ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1775 by gezelter, Wed Aug 8 18:45:52 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 < #include "integrators/RNEMD.hpp"
42 > #include <cmath>
43 > #include "rnemd/RNEMD.hpp"
44 > #include "math/Vector3.hpp"
45 > #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47 + #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50 <
51 < #ifndef IS_MPI
52 < #include "math/SeqRandNumGen.hpp"
53 < #else
50 < #include "math/ParallelRandNumGen.hpp"
50 > #include "utils/PhysicalConstants.hpp"
51 > #include "utils/Tuple.hpp"
52 > #ifdef IS_MPI
53 > #include <mpi.h>
54   #endif
55  
56 < /* Remove me after testing*/
54 < /*
55 < #include <cstdio>
56 < #include <iostream>
57 < */
58 < /*End remove me*/
56 > #define HONKING_LARGE_VALUE 1.0e10
57  
58 < namespace oopse {
58 > using namespace std;
59 > namespace OpenMD {
60    
61 <  RNEMD::RNEMD(SimInfo* info) : info_(info) {
62 <    
61 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
62 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63 >
64 >    trialCount_ = 0;
65 >    failTrialCount_ = 0;
66 >    failRootCount_ = 0;
67 >
68      int seedValue;
69      Globals * simParams = info->getSimParams();
70 +    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
71  
72 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
73 <    stringToEnumMap_["Px"] = rnemdPx;
74 <    stringToEnumMap_["Py"] = rnemdPy;
70 <    stringToEnumMap_["Pz"] = rnemdPz;
71 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
72 >    stringToMethod_["Swap"]  = rnemdSwap;
73 >    stringToMethod_["NIVS"]  = rnemdNIVS;
74 >    stringToMethod_["VSS"]   = rnemdVSS;
75  
76 <    const std::string st = simParams->getRNEMD_swapType();
76 >    stringToFluxType_["KE"]  = rnemdKE;
77 >    stringToFluxType_["Px"]  = rnemdPx;
78 >    stringToFluxType_["Py"]  = rnemdPy;
79 >    stringToFluxType_["Pz"]  = rnemdPz;
80 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
81 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
82 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
83  
84 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
85 <    i = stringToEnumMap_.find(st);
77 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
84 >    runTime_ = simParams->getRunTime();
85 >    statusTime_ = simParams->getStatusTime();
86  
87 +    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
88 +    evaluator_.loadScriptString(rnemdObjectSelection_);
89 +    seleMan_.setSelectionSet(evaluator_.evaluate());
90  
91 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
92 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
93 <    exchangeSum_ = 0.0;
91 >    const string methStr = rnemdParams->getMethod();
92 >    bool hasFluxType = rnemdParams->haveFluxType();
93 >
94 >    string fluxStr;
95 >    if (hasFluxType) {
96 >      fluxStr = rnemdParams->getFluxType();
97 >    } else {
98 >      sprintf(painCave.errMsg,
99 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
100 >              "\twhich must be one of the following values:\n"
101 >              "\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n"
102 >              "\tuse RNEMD\n");
103 >      painCave.isFatal = 1;
104 >      painCave.severity = OPENMD_ERROR;
105 >      simError();
106 >    }
107 >
108 >    bool hasKineticFlux = rnemdParams->haveKineticFlux();
109 >    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
110 >    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
111 >    bool hasSlabWidth = rnemdParams->haveSlabWidth();
112 >    bool hasSlabACenter = rnemdParams->haveSlabACenter();
113 >    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
114 >    bool hasOutputFileName = rnemdParams->haveOutputFileName();
115 >    bool hasOutputFields = rnemdParams->haveOutputFields();
116      
117 < #ifndef IS_MPI
118 <    if (simParams->haveSeed()) {
119 <      seedValue = simParams->getSeed();
120 <      randNumGen_ = new SeqRandNumGen(seedValue);
121 <    }else {
122 <      randNumGen_ = new SeqRandNumGen();
123 <    }    
124 < #else
125 <    if (simParams->haveSeed()) {
126 <      seedValue = simParams->getSeed();
127 <      randNumGen_ = new ParallelRandNumGen(seedValue);
128 <    }else {
129 <      randNumGen_ = new ParallelRandNumGen();
130 <    }    
131 < #endif
132 <  }
117 >    map<string, RNEMDMethod>::iterator i;
118 >    i = stringToMethod_.find(methStr);
119 >    if (i != stringToMethod_.end())
120 >      rnemdMethod_ = i->second;
121 >    else {
122 >      sprintf(painCave.errMsg,
123 >              "RNEMD: The current method,\n"
124 >              "\t\t%s is not one of the recognized\n"
125 >              "\texchange methods: Swap, NIVS, or VSS\n",
126 >              methStr.c_str());
127 >      painCave.isFatal = 1;
128 >      painCave.severity = OPENMD_ERROR;
129 >      simError();
130 >    }
131 >
132 >    map<string, RNEMDFluxType>::iterator j;
133 >    j = stringToFluxType_.find(fluxStr);
134 >    if (j != stringToFluxType_.end())
135 >      rnemdFluxType_ = j->second;
136 >    else {
137 >      sprintf(painCave.errMsg,
138 >              "RNEMD: The current fluxType,\n"
139 >              "\t\t%s\n"
140 >              "\tis not one of the recognized flux types.\n",
141 >              fluxStr.c_str());
142 >      painCave.isFatal = 1;
143 >      painCave.severity = OPENMD_ERROR;
144 >      simError();
145 >    }
146 >
147 >    bool methodFluxMismatch = false;
148 >    bool hasCorrectFlux = false;
149 >    switch(rnemdMethod_) {
150 >    case rnemdSwap:
151 >      switch (rnemdFluxType_) {
152 >      case rnemdKE:
153 >        hasCorrectFlux = hasKineticFlux;
154 >        break;
155 >      case rnemdPx:
156 >      case rnemdPy:
157 >      case rnemdPz:
158 >        hasCorrectFlux = hasMomentumFlux;
159 >        break;
160 >      default :
161 >        methodFluxMismatch = true;
162 >        break;
163 >      }
164 >      break;
165 >    case rnemdNIVS:
166 >      switch (rnemdFluxType_) {
167 >      case rnemdKE:
168 >      case rnemdRotKE:
169 >      case rnemdFullKE:
170 >        hasCorrectFlux = hasKineticFlux;
171 >        break;
172 >      case rnemdPx:
173 >      case rnemdPy:
174 >      case rnemdPz:
175 >        hasCorrectFlux = hasMomentumFlux;
176 >        break;
177 >      case rnemdKePx:
178 >      case rnemdKePy:
179 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
180 >        break;
181 >      default:
182 >        methodFluxMismatch = true;
183 >        break;
184 >      }
185 >      break;
186 >    case rnemdVSS:
187 >      switch (rnemdFluxType_) {
188 >      case rnemdKE:
189 >      case rnemdRotKE:
190 >      case rnemdFullKE:
191 >        hasCorrectFlux = hasKineticFlux;
192 >        break;
193 >      case rnemdPx:
194 >      case rnemdPy:
195 >      case rnemdPz:
196 >        hasCorrectFlux = hasMomentumFlux;
197 >        break;
198 >      case rnemdPvector:
199 >        hasCorrectFlux = hasMomentumFluxVector;
200 >      case rnemdKePx:
201 >      case rnemdKePy:
202 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
203 >        break;
204 >      case rnemdKePvector:
205 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
206 >        break;
207 >      default:
208 >        methodFluxMismatch = true;
209 >        break;
210 >      }
211 >    default:
212 >      break;
213 >    }
214 >
215 >    if (methodFluxMismatch) {
216 >      sprintf(painCave.errMsg,
217 >              "RNEMD: The current method,\n"
218 >              "\t\t%s\n"
219 >              "\tcannot be used with the current flux type, %s\n",
220 >              methStr.c_str(), fluxStr.c_str());
221 >      painCave.isFatal = 1;
222 >      painCave.severity = OPENMD_ERROR;
223 >      simError();        
224 >    }
225 >    if (!hasCorrectFlux) {
226 >      sprintf(painCave.errMsg,
227 >              "RNEMD: The current method,\n"
228 >              "\t%s, and flux type %s\n"
229 >              "\tdid not have the correct flux value specified. Options\n"
230 >              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
231 >              methStr.c_str(), fluxStr.c_str());
232 >      painCave.isFatal = 1;
233 >      painCave.severity = OPENMD_ERROR;
234 >      simError();        
235 >    }
236 >
237 >    if (hasKineticFlux) {
238 >      kineticFlux_ = rnemdParams->getKineticFlux();
239 >    } else {
240 >      kineticFlux_ = 0.0;
241 >    }
242 >    if (hasMomentumFluxVector) {
243 >      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
244 >    } else {
245 >      momentumFluxVector_ = V3Zero;
246 >      if (hasMomentumFlux) {
247 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
248 >        switch (rnemdFluxType_) {
249 >        case rnemdPx:
250 >          momentumFluxVector_.x() = momentumFlux;
251 >          break;
252 >        case rnemdPy:
253 >          momentumFluxVector_.y() = momentumFlux;
254 >          break;
255 >        case rnemdPz:
256 >          momentumFluxVector_.z() = momentumFlux;
257 >          break;
258 >        case rnemdKePx:
259 >          momentumFluxVector_.x() = momentumFlux;
260 >          break;
261 >        case rnemdKePy:
262 >          momentumFluxVector_.y() = momentumFlux;
263 >          break;
264 >        default:
265 >          break;
266 >        }
267 >      }    
268 >    }
269 >
270 >    // do some sanity checking
271 >
272 >    int selectionCount = seleMan_.getSelectionCount();
273 >    int nIntegrable = info->getNGlobalIntegrableObjects();
274 >
275 >    if (selectionCount > nIntegrable) {
276 >      sprintf(painCave.errMsg,
277 >              "RNEMD: The current objectSelection,\n"
278 >              "\t\t%s\n"
279 >              "\thas resulted in %d selected objects.  However,\n"
280 >              "\tthe total number of integrable objects in the system\n"
281 >              "\tis only %d.  This is almost certainly not what you want\n"
282 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
283 >              "\tselector in the selection script!\n",
284 >              rnemdObjectSelection_.c_str(),
285 >              selectionCount, nIntegrable);
286 >      painCave.isFatal = 0;
287 >      painCave.severity = OPENMD_WARNING;
288 >      simError();
289 >    }
290 >
291 >    areaAccumulator_ = new Accumulator();
292 >
293 >    nBins_ = rnemdParams->getOutputBins();
294 >
295 >    data_.resize(RNEMD::ENDINDEX);
296 >    OutputData z;
297 >    z.units =  "Angstroms";
298 >    z.title =  "Z";
299 >    z.dataType = "RealType";
300 >    z.accumulator.reserve(nBins_);
301 >    for (unsigned int i = 0; i < nBins_; i++)
302 >      z.accumulator.push_back( new Accumulator() );
303 >    data_[Z] = z;
304 >    outputMap_["Z"] =  Z;
305 >
306 >    OutputData temperature;
307 >    temperature.units =  "K";
308 >    temperature.title =  "Temperature";
309 >    temperature.dataType = "RealType";
310 >    temperature.accumulator.reserve(nBins_);
311 >    for (unsigned int i = 0; i < nBins_; i++)
312 >      temperature.accumulator.push_back( new Accumulator() );
313 >    data_[TEMPERATURE] = temperature;
314 >    outputMap_["TEMPERATURE"] =  TEMPERATURE;
315 >
316 >    OutputData velocity;
317 >    velocity.units = "amu/fs";
318 >    velocity.title =  "Velocity";  
319 >    velocity.dataType = "Vector3d";
320 >    velocity.accumulator.reserve(nBins_);
321 >    for (unsigned int i = 0; i < nBins_; i++)
322 >      velocity.accumulator.push_back( new VectorAccumulator() );
323 >    data_[VELOCITY] = velocity;
324 >    outputMap_["VELOCITY"] = VELOCITY;
325 >
326 >    OutputData density;
327 >    density.units =  "g cm^-3";
328 >    density.title =  "Density";
329 >    density.dataType = "RealType";
330 >    density.accumulator.reserve(nBins_);
331 >    for (unsigned int i = 0; i < nBins_; i++)
332 >      density.accumulator.push_back( new Accumulator() );
333 >    data_[DENSITY] = density;
334 >    outputMap_["DENSITY"] =  DENSITY;
335 >
336 >    if (hasOutputFields) {
337 >      parseOutputFileFormat(rnemdParams->getOutputFields());
338 >    } else {
339 >      outputMask_.set(Z);
340 >      switch (rnemdFluxType_) {
341 >      case rnemdKE:
342 >      case rnemdRotKE:
343 >      case rnemdFullKE:
344 >        outputMask_.set(TEMPERATURE);
345 >        break;
346 >      case rnemdPx:
347 >      case rnemdPy:
348 >        outputMask_.set(VELOCITY);
349 >        break;
350 >      case rnemdPz:        
351 >      case rnemdPvector:
352 >        outputMask_.set(VELOCITY);
353 >        outputMask_.set(DENSITY);
354 >        break;
355 >      case rnemdKePx:
356 >      case rnemdKePy:
357 >        outputMask_.set(TEMPERATURE);
358 >        outputMask_.set(VELOCITY);
359 >        break;
360 >      case rnemdKePvector:
361 >        outputMask_.set(TEMPERATURE);
362 >        outputMask_.set(VELOCITY);
363 >        outputMask_.set(DENSITY);        
364 >        break;
365 >      default:
366 >        break;
367 >      }
368 >    }
369 >      
370 >    if (hasOutputFileName) {
371 >      rnemdFileName_ = rnemdParams->getOutputFileName();
372 >    } else {
373 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
374 >    }          
375 >
376 >    exchangeTime_ = rnemdParams->getExchangeTime();
377 >
378 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
379 >    Mat3x3d hmat = currentSnap_->getHmat();
380    
381 +    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
382 +    // Lx, Ly = box dimensions in x & y
383 +    // dt = exchange time interval
384 +    // flux = target flux
385 +
386 +    RealType area = currentSnap_->getXYarea();
387 +    kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
388 +    momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
389 +
390 +    // total exchange sums are zeroed out at the beginning:
391 +
392 +    kineticExchange_ = 0.0;
393 +    momentumExchange_ = V3Zero;
394 +
395 +    if (hasSlabWidth)
396 +      slabWidth_ = rnemdParams->getSlabWidth();
397 +    else
398 +      slabWidth_ = hmat(2,2) / 10.0;
399 +  
400 +    if (hasSlabACenter)
401 +      slabACenter_ = rnemdParams->getSlabACenter();
402 +    else
403 +      slabACenter_ = 0.0;
404 +    
405 +    if (hasSlabBCenter)
406 +      slabBCenter_ = rnemdParams->getSlabBCenter();
407 +    else
408 +      slabBCenter_ = hmat(2,2) / 2.0;
409 +    
410 +  }
411 +  
412    RNEMD::~RNEMD() {
413 <    delete randNumGen_;
413 >    
414 > #ifdef IS_MPI
415 >    if (worldRank == 0) {
416 > #endif
417 >
418 >      writeOutputFile();
419 >
420 >      rnemdFile_.close();
421 >      
422 > #ifdef IS_MPI
423 >    }
424 > #endif
425    }
426 +  
427 +  bool RNEMD::inSlabA(Vector3d pos) {
428 +    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
429 +  }
430 +  bool RNEMD::inSlabB(Vector3d pos) {
431 +    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
432 +  }
433  
434    void RNEMD::doSwap() {
435 <    std::cerr << "in RNEMD!\n";  
436 <    std::cerr << "nBins = " << nBins_ << "\n";
437 <    std::cerr << "swapTime = " << swapTime_ << "\n";
438 <    std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
439 <    std::cerr << "swapType = " << rnemdType_ << "\n";
440 <  }  
435 >
436 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
437 >    Mat3x3d hmat = currentSnap_->getHmat();
438 >
439 >    seleMan_.setSelectionSet(evaluator_.evaluate());
440 >
441 >    int selei;
442 >    StuntDouble* sd;
443 >    int idx;
444 >
445 >    RealType min_val;
446 >    bool min_found = false;  
447 >    StuntDouble* min_sd;
448 >
449 >    RealType max_val;
450 >    bool max_found = false;
451 >    StuntDouble* max_sd;
452 >
453 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
454 >         sd = seleMan_.nextSelected(selei)) {
455 >
456 >      idx = sd->getLocalIndex();
457 >
458 >      Vector3d pos = sd->getPos();
459 >
460 >      // wrap the stuntdouble's position back into the box:
461 >
462 >      if (usePeriodicBoundaryConditions_)
463 >        currentSnap_->wrapVector(pos);
464 >      bool inA = inSlabA(pos);
465 >      bool inB = inSlabB(pos);
466 >
467 >      if (inA || inB) {
468 >        
469 >        RealType mass = sd->getMass();
470 >        Vector3d vel = sd->getVel();
471 >        RealType value;
472 >        
473 >        switch(rnemdFluxType_) {
474 >        case rnemdKE :
475 >          
476 >          value = mass * vel.lengthSquare();
477 >          
478 >          if (sd->isDirectional()) {
479 >            Vector3d angMom = sd->getJ();
480 >            Mat3x3d I = sd->getI();
481 >            
482 >            if (sd->isLinear()) {
483 >              int i = sd->linearAxis();
484 >              int j = (i + 1) % 3;
485 >              int k = (i + 2) % 3;
486 >              value += angMom[j] * angMom[j] / I(j, j) +
487 >                angMom[k] * angMom[k] / I(k, k);
488 >            } else {                        
489 >              value += angMom[0]*angMom[0]/I(0, 0)
490 >                + angMom[1]*angMom[1]/I(1, 1)
491 >                + angMom[2]*angMom[2]/I(2, 2);
492 >            }
493 >          } //angular momenta exchange enabled
494 >          //energyConvert temporarily disabled
495 >          //make kineticExchange_ comparable between swap & scale
496 >          //value = value * 0.5 / PhysicalConstants::energyConvert;
497 >          value *= 0.5;
498 >          break;
499 >        case rnemdPx :
500 >          value = mass * vel[0];
501 >          break;
502 >        case rnemdPy :
503 >          value = mass * vel[1];
504 >          break;
505 >        case rnemdPz :
506 >          value = mass * vel[2];
507 >          break;
508 >        default :
509 >          break;
510 >        }
511 >        
512 >        if (inA == 0) {
513 >          if (!min_found) {
514 >            min_val = value;
515 >            min_sd = sd;
516 >            min_found = true;
517 >          } else {
518 >            if (min_val > value) {
519 >              min_val = value;
520 >              min_sd = sd;
521 >            }
522 >          }
523 >        } else {
524 >          if (!max_found) {
525 >            max_val = value;
526 >            max_sd = sd;
527 >            max_found = true;
528 >          } else {
529 >            if (max_val < value) {
530 >              max_val = value;
531 >              max_sd = sd;
532 >            }
533 >          }      
534 >        }
535 >      }
536 >    }
537 >    
538 > #ifdef IS_MPI
539 >    int nProc, worldRank;
540 >    
541 >    nProc = MPI::COMM_WORLD.Get_size();
542 >    worldRank = MPI::COMM_WORLD.Get_rank();
543 >
544 >    bool my_min_found = min_found;
545 >    bool my_max_found = max_found;
546 >
547 >    // Even if we didn't find a minimum, did someone else?
548 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
549 >    // Even if we didn't find a maximum, did someone else?
550 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
551 > #endif
552 >
553 >    if (max_found && min_found) {
554 >
555 > #ifdef IS_MPI
556 >      struct {
557 >        RealType val;
558 >        int rank;
559 >      } max_vals, min_vals;
560 >      
561 >      if (my_min_found) {
562 >        min_vals.val = min_val;
563 >      } else {
564 >        min_vals.val = HONKING_LARGE_VALUE;
565 >      }
566 >      min_vals.rank = worldRank;    
567 >      
568 >      // Who had the minimum?
569 >      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
570 >                                1, MPI::REALTYPE_INT, MPI::MINLOC);
571 >      min_val = min_vals.val;
572 >      
573 >      if (my_max_found) {
574 >        max_vals.val = max_val;
575 >      } else {
576 >        max_vals.val = -HONKING_LARGE_VALUE;
577 >      }
578 >      max_vals.rank = worldRank;    
579 >      
580 >      // Who had the maximum?
581 >      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
582 >                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
583 >      max_val = max_vals.val;
584 > #endif
585 >      
586 >      if (min_val < max_val) {
587 >        
588 > #ifdef IS_MPI      
589 >        if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
590 >          // I have both maximum and minimum, so proceed like a single
591 >          // processor version:
592 > #endif
593 >
594 >          Vector3d min_vel = min_sd->getVel();
595 >          Vector3d max_vel = max_sd->getVel();
596 >          RealType temp_vel;
597 >          
598 >          switch(rnemdFluxType_) {
599 >          case rnemdKE :
600 >            min_sd->setVel(max_vel);
601 >            max_sd->setVel(min_vel);
602 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
603 >              Vector3d min_angMom = min_sd->getJ();
604 >              Vector3d max_angMom = max_sd->getJ();
605 >              min_sd->setJ(max_angMom);
606 >              max_sd->setJ(min_angMom);
607 >            }//angular momenta exchange enabled
608 >            //assumes same rigid body identity
609 >            break;
610 >          case rnemdPx :
611 >            temp_vel = min_vel.x();
612 >            min_vel.x() = max_vel.x();
613 >            max_vel.x() = temp_vel;
614 >            min_sd->setVel(min_vel);
615 >            max_sd->setVel(max_vel);
616 >            break;
617 >          case rnemdPy :
618 >            temp_vel = min_vel.y();
619 >            min_vel.y() = max_vel.y();
620 >            max_vel.y() = temp_vel;
621 >            min_sd->setVel(min_vel);
622 >            max_sd->setVel(max_vel);
623 >            break;
624 >          case rnemdPz :
625 >            temp_vel = min_vel.z();
626 >            min_vel.z() = max_vel.z();
627 >            max_vel.z() = temp_vel;
628 >            min_sd->setVel(min_vel);
629 >            max_sd->setVel(max_vel);
630 >            break;
631 >          default :
632 >            break;
633 >          }
634 >
635 > #ifdef IS_MPI
636 >          // the rest of the cases only apply in parallel simulations:
637 >        } else if (max_vals.rank == worldRank) {
638 >          // I had the max, but not the minimum
639 >          
640 >          Vector3d min_vel;
641 >          Vector3d max_vel = max_sd->getVel();
642 >          MPI::Status status;
643 >
644 >          // point-to-point swap of the velocity vector
645 >          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
646 >                                   min_vals.rank, 0,
647 >                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
648 >                                   min_vals.rank, 0, status);
649 >          
650 >          switch(rnemdFluxType_) {
651 >          case rnemdKE :
652 >            max_sd->setVel(min_vel);
653 >            //angular momenta exchange enabled
654 >            if (max_sd->isDirectional()) {
655 >              Vector3d min_angMom;
656 >              Vector3d max_angMom = max_sd->getJ();
657 >              
658 >              // point-to-point swap of the angular momentum vector
659 >              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
660 >                                       MPI::REALTYPE, min_vals.rank, 1,
661 >                                       min_angMom.getArrayPointer(), 3,
662 >                                       MPI::REALTYPE, min_vals.rank, 1,
663 >                                       status);
664 >              
665 >              max_sd->setJ(min_angMom);
666 >            }
667 >            break;
668 >          case rnemdPx :
669 >            max_vel.x() = min_vel.x();
670 >            max_sd->setVel(max_vel);
671 >            break;
672 >          case rnemdPy :
673 >            max_vel.y() = min_vel.y();
674 >            max_sd->setVel(max_vel);
675 >            break;
676 >          case rnemdPz :
677 >            max_vel.z() = min_vel.z();
678 >            max_sd->setVel(max_vel);
679 >            break;
680 >          default :
681 >            break;
682 >          }
683 >        } else if (min_vals.rank == worldRank) {
684 >          // I had the minimum but not the maximum:
685 >          
686 >          Vector3d max_vel;
687 >          Vector3d min_vel = min_sd->getVel();
688 >          MPI::Status status;
689 >          
690 >          // point-to-point swap of the velocity vector
691 >          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
692 >                                   max_vals.rank, 0,
693 >                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
694 >                                   max_vals.rank, 0, status);
695 >          
696 >          switch(rnemdFluxType_) {
697 >          case rnemdKE :
698 >            min_sd->setVel(max_vel);
699 >            //angular momenta exchange enabled
700 >            if (min_sd->isDirectional()) {
701 >              Vector3d min_angMom = min_sd->getJ();
702 >              Vector3d max_angMom;
703 >              
704 >              // point-to-point swap of the angular momentum vector
705 >              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
706 >                                       MPI::REALTYPE, max_vals.rank, 1,
707 >                                       max_angMom.getArrayPointer(), 3,
708 >                                       MPI::REALTYPE, max_vals.rank, 1,
709 >                                       status);
710 >              
711 >              min_sd->setJ(max_angMom);
712 >            }
713 >            break;
714 >          case rnemdPx :
715 >            min_vel.x() = max_vel.x();
716 >            min_sd->setVel(min_vel);
717 >            break;
718 >          case rnemdPy :
719 >            min_vel.y() = max_vel.y();
720 >            min_sd->setVel(min_vel);
721 >            break;
722 >          case rnemdPz :
723 >            min_vel.z() = max_vel.z();
724 >            min_sd->setVel(min_vel);
725 >            break;
726 >          default :
727 >            break;
728 >          }
729 >        }
730 > #endif
731 >        
732 >        switch(rnemdFluxType_) {
733 >        case rnemdKE:
734 >          cerr << "KE\n";
735 >          kineticExchange_ += max_val - min_val;
736 >          break;
737 >        case rnemdPx:
738 >          momentumExchange_.x() += max_val - min_val;
739 >          break;
740 >        case rnemdPy:
741 >          momentumExchange_.y() += max_val - min_val;
742 >          break;
743 >        case rnemdPz:
744 >          momentumExchange_.z() += max_val - min_val;
745 >          break;
746 >        default:
747 >          cerr << "default\n";
748 >          break;
749 >        }
750 >      } else {        
751 >        sprintf(painCave.errMsg,
752 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
753 >        painCave.isFatal = 0;
754 >        painCave.severity = OPENMD_INFO;
755 >        simError();        
756 >        failTrialCount_++;
757 >      }
758 >    } else {
759 >      sprintf(painCave.errMsg,
760 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
761 >              "\twas not present in at least one of the two slabs.\n");
762 >      painCave.isFatal = 0;
763 >      painCave.severity = OPENMD_INFO;
764 >      simError();        
765 >      failTrialCount_++;
766 >    }    
767 >  }
768 >  
769 >  void RNEMD::doNIVS() {
770 >
771 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
772 >    Mat3x3d hmat = currentSnap_->getHmat();
773 >
774 >    seleMan_.setSelectionSet(evaluator_.evaluate());
775 >
776 >    int selei;
777 >    StuntDouble* sd;
778 >    int idx;
779 >
780 >    vector<StuntDouble*> hotBin, coldBin;
781 >
782 >    RealType Phx = 0.0;
783 >    RealType Phy = 0.0;
784 >    RealType Phz = 0.0;
785 >    RealType Khx = 0.0;
786 >    RealType Khy = 0.0;
787 >    RealType Khz = 0.0;
788 >    RealType Khw = 0.0;
789 >    RealType Pcx = 0.0;
790 >    RealType Pcy = 0.0;
791 >    RealType Pcz = 0.0;
792 >    RealType Kcx = 0.0;
793 >    RealType Kcy = 0.0;
794 >    RealType Kcz = 0.0;
795 >    RealType Kcw = 0.0;
796 >
797 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
798 >         sd = seleMan_.nextSelected(selei)) {
799 >
800 >      idx = sd->getLocalIndex();
801 >
802 >      Vector3d pos = sd->getPos();
803 >
804 >      // wrap the stuntdouble's position back into the box:
805 >
806 >      if (usePeriodicBoundaryConditions_)
807 >        currentSnap_->wrapVector(pos);
808 >
809 >      // which bin is this stuntdouble in?
810 >      bool inA = inSlabA(pos);
811 >      bool inB = inSlabB(pos);
812 >
813 >      if (inA || inB) {
814 >              
815 >        RealType mass = sd->getMass();
816 >        Vector3d vel = sd->getVel();
817 >      
818 >        if (inA) {
819 >          hotBin.push_back(sd);
820 >          Phx += mass * vel.x();
821 >          Phy += mass * vel.y();
822 >          Phz += mass * vel.z();
823 >          Khx += mass * vel.x() * vel.x();
824 >          Khy += mass * vel.y() * vel.y();
825 >          Khz += mass * vel.z() * vel.z();
826 >          if (sd->isDirectional()) {
827 >            Vector3d angMom = sd->getJ();
828 >            Mat3x3d I = sd->getI();
829 >            if (sd->isLinear()) {
830 >              int i = sd->linearAxis();
831 >              int j = (i + 1) % 3;
832 >              int k = (i + 2) % 3;
833 >              Khw += angMom[j] * angMom[j] / I(j, j) +
834 >                angMom[k] * angMom[k] / I(k, k);
835 >            } else {
836 >              Khw += angMom[0]*angMom[0]/I(0, 0)
837 >                + angMom[1]*angMom[1]/I(1, 1)
838 >                + angMom[2]*angMom[2]/I(2, 2);
839 >            }
840 >          }
841 >        } else {
842 >          coldBin.push_back(sd);
843 >          Pcx += mass * vel.x();
844 >          Pcy += mass * vel.y();
845 >          Pcz += mass * vel.z();
846 >          Kcx += mass * vel.x() * vel.x();
847 >          Kcy += mass * vel.y() * vel.y();
848 >          Kcz += mass * vel.z() * vel.z();
849 >          if (sd->isDirectional()) {
850 >            Vector3d angMom = sd->getJ();
851 >            Mat3x3d I = sd->getI();
852 >            if (sd->isLinear()) {
853 >              int i = sd->linearAxis();
854 >              int j = (i + 1) % 3;
855 >              int k = (i + 2) % 3;
856 >              Kcw += angMom[j] * angMom[j] / I(j, j) +
857 >                angMom[k] * angMom[k] / I(k, k);
858 >            } else {
859 >              Kcw += angMom[0]*angMom[0]/I(0, 0)
860 >                + angMom[1]*angMom[1]/I(1, 1)
861 >                + angMom[2]*angMom[2]/I(2, 2);
862 >            }
863 >          }
864 >        }
865 >      }
866 >    }
867 >    
868 >    Khx *= 0.5;
869 >    Khy *= 0.5;
870 >    Khz *= 0.5;
871 >    Khw *= 0.5;
872 >    Kcx *= 0.5;
873 >    Kcy *= 0.5;
874 >    Kcz *= 0.5;
875 >    Kcw *= 0.5;
876 >
877 > #ifdef IS_MPI
878 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
879 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
880 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
881 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
882 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
883 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
884 >
885 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
886 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
887 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
888 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
889 >
890 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
891 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
892 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
893 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
894 > #endif
895 >
896 >    //solve coldBin coeff's first
897 >    RealType px = Pcx / Phx;
898 >    RealType py = Pcy / Phy;
899 >    RealType pz = Pcz / Phz;
900 >    RealType c, x, y, z;
901 >    bool successfulScale = false;
902 >    if ((rnemdFluxType_ == rnemdFullKE) ||
903 >        (rnemdFluxType_ == rnemdRotKE)) {
904 >      //may need sanity check Khw & Kcw > 0
905 >
906 >      if (rnemdFluxType_ == rnemdFullKE) {
907 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
908 >      } else {
909 >        c = 1.0 - kineticTarget_ / Kcw;
910 >      }
911 >
912 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
913 >        c = sqrt(c);
914 >        //std::cerr << "cold slab scaling coefficient: " << c << endl;
915 >        //now convert to hotBin coefficient
916 >        RealType w = 0.0;
917 >        if (rnemdFluxType_ ==  rnemdFullKE) {
918 >          x = 1.0 + px * (1.0 - c);
919 >          y = 1.0 + py * (1.0 - c);
920 >          z = 1.0 + pz * (1.0 - c);
921 >          /* more complicated way
922 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
923 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
924 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
925 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
926 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
927 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
928 >          */
929 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
930 >              (fabs(z - 1.0) < 0.1)) {
931 >            w = 1.0 + (kineticTarget_
932 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
933 >                       + Khz * (1.0 - z * z)) / Khw;
934 >          }//no need to calculate w if x, y or z is out of range
935 >        } else {
936 >          w = 1.0 + kineticTarget_ / Khw;
937 >        }
938 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
939 >          //if w is in the right range, so should be x, y, z.
940 >          vector<StuntDouble*>::iterator sdi;
941 >          Vector3d vel;
942 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
943 >            if (rnemdFluxType_ == rnemdFullKE) {
944 >              vel = (*sdi)->getVel() * c;
945 >              (*sdi)->setVel(vel);
946 >            }
947 >            if ((*sdi)->isDirectional()) {
948 >              Vector3d angMom = (*sdi)->getJ() * c;
949 >              (*sdi)->setJ(angMom);
950 >            }
951 >          }
952 >          w = sqrt(w);
953 >          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
954 >          //           << "\twh= " << w << endl;
955 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
956 >            if (rnemdFluxType_ == rnemdFullKE) {
957 >              vel = (*sdi)->getVel();
958 >              vel.x() *= x;
959 >              vel.y() *= y;
960 >              vel.z() *= z;
961 >              (*sdi)->setVel(vel);
962 >            }
963 >            if ((*sdi)->isDirectional()) {
964 >              Vector3d angMom = (*sdi)->getJ() * w;
965 >              (*sdi)->setJ(angMom);
966 >            }
967 >          }
968 >          successfulScale = true;
969 >          kineticExchange_ += kineticTarget_;
970 >        }
971 >      }
972 >    } else {
973 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
974 >      switch(rnemdFluxType_) {
975 >      case rnemdKE :
976 >        /* used hotBin coeff's & only scale x & y dimensions
977 >           RealType px = Phx / Pcx;
978 >           RealType py = Phy / Pcy;
979 >           a110 = Khy;
980 >           c0 = - Khx - Khy - kineticTarget_;
981 >           a000 = Khx;
982 >           a111 = Kcy * py * py;
983 >           b11 = -2.0 * Kcy * py * (1.0 + py);
984 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
985 >           b01 = -2.0 * Kcx * px * (1.0 + px);
986 >           a001 = Kcx * px * px;
987 >        */
988 >        //scale all three dimensions, let c_x = c_y
989 >        a000 = Kcx + Kcy;
990 >        a110 = Kcz;
991 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
992 >        a001 = Khx * px * px + Khy * py * py;
993 >        a111 = Khz * pz * pz;
994 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
995 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
996 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
997 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
998 >        break;
999 >      case rnemdPx :
1000 >        c = 1 - momentumTarget_.x() / Pcx;
1001 >        a000 = Kcy;
1002 >        a110 = Kcz;
1003 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1004 >        a001 = py * py * Khy;
1005 >        a111 = pz * pz * Khz;
1006 >        b01 = -2.0 * Khy * py * (1.0 + py);
1007 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1008 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1009 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1010 >        break;
1011 >      case rnemdPy :
1012 >        c = 1 - momentumTarget_.y() / Pcy;
1013 >        a000 = Kcx;
1014 >        a110 = Kcz;
1015 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1016 >        a001 = px * px * Khx;
1017 >        a111 = pz * pz * Khz;
1018 >        b01 = -2.0 * Khx * px * (1.0 + px);
1019 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1020 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1021 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1022 >        break;
1023 >      case rnemdPz ://we don't really do this, do we?
1024 >        c = 1 - momentumTarget_.z() / Pcz;
1025 >        a000 = Kcx;
1026 >        a110 = Kcy;
1027 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1028 >        a001 = px * px * Khx;
1029 >        a111 = py * py * Khy;
1030 >        b01 = -2.0 * Khx * px * (1.0 + px);
1031 >        b11 = -2.0 * Khy * py * (1.0 + py);
1032 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1033 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1034 >        break;
1035 >      default :
1036 >        break;
1037 >      }
1038 >      
1039 >      RealType v1 = a000 * a111 - a001 * a110;
1040 >      RealType v2 = a000 * b01;
1041 >      RealType v3 = a000 * b11;
1042 >      RealType v4 = a000 * c1 - a001 * c0;
1043 >      RealType v8 = a110 * b01;
1044 >      RealType v10 = - b01 * c0;
1045 >      
1046 >      RealType u0 = v2 * v10 - v4 * v4;
1047 >      RealType u1 = -2.0 * v3 * v4;
1048 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1049 >      RealType u3 = -2.0 * v1 * v3;
1050 >      RealType u4 = - v1 * v1;
1051 >      //rescale coefficients
1052 >      RealType maxAbs = fabs(u0);
1053 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1054 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1055 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1056 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1057 >      u0 /= maxAbs;
1058 >      u1 /= maxAbs;
1059 >      u2 /= maxAbs;
1060 >      u3 /= maxAbs;
1061 >      u4 /= maxAbs;
1062 >      //max_element(start, end) is also available.
1063 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1064 >      poly.setCoefficient(4, u4);
1065 >      poly.setCoefficient(3, u3);
1066 >      poly.setCoefficient(2, u2);
1067 >      poly.setCoefficient(1, u1);
1068 >      poly.setCoefficient(0, u0);
1069 >      vector<RealType> realRoots = poly.FindRealRoots();
1070 >      
1071 >      vector<RealType>::iterator ri;
1072 >      RealType r1, r2, alpha0;
1073 >      vector<pair<RealType,RealType> > rps;
1074 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1075 >        r2 = *ri;
1076 >        //check if FindRealRoots() give the right answer
1077 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1078 >          sprintf(painCave.errMsg,
1079 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1080 >          painCave.isFatal = 0;
1081 >          simError();
1082 >          failRootCount_++;
1083 >        }
1084 >        //might not be useful w/o rescaling coefficients
1085 >        alpha0 = -c0 - a110 * r2 * r2;
1086 >        if (alpha0 >= 0.0) {
1087 >          r1 = sqrt(alpha0 / a000);
1088 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1089 >              < 1e-6)
1090 >            { rps.push_back(make_pair(r1, r2)); }
1091 >          if (r1 > 1e-6) { //r1 non-negative
1092 >            r1 = -r1;
1093 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1094 >                < 1e-6)
1095 >              { rps.push_back(make_pair(r1, r2)); }
1096 >          }
1097 >        }
1098 >      }
1099 >      // Consider combining together the solving pair part w/ the searching
1100 >      // best solution part so that we don't need the pairs vector
1101 >      if (!rps.empty()) {
1102 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1103 >        RealType diff;
1104 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1105 >        vector<pair<RealType,RealType> >::iterator rpi;
1106 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1107 >          r1 = (*rpi).first;
1108 >          r2 = (*rpi).second;
1109 >          switch(rnemdFluxType_) {
1110 >          case rnemdKE :
1111 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1112 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1113 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1114 >            break;
1115 >          case rnemdPx :
1116 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1117 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1118 >            break;
1119 >          case rnemdPy :
1120 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1121 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1122 >            break;
1123 >          case rnemdPz :
1124 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1125 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1126 >          default :
1127 >            break;
1128 >          }
1129 >          if (diff < smallestDiff) {
1130 >            smallestDiff = diff;
1131 >            bestPair = *rpi;
1132 >          }
1133 >        }
1134 > #ifdef IS_MPI
1135 >        if (worldRank == 0) {
1136 > #endif
1137 >          // sprintf(painCave.errMsg,
1138 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1139 >          //         bestPair.first, bestPair.second);
1140 >          // painCave.isFatal = 0;
1141 >          // painCave.severity = OPENMD_INFO;
1142 >          // simError();
1143 > #ifdef IS_MPI
1144 >        }
1145 > #endif
1146 >        
1147 >        switch(rnemdFluxType_) {
1148 >        case rnemdKE :
1149 >          x = bestPair.first;
1150 >          y = bestPair.first;
1151 >          z = bestPair.second;
1152 >          break;
1153 >        case rnemdPx :
1154 >          x = c;
1155 >          y = bestPair.first;
1156 >          z = bestPair.second;
1157 >          break;
1158 >        case rnemdPy :
1159 >          x = bestPair.first;
1160 >          y = c;
1161 >          z = bestPair.second;
1162 >          break;
1163 >        case rnemdPz :
1164 >          x = bestPair.first;
1165 >          y = bestPair.second;
1166 >          z = c;
1167 >          break;          
1168 >        default :
1169 >          break;
1170 >        }
1171 >        vector<StuntDouble*>::iterator sdi;
1172 >        Vector3d vel;
1173 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1174 >          vel = (*sdi)->getVel();
1175 >          vel.x() *= x;
1176 >          vel.y() *= y;
1177 >          vel.z() *= z;
1178 >          (*sdi)->setVel(vel);
1179 >        }
1180 >        //convert to hotBin coefficient
1181 >        x = 1.0 + px * (1.0 - x);
1182 >        y = 1.0 + py * (1.0 - y);
1183 >        z = 1.0 + pz * (1.0 - z);
1184 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1185 >          vel = (*sdi)->getVel();
1186 >          vel.x() *= x;
1187 >          vel.y() *= y;
1188 >          vel.z() *= z;
1189 >          (*sdi)->setVel(vel);
1190 >        }
1191 >        successfulScale = true;
1192 >        switch(rnemdFluxType_) {
1193 >        case rnemdKE :
1194 >          kineticExchange_ += kineticTarget_;
1195 >          break;
1196 >        case rnemdPx :
1197 >        case rnemdPy :
1198 >        case rnemdPz :
1199 >          momentumExchange_ += momentumTarget_;
1200 >          break;          
1201 >        default :
1202 >          break;
1203 >        }      
1204 >      }
1205 >    }
1206 >    if (successfulScale != true) {
1207 >      sprintf(painCave.errMsg,
1208 >              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1209 >              "\tthe constraint equations may not exist or there may be\n"
1210 >              "\tno selected objects in one or both slabs.\n");
1211 >      painCave.isFatal = 0;
1212 >      painCave.severity = OPENMD_INFO;
1213 >      simError();        
1214 >      failTrialCount_++;
1215 >    }
1216 >  }
1217 >
1218 >  void RNEMD::doVSS() {
1219 >
1220 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1221 >    RealType time = currentSnap_->getTime();    
1222 >    Mat3x3d hmat = currentSnap_->getHmat();
1223 >
1224 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1225 >
1226 >    int selei;
1227 >    StuntDouble* sd;
1228 >    int idx;
1229 >
1230 >    vector<StuntDouble*> hotBin, coldBin;
1231 >
1232 >    Vector3d Ph(V3Zero);
1233 >    RealType Mh = 0.0;
1234 >    RealType Kh = 0.0;
1235 >    Vector3d Pc(V3Zero);
1236 >    RealType Mc = 0.0;
1237 >    RealType Kc = 0.0;
1238 >    
1239 >
1240 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1241 >         sd = seleMan_.nextSelected(selei)) {
1242 >
1243 >      idx = sd->getLocalIndex();
1244 >
1245 >      Vector3d pos = sd->getPos();
1246 >
1247 >      // wrap the stuntdouble's position back into the box:
1248 >
1249 >      if (usePeriodicBoundaryConditions_)
1250 >        currentSnap_->wrapVector(pos);
1251 >
1252 >      // which bin is this stuntdouble in?
1253 >      bool inA = inSlabA(pos);
1254 >      bool inB = inSlabB(pos);
1255 >      
1256 >      if (inA || inB) {
1257 >        
1258 >        RealType mass = sd->getMass();
1259 >        Vector3d vel = sd->getVel();
1260 >      
1261 >        if (inA) {
1262 >          hotBin.push_back(sd);
1263 >          //std::cerr << "before, velocity = " << vel << endl;
1264 >          Ph += mass * vel;
1265 >          //std::cerr << "after, velocity = " << vel << endl;
1266 >          Mh += mass;
1267 >          Kh += mass * vel.lengthSquare();
1268 >          if (rnemdFluxType_ == rnemdFullKE) {
1269 >            if (sd->isDirectional()) {
1270 >              Vector3d angMom = sd->getJ();
1271 >              Mat3x3d I = sd->getI();
1272 >              if (sd->isLinear()) {
1273 >                int i = sd->linearAxis();
1274 >                int j = (i + 1) % 3;
1275 >                int k = (i + 2) % 3;
1276 >                Kh += angMom[j] * angMom[j] / I(j, j) +
1277 >                  angMom[k] * angMom[k] / I(k, k);
1278 >              } else {
1279 >                Kh += angMom[0] * angMom[0] / I(0, 0) +
1280 >                  angMom[1] * angMom[1] / I(1, 1) +
1281 >                  angMom[2] * angMom[2] / I(2, 2);
1282 >              }
1283 >            }
1284 >          }
1285 >        } else { //midBin_
1286 >          coldBin.push_back(sd);
1287 >          Pc += mass * vel;
1288 >          Mc += mass;
1289 >          Kc += mass * vel.lengthSquare();
1290 >          if (rnemdFluxType_ == rnemdFullKE) {
1291 >            if (sd->isDirectional()) {
1292 >              Vector3d angMom = sd->getJ();
1293 >              Mat3x3d I = sd->getI();
1294 >              if (sd->isLinear()) {
1295 >                int i = sd->linearAxis();
1296 >                int j = (i + 1) % 3;
1297 >                int k = (i + 2) % 3;
1298 >                Kc += angMom[j] * angMom[j] / I(j, j) +
1299 >                  angMom[k] * angMom[k] / I(k, k);
1300 >              } else {
1301 >                Kc += angMom[0] * angMom[0] / I(0, 0) +
1302 >                  angMom[1] * angMom[1] / I(1, 1) +
1303 >                  angMom[2] * angMom[2] / I(2, 2);
1304 >              }
1305 >            }
1306 >          }
1307 >        }
1308 >      }
1309 >    }
1310 >    
1311 >    Kh *= 0.5;
1312 >    Kc *= 0.5;
1313 >
1314 >    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1315 >    //        << "\tKc= " << Kc << endl;
1316 >    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1317 >    
1318 > #ifdef IS_MPI
1319 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1320 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1321 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1322 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1323 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1324 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1325 > #endif
1326 >
1327 >    bool successfulExchange = false;
1328 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1329 >      Vector3d vc = Pc / Mc;
1330 >      Vector3d ac = -momentumTarget_ / Mc + vc;
1331 >      Vector3d acrec = -momentumTarget_ / Mc;
1332 >      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1333 >      if (cNumerator > 0.0) {
1334 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1335 >        if (cDenominator > 0.0) {
1336 >          RealType c = sqrt(cNumerator / cDenominator);
1337 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1338 >            Vector3d vh = Ph / Mh;
1339 >            Vector3d ah = momentumTarget_ / Mh + vh;
1340 >            Vector3d ahrec = momentumTarget_ / Mh;
1341 >            RealType hNumerator = Kh + kineticTarget_
1342 >              - 0.5 * Mh * ah.lengthSquare();
1343 >            if (hNumerator > 0.0) {
1344 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1345 >              if (hDenominator > 0.0) {
1346 >                RealType h = sqrt(hNumerator / hDenominator);
1347 >                if ((h > 0.9) && (h < 1.1)) {
1348 >                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1349 >                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1350 >                  vector<StuntDouble*>::iterator sdi;
1351 >                  Vector3d vel;
1352 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1353 >                    //vel = (*sdi)->getVel();
1354 >                    vel = ((*sdi)->getVel() - vc) * c + ac;
1355 >                    (*sdi)->setVel(vel);
1356 >                    if (rnemdFluxType_ == rnemdFullKE) {
1357 >                      if ((*sdi)->isDirectional()) {
1358 >                        Vector3d angMom = (*sdi)->getJ() * c;
1359 >                        (*sdi)->setJ(angMom);
1360 >                      }
1361 >                    }
1362 >                  }
1363 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1364 >                    //vel = (*sdi)->getVel();
1365 >                    vel = ((*sdi)->getVel() - vh) * h + ah;
1366 >                    (*sdi)->setVel(vel);
1367 >                    if (rnemdFluxType_ == rnemdFullKE) {
1368 >                      if ((*sdi)->isDirectional()) {
1369 >                        Vector3d angMom = (*sdi)->getJ() * h;
1370 >                        (*sdi)->setJ(angMom);
1371 >                      }
1372 >                    }
1373 >                  }
1374 >                  successfulExchange = true;
1375 >                  kineticExchange_ += kineticTarget_;
1376 >                  momentumExchange_ += momentumTarget_;
1377 >                }
1378 >              }
1379 >            }
1380 >          }
1381 >        }
1382 >      }
1383 >    }
1384 >    if (successfulExchange != true) {
1385 >      sprintf(painCave.errMsg,
1386 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1387 >              "\tthe constraint equations may not exist or there may be\n"
1388 >              "\tno selected objects in one or both slabs.\n");
1389 >      painCave.isFatal = 0;
1390 >      painCave.severity = OPENMD_INFO;
1391 >      simError();        
1392 >      failTrialCount_++;
1393 >    }
1394 >  }
1395 >
1396 >  void RNEMD::doRNEMD() {
1397 >
1398 >    trialCount_++;
1399 >    switch(rnemdMethod_) {
1400 >    case rnemdSwap:
1401 >      doSwap();
1402 >      break;
1403 >    case rnemdNIVS:
1404 >      doNIVS();
1405 >      break;
1406 >    case rnemdVSS:
1407 >      doVSS();
1408 >      break;
1409 >    case rnemdUnkownMethod:
1410 >    default :
1411 >      break;
1412 >    }
1413 >  }
1414 >
1415 >  void RNEMD::collectData() {
1416 >
1417 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1418 >    Mat3x3d hmat = currentSnap_->getHmat();
1419 >
1420 >    areaAccumulator_->add(currentSnap_->getXYarea());
1421 >
1422 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1423 >
1424 >    int selei;
1425 >    StuntDouble* sd;
1426 >    int idx;
1427 >
1428 >    vector<RealType> binMass(nBins_, 0.0);
1429 >    vector<RealType> binPx(nBins_, 0.0);
1430 >    vector<RealType> binPy(nBins_, 0.0);
1431 >    vector<RealType> binPz(nBins_, 0.0);
1432 >    vector<RealType> binKE(nBins_, 0.0);
1433 >    vector<int> binDOF(nBins_, 0);
1434 >    vector<int> binCount(nBins_, 0);
1435 >
1436 >    // alternative approach, track all molecules instead of only those
1437 >    // selected for scaling/swapping:
1438 >    /*
1439 >    SimInfo::MoleculeIterator miter;
1440 >    vector<StuntDouble*>::iterator iiter;
1441 >    Molecule* mol;
1442 >    StuntDouble* sd;
1443 >    for (mol = info_->beginMolecule(miter); mol != NULL;
1444 >      mol = info_->nextMolecule(miter))
1445 >      sd is essentially sd
1446 >        for (sd = mol->beginIntegrableObject(iiter);
1447 >             sd != NULL;
1448 >             sd = mol->nextIntegrableObject(iiter))
1449 >    */
1450 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1451 >         sd = seleMan_.nextSelected(selei)) {
1452 >      
1453 >      idx = sd->getLocalIndex();
1454 >      
1455 >      Vector3d pos = sd->getPos();
1456 >
1457 >      // wrap the stuntdouble's position back into the box:
1458 >      
1459 >      if (usePeriodicBoundaryConditions_)
1460 >        currentSnap_->wrapVector(pos);
1461 >
1462 >
1463 >      // which bin is this stuntdouble in?
1464 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1465 >      // Shift molecules by half a box to have bins start at 0
1466 >      // The modulo operator is used to wrap the case when we are
1467 >      // beyond the end of the bins back to the beginning.
1468 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1469 >    
1470 >      RealType mass = sd->getMass();
1471 >      Vector3d vel = sd->getVel();
1472 >
1473 >      binCount[binNo]++;
1474 >      binMass[binNo] += mass;
1475 >      binPx[binNo] += mass*vel.x();
1476 >      binPy[binNo] += mass*vel.y();
1477 >      binPz[binNo] += mass*vel.z();
1478 >      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1479 >      binDOF[binNo] += 3;
1480 >
1481 >      if (sd->isDirectional()) {
1482 >        Vector3d angMom = sd->getJ();
1483 >        Mat3x3d I = sd->getI();
1484 >        if (sd->isLinear()) {
1485 >          int i = sd->linearAxis();
1486 >          int j = (i + 1) % 3;
1487 >          int k = (i + 2) % 3;
1488 >          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1489 >                                 angMom[k] * angMom[k] / I(k, k));
1490 >          binDOF[binNo] += 2;
1491 >        } else {
1492 >          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1493 >                                 angMom[1] * angMom[1] / I(1, 1) +
1494 >                                 angMom[2] * angMom[2] / I(2, 2));
1495 >          binDOF[binNo] += 3;
1496 >        }
1497 >      }
1498 >    }
1499 >    
1500 >
1501 > #ifdef IS_MPI
1502 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1503 >                              nBins_, MPI::INT, MPI::SUM);
1504 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1505 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1506 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1507 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1508 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1509 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1510 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1511 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1512 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1513 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1514 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1515 >                              nBins_, MPI::INT, MPI::SUM);
1516 > #endif
1517 >
1518 >    Vector3d vel;
1519 >    RealType den;
1520 >    RealType temp;
1521 >    RealType z;
1522 >    for (int i = 0; i < nBins_; i++) {
1523 >      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1524 >      vel.x() = binPx[i] / binMass[i];
1525 >      vel.y() = binPy[i] / binMass[i];
1526 >      vel.z() = binPz[i] / binMass[i];
1527 >      den = binCount[i] * nBins_ / currentSnap_->getVolume();
1528 >      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1529 >                               PhysicalConstants::energyConvert);
1530 >
1531 >      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1532 >        if(outputMask_[j]) {
1533 >          switch(j) {
1534 >          case Z:
1535 >            (data_[j].accumulator[i])->add(z);
1536 >            break;
1537 >          case TEMPERATURE:
1538 >            data_[j].accumulator[i]->add(temp);
1539 >            break;
1540 >          case VELOCITY:
1541 >            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1542 >            break;
1543 >          case DENSITY:
1544 >            data_[j].accumulator[i]->add(den);
1545 >            break;
1546 >          }
1547 >        }
1548 >      }
1549 >    }
1550 >  }
1551 >
1552 >  void RNEMD::getStarted() {
1553 >    collectData();
1554 >    writeOutputFile();
1555 >  }
1556 >
1557 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
1558 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1559 >    
1560 >    while(tokenizer.hasMoreTokens()) {
1561 >      std::string token(tokenizer.nextToken());
1562 >      toUpper(token);
1563 >      OutputMapType::iterator i = outputMap_.find(token);
1564 >      if (i != outputMap_.end()) {
1565 >        outputMask_.set(i->second);
1566 >      } else {
1567 >        sprintf( painCave.errMsg,
1568 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1569 >                 "\toutputFileFormat keyword.\n", token.c_str() );
1570 >        painCave.isFatal = 0;
1571 >        painCave.severity = OPENMD_ERROR;
1572 >        simError();            
1573 >      }
1574 >    }  
1575 >  }
1576 >  
1577 >  void RNEMD::writeOutputFile() {
1578 >    
1579 > #ifdef IS_MPI
1580 >    // If we're the root node, should we print out the results
1581 >    int worldRank = MPI::COMM_WORLD.Get_rank();
1582 >    if (worldRank == 0) {
1583 > #endif
1584 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1585 >      
1586 >      if( !rnemdFile_ ){        
1587 >        sprintf( painCave.errMsg,
1588 >                 "Could not open \"%s\" for RNEMD output.\n",
1589 >                 rnemdFileName_.c_str());
1590 >        painCave.isFatal = 1;
1591 >        simError();
1592 >      }
1593 >
1594 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1595 >
1596 >      RealType time = currentSnap_->getTime();
1597 >      RealType avgArea;
1598 >      areaAccumulator_->getAverage(avgArea);
1599 >      RealType Jz = kineticExchange_ / (2.0 * time * avgArea);
1600 >      Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);      
1601 >
1602 >      rnemdFile_ << "#######################################################\n";
1603 >      rnemdFile_ << "# RNEMD {\n";
1604 >
1605 >      map<string, RNEMDMethod>::iterator mi;
1606 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1607 >        if ( (*mi).second == rnemdMethod_)
1608 >          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
1609 >      }
1610 >      map<string, RNEMDFluxType>::iterator fi;
1611 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1612 >        if ( (*fi).second == rnemdFluxType_)
1613 >          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
1614 >      }
1615 >      
1616 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
1617 >
1618 >      rnemdFile_ << "#    objectSelection = \""
1619 >                 << rnemdObjectSelection_ << "\";\n";
1620 >      rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n";
1621 >      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n";
1622 >      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n";
1623 >      rnemdFile_ << "# }\n";
1624 >      rnemdFile_ << "#######################################################\n";
1625 >      rnemdFile_ << "# RNEMD report:\n";      
1626 >      rnemdFile_ << "#     running time = " << time << " fs\n";
1627 >      rnemdFile_ << "#     target flux:\n";
1628 >      rnemdFile_ << "#         kinetic = " << kineticFlux_ << "\n";
1629 >      rnemdFile_ << "#         momentum = " << momentumFluxVector_ << "\n";
1630 >      rnemdFile_ << "#     target one-time exchanges:\n";
1631 >      rnemdFile_ << "#         kinetic = " << kineticTarget_ << "\n";
1632 >      rnemdFile_ << "#         momentum = " << momentumTarget_ << "\n";
1633 >      rnemdFile_ << "#     actual exchange totals:\n";
1634 >      rnemdFile_ << "#         kinetic = " << kineticExchange_ << "\n";
1635 >      rnemdFile_ << "#         momentum = " << momentumExchange_  << "\n";
1636 >      rnemdFile_ << "#     actual flux:\n";
1637 >      rnemdFile_ << "#         kinetic = " << Jz << "\n";
1638 >      rnemdFile_ << "#         momentum = " << JzP  << "\n";
1639 >      rnemdFile_ << "#     exchange statistics:\n";
1640 >      rnemdFile_ << "#         attempted = " << trialCount_ << "\n";
1641 >      rnemdFile_ << "#         failed = " << failTrialCount_ << "\n";    
1642 >      if (rnemdMethod_ == rnemdNIVS) {
1643 >        rnemdFile_ << "#         NIVS root-check errors = "
1644 >                   << failRootCount_ << "\n";
1645 >      }
1646 >      rnemdFile_ << "#######################################################\n";
1647 >      
1648 >      
1649 >      
1650 >      //write title
1651 >      rnemdFile_ << "#";
1652 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1653 >        if (outputMask_[i]) {
1654 >          rnemdFile_ << "\t" << data_[i].title <<
1655 >            "(" << data_[i].units << ")";
1656 >        }
1657 >      }
1658 >      rnemdFile_ << std::endl;
1659 >      
1660 >      rnemdFile_.precision(8);
1661 >      
1662 >      for (unsigned int j = 0; j < nBins_; j++) {        
1663 >        
1664 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1665 >          if (outputMask_[i]) {
1666 >            if (data_[i].dataType == "RealType")
1667 >              writeReal(i,j);
1668 >            else if (data_[i].dataType == "Vector3d")
1669 >              writeVector(i,j);
1670 >            else {
1671 >              sprintf( painCave.errMsg,
1672 >                       "RNEMD found an unknown data type for: %s ",
1673 >                       data_[i].title.c_str());
1674 >              painCave.isFatal = 1;
1675 >              simError();
1676 >            }
1677 >          }
1678 >        }
1679 >        rnemdFile_ << std::endl;
1680 >        
1681 >      }        
1682 >
1683 >      rnemdFile_ << "#######################################################\n";
1684 >      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1685 >      rnemdFile_ << "#######################################################\n";
1686 >
1687 >
1688 >      for (unsigned int j = 0; j < nBins_; j++) {        
1689 >        rnemdFile_ << "#";
1690 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1691 >          if (outputMask_[i]) {
1692 >            if (data_[i].dataType == "RealType")
1693 >              writeRealStdDev(i,j);
1694 >            else if (data_[i].dataType == "Vector3d")
1695 >              writeVectorStdDev(i,j);
1696 >            else {
1697 >              sprintf( painCave.errMsg,
1698 >                       "RNEMD found an unknown data type for: %s ",
1699 >                       data_[i].title.c_str());
1700 >              painCave.isFatal = 1;
1701 >              simError();
1702 >            }
1703 >          }
1704 >        }
1705 >        rnemdFile_ << std::endl;
1706 >        
1707 >      }        
1708 >      
1709 >      rnemdFile_.flush();
1710 >      rnemdFile_.close();
1711 >      
1712 > #ifdef IS_MPI
1713 >    }
1714 > #endif
1715 >    
1716 >  }
1717 >  
1718 >  void RNEMD::writeReal(int index, unsigned int bin) {
1719 >    assert(index >=0 && index < ENDINDEX);
1720 >    assert(bin < nBins_);
1721 >    RealType s;
1722 >    
1723 >    data_[index].accumulator[bin]->getAverage(s);
1724 >    
1725 >    if (! isinf(s) && ! isnan(s)) {
1726 >      rnemdFile_ << "\t" << s;
1727 >    } else{
1728 >      sprintf( painCave.errMsg,
1729 >               "RNEMD detected a numerical error writing: %s for bin %d",
1730 >               data_[index].title.c_str(), bin);
1731 >      painCave.isFatal = 1;
1732 >      simError();
1733 >    }    
1734 >  }
1735 >  
1736 >  void RNEMD::writeVector(int index, unsigned int bin) {
1737 >    assert(index >=0 && index < ENDINDEX);
1738 >    assert(bin < nBins_);
1739 >    Vector3d s;
1740 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1741 >    if (isinf(s[0]) || isnan(s[0]) ||
1742 >        isinf(s[1]) || isnan(s[1]) ||
1743 >        isinf(s[2]) || isnan(s[2]) ) {      
1744 >      sprintf( painCave.errMsg,
1745 >               "RNEMD detected a numerical error writing: %s for bin %d",
1746 >               data_[index].title.c_str(), bin);
1747 >      painCave.isFatal = 1;
1748 >      simError();
1749 >    } else {
1750 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1751 >    }
1752 >  }  
1753 >
1754 >  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1755 >    assert(index >=0 && index < ENDINDEX);
1756 >    assert(bin < nBins_);
1757 >    RealType s;
1758 >    
1759 >    data_[index].accumulator[bin]->getStdDev(s);
1760 >    
1761 >    if (! isinf(s) && ! isnan(s)) {
1762 >      rnemdFile_ << "\t" << s;
1763 >    } else{
1764 >      sprintf( painCave.errMsg,
1765 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1766 >               data_[index].title.c_str(), bin);
1767 >      painCave.isFatal = 1;
1768 >      simError();
1769 >    }    
1770 >  }
1771 >  
1772 >  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1773 >    assert(index >=0 && index < ENDINDEX);
1774 >    assert(bin < nBins_);
1775 >    Vector3d s;
1776 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1777 >    if (isinf(s[0]) || isnan(s[0]) ||
1778 >        isinf(s[1]) || isnan(s[1]) ||
1779 >        isinf(s[2]) || isnan(s[2]) ) {      
1780 >      sprintf( painCave.errMsg,
1781 >               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1782 >               data_[index].title.c_str(), bin);
1783 >      painCave.isFatal = 1;
1784 >      simError();
1785 >    } else {
1786 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1787 >    }
1788 >  }  
1789   }
1790 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (property svn:keywords), Revision 1775 by gezelter, Wed Aug 8 18:45:52 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines