1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <cmath> |
43 |
#include <sstream> |
44 |
#include <string> |
45 |
|
46 |
#include "rnemd/RNEMD.hpp" |
47 |
#include "math/Vector3.hpp" |
48 |
#include "math/Vector.hpp" |
49 |
#include "math/SquareMatrix3.hpp" |
50 |
#include "math/Polynomial.hpp" |
51 |
#include "primitives/Molecule.hpp" |
52 |
#include "primitives/StuntDouble.hpp" |
53 |
#include "utils/PhysicalConstants.hpp" |
54 |
#include "utils/Tuple.hpp" |
55 |
#include "brains/Thermo.hpp" |
56 |
#include "math/ConvexHull.hpp" |
57 |
#ifdef IS_MPI |
58 |
#include <mpi.h> |
59 |
#endif |
60 |
|
61 |
#ifdef _MSC_VER |
62 |
#define isnan(x) _isnan((x)) |
63 |
#define isinf(x) (!_finite(x) && !_isnan(x)) |
64 |
#endif |
65 |
|
66 |
#define HONKING_LARGE_VALUE 1.0e10 |
67 |
|
68 |
using namespace std; |
69 |
namespace OpenMD { |
70 |
|
71 |
RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), |
72 |
evaluatorA_(info), seleManA_(info), |
73 |
commonA_(info), evaluatorB_(info), |
74 |
seleManB_(info), commonB_(info), |
75 |
usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { |
76 |
|
77 |
trialCount_ = 0; |
78 |
failTrialCount_ = 0; |
79 |
failRootCount_ = 0; |
80 |
|
81 |
Globals* simParams = info->getSimParams(); |
82 |
RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); |
83 |
|
84 |
doRNEMD_ = rnemdParams->getUseRNEMD(); |
85 |
if (!doRNEMD_) return; |
86 |
|
87 |
stringToMethod_["Swap"] = rnemdSwap; |
88 |
stringToMethod_["NIVS"] = rnemdNIVS; |
89 |
stringToMethod_["VSS"] = rnemdVSS; |
90 |
|
91 |
stringToFluxType_["KE"] = rnemdKE; |
92 |
stringToFluxType_["Px"] = rnemdPx; |
93 |
stringToFluxType_["Py"] = rnemdPy; |
94 |
stringToFluxType_["Pz"] = rnemdPz; |
95 |
stringToFluxType_["Pvector"] = rnemdPvector; |
96 |
stringToFluxType_["Lx"] = rnemdLx; |
97 |
stringToFluxType_["Ly"] = rnemdLy; |
98 |
stringToFluxType_["Lz"] = rnemdLz; |
99 |
stringToFluxType_["Lvector"] = rnemdLvector; |
100 |
stringToFluxType_["KE+Px"] = rnemdKePx; |
101 |
stringToFluxType_["KE+Py"] = rnemdKePy; |
102 |
stringToFluxType_["KE+Pvector"] = rnemdKePvector; |
103 |
stringToFluxType_["KE+Lx"] = rnemdKeLx; |
104 |
stringToFluxType_["KE+Ly"] = rnemdKeLy; |
105 |
stringToFluxType_["KE+Lz"] = rnemdKeLz; |
106 |
stringToFluxType_["KE+Lvector"] = rnemdKeLvector; |
107 |
|
108 |
runTime_ = simParams->getRunTime(); |
109 |
statusTime_ = simParams->getStatusTime(); |
110 |
|
111 |
const string methStr = rnemdParams->getMethod(); |
112 |
bool hasFluxType = rnemdParams->haveFluxType(); |
113 |
|
114 |
rnemdObjectSelection_ = rnemdParams->getObjectSelection(); |
115 |
|
116 |
string fluxStr; |
117 |
if (hasFluxType) { |
118 |
fluxStr = rnemdParams->getFluxType(); |
119 |
} else { |
120 |
sprintf(painCave.errMsg, |
121 |
"RNEMD: No fluxType was set in the md file. This parameter,\n" |
122 |
"\twhich must be one of the following values:\n" |
123 |
"\tKE, Px, Py, Pz, Pvector, Lx, Ly, Lz, Lvector,\n" |
124 |
"\tKE+Px, KE+Py, KE+Pvector, KE+Lx, KE+Ly, KE+Lz, KE+Lvector\n" |
125 |
"\tmust be set to use RNEMD\n"); |
126 |
painCave.isFatal = 1; |
127 |
painCave.severity = OPENMD_ERROR; |
128 |
simError(); |
129 |
} |
130 |
|
131 |
bool hasKineticFlux = rnemdParams->haveKineticFlux(); |
132 |
bool hasMomentumFlux = rnemdParams->haveMomentumFlux(); |
133 |
bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector(); |
134 |
bool hasAngularMomentumFlux = rnemdParams->haveAngularMomentumFlux(); |
135 |
bool hasAngularMomentumFluxVector = rnemdParams->haveAngularMomentumFluxVector(); |
136 |
hasSelectionA_ = rnemdParams->haveSelectionA(); |
137 |
hasSelectionB_ = rnemdParams->haveSelectionB(); |
138 |
bool hasSlabWidth = rnemdParams->haveSlabWidth(); |
139 |
bool hasSlabACenter = rnemdParams->haveSlabACenter(); |
140 |
bool hasSlabBCenter = rnemdParams->haveSlabBCenter(); |
141 |
bool hasSphereARadius = rnemdParams->haveSphereARadius(); |
142 |
hasSphereBRadius_ = rnemdParams->haveSphereBRadius(); |
143 |
bool hasCoordinateOrigin = rnemdParams->haveCoordinateOrigin(); |
144 |
bool hasOutputFileName = rnemdParams->haveOutputFileName(); |
145 |
bool hasOutputFields = rnemdParams->haveOutputFields(); |
146 |
|
147 |
map<string, RNEMDMethod>::iterator i; |
148 |
i = stringToMethod_.find(methStr); |
149 |
if (i != stringToMethod_.end()) |
150 |
rnemdMethod_ = i->second; |
151 |
else { |
152 |
sprintf(painCave.errMsg, |
153 |
"RNEMD: The current method,\n" |
154 |
"\t\t%s is not one of the recognized\n" |
155 |
"\texchange methods: Swap, NIVS, or VSS\n", |
156 |
methStr.c_str()); |
157 |
painCave.isFatal = 1; |
158 |
painCave.severity = OPENMD_ERROR; |
159 |
simError(); |
160 |
} |
161 |
|
162 |
map<string, RNEMDFluxType>::iterator j; |
163 |
j = stringToFluxType_.find(fluxStr); |
164 |
if (j != stringToFluxType_.end()) |
165 |
rnemdFluxType_ = j->second; |
166 |
else { |
167 |
sprintf(painCave.errMsg, |
168 |
"RNEMD: The current fluxType,\n" |
169 |
"\t\t%s\n" |
170 |
"\tis not one of the recognized flux types.\n", |
171 |
fluxStr.c_str()); |
172 |
painCave.isFatal = 1; |
173 |
painCave.severity = OPENMD_ERROR; |
174 |
simError(); |
175 |
} |
176 |
|
177 |
bool methodFluxMismatch = false; |
178 |
bool hasCorrectFlux = false; |
179 |
switch(rnemdMethod_) { |
180 |
case rnemdSwap: |
181 |
switch (rnemdFluxType_) { |
182 |
case rnemdKE: |
183 |
hasCorrectFlux = hasKineticFlux; |
184 |
break; |
185 |
case rnemdPx: |
186 |
case rnemdPy: |
187 |
case rnemdPz: |
188 |
hasCorrectFlux = hasMomentumFlux; |
189 |
break; |
190 |
default : |
191 |
methodFluxMismatch = true; |
192 |
break; |
193 |
} |
194 |
break; |
195 |
case rnemdNIVS: |
196 |
switch (rnemdFluxType_) { |
197 |
case rnemdKE: |
198 |
case rnemdRotKE: |
199 |
case rnemdFullKE: |
200 |
hasCorrectFlux = hasKineticFlux; |
201 |
break; |
202 |
case rnemdPx: |
203 |
case rnemdPy: |
204 |
case rnemdPz: |
205 |
hasCorrectFlux = hasMomentumFlux; |
206 |
break; |
207 |
case rnemdKePx: |
208 |
case rnemdKePy: |
209 |
hasCorrectFlux = hasMomentumFlux && hasKineticFlux; |
210 |
break; |
211 |
default: |
212 |
methodFluxMismatch = true; |
213 |
break; |
214 |
} |
215 |
break; |
216 |
case rnemdVSS: |
217 |
switch (rnemdFluxType_) { |
218 |
case rnemdKE: |
219 |
case rnemdRotKE: |
220 |
case rnemdFullKE: |
221 |
hasCorrectFlux = hasKineticFlux; |
222 |
break; |
223 |
case rnemdPx: |
224 |
case rnemdPy: |
225 |
case rnemdPz: |
226 |
hasCorrectFlux = hasMomentumFlux; |
227 |
break; |
228 |
case rnemdLx: |
229 |
case rnemdLy: |
230 |
case rnemdLz: |
231 |
hasCorrectFlux = hasAngularMomentumFlux; |
232 |
break; |
233 |
case rnemdPvector: |
234 |
hasCorrectFlux = hasMomentumFluxVector; |
235 |
break; |
236 |
case rnemdLvector: |
237 |
hasCorrectFlux = hasAngularMomentumFluxVector; |
238 |
break; |
239 |
case rnemdKePx: |
240 |
case rnemdKePy: |
241 |
hasCorrectFlux = hasMomentumFlux && hasKineticFlux; |
242 |
break; |
243 |
case rnemdKeLx: |
244 |
case rnemdKeLy: |
245 |
case rnemdKeLz: |
246 |
hasCorrectFlux = hasAngularMomentumFlux && hasKineticFlux; |
247 |
break; |
248 |
case rnemdKePvector: |
249 |
hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux; |
250 |
break; |
251 |
case rnemdKeLvector: |
252 |
hasCorrectFlux = hasAngularMomentumFluxVector && hasKineticFlux; |
253 |
break; |
254 |
default: |
255 |
methodFluxMismatch = true; |
256 |
break; |
257 |
} |
258 |
default: |
259 |
break; |
260 |
} |
261 |
|
262 |
if (methodFluxMismatch) { |
263 |
sprintf(painCave.errMsg, |
264 |
"RNEMD: The current method,\n" |
265 |
"\t\t%s\n" |
266 |
"\tcannot be used with the current flux type, %s\n", |
267 |
methStr.c_str(), fluxStr.c_str()); |
268 |
painCave.isFatal = 1; |
269 |
painCave.severity = OPENMD_ERROR; |
270 |
simError(); |
271 |
} |
272 |
if (!hasCorrectFlux) { |
273 |
sprintf(painCave.errMsg, |
274 |
"RNEMD: The current method, %s, and flux type, %s,\n" |
275 |
"\tdid not have the correct flux value specified. Options\n" |
276 |
"\tinclude: kineticFlux, momentumFlux, angularMomentumFlux,\n" |
277 |
"\tmomentumFluxVector, and angularMomentumFluxVector.\n", |
278 |
methStr.c_str(), fluxStr.c_str()); |
279 |
painCave.isFatal = 1; |
280 |
painCave.severity = OPENMD_ERROR; |
281 |
simError(); |
282 |
} |
283 |
|
284 |
if (hasKineticFlux) { |
285 |
// convert the kcal / mol / Angstroms^2 / fs values in the md file |
286 |
// into amu / fs^3: |
287 |
kineticFlux_ = rnemdParams->getKineticFlux() |
288 |
* PhysicalConstants::energyConvert; |
289 |
} else { |
290 |
kineticFlux_ = 0.0; |
291 |
} |
292 |
if (hasMomentumFluxVector) { |
293 |
momentumFluxVector_ = rnemdParams->getMomentumFluxVector(); |
294 |
} else { |
295 |
momentumFluxVector_ = V3Zero; |
296 |
if (hasMomentumFlux) { |
297 |
RealType momentumFlux = rnemdParams->getMomentumFlux(); |
298 |
switch (rnemdFluxType_) { |
299 |
case rnemdPx: |
300 |
momentumFluxVector_.x() = momentumFlux; |
301 |
break; |
302 |
case rnemdPy: |
303 |
momentumFluxVector_.y() = momentumFlux; |
304 |
break; |
305 |
case rnemdPz: |
306 |
momentumFluxVector_.z() = momentumFlux; |
307 |
break; |
308 |
case rnemdKePx: |
309 |
momentumFluxVector_.x() = momentumFlux; |
310 |
break; |
311 |
case rnemdKePy: |
312 |
momentumFluxVector_.y() = momentumFlux; |
313 |
break; |
314 |
default: |
315 |
break; |
316 |
} |
317 |
} |
318 |
if (hasAngularMomentumFluxVector) { |
319 |
angularMomentumFluxVector_ = rnemdParams->getAngularMomentumFluxVector(); |
320 |
} else { |
321 |
angularMomentumFluxVector_ = V3Zero; |
322 |
if (hasAngularMomentumFlux) { |
323 |
RealType angularMomentumFlux = rnemdParams->getAngularMomentumFlux(); |
324 |
switch (rnemdFluxType_) { |
325 |
case rnemdLx: |
326 |
angularMomentumFluxVector_.x() = angularMomentumFlux; |
327 |
break; |
328 |
case rnemdLy: |
329 |
angularMomentumFluxVector_.y() = angularMomentumFlux; |
330 |
break; |
331 |
case rnemdLz: |
332 |
angularMomentumFluxVector_.z() = angularMomentumFlux; |
333 |
break; |
334 |
case rnemdKeLx: |
335 |
angularMomentumFluxVector_.x() = angularMomentumFlux; |
336 |
break; |
337 |
case rnemdKeLy: |
338 |
angularMomentumFluxVector_.y() = angularMomentumFlux; |
339 |
break; |
340 |
case rnemdKeLz: |
341 |
angularMomentumFluxVector_.z() = angularMomentumFlux; |
342 |
break; |
343 |
default: |
344 |
break; |
345 |
} |
346 |
} |
347 |
} |
348 |
|
349 |
if (hasCoordinateOrigin) { |
350 |
coordinateOrigin_ = rnemdParams->getCoordinateOrigin(); |
351 |
} else { |
352 |
coordinateOrigin_ = V3Zero; |
353 |
} |
354 |
|
355 |
// do some sanity checking |
356 |
|
357 |
int selectionCount = seleMan_.getSelectionCount(); |
358 |
|
359 |
int nIntegrable = info->getNGlobalIntegrableObjects(); |
360 |
|
361 |
if (selectionCount > nIntegrable) { |
362 |
sprintf(painCave.errMsg, |
363 |
"RNEMD: The current objectSelection,\n" |
364 |
"\t\t%s\n" |
365 |
"\thas resulted in %d selected objects. However,\n" |
366 |
"\tthe total number of integrable objects in the system\n" |
367 |
"\tis only %d. This is almost certainly not what you want\n" |
368 |
"\tto do. A likely cause of this is forgetting the _RB_0\n" |
369 |
"\tselector in the selection script!\n", |
370 |
rnemdObjectSelection_.c_str(), |
371 |
selectionCount, nIntegrable); |
372 |
painCave.isFatal = 0; |
373 |
painCave.severity = OPENMD_WARNING; |
374 |
simError(); |
375 |
} |
376 |
|
377 |
areaAccumulator_ = new Accumulator(); |
378 |
|
379 |
nBins_ = rnemdParams->getOutputBins(); |
380 |
binWidth_ = rnemdParams->getOutputBinWidth(); |
381 |
|
382 |
data_.resize(RNEMD::ENDINDEX); |
383 |
OutputData z; |
384 |
z.units = "Angstroms"; |
385 |
z.title = "Z"; |
386 |
z.dataType = "RealType"; |
387 |
z.accumulator.reserve(nBins_); |
388 |
for (int i = 0; i < nBins_; i++) |
389 |
z.accumulator.push_back( new Accumulator() ); |
390 |
data_[Z] = z; |
391 |
outputMap_["Z"] = Z; |
392 |
|
393 |
OutputData r; |
394 |
r.units = "Angstroms"; |
395 |
r.title = "R"; |
396 |
r.dataType = "RealType"; |
397 |
r.accumulator.reserve(nBins_); |
398 |
for (int i = 0; i < nBins_; i++) |
399 |
r.accumulator.push_back( new Accumulator() ); |
400 |
data_[R] = r; |
401 |
outputMap_["R"] = R; |
402 |
|
403 |
OutputData temperature; |
404 |
temperature.units = "K"; |
405 |
temperature.title = "Temperature"; |
406 |
temperature.dataType = "RealType"; |
407 |
temperature.accumulator.reserve(nBins_); |
408 |
for (int i = 0; i < nBins_; i++) |
409 |
temperature.accumulator.push_back( new Accumulator() ); |
410 |
data_[TEMPERATURE] = temperature; |
411 |
outputMap_["TEMPERATURE"] = TEMPERATURE; |
412 |
|
413 |
OutputData velocity; |
414 |
velocity.units = "angstroms/fs"; |
415 |
velocity.title = "Velocity"; |
416 |
velocity.dataType = "Vector3d"; |
417 |
velocity.accumulator.reserve(nBins_); |
418 |
for (int i = 0; i < nBins_; i++) |
419 |
velocity.accumulator.push_back( new VectorAccumulator() ); |
420 |
data_[VELOCITY] = velocity; |
421 |
outputMap_["VELOCITY"] = VELOCITY; |
422 |
|
423 |
OutputData density; |
424 |
density.units = "g cm^-3"; |
425 |
density.title = "Density"; |
426 |
density.dataType = "RealType"; |
427 |
density.accumulator.reserve(nBins_); |
428 |
for (int i = 0; i < nBins_; i++) |
429 |
density.accumulator.push_back( new Accumulator() ); |
430 |
data_[DENSITY] = density; |
431 |
outputMap_["DENSITY"] = DENSITY; |
432 |
|
433 |
if (hasOutputFields) { |
434 |
parseOutputFileFormat(rnemdParams->getOutputFields()); |
435 |
} else { |
436 |
if (usePeriodicBoundaryConditions_) |
437 |
outputMask_.set(Z); |
438 |
else |
439 |
outputMask_.set(R); |
440 |
switch (rnemdFluxType_) { |
441 |
case rnemdKE: |
442 |
case rnemdRotKE: |
443 |
case rnemdFullKE: |
444 |
outputMask_.set(TEMPERATURE); |
445 |
break; |
446 |
case rnemdPx: |
447 |
case rnemdPy: |
448 |
outputMask_.set(VELOCITY); |
449 |
break; |
450 |
case rnemdPz: |
451 |
case rnemdPvector: |
452 |
outputMask_.set(VELOCITY); |
453 |
outputMask_.set(DENSITY); |
454 |
break; |
455 |
case rnemdLx: |
456 |
case rnemdLy: |
457 |
case rnemdLz: |
458 |
case rnemdLvector: |
459 |
outputMask_.set(ANGULARVELOCITY); |
460 |
break; |
461 |
case rnemdKeLx: |
462 |
case rnemdKeLy: |
463 |
case rnemdKeLz: |
464 |
case rnemdKeLvector: |
465 |
outputMask_.set(TEMPERATURE); |
466 |
outputMask_.set(ANGULARVELOCITY); |
467 |
break; |
468 |
case rnemdKePx: |
469 |
case rnemdKePy: |
470 |
outputMask_.set(TEMPERATURE); |
471 |
outputMask_.set(VELOCITY); |
472 |
break; |
473 |
case rnemdKePvector: |
474 |
outputMask_.set(TEMPERATURE); |
475 |
outputMask_.set(VELOCITY); |
476 |
outputMask_.set(DENSITY); |
477 |
break; |
478 |
default: |
479 |
break; |
480 |
} |
481 |
} |
482 |
|
483 |
if (hasOutputFileName) { |
484 |
rnemdFileName_ = rnemdParams->getOutputFileName(); |
485 |
} else { |
486 |
rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; |
487 |
} |
488 |
|
489 |
exchangeTime_ = rnemdParams->getExchangeTime(); |
490 |
|
491 |
Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); |
492 |
// total exchange sums are zeroed out at the beginning: |
493 |
|
494 |
kineticExchange_ = 0.0; |
495 |
momentumExchange_ = V3Zero; |
496 |
angularMomentumExchange_ = V3Zero; |
497 |
|
498 |
std::ostringstream selectionAstream; |
499 |
std::ostringstream selectionBstream; |
500 |
|
501 |
if (hasSelectionA_) { |
502 |
selectionA_ = rnemdParams->getSelectionA(); |
503 |
} else { |
504 |
if (usePeriodicBoundaryConditions_) { |
505 |
Mat3x3d hmat = currentSnap_->getHmat(); |
506 |
|
507 |
if (hasSlabWidth) |
508 |
slabWidth_ = rnemdParams->getSlabWidth(); |
509 |
else |
510 |
slabWidth_ = hmat(2,2) / 10.0; |
511 |
|
512 |
if (hasSlabACenter) |
513 |
slabACenter_ = rnemdParams->getSlabACenter(); |
514 |
else |
515 |
slabACenter_ = 0.0; |
516 |
|
517 |
selectionAstream << "select wrappedz > " |
518 |
<< slabACenter_ - 0.5*slabWidth_ |
519 |
<< " && wrappedz < " |
520 |
<< slabACenter_ + 0.5*slabWidth_; |
521 |
selectionA_ = selectionAstream.str(); |
522 |
} else { |
523 |
if (hasSphereARadius) |
524 |
sphereARadius_ = rnemdParams->getSphereARadius(); |
525 |
else { |
526 |
// use an initial guess to the size of the inner slab to be 1/10 the |
527 |
// radius of an approximately spherical hull: |
528 |
Thermo thermo(info); |
529 |
RealType hVol = thermo.getHullVolume(); |
530 |
sphereARadius_ = 0.1 * pow((3.0 * hVol / (4.0 * M_PI)), 1.0/3.0); |
531 |
} |
532 |
selectionAstream << "select r < " << sphereARadius_; |
533 |
selectionA_ = selectionAstream.str(); |
534 |
} |
535 |
} |
536 |
|
537 |
if (hasSelectionB_) { |
538 |
selectionB_ = rnemdParams->getSelectionB(); |
539 |
} else { |
540 |
if (usePeriodicBoundaryConditions_) { |
541 |
Mat3x3d hmat = currentSnap_->getHmat(); |
542 |
|
543 |
if (hasSlabWidth) |
544 |
slabWidth_ = rnemdParams->getSlabWidth(); |
545 |
else |
546 |
slabWidth_ = hmat(2,2) / 10.0; |
547 |
|
548 |
if (hasSlabBCenter) |
549 |
slabBCenter_ = rnemdParams->getSlabACenter(); |
550 |
else |
551 |
slabBCenter_ = hmat(2,2) / 2.0; |
552 |
|
553 |
selectionBstream << "select wrappedz > " |
554 |
<< slabBCenter_ - 0.5*slabWidth_ |
555 |
<< " && wrappedz < " |
556 |
<< slabBCenter_ + 0.5*slabWidth_; |
557 |
selectionB_ = selectionBstream.str(); |
558 |
} else { |
559 |
if (hasSphereBRadius_) { |
560 |
sphereBRadius_ = rnemdParams->getSphereBRadius(); |
561 |
selectionBstream << "select r > " << sphereBRadius_; |
562 |
selectionB_ = selectionBstream.str(); |
563 |
} else { |
564 |
selectionB_ = "select hull"; |
565 |
hasSelectionB_ = true; |
566 |
} |
567 |
} |
568 |
} |
569 |
} |
570 |
// object evaluator: |
571 |
evaluator_.loadScriptString(rnemdObjectSelection_); |
572 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
573 |
|
574 |
evaluatorA_.loadScriptString(selectionA_); |
575 |
evaluatorB_.loadScriptString(selectionB_); |
576 |
|
577 |
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
578 |
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
579 |
|
580 |
commonA_ = seleManA_ & seleMan_; |
581 |
commonB_ = seleManB_ & seleMan_; |
582 |
} |
583 |
|
584 |
|
585 |
RNEMD::~RNEMD() { |
586 |
if (!doRNEMD_) return; |
587 |
#ifdef IS_MPI |
588 |
if (worldRank == 0) { |
589 |
#endif |
590 |
|
591 |
writeOutputFile(); |
592 |
|
593 |
rnemdFile_.close(); |
594 |
|
595 |
#ifdef IS_MPI |
596 |
} |
597 |
#endif |
598 |
} |
599 |
|
600 |
void RNEMD::doSwap(SelectionManager& smanA, SelectionManager& smanB) { |
601 |
if (!doRNEMD_) return; |
602 |
int selei; |
603 |
int selej; |
604 |
|
605 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
606 |
Mat3x3d hmat = currentSnap_->getHmat(); |
607 |
|
608 |
StuntDouble* sd; |
609 |
|
610 |
RealType min_val; |
611 |
bool min_found = false; |
612 |
StuntDouble* min_sd; |
613 |
|
614 |
RealType max_val; |
615 |
bool max_found = false; |
616 |
StuntDouble* max_sd; |
617 |
|
618 |
for (sd = seleManA_.beginSelected(selei); sd != NULL; |
619 |
sd = seleManA_.nextSelected(selei)) { |
620 |
|
621 |
Vector3d pos = sd->getPos(); |
622 |
|
623 |
// wrap the stuntdouble's position back into the box: |
624 |
|
625 |
if (usePeriodicBoundaryConditions_) |
626 |
currentSnap_->wrapVector(pos); |
627 |
|
628 |
RealType mass = sd->getMass(); |
629 |
Vector3d vel = sd->getVel(); |
630 |
RealType value; |
631 |
|
632 |
switch(rnemdFluxType_) { |
633 |
case rnemdKE : |
634 |
|
635 |
value = mass * vel.lengthSquare(); |
636 |
|
637 |
if (sd->isDirectional()) { |
638 |
Vector3d angMom = sd->getJ(); |
639 |
Mat3x3d I = sd->getI(); |
640 |
|
641 |
if (sd->isLinear()) { |
642 |
int i = sd->linearAxis(); |
643 |
int j = (i + 1) % 3; |
644 |
int k = (i + 2) % 3; |
645 |
value += angMom[j] * angMom[j] / I(j, j) + |
646 |
angMom[k] * angMom[k] / I(k, k); |
647 |
} else { |
648 |
value += angMom[0]*angMom[0]/I(0, 0) |
649 |
+ angMom[1]*angMom[1]/I(1, 1) |
650 |
+ angMom[2]*angMom[2]/I(2, 2); |
651 |
} |
652 |
} //angular momenta exchange enabled |
653 |
value *= 0.5; |
654 |
break; |
655 |
case rnemdPx : |
656 |
value = mass * vel[0]; |
657 |
break; |
658 |
case rnemdPy : |
659 |
value = mass * vel[1]; |
660 |
break; |
661 |
case rnemdPz : |
662 |
value = mass * vel[2]; |
663 |
break; |
664 |
default : |
665 |
break; |
666 |
} |
667 |
if (!max_found) { |
668 |
max_val = value; |
669 |
max_sd = sd; |
670 |
max_found = true; |
671 |
} else { |
672 |
if (max_val < value) { |
673 |
max_val = value; |
674 |
max_sd = sd; |
675 |
} |
676 |
} |
677 |
} |
678 |
|
679 |
for (sd = seleManB_.beginSelected(selej); sd != NULL; |
680 |
sd = seleManB_.nextSelected(selej)) { |
681 |
|
682 |
Vector3d pos = sd->getPos(); |
683 |
|
684 |
// wrap the stuntdouble's position back into the box: |
685 |
|
686 |
if (usePeriodicBoundaryConditions_) |
687 |
currentSnap_->wrapVector(pos); |
688 |
|
689 |
RealType mass = sd->getMass(); |
690 |
Vector3d vel = sd->getVel(); |
691 |
RealType value; |
692 |
|
693 |
switch(rnemdFluxType_) { |
694 |
case rnemdKE : |
695 |
|
696 |
value = mass * vel.lengthSquare(); |
697 |
|
698 |
if (sd->isDirectional()) { |
699 |
Vector3d angMom = sd->getJ(); |
700 |
Mat3x3d I = sd->getI(); |
701 |
|
702 |
if (sd->isLinear()) { |
703 |
int i = sd->linearAxis(); |
704 |
int j = (i + 1) % 3; |
705 |
int k = (i + 2) % 3; |
706 |
value += angMom[j] * angMom[j] / I(j, j) + |
707 |
angMom[k] * angMom[k] / I(k, k); |
708 |
} else { |
709 |
value += angMom[0]*angMom[0]/I(0, 0) |
710 |
+ angMom[1]*angMom[1]/I(1, 1) |
711 |
+ angMom[2]*angMom[2]/I(2, 2); |
712 |
} |
713 |
} //angular momenta exchange enabled |
714 |
value *= 0.5; |
715 |
break; |
716 |
case rnemdPx : |
717 |
value = mass * vel[0]; |
718 |
break; |
719 |
case rnemdPy : |
720 |
value = mass * vel[1]; |
721 |
break; |
722 |
case rnemdPz : |
723 |
value = mass * vel[2]; |
724 |
break; |
725 |
default : |
726 |
break; |
727 |
} |
728 |
|
729 |
if (!min_found) { |
730 |
min_val = value; |
731 |
min_sd = sd; |
732 |
min_found = true; |
733 |
} else { |
734 |
if (min_val > value) { |
735 |
min_val = value; |
736 |
min_sd = sd; |
737 |
} |
738 |
} |
739 |
} |
740 |
|
741 |
#ifdef IS_MPI |
742 |
int worldRank = MPI::COMM_WORLD.Get_rank(); |
743 |
|
744 |
bool my_min_found = min_found; |
745 |
bool my_max_found = max_found; |
746 |
|
747 |
// Even if we didn't find a minimum, did someone else? |
748 |
MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR); |
749 |
// Even if we didn't find a maximum, did someone else? |
750 |
MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR); |
751 |
#endif |
752 |
|
753 |
if (max_found && min_found) { |
754 |
|
755 |
#ifdef IS_MPI |
756 |
struct { |
757 |
RealType val; |
758 |
int rank; |
759 |
} max_vals, min_vals; |
760 |
|
761 |
if (my_min_found) { |
762 |
min_vals.val = min_val; |
763 |
} else { |
764 |
min_vals.val = HONKING_LARGE_VALUE; |
765 |
} |
766 |
min_vals.rank = worldRank; |
767 |
|
768 |
// Who had the minimum? |
769 |
MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals, |
770 |
1, MPI::REALTYPE_INT, MPI::MINLOC); |
771 |
min_val = min_vals.val; |
772 |
|
773 |
if (my_max_found) { |
774 |
max_vals.val = max_val; |
775 |
} else { |
776 |
max_vals.val = -HONKING_LARGE_VALUE; |
777 |
} |
778 |
max_vals.rank = worldRank; |
779 |
|
780 |
// Who had the maximum? |
781 |
MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals, |
782 |
1, MPI::REALTYPE_INT, MPI::MAXLOC); |
783 |
max_val = max_vals.val; |
784 |
#endif |
785 |
|
786 |
if (min_val < max_val) { |
787 |
|
788 |
#ifdef IS_MPI |
789 |
if (max_vals.rank == worldRank && min_vals.rank == worldRank) { |
790 |
// I have both maximum and minimum, so proceed like a single |
791 |
// processor version: |
792 |
#endif |
793 |
|
794 |
Vector3d min_vel = min_sd->getVel(); |
795 |
Vector3d max_vel = max_sd->getVel(); |
796 |
RealType temp_vel; |
797 |
|
798 |
switch(rnemdFluxType_) { |
799 |
case rnemdKE : |
800 |
min_sd->setVel(max_vel); |
801 |
max_sd->setVel(min_vel); |
802 |
if (min_sd->isDirectional() && max_sd->isDirectional()) { |
803 |
Vector3d min_angMom = min_sd->getJ(); |
804 |
Vector3d max_angMom = max_sd->getJ(); |
805 |
min_sd->setJ(max_angMom); |
806 |
max_sd->setJ(min_angMom); |
807 |
}//angular momenta exchange enabled |
808 |
//assumes same rigid body identity |
809 |
break; |
810 |
case rnemdPx : |
811 |
temp_vel = min_vel.x(); |
812 |
min_vel.x() = max_vel.x(); |
813 |
max_vel.x() = temp_vel; |
814 |
min_sd->setVel(min_vel); |
815 |
max_sd->setVel(max_vel); |
816 |
break; |
817 |
case rnemdPy : |
818 |
temp_vel = min_vel.y(); |
819 |
min_vel.y() = max_vel.y(); |
820 |
max_vel.y() = temp_vel; |
821 |
min_sd->setVel(min_vel); |
822 |
max_sd->setVel(max_vel); |
823 |
break; |
824 |
case rnemdPz : |
825 |
temp_vel = min_vel.z(); |
826 |
min_vel.z() = max_vel.z(); |
827 |
max_vel.z() = temp_vel; |
828 |
min_sd->setVel(min_vel); |
829 |
max_sd->setVel(max_vel); |
830 |
break; |
831 |
default : |
832 |
break; |
833 |
} |
834 |
|
835 |
#ifdef IS_MPI |
836 |
// the rest of the cases only apply in parallel simulations: |
837 |
} else if (max_vals.rank == worldRank) { |
838 |
// I had the max, but not the minimum |
839 |
|
840 |
Vector3d min_vel; |
841 |
Vector3d max_vel = max_sd->getVel(); |
842 |
MPI::Status status; |
843 |
|
844 |
// point-to-point swap of the velocity vector |
845 |
MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE, |
846 |
min_vals.rank, 0, |
847 |
min_vel.getArrayPointer(), 3, MPI::REALTYPE, |
848 |
min_vals.rank, 0, status); |
849 |
|
850 |
switch(rnemdFluxType_) { |
851 |
case rnemdKE : |
852 |
max_sd->setVel(min_vel); |
853 |
//angular momenta exchange enabled |
854 |
if (max_sd->isDirectional()) { |
855 |
Vector3d min_angMom; |
856 |
Vector3d max_angMom = max_sd->getJ(); |
857 |
|
858 |
// point-to-point swap of the angular momentum vector |
859 |
MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3, |
860 |
MPI::REALTYPE, min_vals.rank, 1, |
861 |
min_angMom.getArrayPointer(), 3, |
862 |
MPI::REALTYPE, min_vals.rank, 1, |
863 |
status); |
864 |
|
865 |
max_sd->setJ(min_angMom); |
866 |
} |
867 |
break; |
868 |
case rnemdPx : |
869 |
max_vel.x() = min_vel.x(); |
870 |
max_sd->setVel(max_vel); |
871 |
break; |
872 |
case rnemdPy : |
873 |
max_vel.y() = min_vel.y(); |
874 |
max_sd->setVel(max_vel); |
875 |
break; |
876 |
case rnemdPz : |
877 |
max_vel.z() = min_vel.z(); |
878 |
max_sd->setVel(max_vel); |
879 |
break; |
880 |
default : |
881 |
break; |
882 |
} |
883 |
} else if (min_vals.rank == worldRank) { |
884 |
// I had the minimum but not the maximum: |
885 |
|
886 |
Vector3d max_vel; |
887 |
Vector3d min_vel = min_sd->getVel(); |
888 |
MPI::Status status; |
889 |
|
890 |
// point-to-point swap of the velocity vector |
891 |
MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE, |
892 |
max_vals.rank, 0, |
893 |
max_vel.getArrayPointer(), 3, MPI::REALTYPE, |
894 |
max_vals.rank, 0, status); |
895 |
|
896 |
switch(rnemdFluxType_) { |
897 |
case rnemdKE : |
898 |
min_sd->setVel(max_vel); |
899 |
//angular momenta exchange enabled |
900 |
if (min_sd->isDirectional()) { |
901 |
Vector3d min_angMom = min_sd->getJ(); |
902 |
Vector3d max_angMom; |
903 |
|
904 |
// point-to-point swap of the angular momentum vector |
905 |
MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3, |
906 |
MPI::REALTYPE, max_vals.rank, 1, |
907 |
max_angMom.getArrayPointer(), 3, |
908 |
MPI::REALTYPE, max_vals.rank, 1, |
909 |
status); |
910 |
|
911 |
min_sd->setJ(max_angMom); |
912 |
} |
913 |
break; |
914 |
case rnemdPx : |
915 |
min_vel.x() = max_vel.x(); |
916 |
min_sd->setVel(min_vel); |
917 |
break; |
918 |
case rnemdPy : |
919 |
min_vel.y() = max_vel.y(); |
920 |
min_sd->setVel(min_vel); |
921 |
break; |
922 |
case rnemdPz : |
923 |
min_vel.z() = max_vel.z(); |
924 |
min_sd->setVel(min_vel); |
925 |
break; |
926 |
default : |
927 |
break; |
928 |
} |
929 |
} |
930 |
#endif |
931 |
|
932 |
switch(rnemdFluxType_) { |
933 |
case rnemdKE: |
934 |
kineticExchange_ += max_val - min_val; |
935 |
break; |
936 |
case rnemdPx: |
937 |
momentumExchange_.x() += max_val - min_val; |
938 |
break; |
939 |
case rnemdPy: |
940 |
momentumExchange_.y() += max_val - min_val; |
941 |
break; |
942 |
case rnemdPz: |
943 |
momentumExchange_.z() += max_val - min_val; |
944 |
break; |
945 |
default: |
946 |
break; |
947 |
} |
948 |
} else { |
949 |
sprintf(painCave.errMsg, |
950 |
"RNEMD::doSwap exchange NOT performed because min_val > max_val\n"); |
951 |
painCave.isFatal = 0; |
952 |
painCave.severity = OPENMD_INFO; |
953 |
simError(); |
954 |
failTrialCount_++; |
955 |
} |
956 |
} else { |
957 |
sprintf(painCave.errMsg, |
958 |
"RNEMD::doSwap exchange NOT performed because selected object\n" |
959 |
"\twas not present in at least one of the two slabs.\n"); |
960 |
painCave.isFatal = 0; |
961 |
painCave.severity = OPENMD_INFO; |
962 |
simError(); |
963 |
failTrialCount_++; |
964 |
} |
965 |
} |
966 |
|
967 |
void RNEMD::doNIVS(SelectionManager& smanA, SelectionManager& smanB) { |
968 |
if (!doRNEMD_) return; |
969 |
int selei; |
970 |
int selej; |
971 |
|
972 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
973 |
RealType time = currentSnap_->getTime(); |
974 |
Mat3x3d hmat = currentSnap_->getHmat(); |
975 |
|
976 |
StuntDouble* sd; |
977 |
|
978 |
vector<StuntDouble*> hotBin, coldBin; |
979 |
|
980 |
RealType Phx = 0.0; |
981 |
RealType Phy = 0.0; |
982 |
RealType Phz = 0.0; |
983 |
RealType Khx = 0.0; |
984 |
RealType Khy = 0.0; |
985 |
RealType Khz = 0.0; |
986 |
RealType Khw = 0.0; |
987 |
RealType Pcx = 0.0; |
988 |
RealType Pcy = 0.0; |
989 |
RealType Pcz = 0.0; |
990 |
RealType Kcx = 0.0; |
991 |
RealType Kcy = 0.0; |
992 |
RealType Kcz = 0.0; |
993 |
RealType Kcw = 0.0; |
994 |
|
995 |
for (sd = smanA.beginSelected(selei); sd != NULL; |
996 |
sd = smanA.nextSelected(selei)) { |
997 |
|
998 |
Vector3d pos = sd->getPos(); |
999 |
|
1000 |
// wrap the stuntdouble's position back into the box: |
1001 |
|
1002 |
if (usePeriodicBoundaryConditions_) |
1003 |
currentSnap_->wrapVector(pos); |
1004 |
|
1005 |
|
1006 |
RealType mass = sd->getMass(); |
1007 |
Vector3d vel = sd->getVel(); |
1008 |
|
1009 |
hotBin.push_back(sd); |
1010 |
Phx += mass * vel.x(); |
1011 |
Phy += mass * vel.y(); |
1012 |
Phz += mass * vel.z(); |
1013 |
Khx += mass * vel.x() * vel.x(); |
1014 |
Khy += mass * vel.y() * vel.y(); |
1015 |
Khz += mass * vel.z() * vel.z(); |
1016 |
if (sd->isDirectional()) { |
1017 |
Vector3d angMom = sd->getJ(); |
1018 |
Mat3x3d I = sd->getI(); |
1019 |
if (sd->isLinear()) { |
1020 |
int i = sd->linearAxis(); |
1021 |
int j = (i + 1) % 3; |
1022 |
int k = (i + 2) % 3; |
1023 |
Khw += angMom[j] * angMom[j] / I(j, j) + |
1024 |
angMom[k] * angMom[k] / I(k, k); |
1025 |
} else { |
1026 |
Khw += angMom[0]*angMom[0]/I(0, 0) |
1027 |
+ angMom[1]*angMom[1]/I(1, 1) |
1028 |
+ angMom[2]*angMom[2]/I(2, 2); |
1029 |
} |
1030 |
} |
1031 |
} |
1032 |
for (sd = smanB.beginSelected(selej); sd != NULL; |
1033 |
sd = smanB.nextSelected(selej)) { |
1034 |
Vector3d pos = sd->getPos(); |
1035 |
|
1036 |
// wrap the stuntdouble's position back into the box: |
1037 |
|
1038 |
if (usePeriodicBoundaryConditions_) |
1039 |
currentSnap_->wrapVector(pos); |
1040 |
|
1041 |
RealType mass = sd->getMass(); |
1042 |
Vector3d vel = sd->getVel(); |
1043 |
|
1044 |
coldBin.push_back(sd); |
1045 |
Pcx += mass * vel.x(); |
1046 |
Pcy += mass * vel.y(); |
1047 |
Pcz += mass * vel.z(); |
1048 |
Kcx += mass * vel.x() * vel.x(); |
1049 |
Kcy += mass * vel.y() * vel.y(); |
1050 |
Kcz += mass * vel.z() * vel.z(); |
1051 |
if (sd->isDirectional()) { |
1052 |
Vector3d angMom = sd->getJ(); |
1053 |
Mat3x3d I = sd->getI(); |
1054 |
if (sd->isLinear()) { |
1055 |
int i = sd->linearAxis(); |
1056 |
int j = (i + 1) % 3; |
1057 |
int k = (i + 2) % 3; |
1058 |
Kcw += angMom[j] * angMom[j] / I(j, j) + |
1059 |
angMom[k] * angMom[k] / I(k, k); |
1060 |
} else { |
1061 |
Kcw += angMom[0]*angMom[0]/I(0, 0) |
1062 |
+ angMom[1]*angMom[1]/I(1, 1) |
1063 |
+ angMom[2]*angMom[2]/I(2, 2); |
1064 |
} |
1065 |
} |
1066 |
} |
1067 |
|
1068 |
Khx *= 0.5; |
1069 |
Khy *= 0.5; |
1070 |
Khz *= 0.5; |
1071 |
Khw *= 0.5; |
1072 |
Kcx *= 0.5; |
1073 |
Kcy *= 0.5; |
1074 |
Kcz *= 0.5; |
1075 |
Kcw *= 0.5; |
1076 |
|
1077 |
#ifdef IS_MPI |
1078 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM); |
1079 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM); |
1080 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM); |
1081 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM); |
1082 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM); |
1083 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM); |
1084 |
|
1085 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM); |
1086 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM); |
1087 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM); |
1088 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM); |
1089 |
|
1090 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM); |
1091 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM); |
1092 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM); |
1093 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM); |
1094 |
#endif |
1095 |
|
1096 |
//solve coldBin coeff's first |
1097 |
RealType px = Pcx / Phx; |
1098 |
RealType py = Pcy / Phy; |
1099 |
RealType pz = Pcz / Phz; |
1100 |
RealType c, x, y, z; |
1101 |
bool successfulScale = false; |
1102 |
if ((rnemdFluxType_ == rnemdFullKE) || |
1103 |
(rnemdFluxType_ == rnemdRotKE)) { |
1104 |
//may need sanity check Khw & Kcw > 0 |
1105 |
|
1106 |
if (rnemdFluxType_ == rnemdFullKE) { |
1107 |
c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw); |
1108 |
} else { |
1109 |
c = 1.0 - kineticTarget_ / Kcw; |
1110 |
} |
1111 |
|
1112 |
if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients |
1113 |
c = sqrt(c); |
1114 |
|
1115 |
RealType w = 0.0; |
1116 |
if (rnemdFluxType_ == rnemdFullKE) { |
1117 |
x = 1.0 + px * (1.0 - c); |
1118 |
y = 1.0 + py * (1.0 - c); |
1119 |
z = 1.0 + pz * (1.0 - c); |
1120 |
/* more complicated way |
1121 |
w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz |
1122 |
+ Khx * px * px + Khy * py * py + Khz * pz * pz) |
1123 |
- 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py) |
1124 |
+ Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px) |
1125 |
+ Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
1126 |
- Kcx - Kcy - Kcz)) / Khw; the following is simpler |
1127 |
*/ |
1128 |
if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) && |
1129 |
(fabs(z - 1.0) < 0.1)) { |
1130 |
w = 1.0 + (kineticTarget_ |
1131 |
+ Khx * (1.0 - x * x) + Khy * (1.0 - y * y) |
1132 |
+ Khz * (1.0 - z * z)) / Khw; |
1133 |
}//no need to calculate w if x, y or z is out of range |
1134 |
} else { |
1135 |
w = 1.0 + kineticTarget_ / Khw; |
1136 |
} |
1137 |
if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients |
1138 |
//if w is in the right range, so should be x, y, z. |
1139 |
vector<StuntDouble*>::iterator sdi; |
1140 |
Vector3d vel; |
1141 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1142 |
if (rnemdFluxType_ == rnemdFullKE) { |
1143 |
vel = (*sdi)->getVel() * c; |
1144 |
(*sdi)->setVel(vel); |
1145 |
} |
1146 |
if ((*sdi)->isDirectional()) { |
1147 |
Vector3d angMom = (*sdi)->getJ() * c; |
1148 |
(*sdi)->setJ(angMom); |
1149 |
} |
1150 |
} |
1151 |
w = sqrt(w); |
1152 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1153 |
if (rnemdFluxType_ == rnemdFullKE) { |
1154 |
vel = (*sdi)->getVel(); |
1155 |
vel.x() *= x; |
1156 |
vel.y() *= y; |
1157 |
vel.z() *= z; |
1158 |
(*sdi)->setVel(vel); |
1159 |
} |
1160 |
if ((*sdi)->isDirectional()) { |
1161 |
Vector3d angMom = (*sdi)->getJ() * w; |
1162 |
(*sdi)->setJ(angMom); |
1163 |
} |
1164 |
} |
1165 |
successfulScale = true; |
1166 |
kineticExchange_ += kineticTarget_; |
1167 |
} |
1168 |
} |
1169 |
} else { |
1170 |
RealType a000, a110, c0, a001, a111, b01, b11, c1; |
1171 |
switch(rnemdFluxType_) { |
1172 |
case rnemdKE : |
1173 |
/* used hotBin coeff's & only scale x & y dimensions |
1174 |
RealType px = Phx / Pcx; |
1175 |
RealType py = Phy / Pcy; |
1176 |
a110 = Khy; |
1177 |
c0 = - Khx - Khy - kineticTarget_; |
1178 |
a000 = Khx; |
1179 |
a111 = Kcy * py * py; |
1180 |
b11 = -2.0 * Kcy * py * (1.0 + py); |
1181 |
c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_; |
1182 |
b01 = -2.0 * Kcx * px * (1.0 + px); |
1183 |
a001 = Kcx * px * px; |
1184 |
*/ |
1185 |
//scale all three dimensions, let c_x = c_y |
1186 |
a000 = Kcx + Kcy; |
1187 |
a110 = Kcz; |
1188 |
c0 = kineticTarget_ - Kcx - Kcy - Kcz; |
1189 |
a001 = Khx * px * px + Khy * py * py; |
1190 |
a111 = Khz * pz * pz; |
1191 |
b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)); |
1192 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
1193 |
c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
1194 |
+ Khz * pz * (2.0 + pz) - kineticTarget_; |
1195 |
break; |
1196 |
case rnemdPx : |
1197 |
c = 1 - momentumTarget_.x() / Pcx; |
1198 |
a000 = Kcy; |
1199 |
a110 = Kcz; |
1200 |
c0 = Kcx * c * c - Kcx - Kcy - Kcz; |
1201 |
a001 = py * py * Khy; |
1202 |
a111 = pz * pz * Khz; |
1203 |
b01 = -2.0 * Khy * py * (1.0 + py); |
1204 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
1205 |
c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
1206 |
+ Khx * (fastpow(c * px - px - 1.0, 2) - 1.0); |
1207 |
break; |
1208 |
case rnemdPy : |
1209 |
c = 1 - momentumTarget_.y() / Pcy; |
1210 |
a000 = Kcx; |
1211 |
a110 = Kcz; |
1212 |
c0 = Kcy * c * c - Kcx - Kcy - Kcz; |
1213 |
a001 = px * px * Khx; |
1214 |
a111 = pz * pz * Khz; |
1215 |
b01 = -2.0 * Khx * px * (1.0 + px); |
1216 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
1217 |
c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz) |
1218 |
+ Khy * (fastpow(c * py - py - 1.0, 2) - 1.0); |
1219 |
break; |
1220 |
case rnemdPz ://we don't really do this, do we? |
1221 |
c = 1 - momentumTarget_.z() / Pcz; |
1222 |
a000 = Kcx; |
1223 |
a110 = Kcy; |
1224 |
c0 = Kcz * c * c - Kcx - Kcy - Kcz; |
1225 |
a001 = px * px * Khx; |
1226 |
a111 = py * py * Khy; |
1227 |
b01 = -2.0 * Khx * px * (1.0 + px); |
1228 |
b11 = -2.0 * Khy * py * (1.0 + py); |
1229 |
c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
1230 |
+ Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0); |
1231 |
break; |
1232 |
default : |
1233 |
break; |
1234 |
} |
1235 |
|
1236 |
RealType v1 = a000 * a111 - a001 * a110; |
1237 |
RealType v2 = a000 * b01; |
1238 |
RealType v3 = a000 * b11; |
1239 |
RealType v4 = a000 * c1 - a001 * c0; |
1240 |
RealType v8 = a110 * b01; |
1241 |
RealType v10 = - b01 * c0; |
1242 |
|
1243 |
RealType u0 = v2 * v10 - v4 * v4; |
1244 |
RealType u1 = -2.0 * v3 * v4; |
1245 |
RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4; |
1246 |
RealType u3 = -2.0 * v1 * v3; |
1247 |
RealType u4 = - v1 * v1; |
1248 |
//rescale coefficients |
1249 |
RealType maxAbs = fabs(u0); |
1250 |
if (maxAbs < fabs(u1)) maxAbs = fabs(u1); |
1251 |
if (maxAbs < fabs(u2)) maxAbs = fabs(u2); |
1252 |
if (maxAbs < fabs(u3)) maxAbs = fabs(u3); |
1253 |
if (maxAbs < fabs(u4)) maxAbs = fabs(u4); |
1254 |
u0 /= maxAbs; |
1255 |
u1 /= maxAbs; |
1256 |
u2 /= maxAbs; |
1257 |
u3 /= maxAbs; |
1258 |
u4 /= maxAbs; |
1259 |
//max_element(start, end) is also available. |
1260 |
Polynomial<RealType> poly; //same as DoublePolynomial poly; |
1261 |
poly.setCoefficient(4, u4); |
1262 |
poly.setCoefficient(3, u3); |
1263 |
poly.setCoefficient(2, u2); |
1264 |
poly.setCoefficient(1, u1); |
1265 |
poly.setCoefficient(0, u0); |
1266 |
vector<RealType> realRoots = poly.FindRealRoots(); |
1267 |
|
1268 |
vector<RealType>::iterator ri; |
1269 |
RealType r1, r2, alpha0; |
1270 |
vector<pair<RealType,RealType> > rps; |
1271 |
for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) { |
1272 |
r2 = *ri; |
1273 |
//check if FindRealRoots() give the right answer |
1274 |
if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { |
1275 |
sprintf(painCave.errMsg, |
1276 |
"RNEMD Warning: polynomial solve seems to have an error!"); |
1277 |
painCave.isFatal = 0; |
1278 |
simError(); |
1279 |
failRootCount_++; |
1280 |
} |
1281 |
//might not be useful w/o rescaling coefficients |
1282 |
alpha0 = -c0 - a110 * r2 * r2; |
1283 |
if (alpha0 >= 0.0) { |
1284 |
r1 = sqrt(alpha0 / a000); |
1285 |
if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) |
1286 |
< 1e-6) |
1287 |
{ rps.push_back(make_pair(r1, r2)); } |
1288 |
if (r1 > 1e-6) { //r1 non-negative |
1289 |
r1 = -r1; |
1290 |
if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) |
1291 |
< 1e-6) |
1292 |
{ rps.push_back(make_pair(r1, r2)); } |
1293 |
} |
1294 |
} |
1295 |
} |
1296 |
// Consider combining together the solving pair part w/ the searching |
1297 |
// best solution part so that we don't need the pairs vector |
1298 |
if (!rps.empty()) { |
1299 |
RealType smallestDiff = HONKING_LARGE_VALUE; |
1300 |
RealType diff; |
1301 |
pair<RealType,RealType> bestPair = make_pair(1.0, 1.0); |
1302 |
vector<pair<RealType,RealType> >::iterator rpi; |
1303 |
for (rpi = rps.begin(); rpi != rps.end(); rpi++) { |
1304 |
r1 = (*rpi).first; |
1305 |
r2 = (*rpi).second; |
1306 |
switch(rnemdFluxType_) { |
1307 |
case rnemdKE : |
1308 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1309 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2) |
1310 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1311 |
break; |
1312 |
case rnemdPx : |
1313 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1314 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1315 |
break; |
1316 |
case rnemdPy : |
1317 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1318 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2); |
1319 |
break; |
1320 |
case rnemdPz : |
1321 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1322 |
+ fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2); |
1323 |
default : |
1324 |
break; |
1325 |
} |
1326 |
if (diff < smallestDiff) { |
1327 |
smallestDiff = diff; |
1328 |
bestPair = *rpi; |
1329 |
} |
1330 |
} |
1331 |
#ifdef IS_MPI |
1332 |
if (worldRank == 0) { |
1333 |
#endif |
1334 |
// sprintf(painCave.errMsg, |
1335 |
// "RNEMD: roots r1= %lf\tr2 = %lf\n", |
1336 |
// bestPair.first, bestPair.second); |
1337 |
// painCave.isFatal = 0; |
1338 |
// painCave.severity = OPENMD_INFO; |
1339 |
// simError(); |
1340 |
#ifdef IS_MPI |
1341 |
} |
1342 |
#endif |
1343 |
|
1344 |
switch(rnemdFluxType_) { |
1345 |
case rnemdKE : |
1346 |
x = bestPair.first; |
1347 |
y = bestPair.first; |
1348 |
z = bestPair.second; |
1349 |
break; |
1350 |
case rnemdPx : |
1351 |
x = c; |
1352 |
y = bestPair.first; |
1353 |
z = bestPair.second; |
1354 |
break; |
1355 |
case rnemdPy : |
1356 |
x = bestPair.first; |
1357 |
y = c; |
1358 |
z = bestPair.second; |
1359 |
break; |
1360 |
case rnemdPz : |
1361 |
x = bestPair.first; |
1362 |
y = bestPair.second; |
1363 |
z = c; |
1364 |
break; |
1365 |
default : |
1366 |
break; |
1367 |
} |
1368 |
vector<StuntDouble*>::iterator sdi; |
1369 |
Vector3d vel; |
1370 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1371 |
vel = (*sdi)->getVel(); |
1372 |
vel.x() *= x; |
1373 |
vel.y() *= y; |
1374 |
vel.z() *= z; |
1375 |
(*sdi)->setVel(vel); |
1376 |
} |
1377 |
//convert to hotBin coefficient |
1378 |
x = 1.0 + px * (1.0 - x); |
1379 |
y = 1.0 + py * (1.0 - y); |
1380 |
z = 1.0 + pz * (1.0 - z); |
1381 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1382 |
vel = (*sdi)->getVel(); |
1383 |
vel.x() *= x; |
1384 |
vel.y() *= y; |
1385 |
vel.z() *= z; |
1386 |
(*sdi)->setVel(vel); |
1387 |
} |
1388 |
successfulScale = true; |
1389 |
switch(rnemdFluxType_) { |
1390 |
case rnemdKE : |
1391 |
kineticExchange_ += kineticTarget_; |
1392 |
break; |
1393 |
case rnemdPx : |
1394 |
case rnemdPy : |
1395 |
case rnemdPz : |
1396 |
momentumExchange_ += momentumTarget_; |
1397 |
break; |
1398 |
default : |
1399 |
break; |
1400 |
} |
1401 |
} |
1402 |
} |
1403 |
if (successfulScale != true) { |
1404 |
sprintf(painCave.errMsg, |
1405 |
"RNEMD::doNIVS exchange NOT performed - roots that solve\n" |
1406 |
"\tthe constraint equations may not exist or there may be\n" |
1407 |
"\tno selected objects in one or both slabs.\n"); |
1408 |
painCave.isFatal = 0; |
1409 |
painCave.severity = OPENMD_INFO; |
1410 |
simError(); |
1411 |
failTrialCount_++; |
1412 |
} |
1413 |
} |
1414 |
|
1415 |
void RNEMD::doVSS(SelectionManager& smanA, SelectionManager& smanB) { |
1416 |
if (!doRNEMD_) return; |
1417 |
int selei; |
1418 |
int selej; |
1419 |
|
1420 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1421 |
RealType time = currentSnap_->getTime(); |
1422 |
Mat3x3d hmat = currentSnap_->getHmat(); |
1423 |
|
1424 |
StuntDouble* sd; |
1425 |
|
1426 |
vector<StuntDouble*> hotBin, coldBin; |
1427 |
|
1428 |
Vector3d Ph(V3Zero); |
1429 |
Vector3d Lh(V3Zero); |
1430 |
RealType Mh = 0.0; |
1431 |
Mat3x3d Ih(0.0); |
1432 |
RealType Kh = 0.0; |
1433 |
Vector3d Pc(V3Zero); |
1434 |
Vector3d Lc(V3Zero); |
1435 |
RealType Mc = 0.0; |
1436 |
Mat3x3d Ic(0.0); |
1437 |
RealType Kc = 0.0; |
1438 |
|
1439 |
for (sd = smanA.beginSelected(selei); sd != NULL; |
1440 |
sd = smanA.nextSelected(selei)) { |
1441 |
|
1442 |
Vector3d pos = sd->getPos(); |
1443 |
|
1444 |
// wrap the stuntdouble's position back into the box: |
1445 |
|
1446 |
if (usePeriodicBoundaryConditions_) |
1447 |
currentSnap_->wrapVector(pos); |
1448 |
|
1449 |
RealType mass = sd->getMass(); |
1450 |
Vector3d vel = sd->getVel(); |
1451 |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1452 |
RealType r2; |
1453 |
|
1454 |
hotBin.push_back(sd); |
1455 |
Ph += mass * vel; |
1456 |
Mh += mass; |
1457 |
Kh += mass * vel.lengthSquare(); |
1458 |
Lh += mass * cross(rPos, vel); |
1459 |
Ih -= outProduct(rPos, rPos) * mass; |
1460 |
r2 = rPos.lengthSquare(); |
1461 |
Ih(0, 0) += mass * r2; |
1462 |
Ih(1, 1) += mass * r2; |
1463 |
Ih(2, 2) += mass * r2; |
1464 |
|
1465 |
if (rnemdFluxType_ == rnemdFullKE) { |
1466 |
if (sd->isDirectional()) { |
1467 |
Vector3d angMom = sd->getJ(); |
1468 |
Mat3x3d I = sd->getI(); |
1469 |
if (sd->isLinear()) { |
1470 |
int i = sd->linearAxis(); |
1471 |
int j = (i + 1) % 3; |
1472 |
int k = (i + 2) % 3; |
1473 |
Kh += angMom[j] * angMom[j] / I(j, j) + |
1474 |
angMom[k] * angMom[k] / I(k, k); |
1475 |
} else { |
1476 |
Kh += angMom[0] * angMom[0] / I(0, 0) + |
1477 |
angMom[1] * angMom[1] / I(1, 1) + |
1478 |
angMom[2] * angMom[2] / I(2, 2); |
1479 |
} |
1480 |
} |
1481 |
} |
1482 |
} |
1483 |
for (sd = smanB.beginSelected(selej); sd != NULL; |
1484 |
sd = smanB.nextSelected(selej)) { |
1485 |
|
1486 |
Vector3d pos = sd->getPos(); |
1487 |
|
1488 |
// wrap the stuntdouble's position back into the box: |
1489 |
|
1490 |
if (usePeriodicBoundaryConditions_) |
1491 |
currentSnap_->wrapVector(pos); |
1492 |
|
1493 |
RealType mass = sd->getMass(); |
1494 |
Vector3d vel = sd->getVel(); |
1495 |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1496 |
RealType r2; |
1497 |
|
1498 |
coldBin.push_back(sd); |
1499 |
Pc += mass * vel; |
1500 |
Mc += mass; |
1501 |
Kc += mass * vel.lengthSquare(); |
1502 |
Lc += mass * cross(rPos, vel); |
1503 |
Ic -= outProduct(rPos, rPos) * mass; |
1504 |
r2 = rPos.lengthSquare(); |
1505 |
Ic(0, 0) += mass * r2; |
1506 |
Ic(1, 1) += mass * r2; |
1507 |
Ic(2, 2) += mass * r2; |
1508 |
|
1509 |
if (rnemdFluxType_ == rnemdFullKE) { |
1510 |
if (sd->isDirectional()) { |
1511 |
Vector3d angMom = sd->getJ(); |
1512 |
Mat3x3d I = sd->getI(); |
1513 |
if (sd->isLinear()) { |
1514 |
int i = sd->linearAxis(); |
1515 |
int j = (i + 1) % 3; |
1516 |
int k = (i + 2) % 3; |
1517 |
Kc += angMom[j] * angMom[j] / I(j, j) + |
1518 |
angMom[k] * angMom[k] / I(k, k); |
1519 |
} else { |
1520 |
Kc += angMom[0] * angMom[0] / I(0, 0) + |
1521 |
angMom[1] * angMom[1] / I(1, 1) + |
1522 |
angMom[2] * angMom[2] / I(2, 2); |
1523 |
} |
1524 |
} |
1525 |
} |
1526 |
} |
1527 |
|
1528 |
Kh *= 0.5; |
1529 |
Kc *= 0.5; |
1530 |
|
1531 |
#ifdef IS_MPI |
1532 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM); |
1533 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM); |
1534 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lh[0], 3, MPI::REALTYPE, MPI::SUM); |
1535 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Lc[0], 3, MPI::REALTYPE, MPI::SUM); |
1536 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM); |
1537 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM); |
1538 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM); |
1539 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM); |
1540 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ih.getArrayPointer(), 9, |
1541 |
MPI::REALTYPE, MPI::SUM); |
1542 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, Ic.getArrayPointer(), 9, |
1543 |
MPI::REALTYPE, MPI::SUM); |
1544 |
#endif |
1545 |
|
1546 |
bool successfulExchange = false; |
1547 |
if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty |
1548 |
Vector3d vc = Pc / Mc; |
1549 |
Vector3d ac = -momentumTarget_ / Mc + vc; |
1550 |
Vector3d acrec = -momentumTarget_ / Mc; |
1551 |
|
1552 |
// We now need the inverse of the inertia tensor to calculate the |
1553 |
// angular velocity of the cold slab; |
1554 |
Mat3x3d Ici = Ic.inverse(); |
1555 |
Vector3d omegac = Ici * Lc; |
1556 |
Vector3d bc = -(Ici * angularMomentumTarget_) + omegac; |
1557 |
Vector3d bcrec = bc - omegac; |
1558 |
|
1559 |
RealType cNumerator = Kc - kineticTarget_ |
1560 |
- 0.5 * Mc * ac.lengthSquare() - 0.5 * ( dot(bc, Ic * bc)); |
1561 |
if (cNumerator > 0.0) { |
1562 |
|
1563 |
RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare() |
1564 |
- 0.5*(dot(omegac, Ic * omegac)); |
1565 |
|
1566 |
if (cDenominator > 0.0) { |
1567 |
RealType c = sqrt(cNumerator / cDenominator); |
1568 |
if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients |
1569 |
|
1570 |
Vector3d vh = Ph / Mh; |
1571 |
Vector3d ah = momentumTarget_ / Mh + vh; |
1572 |
Vector3d ahrec = momentumTarget_ / Mh; |
1573 |
|
1574 |
// We now need the inverse of the inertia tensor to |
1575 |
// calculate the angular velocity of the hot slab; |
1576 |
Mat3x3d Ihi = Ih.inverse(); |
1577 |
Vector3d omegah = Ihi * Lh; |
1578 |
Vector3d bh = (Ihi * angularMomentumTarget_) + omegah; |
1579 |
Vector3d bhrec = bh - omegah; |
1580 |
|
1581 |
RealType hNumerator = Kh + kineticTarget_ |
1582 |
- 0.5 * Mh * ah.lengthSquare() - 0.5 * ( dot(bh, Ih * bh));; |
1583 |
if (hNumerator > 0.0) { |
1584 |
|
1585 |
RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare() |
1586 |
- 0.5*(dot(omegah, Ih * omegah)); |
1587 |
|
1588 |
if (hDenominator > 0.0) { |
1589 |
RealType h = sqrt(hNumerator / hDenominator); |
1590 |
if ((h > 0.9) && (h < 1.1)) { |
1591 |
|
1592 |
vector<StuntDouble*>::iterator sdi; |
1593 |
Vector3d vel; |
1594 |
Vector3d rPos; |
1595 |
|
1596 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1597 |
//vel = (*sdi)->getVel(); |
1598 |
rPos = (*sdi)->getPos() - coordinateOrigin_; |
1599 |
vel = ((*sdi)->getVel() - vc - cross(omegac, rPos)) * c |
1600 |
+ ac + cross(bc, rPos); |
1601 |
(*sdi)->setVel(vel); |
1602 |
if (rnemdFluxType_ == rnemdFullKE) { |
1603 |
if ((*sdi)->isDirectional()) { |
1604 |
Vector3d angMom = (*sdi)->getJ() * c; |
1605 |
(*sdi)->setJ(angMom); |
1606 |
} |
1607 |
} |
1608 |
} |
1609 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1610 |
//vel = (*sdi)->getVel(); |
1611 |
rPos = (*sdi)->getPos() - coordinateOrigin_; |
1612 |
vel = ((*sdi)->getVel() - vh - cross(omegah, rPos)) * h |
1613 |
+ ah + cross(bh, rPos); |
1614 |
(*sdi)->setVel(vel); |
1615 |
if (rnemdFluxType_ == rnemdFullKE) { |
1616 |
if ((*sdi)->isDirectional()) { |
1617 |
Vector3d angMom = (*sdi)->getJ() * h; |
1618 |
(*sdi)->setJ(angMom); |
1619 |
} |
1620 |
} |
1621 |
} |
1622 |
successfulExchange = true; |
1623 |
kineticExchange_ += kineticTarget_; |
1624 |
momentumExchange_ += momentumTarget_; |
1625 |
angularMomentumExchange_ += angularMomentumTarget_; |
1626 |
} |
1627 |
} |
1628 |
} |
1629 |
} |
1630 |
} |
1631 |
} |
1632 |
} |
1633 |
if (successfulExchange != true) { |
1634 |
sprintf(painCave.errMsg, |
1635 |
"RNEMD::doVSS exchange NOT performed - roots that solve\n" |
1636 |
"\tthe constraint equations may not exist or there may be\n" |
1637 |
"\tno selected objects in one or both slabs.\n"); |
1638 |
painCave.isFatal = 0; |
1639 |
painCave.severity = OPENMD_INFO; |
1640 |
simError(); |
1641 |
failTrialCount_++; |
1642 |
} |
1643 |
} |
1644 |
|
1645 |
RealType RNEMD::getDividingArea() { |
1646 |
|
1647 |
if (hasDividingArea_) return dividingArea_; |
1648 |
|
1649 |
RealType areaA, areaB; |
1650 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
1651 |
|
1652 |
if (hasSelectionA_) { |
1653 |
int isd; |
1654 |
StuntDouble* sd; |
1655 |
vector<StuntDouble*> aSites; |
1656 |
ConvexHull* surfaceMeshA = new ConvexHull(); |
1657 |
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1658 |
for (sd = seleManA_.beginSelected(isd); sd != NULL; |
1659 |
sd = seleManA_.nextSelected(isd)) { |
1660 |
aSites.push_back(sd); |
1661 |
} |
1662 |
surfaceMeshA->computeHull(aSites); |
1663 |
areaA = surfaceMeshA->getArea(); |
1664 |
} else { |
1665 |
if (usePeriodicBoundaryConditions_) { |
1666 |
// in periodic boundaries, the surface area is twice the x-y |
1667 |
// area of the current box: |
1668 |
areaA = 2.0 * snap->getXYarea(); |
1669 |
} else { |
1670 |
// in non-periodic simulations, without explicitly setting |
1671 |
// selections, the sphere radius sets the surface area of the |
1672 |
// dividing surface: |
1673 |
areaA = 4.0 * M_PI * pow(sphereARadius_, 2); |
1674 |
} |
1675 |
} |
1676 |
|
1677 |
if (hasSelectionB_) { |
1678 |
int isd; |
1679 |
StuntDouble* sd; |
1680 |
vector<StuntDouble*> bSites; |
1681 |
ConvexHull* surfaceMeshB = new ConvexHull(); |
1682 |
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1683 |
for (sd = seleManB_.beginSelected(isd); sd != NULL; |
1684 |
sd = seleManB_.nextSelected(isd)) { |
1685 |
bSites.push_back(sd); |
1686 |
} |
1687 |
surfaceMeshB->computeHull(bSites); |
1688 |
areaB = surfaceMeshB->getArea(); |
1689 |
} else { |
1690 |
if (usePeriodicBoundaryConditions_) { |
1691 |
// in periodic boundaries, the surface area is twice the x-y |
1692 |
// area of the current box: |
1693 |
areaB = 2.0 * snap->getXYarea(); |
1694 |
} else { |
1695 |
// in non-periodic simulations, without explicitly setting |
1696 |
// selections, but if a sphereBradius has been set, just use that: |
1697 |
areaB = 4.0 * M_PI * pow(sphereBRadius_, 2); |
1698 |
} |
1699 |
} |
1700 |
|
1701 |
dividingArea_ = min(areaA, areaB); |
1702 |
hasDividingArea_ = true; |
1703 |
return dividingArea_; |
1704 |
} |
1705 |
|
1706 |
void RNEMD::doRNEMD() { |
1707 |
if (!doRNEMD_) return; |
1708 |
trialCount_++; |
1709 |
|
1710 |
// object evaluator: |
1711 |
evaluator_.loadScriptString(rnemdObjectSelection_); |
1712 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1713 |
|
1714 |
evaluatorA_.loadScriptString(selectionA_); |
1715 |
evaluatorB_.loadScriptString(selectionB_); |
1716 |
|
1717 |
seleManA_.setSelectionSet(evaluatorA_.evaluate()); |
1718 |
seleManB_.setSelectionSet(evaluatorB_.evaluate()); |
1719 |
|
1720 |
commonA_ = seleManA_ & seleMan_; |
1721 |
commonB_ = seleManB_ & seleMan_; |
1722 |
|
1723 |
// Target exchange quantities (in each exchange) = dividingArea * dt * flux |
1724 |
// dt = exchange time interval |
1725 |
// flux = target flux |
1726 |
// dividingArea = smallest dividing surface between the two regions |
1727 |
|
1728 |
hasDividingArea_ = false; |
1729 |
RealType area = getDividingArea(); |
1730 |
|
1731 |
kineticTarget_ = kineticFlux_ * exchangeTime_ * area; |
1732 |
momentumTarget_ = momentumFluxVector_ * exchangeTime_ * area; |
1733 |
angularMomentumTarget_ = angularMomentumFluxVector_ * exchangeTime_ * area; |
1734 |
|
1735 |
switch(rnemdMethod_) { |
1736 |
case rnemdSwap: |
1737 |
doSwap(commonA_, commonB_); |
1738 |
break; |
1739 |
case rnemdNIVS: |
1740 |
doNIVS(commonA_, commonB_); |
1741 |
break; |
1742 |
case rnemdVSS: |
1743 |
doVSS(commonA_, commonB_); |
1744 |
break; |
1745 |
case rnemdUnkownMethod: |
1746 |
default : |
1747 |
break; |
1748 |
} |
1749 |
} |
1750 |
|
1751 |
void RNEMD::collectData() { |
1752 |
if (!doRNEMD_) return; |
1753 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1754 |
|
1755 |
// collectData can be called more frequently than the doRNEMD, so use the |
1756 |
// computed area from the last exchange time: |
1757 |
|
1758 |
areaAccumulator_->add(getDividingArea()); |
1759 |
Mat3x3d hmat = currentSnap_->getHmat(); |
1760 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1761 |
|
1762 |
int selei(0); |
1763 |
StuntDouble* sd; |
1764 |
int binNo; |
1765 |
|
1766 |
vector<RealType> binMass(nBins_, 0.0); |
1767 |
vector<RealType> binPx(nBins_, 0.0); |
1768 |
vector<RealType> binPy(nBins_, 0.0); |
1769 |
vector<RealType> binPz(nBins_, 0.0); |
1770 |
vector<RealType> binOmegax(nBins_, 0.0); |
1771 |
vector<RealType> binOmegay(nBins_, 0.0); |
1772 |
vector<RealType> binOmegaz(nBins_, 0.0); |
1773 |
vector<RealType> binKE(nBins_, 0.0); |
1774 |
vector<int> binDOF(nBins_, 0); |
1775 |
vector<int> binCount(nBins_, 0); |
1776 |
|
1777 |
// alternative approach, track all molecules instead of only those |
1778 |
// selected for scaling/swapping: |
1779 |
/* |
1780 |
SimInfo::MoleculeIterator miter; |
1781 |
vector<StuntDouble*>::iterator iiter; |
1782 |
Molecule* mol; |
1783 |
StuntDouble* sd; |
1784 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
1785 |
mol = info_->nextMolecule(miter)) |
1786 |
sd is essentially sd |
1787 |
for (sd = mol->beginIntegrableObject(iiter); |
1788 |
sd != NULL; |
1789 |
sd = mol->nextIntegrableObject(iiter)) |
1790 |
*/ |
1791 |
|
1792 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1793 |
sd = seleMan_.nextSelected(selei)) { |
1794 |
|
1795 |
Vector3d pos = sd->getPos(); |
1796 |
|
1797 |
// wrap the stuntdouble's position back into the box: |
1798 |
|
1799 |
if (usePeriodicBoundaryConditions_) { |
1800 |
currentSnap_->wrapVector(pos); |
1801 |
// which bin is this stuntdouble in? |
1802 |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1803 |
// Shift molecules by half a box to have bins start at 0 |
1804 |
// The modulo operator is used to wrap the case when we are |
1805 |
// beyond the end of the bins back to the beginning. |
1806 |
binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
1807 |
} else { |
1808 |
Vector3d rPos = pos - coordinateOrigin_; |
1809 |
binNo = int(rPos.length() / binWidth_); |
1810 |
} |
1811 |
|
1812 |
RealType mass = sd->getMass(); |
1813 |
Vector3d vel = sd->getVel(); |
1814 |
Vector3d rPos = sd->getPos() - coordinateOrigin_; |
1815 |
Vector3d aVel = cross(rPos, vel); |
1816 |
|
1817 |
if (binNo < nBins_) { |
1818 |
binCount[binNo]++; |
1819 |
binMass[binNo] += mass; |
1820 |
binPx[binNo] += mass*vel.x(); |
1821 |
binPy[binNo] += mass*vel.y(); |
1822 |
binPz[binNo] += mass*vel.z(); |
1823 |
binOmegax[binNo] += aVel.x(); |
1824 |
binOmegay[binNo] += aVel.y(); |
1825 |
binOmegaz[binNo] += aVel.z(); |
1826 |
binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); |
1827 |
binDOF[binNo] += 3; |
1828 |
|
1829 |
if (sd->isDirectional()) { |
1830 |
Vector3d angMom = sd->getJ(); |
1831 |
Mat3x3d I = sd->getI(); |
1832 |
if (sd->isLinear()) { |
1833 |
int i = sd->linearAxis(); |
1834 |
int j = (i + 1) % 3; |
1835 |
int k = (i + 2) % 3; |
1836 |
binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
1837 |
angMom[k] * angMom[k] / I(k, k)); |
1838 |
binDOF[binNo] += 2; |
1839 |
} else { |
1840 |
binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
1841 |
angMom[1] * angMom[1] / I(1, 1) + |
1842 |
angMom[2] * angMom[2] / I(2, 2)); |
1843 |
binDOF[binNo] += 3; |
1844 |
} |
1845 |
} |
1846 |
} |
1847 |
} |
1848 |
|
1849 |
#ifdef IS_MPI |
1850 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0], |
1851 |
nBins_, MPI::INT, MPI::SUM); |
1852 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0], |
1853 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1854 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0], |
1855 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1856 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0], |
1857 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1858 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0], |
1859 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1860 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegax[0], |
1861 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1862 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegay[0], |
1863 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1864 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binOmegaz[0], |
1865 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1866 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0], |
1867 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1868 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0], |
1869 |
nBins_, MPI::INT, MPI::SUM); |
1870 |
#endif |
1871 |
|
1872 |
Vector3d vel; |
1873 |
Vector3d aVel; |
1874 |
RealType den; |
1875 |
RealType temp; |
1876 |
RealType z; |
1877 |
RealType r; |
1878 |
for (int i = 0; i < nBins_; i++) { |
1879 |
if (usePeriodicBoundaryConditions_) { |
1880 |
z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); |
1881 |
den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
1882 |
/ currentSnap_->getVolume() ; |
1883 |
} else { |
1884 |
r = (((RealType)i + 0.5) * binWidth_); |
1885 |
RealType rinner = (RealType)i * binWidth_; |
1886 |
RealType router = (RealType)(i+1) * binWidth_; |
1887 |
den = binMass[i] * 3.0 * PhysicalConstants::densityConvert |
1888 |
/ (4.0 * M_PI * (pow(router,3) - pow(rinner,3))); |
1889 |
} |
1890 |
vel.x() = binPx[i] / binMass[i]; |
1891 |
vel.y() = binPy[i] / binMass[i]; |
1892 |
vel.z() = binPz[i] / binMass[i]; |
1893 |
aVel.x() = binOmegax[i]; |
1894 |
aVel.y() = binOmegay[i]; |
1895 |
aVel.z() = binOmegaz[i]; |
1896 |
|
1897 |
if (binCount[i] > 0) { |
1898 |
// only add values if there are things to add |
1899 |
temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * |
1900 |
PhysicalConstants::energyConvert); |
1901 |
|
1902 |
for (unsigned int j = 0; j < outputMask_.size(); ++j) { |
1903 |
if(outputMask_[j]) { |
1904 |
switch(j) { |
1905 |
case Z: |
1906 |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z); |
1907 |
break; |
1908 |
case R: |
1909 |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(r); |
1910 |
break; |
1911 |
case TEMPERATURE: |
1912 |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp); |
1913 |
break; |
1914 |
case VELOCITY: |
1915 |
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); |
1916 |
break; |
1917 |
case ANGULARVELOCITY: |
1918 |
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(aVel); |
1919 |
break; |
1920 |
case DENSITY: |
1921 |
dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den); |
1922 |
break; |
1923 |
} |
1924 |
} |
1925 |
} |
1926 |
} |
1927 |
} |
1928 |
} |
1929 |
|
1930 |
void RNEMD::getStarted() { |
1931 |
if (!doRNEMD_) return; |
1932 |
hasDividingArea_ = false; |
1933 |
collectData(); |
1934 |
writeOutputFile(); |
1935 |
} |
1936 |
|
1937 |
void RNEMD::parseOutputFileFormat(const std::string& format) { |
1938 |
if (!doRNEMD_) return; |
1939 |
StringTokenizer tokenizer(format, " ,;|\t\n\r"); |
1940 |
|
1941 |
while(tokenizer.hasMoreTokens()) { |
1942 |
std::string token(tokenizer.nextToken()); |
1943 |
toUpper(token); |
1944 |
OutputMapType::iterator i = outputMap_.find(token); |
1945 |
if (i != outputMap_.end()) { |
1946 |
outputMask_.set(i->second); |
1947 |
} else { |
1948 |
sprintf( painCave.errMsg, |
1949 |
"RNEMD::parseOutputFileFormat: %s is not a recognized\n" |
1950 |
"\toutputFileFormat keyword.\n", token.c_str() ); |
1951 |
painCave.isFatal = 0; |
1952 |
painCave.severity = OPENMD_ERROR; |
1953 |
simError(); |
1954 |
} |
1955 |
} |
1956 |
} |
1957 |
|
1958 |
void RNEMD::writeOutputFile() { |
1959 |
if (!doRNEMD_) return; |
1960 |
|
1961 |
#ifdef IS_MPI |
1962 |
// If we're the root node, should we print out the results |
1963 |
int worldRank = MPI::COMM_WORLD.Get_rank(); |
1964 |
if (worldRank == 0) { |
1965 |
#endif |
1966 |
rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc ); |
1967 |
|
1968 |
if( !rnemdFile_ ){ |
1969 |
sprintf( painCave.errMsg, |
1970 |
"Could not open \"%s\" for RNEMD output.\n", |
1971 |
rnemdFileName_.c_str()); |
1972 |
painCave.isFatal = 1; |
1973 |
simError(); |
1974 |
} |
1975 |
|
1976 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1977 |
|
1978 |
RealType time = currentSnap_->getTime(); |
1979 |
RealType avgArea; |
1980 |
areaAccumulator_->getAverage(avgArea); |
1981 |
RealType Jz = kineticExchange_ / (time * avgArea) |
1982 |
/ PhysicalConstants::energyConvert; |
1983 |
Vector3d JzP = momentumExchange_ / (time * avgArea); |
1984 |
Vector3d JzL = angularMomentumExchange_ / (time * avgArea); |
1985 |
|
1986 |
rnemdFile_ << "#######################################################\n"; |
1987 |
rnemdFile_ << "# RNEMD {\n"; |
1988 |
|
1989 |
map<string, RNEMDMethod>::iterator mi; |
1990 |
for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) { |
1991 |
if ( (*mi).second == rnemdMethod_) |
1992 |
rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n"; |
1993 |
} |
1994 |
map<string, RNEMDFluxType>::iterator fi; |
1995 |
for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) { |
1996 |
if ( (*fi).second == rnemdFluxType_) |
1997 |
rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n"; |
1998 |
} |
1999 |
|
2000 |
rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n"; |
2001 |
|
2002 |
rnemdFile_ << "# objectSelection = \"" |
2003 |
<< rnemdObjectSelection_ << "\";\n"; |
2004 |
rnemdFile_ << "# selectionA = \"" << selectionA_ << "\";\n"; |
2005 |
rnemdFile_ << "# selectionB = \"" << selectionB_ << "\";\n"; |
2006 |
rnemdFile_ << "# }\n"; |
2007 |
rnemdFile_ << "#######################################################\n"; |
2008 |
rnemdFile_ << "# RNEMD report:\n"; |
2009 |
rnemdFile_ << "# running time = " << time << " fs\n"; |
2010 |
rnemdFile_ << "# Target flux:\n"; |
2011 |
rnemdFile_ << "# kinetic = " |
2012 |
<< kineticFlux_ / PhysicalConstants::energyConvert |
2013 |
<< " (kcal/mol/A^2/fs)\n"; |
2014 |
rnemdFile_ << "# momentum = " << momentumFluxVector_ |
2015 |
<< " (amu/A/fs^2)\n"; |
2016 |
rnemdFile_ << "# angular momentum = " << angularMomentumFluxVector_ |
2017 |
<< " (amu/A^2/fs^2)\n"; |
2018 |
rnemdFile_ << "# Target one-time exchanges:\n"; |
2019 |
rnemdFile_ << "# kinetic = " |
2020 |
<< kineticTarget_ / PhysicalConstants::energyConvert |
2021 |
<< " (kcal/mol)\n"; |
2022 |
rnemdFile_ << "# momentum = " << momentumTarget_ |
2023 |
<< " (amu*A/fs)\n"; |
2024 |
rnemdFile_ << "# angular momentum = " << angularMomentumTarget_ |
2025 |
<< " (amu*A^2/fs)\n"; |
2026 |
rnemdFile_ << "# Actual exchange totals:\n"; |
2027 |
rnemdFile_ << "# kinetic = " |
2028 |
<< kineticExchange_ / PhysicalConstants::energyConvert |
2029 |
<< " (kcal/mol)\n"; |
2030 |
rnemdFile_ << "# momentum = " << momentumExchange_ |
2031 |
<< " (amu*A/fs)\n"; |
2032 |
rnemdFile_ << "# angular momentum = " << angularMomentumExchange_ |
2033 |
<< " (amu*A^2/fs)\n"; |
2034 |
rnemdFile_ << "# Actual flux:\n"; |
2035 |
rnemdFile_ << "# kinetic = " << Jz |
2036 |
<< " (kcal/mol/A^2/fs)\n"; |
2037 |
rnemdFile_ << "# momentum = " << JzP |
2038 |
<< " (amu/A/fs^2)\n"; |
2039 |
rnemdFile_ << "# angular momentum = " << JzL |
2040 |
<< " (amu/A^2/fs^2)\n"; |
2041 |
rnemdFile_ << "# Exchange statistics:\n"; |
2042 |
rnemdFile_ << "# attempted = " << trialCount_ << "\n"; |
2043 |
rnemdFile_ << "# failed = " << failTrialCount_ << "\n"; |
2044 |
if (rnemdMethod_ == rnemdNIVS) { |
2045 |
rnemdFile_ << "# NIVS root-check errors = " |
2046 |
<< failRootCount_ << "\n"; |
2047 |
} |
2048 |
rnemdFile_ << "#######################################################\n"; |
2049 |
|
2050 |
|
2051 |
|
2052 |
//write title |
2053 |
rnemdFile_ << "#"; |
2054 |
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
2055 |
if (outputMask_[i]) { |
2056 |
rnemdFile_ << "\t" << data_[i].title << |
2057 |
"(" << data_[i].units << ")"; |
2058 |
// add some extra tabs for column alignment |
2059 |
if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t"; |
2060 |
} |
2061 |
} |
2062 |
rnemdFile_ << std::endl; |
2063 |
|
2064 |
rnemdFile_.precision(8); |
2065 |
|
2066 |
for (int j = 0; j < nBins_; j++) { |
2067 |
|
2068 |
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
2069 |
if (outputMask_[i]) { |
2070 |
if (data_[i].dataType == "RealType") |
2071 |
writeReal(i,j); |
2072 |
else if (data_[i].dataType == "Vector3d") |
2073 |
writeVector(i,j); |
2074 |
else { |
2075 |
sprintf( painCave.errMsg, |
2076 |
"RNEMD found an unknown data type for: %s ", |
2077 |
data_[i].title.c_str()); |
2078 |
painCave.isFatal = 1; |
2079 |
simError(); |
2080 |
} |
2081 |
} |
2082 |
} |
2083 |
rnemdFile_ << std::endl; |
2084 |
|
2085 |
} |
2086 |
|
2087 |
rnemdFile_ << "#######################################################\n"; |
2088 |
rnemdFile_ << "# Standard Deviations in those quantities follow:\n"; |
2089 |
rnemdFile_ << "#######################################################\n"; |
2090 |
|
2091 |
|
2092 |
for (int j = 0; j < nBins_; j++) { |
2093 |
rnemdFile_ << "#"; |
2094 |
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
2095 |
if (outputMask_[i]) { |
2096 |
if (data_[i].dataType == "RealType") |
2097 |
writeRealStdDev(i,j); |
2098 |
else if (data_[i].dataType == "Vector3d") |
2099 |
writeVectorStdDev(i,j); |
2100 |
else { |
2101 |
sprintf( painCave.errMsg, |
2102 |
"RNEMD found an unknown data type for: %s ", |
2103 |
data_[i].title.c_str()); |
2104 |
painCave.isFatal = 1; |
2105 |
simError(); |
2106 |
} |
2107 |
} |
2108 |
} |
2109 |
rnemdFile_ << std::endl; |
2110 |
|
2111 |
} |
2112 |
|
2113 |
rnemdFile_.flush(); |
2114 |
rnemdFile_.close(); |
2115 |
|
2116 |
#ifdef IS_MPI |
2117 |
} |
2118 |
#endif |
2119 |
|
2120 |
} |
2121 |
|
2122 |
void RNEMD::writeReal(int index, unsigned int bin) { |
2123 |
if (!doRNEMD_) return; |
2124 |
assert(index >=0 && index < ENDINDEX); |
2125 |
assert(int(bin) < nBins_); |
2126 |
RealType s; |
2127 |
int count; |
2128 |
|
2129 |
count = dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->count(); |
2130 |
if (count == 0) return; |
2131 |
|
2132 |
dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s); |
2133 |
|
2134 |
if (! isinf(s) && ! isnan(s)) { |
2135 |
rnemdFile_ << "\t" << s; |
2136 |
} else{ |
2137 |
sprintf( painCave.errMsg, |
2138 |
"RNEMD detected a numerical error writing: %s for bin %d", |
2139 |
data_[index].title.c_str(), bin); |
2140 |
painCave.isFatal = 1; |
2141 |
simError(); |
2142 |
} |
2143 |
} |
2144 |
|
2145 |
void RNEMD::writeVector(int index, unsigned int bin) { |
2146 |
if (!doRNEMD_) return; |
2147 |
assert(index >=0 && index < ENDINDEX); |
2148 |
assert(int(bin) < nBins_); |
2149 |
Vector3d s; |
2150 |
int count; |
2151 |
|
2152 |
count = dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->count(); |
2153 |
if (count == 0) return; |
2154 |
|
2155 |
dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s); |
2156 |
if (isinf(s[0]) || isnan(s[0]) || |
2157 |
isinf(s[1]) || isnan(s[1]) || |
2158 |
isinf(s[2]) || isnan(s[2]) ) { |
2159 |
sprintf( painCave.errMsg, |
2160 |
"RNEMD detected a numerical error writing: %s for bin %d", |
2161 |
data_[index].title.c_str(), bin); |
2162 |
painCave.isFatal = 1; |
2163 |
simError(); |
2164 |
} else { |
2165 |
rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; |
2166 |
} |
2167 |
} |
2168 |
|
2169 |
void RNEMD::writeRealStdDev(int index, unsigned int bin) { |
2170 |
if (!doRNEMD_) return; |
2171 |
assert(index >=0 && index < ENDINDEX); |
2172 |
assert(int(bin) < nBins_); |
2173 |
RealType s; |
2174 |
int count; |
2175 |
|
2176 |
count = dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->count(); |
2177 |
if (count == 0) return; |
2178 |
|
2179 |
dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s); |
2180 |
|
2181 |
if (! isinf(s) && ! isnan(s)) { |
2182 |
rnemdFile_ << "\t" << s; |
2183 |
} else{ |
2184 |
sprintf( painCave.errMsg, |
2185 |
"RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2186 |
data_[index].title.c_str(), bin); |
2187 |
painCave.isFatal = 1; |
2188 |
simError(); |
2189 |
} |
2190 |
} |
2191 |
|
2192 |
void RNEMD::writeVectorStdDev(int index, unsigned int bin) { |
2193 |
if (!doRNEMD_) return; |
2194 |
assert(index >=0 && index < ENDINDEX); |
2195 |
assert(int(bin) < nBins_); |
2196 |
Vector3d s; |
2197 |
int count; |
2198 |
|
2199 |
count = dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->count(); |
2200 |
if (count == 0) return; |
2201 |
|
2202 |
dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s); |
2203 |
if (isinf(s[0]) || isnan(s[0]) || |
2204 |
isinf(s[1]) || isnan(s[1]) || |
2205 |
isinf(s[2]) || isnan(s[2]) ) { |
2206 |
sprintf( painCave.errMsg, |
2207 |
"RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
2208 |
data_[index].title.c_str(), bin); |
2209 |
painCave.isFatal = 1; |
2210 |
simError(); |
2211 |
} else { |
2212 |
rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; |
2213 |
} |
2214 |
} |
2215 |
} |
2216 |
|