += mass * vel.z();
1026 Khx += mass * vel.x() * vel.x();
1027 Khy += mass * vel.y() * vel.y();
1028 Khz += mass * vel.z() * vel.z();
1029 if (sd->isDirectional()) {
1030 Vector3d angMom = sd->getJ();
1031 Mat3x3d I = sd->getI();
1032 if (sd->isLinear()) {
1033 int i = sd->linearAxis();
1034 int j = (i + 1) % 3;
1035 int k = (i + 2) % 3;
1036 Khw += angMom[j] * angMom[j] / I(j, j) +
1037 angMom[k] * angMom[k] / I(k, k);
1038 } else {
1039 Khw += angMom[0]*angMom[0]/I(0, 0)
1040 + angMom[1]*angMom[1]/I(1, 1)
1041 + angMom[2]*angMom[2]/I(2, 2);
1042 }
1043 }
1044 }
1045 for (sd = smanB.beginSelected(selej); sd != NULL;
1046 sd = smanB.nextSelected(selej)) {
1047 Vector3d pos = sd->getPos();
1048
1049 // wrap the stuntdouble's position back into the box:
1050
1051 if (usePeriodicBoundaryConditions_)
1052 currentSnap_->wrapVector(pos);
1053
1054 RealType mass = sd->getMass();
1055 Vector3d vel = sd->getVel();
1056
1057 coldBin.push_back(sd);
1058 Pcx += mass * vel.x();
1059 Pcy += mass * vel.y();
1060 Pcz += mass * vel.z();
1061 Kcx += mass * vel.x() * vel.x();
1062 Kcy += mass * vel.y() * vel.y();
1063 Kcz += mass * vel.z() * vel.z();
1064 if (sd->isDirectional()) {
1065 Vector3d angMom = sd->getJ();
1066 Mat3x3d I = sd->getI();
1067 if (sd->isLinear()) {
1068 int i = sd->linearAxis();
1069 int j = (i + 1) % 3;
1070 int k = (i + 2) % 3;
1071 Kcw += angMom[j] * angMom[j] / I(j, j) +
1072 angMom[k] * angMom[k] / I(k, k);
1073 } else {
1074 Kcw += angMom[0]*angMom[0]/I(0, 0)
1075 + angMom[1]*angMom[1]/I(1, 1)
1076 + angMom[2]*angMom[2]/I(2, 2);
1077 }
1078 }
1079 }
1080
1081 Khx *= 0.5;
1082 Khy *= 0.5;
1083 Khz *= 0.5;
1084 Khw *= 0.5;
1085 Kcx *= 0.5;
1086 Kcy *= 0.5;
1087 Kcz *= 0.5;
1088 Kcw *= 0.5;
1089
1090 #ifdef IS_MPI
1091 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
1092 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
1093 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
1094 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
1095 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
1096 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
1097
1098 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
1099 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
1100 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
1101 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
1102
1103 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
1104 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
1105 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
1106 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
1107 #endif
1108
1109 //solve coldBin coeff's first
1110 RealType px = Pcx / Phx;
1111 RealType py = Pcy / Phy;
1112 RealType pz = Pcz / Phz;
1113 RealType c, x, y, z;
1114 bool successfulScale = false;
1115 if ((rnemdFluxType_ == rnemdFullKE) ||
1116 (rnemdFluxType_ == rnemdRotKE)) {
1117 //may need sanity check Khw & Kcw > 0
1118
1119 if (rnemdFluxType_ == rnemdFullKE) {
1120 c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
1121 } else {
1122 c = 1.0 - kineticTarget_ / Kcw;
1123 }
1124
1125 if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
1126 c = sqrt(c);
1127
1128 RealType w = 0.0;
1129 if (rnemdFluxType_ == rnemdFullKE) {
1130 x = 1.0 + px * (1.0 - c);
1131 y = 1.0 + py * (1.0 - c);
1132 z = 1.0 + pz * (1.0 - c);
1133 /* more complicated way
1134 w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
1135 + Khx * px * px + Khy * py * py + Khz * pz * pz)
1136 - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
1137 + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
1138 + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1139 - Kcx - Kcy - Kcz)) / Khw; the following is simpler
1140 */
1141 if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
1142 (fabs(z - 1.0) < 0.1)) {
1143 w = 1.0 + (kineticTarget_
1144 + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
1145 + Khz * (1.0 - z * z)) / Khw;
1146 }//no need to calculate w if x, y or z is out of range
1147 } else {
1148 w = 1.0 + kineticTarget_ / Khw;
1149 }
1150 if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
1151 //if w is in the right range, so should be x, y, z.
1152 vector<StuntDouble*>::iterator sdi;
1153 Vector3d vel;
1154 for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1155 if (rnemdFluxType_ == rnemdFullKE) {
1156 vel = (*sdi)->getVel() * c;
1157 (*sdi)->setVel(vel);
1158 }
1159 if ((*sdi)->isDirectional()) {
1160 Vector3d angMom = (*sdi)->getJ() * c;
1161 (*sdi)->setJ(angMom);
1162 }
1163 }
1164 w = sqrt(w);
1165 for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1166 if (rnemdFluxType_ == rnemdFullKE) {
1167 vel = (*sdi)->getVel();
1168 vel.x() *= x;
1169 vel.y() *= y;
1170 vel.z() *= z;
1171 (*sdi)->setVel(vel);
1172 }
1173 if ((*sdi)->isDirectional()) {
1174 Vector3d angMom = (*sdi)->getJ() * w;
1175 (*sdi)->setJ(angMom);
1176 }
1177 }
1178 successfulScale = true;
1179 kineticExchange_ += kineticTarget_;
1180 }
1181 }
1182 } else {
1183 RealType a000, a110, c0, a001, a111, b01, b11, c1;
1184 switch(rnemdFluxType_) {
1185 case rnemdKE :
1186 /* used hotBin coeff's & only scale x & y dimensions
1187 RealType px = Phx / Pcx;
1188 RealType py = Phy / Pcy;
1189 a110 = Khy;
1190 c0 = - Khx - Khy - kineticTarget_;
1191 a000 = Khx;
1192 a111 = Kcy * py * py;
1193 b11 = -2.0 * Kcy * py * (1.0 + py);
1194 c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
1195 b01 = -2.0 * Kcx * px * (1.0 + px);
1196 a001 = Kcx * px * px;
1197 */
1198 //scale all three dimensions, let c_x = c_y
1199 a000 = Kcx + Kcy;
1200 a110 = Kcz;
1201 c0 = kineticTarget_ - Kcx - Kcy - Kcz;
1202 a001 = Khx * px * px + Khy * py * py;
1203 a111 = Khz * pz * pz;
1204 b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
1205 b11 = -2.0 * Khz * pz * (1.0 + pz);
1206 c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1207 + Khz * pz * (2.0 + pz) - kineticTarget_;
1208 break;
1209 case rnemdPx :
1210 c = 1 - momentumTarget_.x() / Pcx;
1211 a000 = Kcy;
1212 a110 = Kcz;
1213 c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1214 a001 = py * py * Khy;
1215 a111 = pz * pz * Khz;
1216 b01 = -2.0 * Khy * py * (1.0 + py);
1217 b11 = -2.0 * Khz * pz * (1.0 + pz);
1218 c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1219 + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1220 break;
1221 case rnemdPy :
1222 c = 1 - momentumTarget_.y() / Pcy;
1223 a000 = Kcx;
1224 a110 = Kcz;
1225 c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1226 a001 = px * px * Khx;
1227 a111 = pz * pz * Khz;
1228 b01 = -2.0 * Khx * px * (1.0 + px);
1229 b11 = -2.0 * Khz * pz * (1.0 + pz);
1230 c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1231 + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1232 break;
1233 case rnemdPz ://we don't really do this, do we?
1234 c = 1 - momentumTarget_.z() / Pcz;
1235 a000 = Kcx;
1236 a110 = Kcy;
1237 c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1238 a001 = px * px * Khx;
1239 a111 = py * py * Khy;
1240 b01 = -2.0 * Khx * px * (1.0 + px);
1241 b11 = -2.0 * Khy * py * (1.0 + py);
1242 c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1243 + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1244 break;
1245 default :
1246 break;
1247 }
1248
1249 RealType v1 = a000 * a111 - a001 * a110;
1250 RealType v2 = a000 * b01;
1251 RealType v3 = a000 * b11;
1252 RealType v4 = a000 * c1 - a001 * c0;
1253 RealType v8 = a110 * b01;
1254 RealType v10 = - b01 * c0;
1255
1256 RealType u0 = v2 * v10 - v4 * v4;
1257 RealType u1 = -2.0 * v3 * v4;
1258 RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1259 RealType u3 = -2.0 * v1 * v3;
1260 RealType u4 = - v1 * v1;
1261 //rescale coefficients
1262 RealType maxAbs = fabs(u0);
1263 if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1264 if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1265 if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1266 if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1267 u0 /= maxAbs;
1268 u1 /= maxAbs;
1269 u2 /= maxAbs;
1270 u3 /= maxAbs;
1271 u4 /= maxAbs;
1272 //max_element(start, end) is also available.
1273 Polynomial<RealType> poly; //same as DoublePolynomial poly;
1274 poly.setCoefficient(4, u4);
1275 poly.setCoefficient(3, u3);
1276 poly.setCoefficient(2, u2);
1277 poly.setCoefficient(1, u1);
1278 poly.setCoefficient(0, u0);
1279 vector<RealType> realRoots = poly.FindRealRoots();
1280
1281 vector<RealType>::iterator ri;
1282 RealType r1, r2, alpha0;
1283 vector<pair<RealType,RealType> > rps;
1284 for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1285 r2 = *ri;
1286 //check if FindRealRoots() give the right answer
1287 if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1288 sprintf(painCave.errMsg,
1289 "RNEMD Warning: polynomial solve seems to have an error!");
1290 painCave.isFatal = 0;
1291 simError();
1292 failRootCount_++;
1293 }
1294 //might not be useful w/o rescaling coefficients
1295 alpha0 = -c0 - a110 * r2 * r2;
1296 if (alpha0 >= 0.0) {
1297 r1 = sqrt(alpha0 / a000);
1298 if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1299 < 1e-6)
1300 { rps.push_back(make_pair(r1, r2)); }
1301 if (r1 > 1e-6) { //r1 non-negative
1302 r1 = -r1;
1303 if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1304 < 1e-6)
1305 { rps.push_back(make_pair(r1, r2)); }
1306 }
1307 }
1308 }
1309 // Consider combining together the solving pair part w/ the searching
1310 // best solution part so that we don't need the pairs vector
1311 if (!rps.empty()) {
1312 RealType smallestDiff = HONKING_LARGE_VALUE;
1313 RealType diff;
1314 pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1315 vector<pair<RealType,RealType> >::iterator rpi;
1316 for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1317 r1 = (*rpi).first;
1318 r2 = (*rpi).second;
1319 switch(rnemdFluxType_) {
1320 case rnemdKE :
1321 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1322 + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1323 + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1324 break;
1325 case rnemdPx :
1326 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1327 + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1328 break;
1329 case rnemdPy :
1330 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1331 + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1332 break;
1333 case rnemdPz :
1334 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1335 + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1336 default :
1337 break;
1338 }
1339 if (diff < smallestDiff) {
1340 smallestDiff = diff;
1341 bestPair = *rpi;
1342 }
1343 }
1344 #ifdef IS_MPI
1345 if (worldRank == 0) {
1346 #endif
1347 // sprintf(painCave.errMsg,
1348 // "RNEMD: roots r1= %lf\tr2 = %lf\n",
1349 // bestPair.first, bestPair.second);
1350 // painCave.isFatal = 0;
1351 // painCave.severity = OPENMD_INFO;
1352 // simError();
1353 #ifdef IS_MPI
1354 }
1355 #endif
1356
1357 switch(rnemdFluxType_) {
1358 case rnemdKE :
1359 x = bestPair.first;
1360 y = bestPair.first;
1361 z = bestPair.second;
1362 break;
1363 case rnemdPx :
1364 x = c;
1365 y = bestPair.first;
1366 z = bestPair.second;
1367 break;
1368 case rnemdPy :
1369 x = bestPair.first;
1370 y = c;
1371 z = bestPair.second;
1372 break;
1373 case rnemdPz :
1374 x = bestPair.first;
1375 y = bestPair.second;
1376 z = c;
1377 break;
1378 default :
1379 break;
1380 }
1381 vector<StuntDouble*>::iterator sdi;
1382 Vector3d vel;
1383 for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1384 vel = (*sdi)->getVel();
1385 vel.x() *= x;
1386 vel.y() *= y;
1387 vel.z() *= z;
1388 (*sdi)->setVel(vel);
1389 }
1390 //convert to hotBin coefficient
1391 x = 1.0 + px * (1.0 - x);
1392 y = 1.0 + py * (1.0 - y);
1393 z = 1.0 + pz * (1.0 - z);
1394 for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1395 vel = (*sdi)->getVel();
1396 vel.x() *= x;
1397 vel.y() *= y;
1398 vel.z() *= z;
1399 (*sdi)->setVel(vel);
1400 }
1401 successfulScale = true;
1402 switch(rnemdFluxType_) {
1403 case rnemdKE :
1404 kineticExchange_ += kineticTarget_;
1405 break;
1406 case rnemdPx :
1407 case rnemdPy :
1408 case rnemdPz :
1409 momentumExchange_ += momentumTarget_;
1410 break;
1411 default :
1412 break;
1413 }
1414 }
1415 }
1416 if (successfulScale != true) {
1417 sprintf(painCave.errMsg,
1418 "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1419 "\tthe constraint equations may not exist or there may be\n"
1420 "\tno selected objects in one or both slabs.\n");
1421 painCave.isFatal = 0;
1422 painCave.severity = OPENMD_INFO;
1423 simError();
1424 failTrialCount_++;
1425 }
1426 }
1427
1428 void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) {
1429 if (!doRNEMD_) return;
1430 int selei;
1431 int selej;
1432
1433 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1434 RealType time = currentSnap_->getTime();
1435 Mat3x3d hmat = currentSnap_->getHmat();
1436
1437 StuntDouble* sd;
1438
1439 vector<StuntDouble*> hotBin, coldBin;
1440
1441 Vector3d Ph(V3Zero);
1442 Vector3d Lh(V3Zero);
1443 RealType Mh = 0.0;
1444 Mat3x3d Ih(0.0);
1445 RealType Kh = 0.0;
1446 Vector3d Pc(V3Zero);
1447 Vector3d Lc(V3Zero);
1448 RealType Mc = 0.0;
1449 Mat3x3d Ic(0.0);
1450 RealType Kc = 0.0;
1451
1452 // Constraints can be on only the linear or angular momentum, but
1453 // not both. Usually, the user will specify which they want, but
1454 // in case they don't, the use of periodic boundaries should make
1455 // the choice for us.
1456 bool doLinearPart = false;
1457 bool doAngularPart = false;
1458
1459 switch (rnemdFluxType_) {
1460 case rnemdPx:
1461 case rnemdPy:
1462 case rnemdPz:
1463 case rnemdPvector:
1464 case rnemdKePx:
1465 case rnemdKePy:
1466 case rnemdKePvector:
1467 doLinearPart = true;
1468 break;
1469 case rnemdLx:
1470 case rnemdLy:
1471 case rnemdLz:
1472 case rnemdLvector:
1473 case rnemdKeLx:
1474 case rnemdKeLy:
1475 case rnemdKeLz:
1476 case rnemdKeLvector:
1477 doAngularPart = true;
1478 break;
1479 case rnemdKE:
1480 case rnemdRotKE:
1481 case rnemdFullKE:
1482 default:
1483 if (usePeriodicBoundaryConditions_)
1484 doLinearPart = true;
1485 else
1486 doAngularPart = true;
1487 break;
1488 }
1489
1490 for (sd = smanA.beginSelected(selei); sd != NULL;
1491 sd = smanA.nextSelected(selei)) {
1492
1493 Vector3d pos = sd->getPos();
1494
1495 // wrap the stuntdouble's position back into the box:
1496
1497 if (usePeriodicBoundaryConditions_)
1498 currentSnap_->wrapVector(pos);
1499
1500 RealType mass = sd->getMass();
1501 Vector3d vel = sd->getVel();
1502 Vector3d rPos = sd->getPos() - coordinateOrigin_;
1503 RealType r2;
1504
1505 hotBin.push_back(sd);
1506 Ph += mass * vel;
1507 Mh += mass;
1508 Kh += mass * vel.lengthSquare();
1509 Lh += mass * cross(rPos, vel);
1510 Ih -= outProduct(rPos, rPos) * mass;
1511 r2 = rPos.lengthSquare();
1512 Ih(0, 0) += mass * r2;
1513 Ih(1, 1) += mass * r2;
1514 Ih(2, 2) += mass * r2;
1515
1516 if (rnemdFluxType_ == rnemdFullKE) {
1517 if (sd->isDirectional()) {
1518 Vector3d angMom = sd->getJ();
1519 Mat3x3d I = sd->getI();
1520 if (sd->isLinear()) {
1521 int i = sd->linearAxis();
1522 int j = (i + 1) % 3;
1523 int k = (i + 2) % 3;
1524 Kh += angMom[j] * angMom[j] / I(j, j) +
1525 angMom[k] * angMom[k] / I(k, k);
1526 } else {
1527 Kh += angMom[0] * angMom[0] / I(0, 0) +
1528 angMom[1] * angMom[1] / I(1, 1) +
1529 angMom[2] * angMom[2] / I(2, 2);
1530 }
1531 }
1532 }
1533 }
1534 for (sd = smanB.beginSelected(selej); sd != NULL;
1535 sd = smanB.nextSelected(selej)) {
1536
1537 Vector3d pos = sd->getPos();
1538
1539 // wrap the stuntdouble's position back into the box:
1540
1541 if (usePeriodicBoundaryConditions_)
1542 currentSnap_->wrapVector(pos);
1543
1544 RealType mass = sd->getMass();
1545 Vector3d vel = sd->getVel();
1546 Vector3d rPos = sd->getPos() - coordinateOrigin_;
1547 RealType r2;
1548
1549 coldBin.push_back(sd);
1550 Pc += mass * vel;
1551 Mc += mass;
1552 Kc += mass * vel.lengthSquare();
1553 Lc += mass * cross(rPos, vel);
1554 Ic -= outProduct(rPos, rPos) * mass;
1555 r2 = rPos.lengthSquare();
1556 Ic(0, 0) += mass * r2;
1557 Ic(1, 1) += mass * r2;
1558 Ic(2, 2) += mass * r2;
1559
1560 if (rnemdFluxType_ == rnemdFullKE) {
1561 if (sd->isDirectional()) {
1562 Vector3d angMom = sd->getJ();
1563 Mat3x3d I = sd->getI();
1564 if (sd->isLinear()) {
1565 int i = sd->linearAxis();
1566 int j = (i + 1) % 3;
1567 int k = (i + 2) % 3;
1568 Kc += angMom[j] * angMom[j] / I(j, j) +
1569 angMom[k] * angMom[k] / I(k, k);
1570 } else {
1571 Kc += angMom[0] * angMom[0] / I(0, 0) +
1572 angMom[1] * angMom[1] / I(1, 1) +
1573 angMom[2] * angMom[2] / I(2, 2);
1574 }
1575 }
1576 }
1577 }
1578
1579 Kh *= 0.5;
1580 Kc *= 0.5;
1581
1582 #ifdef IS_MPI
1583 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1584 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1585 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM);
1586 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM);
1587 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1588 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1589 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1590 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1591 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9,
1592 MPI::REALTYPE, MPI::SUM);
1593 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9,
1594 MPI::REALTYPE, MPI::SUM);
1595 #endif
1596
1597
1598 Vector3d ac, acrec, bc, bcrec;
1599 Vector3d ah, ahrec, bh, bhrec;
1600 RealType cNumerator, cDenominator;
1601 RealType hNumerator, hDenominator;
1602
1603
1604 bool successfulExchange = false;
1605 if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1606 Vector3d vc = Pc / Mc;
1607 ac = -momentumTarget_ / Mc + vc;
1608 acrec = -momentumTarget_ / Mc;
1609
1610 // We now need the inverse of the inertia tensor to calculate the
1611 // angular velocity of the cold slab;
1612 Mat3x3d Ici = Ic.inverse();
1613 Vector3d omegac = Ici * Lc;
1614 bc = -(Ici * angularMomentumTarget_) + omegac;
1615 bcrec = bc - omegac;
1616
1617 cNumerator = Kc - kineticTarget_;
1618 if (doLinearPart)
1619 cNumerator -= 0.5 * Mc * ac.lengthSquare();
1620
1621 if (doAngularPart)
1622 cNumerator -= 0.5 * ( dot(bc, Ic * bc));
1623
1624 if (cNumerator > 0.0) {
1625
1626 cDenominator = Kc;
1627
1628 if (doLinearPart)
1629 cDenominator -= 0.5 * Mc * vc.lengthSquare();
1630
1631 if (doAngularPart)
1632 cDenominator -= 0.5*(dot(omegac, Ic * omegac));
1633
1634 if (cDenominator > 0.0) {
1635 RealType c = sqrt(cNumerator / cDenominator);
1636 if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1637
1638 Vector3d vh = Ph / Mh;
1639 ah = momentumTarget_ / Mh + vh;
1640 ahrec = momentumTarget_ / Mh;
1641
1642 // We now need the inverse of the inertia tensor to
1643 // calculate the angular velocity of the hot slab;
1644 Mat3x3d Ihi = Ih.inverse();
1645 Vector3d omegah = Ihi * Lh;
1646 bh = (Ihi * angularMomentumTarget_) + omegah;
1647 bhrec = bh - omegah;
1648
1649 hNumerator = Kh + kineticTarget_;
1650 if (doLinearPart)
1651 hNumerator -= 0.5 * Mh * ah.lengthSquare();
1652
1653 if (doAngularPart)
1654 hNumerator -= 0.5 * ( dot(bh, Ih * bh));
1655
1656 if (hNumerator > 0.0) {
1657
1658 hDenominator = Kh;
1659 if (doLinearPart)
1660 hDenominator -= 0.5 * Mh * vh.lengthSquare();
1661 if (doAngularPart)
1662 hDenominator -= 0.5*(dot(omegah, Ih * omegah));
1663
1664 if (hDenominator > 0.0) {
1665 RealType h = sqrt(hNumerator / hDenominator);
1666 if ((h > 0.9) && (h < 1.1)) {
1667
1668 vector<StuntDouble*>::iterator sdi;
1669 Vector3d vel;
1670 Vector3d rPos;
1671
1672 for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1673 //vel = (*sdi)->getVel();
1674 rPos = (*sdi)->getPos() - coordinateOrigin_;
1675 if (doLinearPart)
1676 vel = ((*sdi)->getVel() - vc) * c + ac;
1677 if (doAngularPart)
1678 vel = ((*sdi)->getVel() - cross(omegac, rPos)) * c + cross(bc, rPos);
1679
1680 (*sdi)->setVel(vel);
1681 if (rnemdFluxType_ == rnemdFullKE) {
1682 if ((*sdi)->isDirectional()) {
1683 Vector3d angMom = (*sdi)->getJ() * c;
1684 (*sdi)->setJ(angMom);
1685 }
1686 }
1687 }
1688 for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1689 //vel = (*sdi)->getVel();
1690 rPos = (*sdi)->getPos() - coordinateOrigin_;
1691 if (doLinearPart)
1692 vel = ((*sdi)->getVel() - vh) * h + ah;
1693 if (doAngularPart)
1694 vel = ((*sdi)->getVel() - cross(omegah, rPos)) * h + cross(bh, rPos);
1695
1696 (*sdi)->setVel(vel);
1697 if (rnemdFluxType_ == rnemdFullKE) {
1698 if ((*sdi)->isDirectional()) {
1699 Vector3d angMom = (*sdi)->getJ() * h;
1700 (*sdi)->setJ(angMom);
1701 }
1702 }
1703 }
1704 successfulExchange = true;
1705 kineticExchange_ += kineticTarget_;
1706 momentumExchange_ += momentumTarget_;
1707 angularMomentumExchange_ += angularMomentumTarget_;
1708 }
1709 }
1710 }
1711 }
1712 }
1713 }
1714 }
1715 if (successfulExchange != true) {
1716 sprintf(painCave.errMsg,
1717 "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1718 "\tthe constraint equations may not exist or there may be\n"
1719 "\tno selected objects in one or both slabs.\n");
1720 painCave.isFatal = 0;
1721 painCave.severity = OPENMD_INFO;
1722 simError();
1723 failTrialCount_++;
1724 }
1725 }
1726
1727 RealType RNEMD::getDividingArea() {
1728
1729 if (hasDividingArea_) return dividingArea_;
1730
1731 RealType areaA, areaB;
1732 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
1733
1734 if (hasSelectionA_) {
1735 int isd;
1736 StuntDouble* sd;
1737 vector<StuntDouble*> aSites;
1738 seleManA_.setSelectionSet(evaluatorA_.evaluate());
1739 for (sd = seleManA_.beginSelected(isd); sd != NULL;
1740 sd = seleManA_.nextSelected(isd)) {
1741 aSites.push_back(sd);
1742 }
1743 ConvexHull* surfaceMeshA = new ConvexHull();
1744 surfaceMeshA->computeHull(aSites);
1745 areaA = surfaceMeshA->getArea();
1746 delete surfaceMeshA;
1747
1748 } else {
1749 if (usePeriodicBoundaryConditions_) {
1750 // in periodic boundaries, the surface area is twice the x-y
1751 // area of the current box:
1752 areaA = 2.0 * snap->getXYarea();
1753 } else {
1754 // in non-periodic simulations, without explicitly setting
1755 // selections, the sphere radius sets the surface area of the
1756 // dividing surface:
1757 areaA = 4.0 * M_PI * pow(sphereARadius_, 2);
1758 }
1759 }
1760
1761
1762
1763 if (hasSelectionB_) {
1764 int isd;
1765 StuntDouble* sd;
1766 vector<StuntDouble*> bSites;
1767 seleManB_.setSelectionSet(evaluatorB_.evaluate());
1768 for (sd = seleManB_.beginSelected(isd); sd != NULL;
1769 sd = seleManB_.nextSelected(isd)) {
1770 bSites.push_back(sd);
1771 }
1772 ConvexHull* surfaceMeshB = new ConvexHull();
1773 surfaceMeshB->computeHull(bSites);
1774 areaB = surfaceMeshB->getArea();
1775 delete surfaceMeshB;
1776
1777 } else {
1778 if (usePeriodicBoundaryConditions_) {
1779 // in periodic boundaries, the surface area is twice the x-y
1780 // area of the current box:
1781 areaB = 2.0 * snap->getXYarea();
1782 } else {
1783 // in non-periodic simulations, without explicitly setting
1784 // selections, but if a sphereBradius has been set, just use that:
1785 areaB = 4.0 * M_PI * pow(sphereBRadius_, 2);
1786 }
1787 }
1788
1789 dividingArea_ = min(areaA, areaB);
1790 hasDividingArea_ = true;
1791 return dividingArea_;
1792 }
1793
1794 void RNEMD::doRNEMD() {
1795 if (!doRNEMD_) return;
1796 trialCount_++;
1797
1798 // object evaluator:
1799 evaluator_.loadScriptString(rnemdObjectSelection_);
1800 seleMan_.setSelectionSet(evaluator_.evaluate());
1801
1802 evaluatorA_.loadScriptString(selectionA_);
1803 evaluatorB_.loadScriptString(selectionB_);
1804
1805 seleManA_.setSelectionSet(evaluatorA_.evaluate());
1806 seleManB_.setSelectionSet(evaluatorB_.evaluate());
1807
1808 commonA_ = seleManA_ & seleMan_;
1809 commonB_ = seleManB_ & seleMan_;
1810
1811 // Target exchange quantities (in each exchange) = dividingArea * dt * flux
1812 // dt = exchange time interval
1813 // flux = target flux
1814 // dividingArea = smallest dividing surface between the two regions
1815
1816 hasDividingArea_ = false;
1817 RealType area = getDividingArea();
1818
1819 kineticTarget_ = kineticFlux_ * exchangeTime_ * area;
1820 momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area;
1821 angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area;
1822
1823 switch(rnemdMethod_) {
1824 case rnemdSwap:
1825 doSwap(commonA_, commonB_);
1826 break;
1827 case rnemdNIVS:
1828 doNIVS(commonA_, commonB_);
1829 break;
1830 case rnemdVSS:
1831 doVSS(commonA_, commonB_);
1832 break;
1833 case rnemdUnkownMethod:
1834 default :
1835 break;
1836 }
1837 }
1838
1839 void RNEMD::collectData() {
1840 if (!doRNEMD_) return;
1841 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1842
1843 // collectData can be called more frequently than the doRNEMD, so use the
1844 // computed area from the last exchange time:
1845 RealType area = getDividingArea();
1846 areaAccumulator_->add(area);
1847 Mat3x3d hmat = currentSnap_->getHmat();
1848 seleMan_.setSelectionSet(evaluator_.evaluate());
1849
1850 int selei(0);
1851 StuntDouble* sd;
1852 int binNo;
1853
1854 vector<RealType> binMass(nBins_, 0.0);
1855 vector<RealType> binPx(nBins_, 0.0);
1856 vector<RealType> binPy(nBins_, 0.0);
1857 vector<RealType> binPz(nBins_, 0.0);
1858 vector<RealType> binOmegax(nBins_, 0.0);
1859 vector<RealType> binOmegay(nBins_, 0.0);
1860 vector<RealType> binOmegaz(nBins_, 0.0);
1861 vector<RealType> binKE(nBins_, 0.0);
1862 vector<int> binDOF(nBins_, 0);
1863 vector<int> binCount(nBins_, 0);
1864
1865 // alternative approach, track all molecules instead of only those
1866 // selected for scaling/swapping:
1867 /*
1868 SimInfo::MoleculeIterator miter;
1869 vector<StuntDouble*>::iterator iiter;
1870 Molecule* mol;
1871 StuntDouble* sd;
1872 for (mol = info_->beginMolecule(miter); mol != NULL;
1873 mol = info_->nextMolecule(miter))
1874 sd is essentially sd
1875 for (sd = mol->beginIntegrableObject(iiter);
1876 sd != NULL;
1877 sd = mol->nextIntegrableObject(iiter))
1878 */
1879
1880 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1881 sd = seleMan_.nextSelected(selei)) {
1882
1883 Vector3d pos = sd->getPos();
1884
1885 // wrap the stuntdouble's position back into the box:
1886
1887 if (usePeriodicBoundaryConditions_) {
1888 currentSnap_->wrapVector(pos);
1889 // which bin is this stuntdouble in?
1890 // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1891 // Shift molecules by half a box to have bins start at 0
1892 // The modulo operator is used to wrap the case when we are
1893 // beyond the end of the bins back to the beginning.
1894 binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1895 } else {
1896 Vector3d rPos = pos - coordinateOrigin_;
1897 binNo = int(rPos.length() / binWidth_);
1898 }
1899
1900 RealType mass = sd->getMass();
1901 Vector3d vel = sd->getVel();
1902 Vector3d rPos = sd->getPos() - coordinateOrigin_;
1903 Vector3d aVel = cross(rPos, vel);
1904
1905 if (binNo >= 0 && binNo < nBins_) {
1906 binCount[binNo]++;
1907 binMass[binNo] += mass;
1908 binPx[binNo] += mass*vel.x();
1909 binPy[binNo] += mass*vel.y();
1910 binPz[binNo] += mass*vel.z();
1911 binOmegax[binNo] += aVel.x();
1912 binOmegay[binNo] += aVel.y();
1913 binOmegaz[binNo] += aVel.z();
1914 binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1915 binDOF[binNo] += 3;
1916
1917 if (sd->isDirectional()) {
1918 Vector3d angMom = sd->getJ();
1919 Mat3x3d I = sd->getI();
1920 if (sd->isLinear()) {
1921 int i = sd->linearAxis();
1922 int j = (i + 1) % 3;
1923 int k = (i + 2) % 3;
1924 binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1925 angMom[k] * angMom[k] / I(k, k));
1926 binDOF[binNo] += 2;
1927 } else {
1928 binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1929 angMom[1] * angMom[1] / I(1, 1) +
1930 angMom[2] * angMom[2] / I(2, 2));
1931 binDOF[binNo] += 3;
1932 }
1933 }
1934 }
1935 }
1936
1937 #ifdef IS_MPI
1938 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1939 nBins_, MPI::INT, MPI::SUM);
1940 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1941 nBins_, MPI::REALTYPE, MPI::SUM);
1942 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1943 nBins_, MPI::REALTYPE, MPI::SUM);
1944 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1945 nBins_, MPI::REALTYPE, MPI::SUM);
1946 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1947 nBins_, MPI::REALTYPE, MPI::SUM);
1948 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0],
1949 nBins_, MPI::REALTYPE, MPI::SUM);
1950 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0],
1951 nBins_, MPI::REALTYPE, MPI::SUM);
1952 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0],
1953 nBins_, MPI::REALTYPE, MPI::SUM);
1954 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1955 nBins_, MPI::REALTYPE, MPI::SUM);
1956 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1957 nBins_, MPI::INT, MPI::SUM);
1958 #endif
1959
1960 Vector3d vel;
1961 Vector3d aVel;
1962 RealType den;
1963 RealType temp;
1964 RealType z;
1965 RealType r;
1966 for (int i = 0; i < nBins_; i++) {
1967 if (usePeriodicBoundaryConditions_) {
1968 z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1969 den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1970 / currentSnap_->getVolume() ;
1971 } else {
1972 r = (((RealType)i + 0.5) * binWidth_);
1973 RealType rinner = (RealType)i * binWidth_;
1974 RealType router = (RealType)(i+1) * binWidth_;
1975 den = binMass[i] * 3.0 * PhysicalConstants::densityConvert
1976 / (4.0 * M_PI * (pow(router,3) - pow(rinner,3)));
1977 }
1978 vel.x() = binPx[i] / binMass[i];
1979 vel.y() = binPy[i] / binMass[i];
1980 vel.z() = binPz[i] / binMass[i];
1981 aVel.x() = binOmegax[i] / binCount[i];
1982 aVel.y() = binOmegay[i] / binCount[i];
1983 aVel.z() = binOmegaz[i] / binCount[i];
1984
1985 if (binCount[i] > 0) {
1986 // only add values if there are things to add
1987 temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1988 PhysicalConstants::energyConvert);
1989
1990 for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1991 if(outputMask_[j]) {
1992 switch(j) {
1993 case Z:
1994 dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z);
1995 break;
1996 case R:
1997 dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r);
1998 break;
1999 case TEMPERATURE:
2000 dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp);
2001 break;
2002 case VELOCITY:
2003 dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
2004 break;
2005 case ANGULARVELOCITY:
2006 dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel);
2007 break;
2008 case DENSITY:
2009 dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den);
2010 break;
2011 }
2012 }
2013 }
2014 }
2015 }
2016 hasData_ = true;
2017 }
2018
2019 void RNEMD::getStarted() {
2020 if (!doRNEMD_) return;
2021 hasDividingArea_ = false;
2022 collectData();
2023 writeOutputFile();
2024 }
2025
2026 void RNEMD::parseOutputFileFormat(const std::string& format) {
2027 if (!doRNEMD_) return;
2028 StringTokenizer tokenizer(format, " ,;|\t\n\r");
2029
2030 while(tokenizer.hasMoreTokens()) {
2031 std::string token(tokenizer.nextToken());
2032 toUpper(token);
2033 OutputMapType::iterator i = outputMap_.find(token);
2034 if (i != outputMap_.end()) {
2035 outputMask_.set(i->second);
2036 } else {
2037 sprintf( painCave.errMsg,
2038 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
2039 "\toutputFileFormat keyword.\n", token.c_str() );
2040 painCave.isFatal = 0;
2041 painCave.severity = OPENMD_ERROR;
2042 simError();
2043 }
2044 }
2045 }
2046
2047 void RNEMD::writeOutputFile() {
2048 if (!doRNEMD_) return;
2049 if (!hasData_) return;
2050
2051 #ifdef IS_MPI
2052 // If we're the root node, should we print out the results
2053 int worldRank = MPI::COMM_WORLD.Get_rank();
2054 if (worldRank == 0) {
2055 #endif
2056 rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
2057
2058 if( !rnemdFile_ ){
2059 sprintf( painCave.errMsg,
2060 "Could not open \"%s\" for RNEMD output.\n",
2061 rnemdFileName_.c_str());
2062 painCave.isFatal = 1;
2063 simError();
2064 }
2065
2066 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
2067
2068 RealType time = currentSnap_->getTime();
2069 RealType avgArea;
2070 areaAccumulator_->getAverage(avgArea);
2071
2072 RealType Jz(0.0);
2073 Vector3d JzP(V3Zero);
2074 Vector3d JzL(V3Zero);
2075 if (time >= info_->getSimParams()->getDt()) {
2076 Jz = kineticExchange_ / (time * avgArea)
2077 / PhysicalConstants::energyConvert;
2078 JzP = momentumExchange_ / (time * avgArea);
2079 JzL = angularMomentumExchange_ / (time * avgArea);
2080 }
2081
2082 rnemdFile_ << "#######################################################\n";
2083 rnemdFile_ << "# RNEMD {\n";
2084
2085 map<string, RNEMDMethod>::iterator mi;
2086 for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
2087 if ( (*mi).second == rnemdMethod_)
2088 rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n";
2089 }
2090 map<string, RNEMDFluxType>::iterator fi;
2091 for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
2092 if ( (*fi).second == rnemdFluxType_)
2093 rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n";
2094 }
2095
2096 rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n";
2097
2098 rnemdFile_ << "# objectSelection = \""
2099 << rnemdObjectSelection_ << "\";\n";
2100 rnemdFile_ << "# selectionA = \"" << selectionA_ << "\";\n";
2101 rnemdFile_ << "# selectionB = \"" << selectionB_ << "\";\n";
2102 rnemdFile_ << "# }\n";
2103 rnemdFile_ << "#######################################################\n";
2104 rnemdFile_ << "# RNEMD report:\n";
2105 rnemdFile_ << "# running time = " << time << " fs\n";
2106 rnemdFile_ << "# Target flux:\n";
2107 rnemdFile_ << "# kinetic = "
2108 << kineticFlux_ / PhysicalConstants::energyConvert
2109 << " (kcal/mol/A^2/fs)\n";
2110 rnemdFile_ << "# momentum = " << momentumFluxVector_
2111 << " (amu/A/fs^2)\n";
2112 rnemdFile_ << "# angular momentum = " << angularMomentumFluxVector_
2113 << " (amu/A^2/fs^2)\n";
2114 rnemdFile_ << "# Target one-time exchanges:\n";
2115 rnemdFile_ << "# kinetic = "
2116 << kineticTarget_ / PhysicalConstants::energyConvert
2117 << " (kcal/mol)\n";
2118 rnemdFile_ << "# momentum = " << momentumTarget_
2119 << " (amu*A/fs)\n";
2120 rnemdFile_ << "# angular momentum = " << angularMomentumTarget_
2121 << " (amu*A^2/fs)\n";
2122 rnemdFile_ << "# Actual exchange totals:\n";
2123 rnemdFile_ << "# kinetic = "
2124 << kineticExchange_ / PhysicalConstants::energyConvert
2125 << " (kcal/mol)\n";
2126 rnemdFile_ << "# momentum = " << momentumExchange_
2127 << " (amu*A/fs)\n";
2128 rnemdFile_ << "# angular momentum = " << angularMomentumExchange_
2129 << " (amu*A^2/fs)\n";
2130 rnemdFile_ << "# Actual flux:\n";
2131 rnemdFile_ << "# kinetic = " << Jz
2132 << " (kcal/mol/A^2/fs)\n";
2133 rnemdFile_ << "# momentum = " << JzP
2134 << " (amu/A/fs^2)\n";
2135 rnemdFile_ << "# angular momentum = " << JzL
2136 << " (amu/A^2/fs^2)\n";
2137 rnemdFile_ << "# Exchange statistics:\n";
2138 rnemdFile_ << "# attempted = " << trialCount_ << "\n";
2139 rnemdFile_ << "# failed = " << failTrialCount_ << "\n";
2140 if (rnemdMethod_ == rnemdNIVS) {
2141 rnemdFile_ << "# NIVS root-check errors = "
2142 << failRootCount_ << "\n";
2143 }
2144 rnemdFile_ << "#######################################################\n";
2145
2146
2147
2148 //write title
2149 rnemdFile_ << "#";
2150 for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2151 if (outputMask_[i]) {
2152 rnemdFile_ << "\t" << data_[i].title <<
2153 "(" << data_[i].units << ")";
2154 // add some extra tabs for column alignment
2155 if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
2156 }
2157 }
2158 rnemdFile_ << std::endl;
2159
2160 rnemdFile_.precision(8);
2161
2162 for (int j = 0; j < nBins_; j++) {
2163
2164 for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2165 if (outputMask_[i]) {
2166 if (data_[i].dataType == "RealType")
2167 writeReal(i,j);
2168 else if (data_[i].dataType == "Vector3d")
2169 writeVector(i,j);
2170 else {
2171 sprintf( painCave.errMsg,
2172 "RNEMD found an unknown data type for: %s ",
2173 data_[i].title.c_str());
2174 painCave.isFatal = 1;
2175 simError();
2176 }
2177 }
2178 }
2179 rnemdFile_ << std::endl;
2180
2181 }
2182
2183 rnemdFile_ << "#######################################################\n";
2184 rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
2185 rnemdFile_ << "#######################################################\n";
2186
2187
2188 for (int j = 0; j < nBins_; j++) {
2189 rnemdFile_ << "#";
2190 for (unsigned int i = 0; i < outputMask_.size(); ++i) {
2191 if (outputMask_[i]) {
2192 if (data_[i].dataType == "RealType")
2193 writeRealStdDev(i,j);
2194 else if (data_[i].dataType == "Vector3d")
2195 writeVectorStdDev(i,j);
2196 else {
2197 sprintf( painCave.errMsg,
2198 "RNEMD found an unknown data type for: %s ",
2199 data_[i].title.c_str());
2200 painCave.isFatal = 1;
2201 simError();
2202 }
2203 }
2204 }
2205 rnemdFile_ << std::endl;
2206
2207 }
2208
2209 rnemdFile_.flush();
2210 rnemdFile_.close();
2211
2212 #ifdef IS_MPI
2213 }
2214 #endif
2215
2216 }
2217
2218 void RNEMD::writeReal(int index, unsigned int bin) {
2219 if (!doRNEMD_) return;
2220 assert(index >=0 && index < ENDINDEX);
2221 assert(int(bin) < nBins_);
2222 RealType s;
2223 int count;
2224
2225 count = data_[index].accumulator[bin]->count();
2226 if (count == 0) return;
2227
2228 dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s);
2229
2230 if (! isinf(s) && ! isnan(s)) {
2231 rnemdFile_ << "\t" << s;
2232 } else{
2233 sprintf( painCave.errMsg,
2234 "RNEMD detected a numerical error writing: %s for bin %d",
2235 data_[index].title.c_str(), bin);
2236 painCave.isFatal = 1;
2237 simError();
2238 }
2239 }
2240
2241 void RNEMD::writeVector(int index, unsigned int bin) {
2242 if (!doRNEMD_) return;
2243 assert(index >=0 && index < ENDINDEX);
2244 assert(int(bin) < nBins_);
2245 Vector3d s;
2246 int count;
2247
2248 count = data_[index].accumulator[bin]->count();
2249
2250 if (count == 0) return;
2251
2252 dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
2253 if (isinf(s[0]) || isnan(s[0]) ||
2254 isinf(s[1]) || isnan(s[1]) ||
2255 isinf(s[2]) || isnan(s[2]) ) {
2256 sprintf( painCave.errMsg,
2257 "RNEMD detected a numerical error writing: %s for bin %d",
2258 data_[index].title.c_str(), bin);
2259 painCave.isFatal = 1;
2260 simError();
2261 } else {
2262 rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2263 }
2264 }
2265
2266 void RNEMD::writeRealStdDev(int index, unsigned int bin) {
2267 if (!doRNEMD_) return;
2268 assert(index >=0 && index < ENDINDEX);
2269 assert(int(bin) < nBins_);
2270 RealType s;
2271 int count;
2272
2273 count = data_[index].accumulator[bin]->count();
2274 if (count == 0) return;
2275
2276 dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s);
2277
2278 if (! isinf(s) && ! isnan(s)) {
2279 rnemdFile_ << "\t" << s;
2280 } else{
2281 sprintf( painCave.errMsg,
2282 "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
2283 data_[index].title.c_str(), bin);
2284 painCave.isFatal = 1;
2285 simError();
2286 }
2287 }
2288
2289 void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
2290 if (!doRNEMD_) return;
2291 assert(index >=0 && index < ENDINDEX);
2292 assert(int(bin) < nBins_);
2293 Vector3d s;
2294 int count;
2295
2296 count = data_[index].accumulator[bin]->count();
2297 if (count == 0) return;
2298
2299 dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
2300 if (isinf(s[0]) || isnan(s[0]) ||
2301 isinf(s[1]) || isnan(s[1]) ||
2302 isinf(s[2]) || isnan(s[2]) ) {
2303 sprintf( painCave.errMsg,
2304 "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
2305 data_[index].title.c_str(), bin);
2306 painCave.isFatal = 1;
2307 simError();
2308 } else {
2309 rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
2310 }
2311 }
2312 }
2313

Properties

Name Value
svn:keywords Author Id Revision Date