ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1773 by gezelter, Tue Aug 7 18:26:40 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 < #include "integrators/RNEMD.hpp"
42 > #include <cmath>
43 > #include "rnemd/RNEMD.hpp"
44 > #include "math/Vector3.hpp"
45 > #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47 + #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50 <
51 < #ifndef IS_MPI
52 < #include "math/SeqRandNumGen.hpp"
53 < #else
50 < #include "math/ParallelRandNumGen.hpp"
50 > #include "utils/PhysicalConstants.hpp"
51 > #include "utils/Tuple.hpp"
52 > #ifdef IS_MPI
53 > #include <mpi.h>
54   #endif
55  
56 < /* Remove me after testing*/
54 < /*
55 < #include <cstdio>
56 < #include <iostream>
57 < */
58 < /*End remove me*/
56 > #define HONKING_LARGE_VALUE 1.0e10
57  
58 < namespace oopse {
58 > using namespace std;
59 > namespace OpenMD {
60    
61 <  RNEMD::RNEMD(SimInfo* info) : info_(info) {
62 <    
61 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
62 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63 >
64 >    trialCount_ = 0;
65 >    failTrialCount_ = 0;
66 >    failRootCount_ = 0;
67 >
68      int seedValue;
69      Globals * simParams = info->getSimParams();
70 +    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
71  
72 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
73 <    stringToEnumMap_["Px"] = rnemdPx;
74 <    stringToEnumMap_["Py"] = rnemdPy;
70 <    stringToEnumMap_["Pz"] = rnemdPz;
71 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
72 >    stringToMethod_["Swap"]  = rnemdSwap;
73 >    stringToMethod_["NIVS"]  = rnemdNIVS;
74 >    stringToMethod_["VSS"]   = rnemdVSS;
75  
76 <    const std::string st = simParams->getRNEMD_swapType();
76 >    stringToFluxType_["KE"]  = rnemdKE;
77 >    stringToFluxType_["Px"]  = rnemdPx;
78 >    stringToFluxType_["Py"]  = rnemdPy;
79 >    stringToFluxType_["Pz"]  = rnemdPz;
80 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
81 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
82 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
83  
84 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
85 <    i = stringToEnumMap_.find(st);
77 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
84 >    runTime_ = simParams->getRunTime();
85 >    statusTime_ = simParams->getStatusTime();
86  
87 +    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
88 +    evaluator_.loadScriptString(rnemdObjectSelection_);
89 +    seleMan_.setSelectionSet(evaluator_.evaluate());
90  
91 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
92 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
93 <    exchangeSum_ = 0.0;
91 >    const string methStr = rnemdParams->getMethod();
92 >    bool hasFluxType = rnemdParams->haveFluxType();
93 >
94 >    string fluxStr;
95 >    if (hasFluxType) {
96 >      fluxStr = rnemdParams->getFluxType();
97 >    } else {
98 >      sprintf(painCave.errMsg,
99 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
100 >              "\twhich must be one of the following values:\n"
101 >              "\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n"
102 >              "\tuse RNEMD\n");
103 >      painCave.isFatal = 1;
104 >      painCave.severity = OPENMD_ERROR;
105 >      simError();
106 >    }
107 >
108 >    bool hasKineticFlux = rnemdParams->haveKineticFlux();
109 >    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
110 >    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
111 >    bool hasSlabWidth = rnemdParams->haveSlabWidth();
112 >    bool hasSlabACenter = rnemdParams->haveSlabACenter();
113 >    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
114 >    bool hasOutputFileName = rnemdParams->haveOutputFileName();
115 >    bool hasOutputFields = rnemdParams->haveOutputFields();
116      
117 < #ifndef IS_MPI
118 <    if (simParams->haveSeed()) {
119 <      seedValue = simParams->getSeed();
120 <      randNumGen_ = new SeqRandNumGen(seedValue);
121 <    }else {
122 <      randNumGen_ = new SeqRandNumGen();
123 <    }    
124 < #else
125 <    if (simParams->haveSeed()) {
126 <      seedValue = simParams->getSeed();
127 <      randNumGen_ = new ParallelRandNumGen(seedValue);
128 <    }else {
129 <      randNumGen_ = new ParallelRandNumGen();
130 <    }    
131 < #endif
132 <  }
117 >    map<string, RNEMDMethod>::iterator i;
118 >    i = stringToMethod_.find(methStr);
119 >    if (i != stringToMethod_.end())
120 >      rnemdMethod_ = i->second;
121 >    else {
122 >      sprintf(painCave.errMsg,
123 >              "RNEMD: The current method,\n"
124 >              "\t\t%s is not one of the recognized\n"
125 >              "\texchange methods: Swap, NIVS, or VSS\n",
126 >              methStr.c_str());
127 >      painCave.isFatal = 1;
128 >      painCave.severity = OPENMD_ERROR;
129 >      simError();
130 >    }
131 >
132 >    map<string, RNEMDFluxType>::iterator j;
133 >    j = stringToFluxType_.find(fluxStr);
134 >    if (j != stringToFluxType_.end())
135 >      rnemdFluxType_ = j->second;
136 >    else {
137 >      sprintf(painCave.errMsg,
138 >              "RNEMD: The current fluxType,\n"
139 >              "\t\t%s\n"
140 >              "\tis not one of the recognized flux types.\n",
141 >              fluxStr.c_str());
142 >      painCave.isFatal = 1;
143 >      painCave.severity = OPENMD_ERROR;
144 >      simError();
145 >    }
146 >
147 >    bool methodFluxMismatch = false;
148 >    bool hasCorrectFlux = false;
149 >    switch(rnemdMethod_) {
150 >    case rnemdSwap:
151 >      switch (rnemdFluxType_) {
152 >      case rnemdKE:
153 >        hasCorrectFlux = hasKineticFlux;
154 >        break;
155 >      case rnemdPx:
156 >      case rnemdPy:
157 >      case rnemdPz:
158 >        hasCorrectFlux = hasMomentumFlux;
159 >        break;
160 >      default :
161 >        methodFluxMismatch = true;
162 >        break;
163 >      }
164 >      break;
165 >    case rnemdNIVS:
166 >      switch (rnemdFluxType_) {
167 >      case rnemdKE:
168 >      case rnemdRotKE:
169 >      case rnemdFullKE:
170 >        hasCorrectFlux = hasKineticFlux;
171 >        break;
172 >      case rnemdPx:
173 >      case rnemdPy:
174 >      case rnemdPz:
175 >        hasCorrectFlux = hasMomentumFlux;
176 >        break;
177 >      case rnemdKePx:
178 >      case rnemdKePy:
179 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
180 >        break;
181 >      default:
182 >        methodFluxMismatch = true;
183 >        break;
184 >      }
185 >      break;
186 >    case rnemdVSS:
187 >      switch (rnemdFluxType_) {
188 >      case rnemdKE:
189 >      case rnemdRotKE:
190 >      case rnemdFullKE:
191 >        hasCorrectFlux = hasKineticFlux;
192 >        break;
193 >      case rnemdPx:
194 >      case rnemdPy:
195 >      case rnemdPz:
196 >        hasCorrectFlux = hasMomentumFlux;
197 >        break;
198 >      case rnemdPvector:
199 >        hasCorrectFlux = hasMomentumFluxVector;
200 >      case rnemdKePx:
201 >      case rnemdKePy:
202 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
203 >        break;
204 >      case rnemdKePvector:
205 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
206 >        break;
207 >      default:
208 >        methodFluxMismatch = true;
209 >        break;
210 >      }
211 >    default:
212 >      break;
213 >    }
214 >
215 >    if (methodFluxMismatch) {
216 >      sprintf(painCave.errMsg,
217 >              "RNEMD: The current method,\n"
218 >              "\t\t%s\n"
219 >              "\tcannot be used with the current flux type, %s\n",
220 >              methStr.c_str(), fluxStr.c_str());
221 >      painCave.isFatal = 1;
222 >      painCave.severity = OPENMD_ERROR;
223 >      simError();        
224 >    }
225 >    if (!hasCorrectFlux) {
226 >      sprintf(painCave.errMsg,
227 >              "RNEMD: The current method,\n"
228 >              "\t%s, and flux type %s\n"
229 >              "\tdid not have the correct flux value specified. Options\n"
230 >              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
231 >              methStr.c_str(), fluxStr.c_str());
232 >      painCave.isFatal = 1;
233 >      painCave.severity = OPENMD_ERROR;
234 >      simError();        
235 >    }
236 >
237 >    if (hasKineticFlux) {
238 >      kineticFlux_ = rnemdParams->getKineticFlux();
239 >    } else {
240 >      kineticFlux_ = 0.0;
241 >    }
242 >    if (hasMomentumFluxVector) {
243 >      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
244 >    } else {
245 >      momentumFluxVector_ = V3Zero;
246 >      if (hasMomentumFlux) {
247 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
248 >        switch (rnemdFluxType_) {
249 >        case rnemdPx:
250 >          momentumFluxVector_.x() = momentumFlux;
251 >          break;
252 >        case rnemdPy:
253 >          momentumFluxVector_.y() = momentumFlux;
254 >          break;
255 >        case rnemdPz:
256 >          momentumFluxVector_.z() = momentumFlux;
257 >          break;
258 >        case rnemdKePx:
259 >          momentumFluxVector_.x() = momentumFlux;
260 >          break;
261 >        case rnemdKePy:
262 >          momentumFluxVector_.y() = momentumFlux;
263 >          break;
264 >        default:
265 >          break;
266 >        }
267 >      }    
268 >    }
269 >
270 >    // do some sanity checking
271 >
272 >    int selectionCount = seleMan_.getSelectionCount();
273 >    int nIntegrable = info->getNGlobalIntegrableObjects();
274 >
275 >    if (selectionCount > nIntegrable) {
276 >      sprintf(painCave.errMsg,
277 >              "RNEMD: The current objectSelection,\n"
278 >              "\t\t%s\n"
279 >              "\thas resulted in %d selected objects.  However,\n"
280 >              "\tthe total number of integrable objects in the system\n"
281 >              "\tis only %d.  This is almost certainly not what you want\n"
282 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
283 >              "\tselector in the selection script!\n",
284 >              rnemdObjectSelection_.c_str(),
285 >              selectionCount, nIntegrable);
286 >      painCave.isFatal = 0;
287 >      painCave.severity = OPENMD_WARNING;
288 >      simError();
289 >    }
290 >
291 >    nBins_ = rnemdParams->getOutputBins();
292 >
293 >    data_.resize(RNEMD::ENDINDEX);
294 >    OutputData z;
295 >    z.units =  "Angstroms";
296 >    z.title =  "Z";
297 >    z.dataType = "RealType";
298 >    z.accumulator.reserve(nBins_);
299 >    for (unsigned int i = 0; i < nBins_; i++)
300 >      z.accumulator.push_back( new Accumulator() );
301 >    data_[Z] = z;
302 >    outputMap_["Z"] =  Z;
303 >
304 >    OutputData temperature;
305 >    temperature.units =  "K";
306 >    temperature.title =  "Temperature";
307 >    temperature.dataType = "RealType";
308 >    temperature.accumulator.reserve(nBins_);
309 >    for (unsigned int i = 0; i < nBins_; i++)
310 >      temperature.accumulator.push_back( new Accumulator() );
311 >    data_[TEMPERATURE] = temperature;
312 >    outputMap_["TEMPERATURE"] =  TEMPERATURE;
313 >
314 >    OutputData velocity;
315 >    velocity.units = "amu/fs";
316 >    velocity.title =  "Velocity";  
317 >    velocity.dataType = "Vector3d";
318 >    velocity.accumulator.reserve(nBins_);
319 >    for (unsigned int i = 0; i < nBins_; i++)
320 >      velocity.accumulator.push_back( new VectorAccumulator() );
321 >    data_[VELOCITY] = velocity;
322 >    outputMap_["VELOCITY"] = VELOCITY;
323 >
324 >    OutputData density;
325 >    density.units =  "g cm^-3";
326 >    density.title =  "Density";
327 >    density.dataType = "RealType";
328 >    density.accumulator.reserve(nBins_);
329 >    for (unsigned int i = 0; i < nBins_; i++)
330 >      density.accumulator.push_back( new Accumulator() );
331 >    data_[DENSITY] = density;
332 >    outputMap_["DENSITY"] =  DENSITY;
333 >
334 >    if (hasOutputFields) {
335 >      parseOutputFileFormat(rnemdParams->getOutputFields());
336 >    } else {
337 >      outputMask_.set(Z);
338 >      switch (rnemdFluxType_) {
339 >      case rnemdKE:
340 >      case rnemdRotKE:
341 >      case rnemdFullKE:
342 >        outputMask_.set(TEMPERATURE);
343 >        break;
344 >      case rnemdPx:
345 >      case rnemdPy:
346 >        outputMask_.set(VELOCITY);
347 >        break;
348 >      case rnemdPz:        
349 >      case rnemdPvector:
350 >        outputMask_.set(VELOCITY);
351 >        outputMask_.set(DENSITY);
352 >        break;
353 >      case rnemdKePx:
354 >      case rnemdKePy:
355 >        outputMask_.set(TEMPERATURE);
356 >        outputMask_.set(VELOCITY);
357 >        break;
358 >      case rnemdKePvector:
359 >        outputMask_.set(TEMPERATURE);
360 >        outputMask_.set(VELOCITY);
361 >        outputMask_.set(DENSITY);        
362 >        break;
363 >      default:
364 >        break;
365 >      }
366 >    }
367 >      
368 >    if (hasOutputFileName) {
369 >      rnemdFileName_ = rnemdParams->getOutputFileName();
370 >    } else {
371 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
372 >    }          
373 >
374 >    exchangeTime_ = rnemdParams->getExchangeTime();
375 >
376 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
377 >    Mat3x3d hmat = currentSnap_->getHmat();
378    
379 +    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
380 +    // Lx, Ly = box dimensions in x & y
381 +    // dt = exchange time interval
382 +    // flux = target flux
383 +
384 +    kineticTarget_ = 2.0*kineticFlux_*exchangeTime_*hmat(0,0)*hmat(1,1);
385 +    momentumTarget_ = 2.0*momentumFluxVector_*exchangeTime_*hmat(0,0)*hmat(1,1);
386 +
387 +    // total exchange sums are zeroed out at the beginning:
388 +
389 +    kineticExchange_ = 0.0;
390 +    momentumExchange_ = V3Zero;
391 +
392 +    if (hasSlabWidth)
393 +      slabWidth_ = rnemdParams->getSlabWidth();
394 +    else
395 +      slabWidth_ = hmat(2,2) / 10.0;
396 +  
397 +    if (hasSlabACenter)
398 +      slabACenter_ = rnemdParams->getSlabACenter();
399 +    else
400 +      slabACenter_ = 0.0;
401 +    
402 +    if (hasSlabBCenter)
403 +      slabBCenter_ = rnemdParams->getSlabBCenter();
404 +    else
405 +      slabBCenter_ = hmat(2,2) / 2.0;
406 +    
407 +  }
408 +  
409    RNEMD::~RNEMD() {
410 <    delete randNumGen_;
410 >    
411 > #ifdef IS_MPI
412 >    if (worldRank == 0) {
413 > #endif
414 >
415 >      writeOutputFile();
416 >
417 >      rnemdFile_.close();
418 >      
419 > #ifdef IS_MPI
420 >    }
421 > #endif
422    }
423 +  
424 +  bool RNEMD::inSlabA(Vector3d pos) {
425 +    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
426 +  }
427 +  bool RNEMD::inSlabB(Vector3d pos) {
428 +    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
429 +  }
430  
431    void RNEMD::doSwap() {
432 <    std::cerr << "in RNEMD!\n";  
433 <    std::cerr << "nBins = " << nBins_ << "\n";
434 <    std::cerr << "swapTime = " << swapTime_ << "\n";
435 <    std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
436 <    std::cerr << "swapType = " << rnemdType_ << "\n";
437 <  }  
432 >
433 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
434 >    Mat3x3d hmat = currentSnap_->getHmat();
435 >
436 >    seleMan_.setSelectionSet(evaluator_.evaluate());
437 >
438 >    int selei;
439 >    StuntDouble* sd;
440 >    int idx;
441 >
442 >    RealType min_val;
443 >    bool min_found = false;  
444 >    StuntDouble* min_sd;
445 >
446 >    RealType max_val;
447 >    bool max_found = false;
448 >    StuntDouble* max_sd;
449 >
450 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
451 >         sd = seleMan_.nextSelected(selei)) {
452 >
453 >      idx = sd->getLocalIndex();
454 >
455 >      Vector3d pos = sd->getPos();
456 >
457 >      // wrap the stuntdouble's position back into the box:
458 >
459 >      if (usePeriodicBoundaryConditions_)
460 >        currentSnap_->wrapVector(pos);
461 >      bool inA = inSlabA(pos);
462 >      bool inB = inSlabB(pos);
463 >
464 >      if (inA || inB) {
465 >        
466 >        RealType mass = sd->getMass();
467 >        Vector3d vel = sd->getVel();
468 >        RealType value;
469 >        
470 >        switch(rnemdFluxType_) {
471 >        case rnemdKE :
472 >          
473 >          value = mass * vel.lengthSquare();
474 >          
475 >          if (sd->isDirectional()) {
476 >            Vector3d angMom = sd->getJ();
477 >            Mat3x3d I = sd->getI();
478 >            
479 >            if (sd->isLinear()) {
480 >              int i = sd->linearAxis();
481 >              int j = (i + 1) % 3;
482 >              int k = (i + 2) % 3;
483 >              value += angMom[j] * angMom[j] / I(j, j) +
484 >                angMom[k] * angMom[k] / I(k, k);
485 >            } else {                        
486 >              value += angMom[0]*angMom[0]/I(0, 0)
487 >                + angMom[1]*angMom[1]/I(1, 1)
488 >                + angMom[2]*angMom[2]/I(2, 2);
489 >            }
490 >          } //angular momenta exchange enabled
491 >          //energyConvert temporarily disabled
492 >          //make kineticExchange_ comparable between swap & scale
493 >          //value = value * 0.5 / PhysicalConstants::energyConvert;
494 >          value *= 0.5;
495 >          break;
496 >        case rnemdPx :
497 >          value = mass * vel[0];
498 >          break;
499 >        case rnemdPy :
500 >          value = mass * vel[1];
501 >          break;
502 >        case rnemdPz :
503 >          value = mass * vel[2];
504 >          break;
505 >        default :
506 >          break;
507 >        }
508 >        
509 >        if (inA == 0) {
510 >          if (!min_found) {
511 >            min_val = value;
512 >            min_sd = sd;
513 >            min_found = true;
514 >          } else {
515 >            if (min_val > value) {
516 >              min_val = value;
517 >              min_sd = sd;
518 >            }
519 >          }
520 >        } else {
521 >          if (!max_found) {
522 >            max_val = value;
523 >            max_sd = sd;
524 >            max_found = true;
525 >          } else {
526 >            if (max_val < value) {
527 >              max_val = value;
528 >              max_sd = sd;
529 >            }
530 >          }      
531 >        }
532 >      }
533 >    }
534 >    
535 > #ifdef IS_MPI
536 >    int nProc, worldRank;
537 >    
538 >    nProc = MPI::COMM_WORLD.Get_size();
539 >    worldRank = MPI::COMM_WORLD.Get_rank();
540 >
541 >    bool my_min_found = min_found;
542 >    bool my_max_found = max_found;
543 >
544 >    // Even if we didn't find a minimum, did someone else?
545 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
546 >    // Even if we didn't find a maximum, did someone else?
547 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
548 > #endif
549 >
550 >    if (max_found && min_found) {
551 >
552 > #ifdef IS_MPI
553 >      struct {
554 >        RealType val;
555 >        int rank;
556 >      } max_vals, min_vals;
557 >      
558 >      if (my_min_found) {
559 >        min_vals.val = min_val;
560 >      } else {
561 >        min_vals.val = HONKING_LARGE_VALUE;
562 >      }
563 >      min_vals.rank = worldRank;    
564 >      
565 >      // Who had the minimum?
566 >      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
567 >                                1, MPI::REALTYPE_INT, MPI::MINLOC);
568 >      min_val = min_vals.val;
569 >      
570 >      if (my_max_found) {
571 >        max_vals.val = max_val;
572 >      } else {
573 >        max_vals.val = -HONKING_LARGE_VALUE;
574 >      }
575 >      max_vals.rank = worldRank;    
576 >      
577 >      // Who had the maximum?
578 >      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
579 >                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
580 >      max_val = max_vals.val;
581 > #endif
582 >      
583 >      if (min_val < max_val) {
584 >        
585 > #ifdef IS_MPI      
586 >        if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
587 >          // I have both maximum and minimum, so proceed like a single
588 >          // processor version:
589 > #endif
590 >
591 >          Vector3d min_vel = min_sd->getVel();
592 >          Vector3d max_vel = max_sd->getVel();
593 >          RealType temp_vel;
594 >          
595 >          switch(rnemdFluxType_) {
596 >          case rnemdKE :
597 >            min_sd->setVel(max_vel);
598 >            max_sd->setVel(min_vel);
599 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
600 >              Vector3d min_angMom = min_sd->getJ();
601 >              Vector3d max_angMom = max_sd->getJ();
602 >              min_sd->setJ(max_angMom);
603 >              max_sd->setJ(min_angMom);
604 >            }//angular momenta exchange enabled
605 >            //assumes same rigid body identity
606 >            break;
607 >          case rnemdPx :
608 >            temp_vel = min_vel.x();
609 >            min_vel.x() = max_vel.x();
610 >            max_vel.x() = temp_vel;
611 >            min_sd->setVel(min_vel);
612 >            max_sd->setVel(max_vel);
613 >            break;
614 >          case rnemdPy :
615 >            temp_vel = min_vel.y();
616 >            min_vel.y() = max_vel.y();
617 >            max_vel.y() = temp_vel;
618 >            min_sd->setVel(min_vel);
619 >            max_sd->setVel(max_vel);
620 >            break;
621 >          case rnemdPz :
622 >            temp_vel = min_vel.z();
623 >            min_vel.z() = max_vel.z();
624 >            max_vel.z() = temp_vel;
625 >            min_sd->setVel(min_vel);
626 >            max_sd->setVel(max_vel);
627 >            break;
628 >          default :
629 >            break;
630 >          }
631 >
632 > #ifdef IS_MPI
633 >          // the rest of the cases only apply in parallel simulations:
634 >        } else if (max_vals.rank == worldRank) {
635 >          // I had the max, but not the minimum
636 >          
637 >          Vector3d min_vel;
638 >          Vector3d max_vel = max_sd->getVel();
639 >          MPI::Status status;
640 >
641 >          // point-to-point swap of the velocity vector
642 >          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
643 >                                   min_vals.rank, 0,
644 >                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
645 >                                   min_vals.rank, 0, status);
646 >          
647 >          switch(rnemdFluxType_) {
648 >          case rnemdKE :
649 >            max_sd->setVel(min_vel);
650 >            //angular momenta exchange enabled
651 >            if (max_sd->isDirectional()) {
652 >              Vector3d min_angMom;
653 >              Vector3d max_angMom = max_sd->getJ();
654 >              
655 >              // point-to-point swap of the angular momentum vector
656 >              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
657 >                                       MPI::REALTYPE, min_vals.rank, 1,
658 >                                       min_angMom.getArrayPointer(), 3,
659 >                                       MPI::REALTYPE, min_vals.rank, 1,
660 >                                       status);
661 >              
662 >              max_sd->setJ(min_angMom);
663 >            }
664 >            break;
665 >          case rnemdPx :
666 >            max_vel.x() = min_vel.x();
667 >            max_sd->setVel(max_vel);
668 >            break;
669 >          case rnemdPy :
670 >            max_vel.y() = min_vel.y();
671 >            max_sd->setVel(max_vel);
672 >            break;
673 >          case rnemdPz :
674 >            max_vel.z() = min_vel.z();
675 >            max_sd->setVel(max_vel);
676 >            break;
677 >          default :
678 >            break;
679 >          }
680 >        } else if (min_vals.rank == worldRank) {
681 >          // I had the minimum but not the maximum:
682 >          
683 >          Vector3d max_vel;
684 >          Vector3d min_vel = min_sd->getVel();
685 >          MPI::Status status;
686 >          
687 >          // point-to-point swap of the velocity vector
688 >          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
689 >                                   max_vals.rank, 0,
690 >                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
691 >                                   max_vals.rank, 0, status);
692 >          
693 >          switch(rnemdFluxType_) {
694 >          case rnemdKE :
695 >            min_sd->setVel(max_vel);
696 >            //angular momenta exchange enabled
697 >            if (min_sd->isDirectional()) {
698 >              Vector3d min_angMom = min_sd->getJ();
699 >              Vector3d max_angMom;
700 >              
701 >              // point-to-point swap of the angular momentum vector
702 >              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
703 >                                       MPI::REALTYPE, max_vals.rank, 1,
704 >                                       max_angMom.getArrayPointer(), 3,
705 >                                       MPI::REALTYPE, max_vals.rank, 1,
706 >                                       status);
707 >              
708 >              min_sd->setJ(max_angMom);
709 >            }
710 >            break;
711 >          case rnemdPx :
712 >            min_vel.x() = max_vel.x();
713 >            min_sd->setVel(min_vel);
714 >            break;
715 >          case rnemdPy :
716 >            min_vel.y() = max_vel.y();
717 >            min_sd->setVel(min_vel);
718 >            break;
719 >          case rnemdPz :
720 >            min_vel.z() = max_vel.z();
721 >            min_sd->setVel(min_vel);
722 >            break;
723 >          default :
724 >            break;
725 >          }
726 >        }
727 > #endif
728 >        
729 >        switch(rnemdFluxType_) {
730 >        case rnemdKE:
731 >          cerr << "KE\n";
732 >          kineticExchange_ += max_val - min_val;
733 >          break;
734 >        case rnemdPx:
735 >          momentumExchange_.x() += max_val - min_val;
736 >          break;
737 >        case rnemdPy:
738 >          momentumExchange_.y() += max_val - min_val;
739 >          break;
740 >        case rnemdPz:
741 >          momentumExchange_.z() += max_val - min_val;
742 >          break;
743 >        default:
744 >          cerr << "default\n";
745 >          break;
746 >        }
747 >      } else {        
748 >        sprintf(painCave.errMsg,
749 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
750 >        painCave.isFatal = 0;
751 >        painCave.severity = OPENMD_INFO;
752 >        simError();        
753 >        failTrialCount_++;
754 >      }
755 >    } else {
756 >      sprintf(painCave.errMsg,
757 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
758 >              "\twas not present in at least one of the two slabs.\n");
759 >      painCave.isFatal = 0;
760 >      painCave.severity = OPENMD_INFO;
761 >      simError();        
762 >      failTrialCount_++;
763 >    }    
764 >  }
765 >  
766 >  void RNEMD::doNIVS() {
767 >
768 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
769 >    Mat3x3d hmat = currentSnap_->getHmat();
770 >
771 >    seleMan_.setSelectionSet(evaluator_.evaluate());
772 >
773 >    int selei;
774 >    StuntDouble* sd;
775 >    int idx;
776 >
777 >    vector<StuntDouble*> hotBin, coldBin;
778 >
779 >    RealType Phx = 0.0;
780 >    RealType Phy = 0.0;
781 >    RealType Phz = 0.0;
782 >    RealType Khx = 0.0;
783 >    RealType Khy = 0.0;
784 >    RealType Khz = 0.0;
785 >    RealType Khw = 0.0;
786 >    RealType Pcx = 0.0;
787 >    RealType Pcy = 0.0;
788 >    RealType Pcz = 0.0;
789 >    RealType Kcx = 0.0;
790 >    RealType Kcy = 0.0;
791 >    RealType Kcz = 0.0;
792 >    RealType Kcw = 0.0;
793 >
794 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
795 >         sd = seleMan_.nextSelected(selei)) {
796 >
797 >      idx = sd->getLocalIndex();
798 >
799 >      Vector3d pos = sd->getPos();
800 >
801 >      // wrap the stuntdouble's position back into the box:
802 >
803 >      if (usePeriodicBoundaryConditions_)
804 >        currentSnap_->wrapVector(pos);
805 >
806 >      // which bin is this stuntdouble in?
807 >      bool inA = inSlabA(pos);
808 >      bool inB = inSlabB(pos);
809 >
810 >      if (inA || inB) {
811 >              
812 >        RealType mass = sd->getMass();
813 >        Vector3d vel = sd->getVel();
814 >      
815 >        if (inA) {
816 >          hotBin.push_back(sd);
817 >          Phx += mass * vel.x();
818 >          Phy += mass * vel.y();
819 >          Phz += mass * vel.z();
820 >          Khx += mass * vel.x() * vel.x();
821 >          Khy += mass * vel.y() * vel.y();
822 >          Khz += mass * vel.z() * vel.z();
823 >          if (sd->isDirectional()) {
824 >            Vector3d angMom = sd->getJ();
825 >            Mat3x3d I = sd->getI();
826 >            if (sd->isLinear()) {
827 >              int i = sd->linearAxis();
828 >              int j = (i + 1) % 3;
829 >              int k = (i + 2) % 3;
830 >              Khw += angMom[j] * angMom[j] / I(j, j) +
831 >                angMom[k] * angMom[k] / I(k, k);
832 >            } else {
833 >              Khw += angMom[0]*angMom[0]/I(0, 0)
834 >                + angMom[1]*angMom[1]/I(1, 1)
835 >                + angMom[2]*angMom[2]/I(2, 2);
836 >            }
837 >          }
838 >        } else {
839 >          coldBin.push_back(sd);
840 >          Pcx += mass * vel.x();
841 >          Pcy += mass * vel.y();
842 >          Pcz += mass * vel.z();
843 >          Kcx += mass * vel.x() * vel.x();
844 >          Kcy += mass * vel.y() * vel.y();
845 >          Kcz += mass * vel.z() * vel.z();
846 >          if (sd->isDirectional()) {
847 >            Vector3d angMom = sd->getJ();
848 >            Mat3x3d I = sd->getI();
849 >            if (sd->isLinear()) {
850 >              int i = sd->linearAxis();
851 >              int j = (i + 1) % 3;
852 >              int k = (i + 2) % 3;
853 >              Kcw += angMom[j] * angMom[j] / I(j, j) +
854 >                angMom[k] * angMom[k] / I(k, k);
855 >            } else {
856 >              Kcw += angMom[0]*angMom[0]/I(0, 0)
857 >                + angMom[1]*angMom[1]/I(1, 1)
858 >                + angMom[2]*angMom[2]/I(2, 2);
859 >            }
860 >          }
861 >        }
862 >      }
863 >    }
864 >    
865 >    Khx *= 0.5;
866 >    Khy *= 0.5;
867 >    Khz *= 0.5;
868 >    Khw *= 0.5;
869 >    Kcx *= 0.5;
870 >    Kcy *= 0.5;
871 >    Kcz *= 0.5;
872 >    Kcw *= 0.5;
873 >
874 > #ifdef IS_MPI
875 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
876 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
877 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
878 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
879 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
880 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
881 >
882 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
883 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
884 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
885 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
886 >
887 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
888 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
889 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
890 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
891 > #endif
892 >
893 >    //solve coldBin coeff's first
894 >    RealType px = Pcx / Phx;
895 >    RealType py = Pcy / Phy;
896 >    RealType pz = Pcz / Phz;
897 >    RealType c, x, y, z;
898 >    bool successfulScale = false;
899 >    if ((rnemdFluxType_ == rnemdFullKE) ||
900 >        (rnemdFluxType_ == rnemdRotKE)) {
901 >      //may need sanity check Khw & Kcw > 0
902 >
903 >      if (rnemdFluxType_ == rnemdFullKE) {
904 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
905 >      } else {
906 >        c = 1.0 - kineticTarget_ / Kcw;
907 >      }
908 >
909 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
910 >        c = sqrt(c);
911 >        //std::cerr << "cold slab scaling coefficient: " << c << endl;
912 >        //now convert to hotBin coefficient
913 >        RealType w = 0.0;
914 >        if (rnemdFluxType_ ==  rnemdFullKE) {
915 >          x = 1.0 + px * (1.0 - c);
916 >          y = 1.0 + py * (1.0 - c);
917 >          z = 1.0 + pz * (1.0 - c);
918 >          /* more complicated way
919 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
920 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
921 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
922 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
923 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
924 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
925 >          */
926 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
927 >              (fabs(z - 1.0) < 0.1)) {
928 >            w = 1.0 + (kineticTarget_
929 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
930 >                       + Khz * (1.0 - z * z)) / Khw;
931 >          }//no need to calculate w if x, y or z is out of range
932 >        } else {
933 >          w = 1.0 + kineticTarget_ / Khw;
934 >        }
935 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
936 >          //if w is in the right range, so should be x, y, z.
937 >          vector<StuntDouble*>::iterator sdi;
938 >          Vector3d vel;
939 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
940 >            if (rnemdFluxType_ == rnemdFullKE) {
941 >              vel = (*sdi)->getVel() * c;
942 >              (*sdi)->setVel(vel);
943 >            }
944 >            if ((*sdi)->isDirectional()) {
945 >              Vector3d angMom = (*sdi)->getJ() * c;
946 >              (*sdi)->setJ(angMom);
947 >            }
948 >          }
949 >          w = sqrt(w);
950 >          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
951 >          //           << "\twh= " << w << endl;
952 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
953 >            if (rnemdFluxType_ == rnemdFullKE) {
954 >              vel = (*sdi)->getVel();
955 >              vel.x() *= x;
956 >              vel.y() *= y;
957 >              vel.z() *= z;
958 >              (*sdi)->setVel(vel);
959 >            }
960 >            if ((*sdi)->isDirectional()) {
961 >              Vector3d angMom = (*sdi)->getJ() * w;
962 >              (*sdi)->setJ(angMom);
963 >            }
964 >          }
965 >          successfulScale = true;
966 >          kineticExchange_ += kineticTarget_;
967 >        }
968 >      }
969 >    } else {
970 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
971 >      switch(rnemdFluxType_) {
972 >      case rnemdKE :
973 >        /* used hotBin coeff's & only scale x & y dimensions
974 >           RealType px = Phx / Pcx;
975 >           RealType py = Phy / Pcy;
976 >           a110 = Khy;
977 >           c0 = - Khx - Khy - kineticTarget_;
978 >           a000 = Khx;
979 >           a111 = Kcy * py * py;
980 >           b11 = -2.0 * Kcy * py * (1.0 + py);
981 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
982 >           b01 = -2.0 * Kcx * px * (1.0 + px);
983 >           a001 = Kcx * px * px;
984 >        */
985 >        //scale all three dimensions, let c_x = c_y
986 >        a000 = Kcx + Kcy;
987 >        a110 = Kcz;
988 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
989 >        a001 = Khx * px * px + Khy * py * py;
990 >        a111 = Khz * pz * pz;
991 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
992 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
993 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
994 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
995 >        break;
996 >      case rnemdPx :
997 >        c = 1 - momentumTarget_.x() / Pcx;
998 >        a000 = Kcy;
999 >        a110 = Kcz;
1000 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1001 >        a001 = py * py * Khy;
1002 >        a111 = pz * pz * Khz;
1003 >        b01 = -2.0 * Khy * py * (1.0 + py);
1004 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1005 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1006 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1007 >        break;
1008 >      case rnemdPy :
1009 >        c = 1 - momentumTarget_.y() / Pcy;
1010 >        a000 = Kcx;
1011 >        a110 = Kcz;
1012 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1013 >        a001 = px * px * Khx;
1014 >        a111 = pz * pz * Khz;
1015 >        b01 = -2.0 * Khx * px * (1.0 + px);
1016 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1017 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1018 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1019 >        break;
1020 >      case rnemdPz ://we don't really do this, do we?
1021 >        c = 1 - momentumTarget_.z() / Pcz;
1022 >        a000 = Kcx;
1023 >        a110 = Kcy;
1024 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1025 >        a001 = px * px * Khx;
1026 >        a111 = py * py * Khy;
1027 >        b01 = -2.0 * Khx * px * (1.0 + px);
1028 >        b11 = -2.0 * Khy * py * (1.0 + py);
1029 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1030 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1031 >        break;
1032 >      default :
1033 >        break;
1034 >      }
1035 >      
1036 >      RealType v1 = a000 * a111 - a001 * a110;
1037 >      RealType v2 = a000 * b01;
1038 >      RealType v3 = a000 * b11;
1039 >      RealType v4 = a000 * c1 - a001 * c0;
1040 >      RealType v8 = a110 * b01;
1041 >      RealType v10 = - b01 * c0;
1042 >      
1043 >      RealType u0 = v2 * v10 - v4 * v4;
1044 >      RealType u1 = -2.0 * v3 * v4;
1045 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1046 >      RealType u3 = -2.0 * v1 * v3;
1047 >      RealType u4 = - v1 * v1;
1048 >      //rescale coefficients
1049 >      RealType maxAbs = fabs(u0);
1050 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1051 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1052 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1053 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1054 >      u0 /= maxAbs;
1055 >      u1 /= maxAbs;
1056 >      u2 /= maxAbs;
1057 >      u3 /= maxAbs;
1058 >      u4 /= maxAbs;
1059 >      //max_element(start, end) is also available.
1060 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1061 >      poly.setCoefficient(4, u4);
1062 >      poly.setCoefficient(3, u3);
1063 >      poly.setCoefficient(2, u2);
1064 >      poly.setCoefficient(1, u1);
1065 >      poly.setCoefficient(0, u0);
1066 >      vector<RealType> realRoots = poly.FindRealRoots();
1067 >      
1068 >      vector<RealType>::iterator ri;
1069 >      RealType r1, r2, alpha0;
1070 >      vector<pair<RealType,RealType> > rps;
1071 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1072 >        r2 = *ri;
1073 >        //check if FindRealRoots() give the right answer
1074 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1075 >          sprintf(painCave.errMsg,
1076 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1077 >          painCave.isFatal = 0;
1078 >          simError();
1079 >          failRootCount_++;
1080 >        }
1081 >        //might not be useful w/o rescaling coefficients
1082 >        alpha0 = -c0 - a110 * r2 * r2;
1083 >        if (alpha0 >= 0.0) {
1084 >          r1 = sqrt(alpha0 / a000);
1085 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1086 >              < 1e-6)
1087 >            { rps.push_back(make_pair(r1, r2)); }
1088 >          if (r1 > 1e-6) { //r1 non-negative
1089 >            r1 = -r1;
1090 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1091 >                < 1e-6)
1092 >              { rps.push_back(make_pair(r1, r2)); }
1093 >          }
1094 >        }
1095 >      }
1096 >      // Consider combining together the solving pair part w/ the searching
1097 >      // best solution part so that we don't need the pairs vector
1098 >      if (!rps.empty()) {
1099 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1100 >        RealType diff;
1101 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1102 >        vector<pair<RealType,RealType> >::iterator rpi;
1103 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1104 >          r1 = (*rpi).first;
1105 >          r2 = (*rpi).second;
1106 >          switch(rnemdFluxType_) {
1107 >          case rnemdKE :
1108 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1109 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1110 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1111 >            break;
1112 >          case rnemdPx :
1113 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1114 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1115 >            break;
1116 >          case rnemdPy :
1117 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1118 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1119 >            break;
1120 >          case rnemdPz :
1121 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1122 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1123 >          default :
1124 >            break;
1125 >          }
1126 >          if (diff < smallestDiff) {
1127 >            smallestDiff = diff;
1128 >            bestPair = *rpi;
1129 >          }
1130 >        }
1131 > #ifdef IS_MPI
1132 >        if (worldRank == 0) {
1133 > #endif
1134 >          // sprintf(painCave.errMsg,
1135 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1136 >          //         bestPair.first, bestPair.second);
1137 >          // painCave.isFatal = 0;
1138 >          // painCave.severity = OPENMD_INFO;
1139 >          // simError();
1140 > #ifdef IS_MPI
1141 >        }
1142 > #endif
1143 >        
1144 >        switch(rnemdFluxType_) {
1145 >        case rnemdKE :
1146 >          x = bestPair.first;
1147 >          y = bestPair.first;
1148 >          z = bestPair.second;
1149 >          break;
1150 >        case rnemdPx :
1151 >          x = c;
1152 >          y = bestPair.first;
1153 >          z = bestPair.second;
1154 >          break;
1155 >        case rnemdPy :
1156 >          x = bestPair.first;
1157 >          y = c;
1158 >          z = bestPair.second;
1159 >          break;
1160 >        case rnemdPz :
1161 >          x = bestPair.first;
1162 >          y = bestPair.second;
1163 >          z = c;
1164 >          break;          
1165 >        default :
1166 >          break;
1167 >        }
1168 >        vector<StuntDouble*>::iterator sdi;
1169 >        Vector3d vel;
1170 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1171 >          vel = (*sdi)->getVel();
1172 >          vel.x() *= x;
1173 >          vel.y() *= y;
1174 >          vel.z() *= z;
1175 >          (*sdi)->setVel(vel);
1176 >        }
1177 >        //convert to hotBin coefficient
1178 >        x = 1.0 + px * (1.0 - x);
1179 >        y = 1.0 + py * (1.0 - y);
1180 >        z = 1.0 + pz * (1.0 - z);
1181 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1182 >          vel = (*sdi)->getVel();
1183 >          vel.x() *= x;
1184 >          vel.y() *= y;
1185 >          vel.z() *= z;
1186 >          (*sdi)->setVel(vel);
1187 >        }
1188 >        successfulScale = true;
1189 >        switch(rnemdFluxType_) {
1190 >        case rnemdKE :
1191 >          kineticExchange_ += kineticTarget_;
1192 >          break;
1193 >        case rnemdPx :
1194 >        case rnemdPy :
1195 >        case rnemdPz :
1196 >          momentumExchange_ += momentumTarget_;
1197 >          break;          
1198 >        default :
1199 >          break;
1200 >        }      
1201 >      }
1202 >    }
1203 >    if (successfulScale != true) {
1204 >      sprintf(painCave.errMsg,
1205 >              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1206 >              "\tthe constraint equations may not exist or there may be\n"
1207 >              "\tno selected objects in one or both slabs.\n");
1208 >      painCave.isFatal = 0;
1209 >      painCave.severity = OPENMD_INFO;
1210 >      simError();        
1211 >      failTrialCount_++;
1212 >    }
1213 >  }
1214 >
1215 >  void RNEMD::doVSS() {
1216 >
1217 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1218 >    RealType time = currentSnap_->getTime();    
1219 >    Mat3x3d hmat = currentSnap_->getHmat();
1220 >
1221 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1222 >
1223 >    int selei;
1224 >    StuntDouble* sd;
1225 >    int idx;
1226 >
1227 >    vector<StuntDouble*> hotBin, coldBin;
1228 >
1229 >    Vector3d Ph(V3Zero);
1230 >    RealType Mh = 0.0;
1231 >    RealType Kh = 0.0;
1232 >    Vector3d Pc(V3Zero);
1233 >    RealType Mc = 0.0;
1234 >    RealType Kc = 0.0;
1235 >    
1236 >
1237 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1238 >         sd = seleMan_.nextSelected(selei)) {
1239 >
1240 >      idx = sd->getLocalIndex();
1241 >
1242 >      Vector3d pos = sd->getPos();
1243 >
1244 >      // wrap the stuntdouble's position back into the box:
1245 >
1246 >      if (usePeriodicBoundaryConditions_)
1247 >        currentSnap_->wrapVector(pos);
1248 >
1249 >      // which bin is this stuntdouble in?
1250 >      bool inA = inSlabA(pos);
1251 >      bool inB = inSlabB(pos);
1252 >      
1253 >      if (inA || inB) {
1254 >        
1255 >        RealType mass = sd->getMass();
1256 >        Vector3d vel = sd->getVel();
1257 >      
1258 >        if (inA) {
1259 >          hotBin.push_back(sd);
1260 >          //std::cerr << "before, velocity = " << vel << endl;
1261 >          Ph += mass * vel;
1262 >          //std::cerr << "after, velocity = " << vel << endl;
1263 >          Mh += mass;
1264 >          Kh += mass * vel.lengthSquare();
1265 >          if (rnemdFluxType_ == rnemdFullKE) {
1266 >            if (sd->isDirectional()) {
1267 >              Vector3d angMom = sd->getJ();
1268 >              Mat3x3d I = sd->getI();
1269 >              if (sd->isLinear()) {
1270 >                int i = sd->linearAxis();
1271 >                int j = (i + 1) % 3;
1272 >                int k = (i + 2) % 3;
1273 >                Kh += angMom[j] * angMom[j] / I(j, j) +
1274 >                  angMom[k] * angMom[k] / I(k, k);
1275 >              } else {
1276 >                Kh += angMom[0] * angMom[0] / I(0, 0) +
1277 >                  angMom[1] * angMom[1] / I(1, 1) +
1278 >                  angMom[2] * angMom[2] / I(2, 2);
1279 >              }
1280 >            }
1281 >          }
1282 >        } else { //midBin_
1283 >          coldBin.push_back(sd);
1284 >          Pc += mass * vel;
1285 >          Mc += mass;
1286 >          Kc += mass * vel.lengthSquare();
1287 >          if (rnemdFluxType_ == rnemdFullKE) {
1288 >            if (sd->isDirectional()) {
1289 >              Vector3d angMom = sd->getJ();
1290 >              Mat3x3d I = sd->getI();
1291 >              if (sd->isLinear()) {
1292 >                int i = sd->linearAxis();
1293 >                int j = (i + 1) % 3;
1294 >                int k = (i + 2) % 3;
1295 >                Kc += angMom[j] * angMom[j] / I(j, j) +
1296 >                  angMom[k] * angMom[k] / I(k, k);
1297 >              } else {
1298 >                Kc += angMom[0] * angMom[0] / I(0, 0) +
1299 >                  angMom[1] * angMom[1] / I(1, 1) +
1300 >                  angMom[2] * angMom[2] / I(2, 2);
1301 >              }
1302 >            }
1303 >          }
1304 >        }
1305 >      }
1306 >    }
1307 >    
1308 >    Kh *= 0.5;
1309 >    Kc *= 0.5;
1310 >
1311 >    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1312 >    //        << "\tKc= " << Kc << endl;
1313 >    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1314 >    
1315 > #ifdef IS_MPI
1316 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1317 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1318 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1319 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1320 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1321 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1322 > #endif
1323 >
1324 >    bool successfulExchange = false;
1325 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1326 >      Vector3d vc = Pc / Mc;
1327 >      Vector3d ac = -momentumTarget_ / Mc + vc;
1328 >      Vector3d acrec = -momentumTarget_ / Mc;
1329 >      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1330 >      if (cNumerator > 0.0) {
1331 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1332 >        if (cDenominator > 0.0) {
1333 >          RealType c = sqrt(cNumerator / cDenominator);
1334 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1335 >            Vector3d vh = Ph / Mh;
1336 >            Vector3d ah = momentumTarget_ / Mh + vh;
1337 >            Vector3d ahrec = momentumTarget_ / Mh;
1338 >            RealType hNumerator = Kh + kineticTarget_
1339 >              - 0.5 * Mh * ah.lengthSquare();
1340 >            if (hNumerator > 0.0) {
1341 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1342 >              if (hDenominator > 0.0) {
1343 >                RealType h = sqrt(hNumerator / hDenominator);
1344 >                if ((h > 0.9) && (h < 1.1)) {
1345 >                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1346 >                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1347 >                  vector<StuntDouble*>::iterator sdi;
1348 >                  Vector3d vel;
1349 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1350 >                    //vel = (*sdi)->getVel();
1351 >                    vel = ((*sdi)->getVel() - vc) * c + ac;
1352 >                    (*sdi)->setVel(vel);
1353 >                    if (rnemdFluxType_ == rnemdFullKE) {
1354 >                      if ((*sdi)->isDirectional()) {
1355 >                        Vector3d angMom = (*sdi)->getJ() * c;
1356 >                        (*sdi)->setJ(angMom);
1357 >                      }
1358 >                    }
1359 >                  }
1360 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1361 >                    //vel = (*sdi)->getVel();
1362 >                    vel = ((*sdi)->getVel() - vh) * h + ah;
1363 >                    (*sdi)->setVel(vel);
1364 >                    if (rnemdFluxType_ == rnemdFullKE) {
1365 >                      if ((*sdi)->isDirectional()) {
1366 >                        Vector3d angMom = (*sdi)->getJ() * h;
1367 >                        (*sdi)->setJ(angMom);
1368 >                      }
1369 >                    }
1370 >                  }
1371 >                  successfulExchange = true;
1372 >                  kineticExchange_ += kineticTarget_;
1373 >                  momentumExchange_ += momentumTarget_;
1374 >                }
1375 >              }
1376 >            }
1377 >          }
1378 >        }
1379 >      }
1380 >    }
1381 >    if (successfulExchange != true) {
1382 >      sprintf(painCave.errMsg,
1383 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1384 >              "\tthe constraint equations may not exist or there may be\n"
1385 >              "\tno selected objects in one or both slabs.\n");
1386 >      painCave.isFatal = 0;
1387 >      painCave.severity = OPENMD_INFO;
1388 >      simError();        
1389 >      failTrialCount_++;
1390 >    }
1391 >  }
1392 >
1393 >  void RNEMD::doRNEMD() {
1394 >
1395 >    trialCount_++;
1396 >    switch(rnemdMethod_) {
1397 >    case rnemdSwap:
1398 >      doSwap();
1399 >      break;
1400 >    case rnemdNIVS:
1401 >      doNIVS();
1402 >      break;
1403 >    case rnemdVSS:
1404 >      doVSS();
1405 >      break;
1406 >    case rnemdUnkownMethod:
1407 >    default :
1408 >      break;
1409 >    }
1410 >  }
1411 >
1412 >  void RNEMD::collectData() {
1413 >
1414 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1415 >    Mat3x3d hmat = currentSnap_->getHmat();
1416 >
1417 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1418 >
1419 >    int selei;
1420 >    StuntDouble* sd;
1421 >    int idx;
1422 >
1423 >    vector<RealType> binMass(nBins_, 0.0);
1424 >    vector<RealType> binPx(nBins_, 0.0);
1425 >    vector<RealType> binPy(nBins_, 0.0);
1426 >    vector<RealType> binPz(nBins_, 0.0);
1427 >    vector<RealType> binKE(nBins_, 0.0);
1428 >    vector<int> binDOF(nBins_, 0);
1429 >    vector<int> binCount(nBins_, 0);
1430 >
1431 >    // alternative approach, track all molecules instead of only those
1432 >    // selected for scaling/swapping:
1433 >    /*
1434 >    SimInfo::MoleculeIterator miter;
1435 >    vector<StuntDouble*>::iterator iiter;
1436 >    Molecule* mol;
1437 >    StuntDouble* sd;
1438 >    for (mol = info_->beginMolecule(miter); mol != NULL;
1439 >      mol = info_->nextMolecule(miter))
1440 >      sd is essentially sd
1441 >        for (sd = mol->beginIntegrableObject(iiter);
1442 >             sd != NULL;
1443 >             sd = mol->nextIntegrableObject(iiter))
1444 >    */
1445 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1446 >         sd = seleMan_.nextSelected(selei)) {
1447 >      
1448 >      idx = sd->getLocalIndex();
1449 >      
1450 >      Vector3d pos = sd->getPos();
1451 >
1452 >      // wrap the stuntdouble's position back into the box:
1453 >      
1454 >      if (usePeriodicBoundaryConditions_)
1455 >        currentSnap_->wrapVector(pos);
1456 >
1457 >      // which bin is this stuntdouble in?
1458 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1459 >      // Shift molecules by half a box to have bins start at 0
1460 >      // The modulo operator is used to wrap the case when we are
1461 >      // beyond the end of the bins back to the beginning.
1462 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1463 >    
1464 >      RealType mass = sd->getMass();
1465 >      Vector3d vel = sd->getVel();
1466 >
1467 >      binCount[binNo]++;
1468 >      binMass[binNo] += mass;
1469 >      binPx[binNo] += mass*vel.x();
1470 >      binPy[binNo] += mass*vel.y();
1471 >      binPz[binNo] += mass*vel.z();
1472 >      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1473 >      binDOF[binNo] += 3;
1474 >
1475 >      if (sd->isDirectional()) {
1476 >        Vector3d angMom = sd->getJ();
1477 >        Mat3x3d I = sd->getI();
1478 >        if (sd->isLinear()) {
1479 >          int i = sd->linearAxis();
1480 >          int j = (i + 1) % 3;
1481 >          int k = (i + 2) % 3;
1482 >          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1483 >                                 angMom[k] * angMom[k] / I(k, k));
1484 >          binDOF[binNo] += 2;
1485 >        } else {
1486 >          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1487 >                                 angMom[1] * angMom[1] / I(1, 1) +
1488 >                                 angMom[2] * angMom[2] / I(2, 2));
1489 >          binDOF[binNo] += 3;
1490 >        }
1491 >      }
1492 >    }
1493 >    
1494 >
1495 > #ifdef IS_MPI
1496 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1497 >                              nBins_, MPI::INT, MPI::SUM);
1498 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1499 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1500 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1501 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1502 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1503 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1504 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1505 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1506 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1507 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1508 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1509 >                              nBins_, MPI::INT, MPI::SUM);
1510 > #endif
1511 >
1512 >    Vector3d vel;
1513 >    RealType den;
1514 >    RealType temp;
1515 >    RealType z;
1516 >    for (int i = 0; i < nBins_; i++) {
1517 >      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1518 >      vel.x() = binPx[i] / binMass[i];
1519 >      vel.y() = binPy[i] / binMass[i];
1520 >      vel.z() = binPz[i] / binMass[i];
1521 >      den = binCount[i] * nBins_ / (hmat(0,0) * hmat(1,1) * hmat(2,2));
1522 >      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1523 >                               PhysicalConstants::energyConvert);
1524 >
1525 >      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1526 >        if(outputMask_[j]) {
1527 >          switch(j) {
1528 >          case Z:
1529 >            (data_[j].accumulator[i])->add(z);
1530 >            break;
1531 >          case TEMPERATURE:
1532 >            data_[j].accumulator[i]->add(temp);
1533 >            break;
1534 >          case VELOCITY:
1535 >            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1536 >            break;
1537 >          case DENSITY:
1538 >            data_[j].accumulator[i]->add(den);
1539 >            break;
1540 >          }
1541 >        }
1542 >      }
1543 >    }
1544 >  }
1545 >
1546 >  void RNEMD::getStarted() {
1547 >    collectData();
1548 >    writeOutputFile();
1549 >  }
1550 >
1551 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
1552 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1553 >    
1554 >    while(tokenizer.hasMoreTokens()) {
1555 >      std::string token(tokenizer.nextToken());
1556 >      toUpper(token);
1557 >      OutputMapType::iterator i = outputMap_.find(token);
1558 >      if (i != outputMap_.end()) {
1559 >        outputMask_.set(i->second);
1560 >      } else {
1561 >        sprintf( painCave.errMsg,
1562 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1563 >                 "\toutputFileFormat keyword.\n", token.c_str() );
1564 >        painCave.isFatal = 0;
1565 >        painCave.severity = OPENMD_ERROR;
1566 >        simError();            
1567 >      }
1568 >    }  
1569 >  }
1570 >  
1571 >  void RNEMD::writeOutputFile() {
1572 >    
1573 > #ifdef IS_MPI
1574 >    // If we're the root node, should we print out the results
1575 >    int worldRank = MPI::COMM_WORLD.Get_rank();
1576 >    if (worldRank == 0) {
1577 > #endif
1578 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1579 >      
1580 >      if( !rnemdFile_ ){        
1581 >        sprintf( painCave.errMsg,
1582 >                 "Could not open \"%s\" for RNEMD output.\n",
1583 >                 rnemdFileName_.c_str());
1584 >        painCave.isFatal = 1;
1585 >        simError();
1586 >      }
1587 >
1588 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1589 >
1590 >      RealType time = currentSnap_->getTime();
1591 >      
1592 >      
1593 >      rnemdFile_ << "#######################################################\n";
1594 >      rnemdFile_ << "# RNEMD {\n";
1595 >
1596 >      map<string, RNEMDMethod>::iterator mi;
1597 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1598 >        if ( (*mi).second == rnemdMethod_)
1599 >          rnemdFile_ << "#    exchangeMethod  = " << (*mi).first << "\n";
1600 >      }
1601 >      map<string, RNEMDFluxType>::iterator fi;
1602 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1603 >        if ( (*fi).second == rnemdFluxType_)
1604 >          rnemdFile_ << "#    fluxType  = " << (*fi).first << "\n";
1605 >      }
1606 >      
1607 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << " fs\n";
1608 >
1609 >      rnemdFile_ << "#    objectSelection = \""
1610 >                 << rnemdObjectSelection_ << "\"\n";
1611 >      rnemdFile_ << "#    slabWidth = " << slabWidth_ << " angstroms\n";
1612 >      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << " angstroms\n";
1613 >      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << " angstroms\n";
1614 >      rnemdFile_ << "# }\n";
1615 >      rnemdFile_ << "#######################################################\n";
1616 >      
1617 >      rnemdFile_ << "# running time = " << time << " fs\n";
1618 >      rnemdFile_ << "# target kinetic flux = " << kineticFlux_ << "\n";
1619 >      rnemdFile_ << "# target momentum flux = " << momentumFluxVector_ << "\n";
1620 >      
1621 >      rnemdFile_ << "# target one-time kinetic exchange = " << kineticTarget_
1622 >                 << "\n";
1623 >      rnemdFile_ << "# target one-time momentum exchange = " << momentumTarget_
1624 >                 << "\n";
1625 >      
1626 >      rnemdFile_ << "# actual kinetic exchange = " << kineticExchange_ << "\n";
1627 >      rnemdFile_ << "# actual momentum exchange = " << momentumExchange_
1628 >                 << "\n";
1629 >      
1630 >      rnemdFile_ << "# attempted exchanges: " << trialCount_ << "\n";
1631 >      rnemdFile_ << "# failed exchanges: " << failTrialCount_ << "\n";
1632 >
1633 >      
1634 >      if (rnemdMethod_ == rnemdNIVS) {
1635 >        rnemdFile_ << "# NIVS root-check warnings: " << failRootCount_ << "\n";
1636 >      }
1637 >
1638 >      rnemdFile_ << "#######################################################\n";
1639 >      
1640 >      
1641 >      
1642 >      //write title
1643 >      rnemdFile_ << "#";
1644 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1645 >        if (outputMask_[i]) {
1646 >          rnemdFile_ << "\t" << data_[i].title <<
1647 >            "(" << data_[i].units << ")";
1648 >        }
1649 >      }
1650 >      rnemdFile_ << std::endl;
1651 >      
1652 >      rnemdFile_.precision(8);
1653 >      
1654 >      for (unsigned int j = 0; j < nBins_; j++) {        
1655 >        
1656 >        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1657 >          if (outputMask_[i]) {
1658 >            if (data_[i].dataType == "RealType")
1659 >              writeReal(i,j);
1660 >            else if (data_[i].dataType == "Vector3d")
1661 >              writeVector(i,j);
1662 >            else {
1663 >              sprintf( painCave.errMsg,
1664 >                       "RNEMD found an unknown data type for: %s ",
1665 >                       data_[i].title.c_str());
1666 >              painCave.isFatal = 1;
1667 >              simError();
1668 >            }
1669 >          }
1670 >        }
1671 >        rnemdFile_ << std::endl;
1672 >        
1673 >      }        
1674 >      
1675 >      rnemdFile_.flush();
1676 >      rnemdFile_.close();
1677 >      
1678 > #ifdef IS_MPI
1679 >    }
1680 > #endif
1681 >    
1682 >  }
1683 >  
1684 >  void RNEMD::writeReal(int index, unsigned int bin) {
1685 >    assert(index >=0 && index < ENDINDEX);
1686 >    assert(bin >=0 && bin < nBins_);
1687 >    RealType s;
1688 >    
1689 >    data_[index].accumulator[bin]->getAverage(s);
1690 >    
1691 >    if (! isinf(s) && ! isnan(s)) {
1692 >      rnemdFile_ << "\t" << s;
1693 >    } else{
1694 >      sprintf( painCave.errMsg,
1695 >               "RNEMD detected a numerical error writing: %s for bin %d",
1696 >               data_[index].title.c_str(), bin);
1697 >      painCave.isFatal = 1;
1698 >      simError();
1699 >    }    
1700 >  }
1701 >  
1702 >  void RNEMD::writeVector(int index, unsigned int bin) {
1703 >    assert(index >=0 && index < ENDINDEX);
1704 >    assert(bin >=0 && bin < nBins_);
1705 >    Vector3d s;
1706 >    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1707 >    if (isinf(s[0]) || isnan(s[0]) ||
1708 >        isinf(s[1]) || isnan(s[1]) ||
1709 >        isinf(s[2]) || isnan(s[2]) ) {      
1710 >      sprintf( painCave.errMsg,
1711 >               "RNEMD detected a numerical error writing: %s for bin %d",
1712 >               data_[index].title.c_str(), bin);
1713 >      painCave.isFatal = 1;
1714 >      simError();
1715 >    } else {
1716 >      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1717 >    }
1718 >  }  
1719   }
1720 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (property svn:keywords), Revision 1773 by gezelter, Tue Aug 7 18:26:40 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines