ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1339 by gezelter, Thu Apr 23 18:31:05 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1803 by gezelter, Wed Oct 3 14:20:07 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 < #include "integrators/RNEMD.hpp"
42 > #include <cmath>
43 > #include "rnemd/RNEMD.hpp"
44   #include "math/Vector3.hpp"
45 + #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47 + #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50 < #include "utils/OOPSEConstant.hpp"
50 > #include "utils/PhysicalConstants.hpp"
51   #include "utils/Tuple.hpp"
52 <
53 < #ifndef IS_MPI
51 < #include "math/SeqRandNumGen.hpp"
52 < #else
53 < #include "math/ParallelRandNumGen.hpp"
52 > #ifdef IS_MPI
53 > #include <mpi.h>
54   #endif
55  
56 < /* Remove me after testing*/
57 < /*
58 < #include <cstdio>
59 < #include <iostream>
60 < */
61 < /*End remove me*/
56 > #define HONKING_LARGE_VALUE 1.0e10
57  
58 < namespace oopse {
58 > using namespace std;
59 > namespace OpenMD {
60    
61 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
62 <    
61 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
62 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63 >
64 >    trialCount_ = 0;
65 >    failTrialCount_ = 0;
66 >    failRootCount_ = 0;
67 >
68      int seedValue;
69      Globals * simParams = info->getSimParams();
70 +    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
71  
72 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
73 <    stringToEnumMap_["Px"] = rnemdPx;
72 <    stringToEnumMap_["Py"] = rnemdPy;
73 <    stringToEnumMap_["Pz"] = rnemdPz;
74 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
72 >    doRNEMD_ = rnemdParams->getUseRNEMD();
73 >    if (!doRNEMD_) return;
74  
75 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
75 >    stringToMethod_["Swap"]  = rnemdSwap;
76 >    stringToMethod_["NIVS"]  = rnemdNIVS;
77 >    stringToMethod_["VSS"]   = rnemdVSS;
78  
79 <    std::cerr << "calling  evaluator with " << rnemdObjectSelection_ << "\n";
79 >    stringToFluxType_["KE"]  = rnemdKE;
80 >    stringToFluxType_["Px"]  = rnemdPx;
81 >    stringToFluxType_["Py"]  = rnemdPy;
82 >    stringToFluxType_["Pz"]  = rnemdPz;
83 >    stringToFluxType_["Pvector"]  = rnemdPvector;
84 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
85 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
86 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
87 >
88 >    runTime_ = simParams->getRunTime();
89 >    statusTime_ = simParams->getStatusTime();
90 >
91 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
92      evaluator_.loadScriptString(rnemdObjectSelection_);
93 <    std::cerr << "done\n";
93 >    seleMan_.setSelectionSet(evaluator_.evaluate());
94 >
95 >    const string methStr = rnemdParams->getMethod();
96 >    bool hasFluxType = rnemdParams->haveFluxType();
97 >
98 >    string fluxStr;
99 >    if (hasFluxType) {
100 >      fluxStr = rnemdParams->getFluxType();
101 >    } else {
102 >      sprintf(painCave.errMsg,
103 >              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
104 >              "\twhich must be one of the following values:\n"
105 >              "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n"
106 >              "\tmust be set to use RNEMD\n");
107 >      painCave.isFatal = 1;
108 >      painCave.severity = OPENMD_ERROR;
109 >      simError();
110 >    }
111 >
112 >    bool hasKineticFlux = rnemdParams->haveKineticFlux();
113 >    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
114 >    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
115 >    bool hasSlabWidth = rnemdParams->haveSlabWidth();
116 >    bool hasSlabACenter = rnemdParams->haveSlabACenter();
117 >    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
118 >    bool hasOutputFileName = rnemdParams->haveOutputFileName();
119 >    bool hasOutputFields = rnemdParams->haveOutputFields();
120      
121 <    const std::string st = simParams->getRNEMD_swapType();
121 >    map<string, RNEMDMethod>::iterator i;
122 >    i = stringToMethod_.find(methStr);
123 >    if (i != stringToMethod_.end())
124 >      rnemdMethod_ = i->second;
125 >    else {
126 >      sprintf(painCave.errMsg,
127 >              "RNEMD: The current method,\n"
128 >              "\t\t%s is not one of the recognized\n"
129 >              "\texchange methods: Swap, NIVS, or VSS\n",
130 >              methStr.c_str());
131 >      painCave.isFatal = 1;
132 >      painCave.severity = OPENMD_ERROR;
133 >      simError();
134 >    }
135  
136 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
137 <    i = stringToEnumMap_.find(st);
138 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
136 >    map<string, RNEMDFluxType>::iterator j;
137 >    j = stringToFluxType_.find(fluxStr);
138 >    if (j != stringToFluxType_.end())
139 >      rnemdFluxType_ = j->second;
140 >    else {
141 >      sprintf(painCave.errMsg,
142 >              "RNEMD: The current fluxType,\n"
143 >              "\t\t%s\n"
144 >              "\tis not one of the recognized flux types.\n",
145 >              fluxStr.c_str());
146 >      painCave.isFatal = 1;
147 >      painCave.severity = OPENMD_ERROR;
148 >      simError();
149 >    }
150  
151 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
152 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
153 <    exchangeSum_ = 0.0;
154 <    counter_ = 0; //added by shenyu
155 <    //profile_.open("profile", std::ios::out);
151 >    bool methodFluxMismatch = false;
152 >    bool hasCorrectFlux = false;
153 >    switch(rnemdMethod_) {
154 >    case rnemdSwap:
155 >      switch (rnemdFluxType_) {
156 >      case rnemdKE:
157 >        hasCorrectFlux = hasKineticFlux;
158 >        break;
159 >      case rnemdPx:
160 >      case rnemdPy:
161 >      case rnemdPz:
162 >        hasCorrectFlux = hasMomentumFlux;
163 >        break;
164 >      default :
165 >        methodFluxMismatch = true;
166 >        break;
167 >      }
168 >      break;
169 >    case rnemdNIVS:
170 >      switch (rnemdFluxType_) {
171 >      case rnemdKE:
172 >      case rnemdRotKE:
173 >      case rnemdFullKE:
174 >        hasCorrectFlux = hasKineticFlux;
175 >        break;
176 >      case rnemdPx:
177 >      case rnemdPy:
178 >      case rnemdPz:
179 >        hasCorrectFlux = hasMomentumFlux;
180 >        break;
181 >      case rnemdKePx:
182 >      case rnemdKePy:
183 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
184 >        break;
185 >      default:
186 >        methodFluxMismatch = true;
187 >        break;
188 >      }
189 >      break;
190 >    case rnemdVSS:
191 >      switch (rnemdFluxType_) {
192 >      case rnemdKE:
193 >      case rnemdRotKE:
194 >      case rnemdFullKE:
195 >        hasCorrectFlux = hasKineticFlux;
196 >        break;
197 >      case rnemdPx:
198 >      case rnemdPy:
199 >      case rnemdPz:
200 >        hasCorrectFlux = hasMomentumFlux;
201 >        break;
202 >      case rnemdPvector:
203 >        hasCorrectFlux = hasMomentumFluxVector;
204 >        break;
205 >      case rnemdKePx:
206 >      case rnemdKePy:
207 >        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
208 >        break;
209 >      case rnemdKePvector:
210 >        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
211 >        break;
212 >      default:
213 >        methodFluxMismatch = true;
214 >        break;
215 >      }
216 >    default:
217 >      break;
218 >    }
219  
220 < #ifndef IS_MPI
221 <    if (simParams->haveSeed()) {
222 <      seedValue = simParams->getSeed();
223 <      randNumGen_ = new SeqRandNumGen(seedValue);
224 <    }else {
225 <      randNumGen_ = new SeqRandNumGen();
226 <    }    
227 < #else
228 <    if (simParams->haveSeed()) {
229 <      seedValue = simParams->getSeed();
230 <      randNumGen_ = new ParallelRandNumGen(seedValue);
231 <    }else {
232 <      randNumGen_ = new ParallelRandNumGen();
233 <    }    
234 < #endif
235 <  }
220 >    if (methodFluxMismatch) {
221 >      sprintf(painCave.errMsg,
222 >              "RNEMD: The current method,\n"
223 >              "\t\t%s\n"
224 >              "\tcannot be used with the current flux type, %s\n",
225 >              methStr.c_str(), fluxStr.c_str());
226 >      painCave.isFatal = 1;
227 >      painCave.severity = OPENMD_ERROR;
228 >      simError();        
229 >    }
230 >    if (!hasCorrectFlux) {
231 >      sprintf(painCave.errMsg,
232 >              "RNEMD: The current method, %s, and flux type, %s,\n"
233 >              "\tdid not have the correct flux value specified. Options\n"
234 >              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
235 >              methStr.c_str(), fluxStr.c_str());
236 >      painCave.isFatal = 1;
237 >      painCave.severity = OPENMD_ERROR;
238 >      simError();        
239 >    }
240 >
241 >    if (hasKineticFlux) {
242 >      // convert the kcal / mol / Angstroms^2 / fs values in the md file
243 >      // into  amu / fs^3:
244 >      kineticFlux_ = rnemdParams->getKineticFlux()
245 >        * PhysicalConstants::energyConvert;
246 >    } else {
247 >      kineticFlux_ = 0.0;
248 >    }
249 >    if (hasMomentumFluxVector) {
250 >      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
251 >    } else {
252 >      momentumFluxVector_ = V3Zero;
253 >      if (hasMomentumFlux) {
254 >        RealType momentumFlux = rnemdParams->getMomentumFlux();
255 >        switch (rnemdFluxType_) {
256 >        case rnemdPx:
257 >          momentumFluxVector_.x() = momentumFlux;
258 >          break;
259 >        case rnemdPy:
260 >          momentumFluxVector_.y() = momentumFlux;
261 >          break;
262 >        case rnemdPz:
263 >          momentumFluxVector_.z() = momentumFlux;
264 >          break;
265 >        case rnemdKePx:
266 >          momentumFluxVector_.x() = momentumFlux;
267 >          break;
268 >        case rnemdKePy:
269 >          momentumFluxVector_.y() = momentumFlux;
270 >          break;
271 >        default:
272 >          break;
273 >        }
274 >      }    
275 >    }
276 >
277 >    // do some sanity checking
278 >
279 >    int selectionCount = seleMan_.getSelectionCount();
280 >
281 >    int nIntegrable = info->getNGlobalIntegrableObjects();
282 >
283 >    if (selectionCount > nIntegrable) {
284 >      sprintf(painCave.errMsg,
285 >              "RNEMD: The current objectSelection,\n"
286 >              "\t\t%s\n"
287 >              "\thas resulted in %d selected objects.  However,\n"
288 >              "\tthe total number of integrable objects in the system\n"
289 >              "\tis only %d.  This is almost certainly not what you want\n"
290 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
291 >              "\tselector in the selection script!\n",
292 >              rnemdObjectSelection_.c_str(),
293 >              selectionCount, nIntegrable);
294 >      painCave.isFatal = 0;
295 >      painCave.severity = OPENMD_WARNING;
296 >      simError();
297 >    }
298 >
299 >    areaAccumulator_ = new Accumulator();
300 >
301 >    nBins_ = rnemdParams->getOutputBins();
302 >
303 >    data_.resize(RNEMD::ENDINDEX);
304 >    OutputData z;
305 >    z.units =  "Angstroms";
306 >    z.title =  "Z";
307 >    z.dataType = "RealType";
308 >    z.accumulator.reserve(nBins_);
309 >    for (unsigned int i = 0; i < nBins_; i++)
310 >      z.accumulator.push_back( new Accumulator() );
311 >    data_[Z] = z;
312 >    outputMap_["Z"] =  Z;
313 >
314 >    OutputData temperature;
315 >    temperature.units =  "K";
316 >    temperature.title =  "Temperature";
317 >    temperature.dataType = "RealType";
318 >    temperature.accumulator.reserve(nBins_);
319 >    for (unsigned int i = 0; i < nBins_; i++)
320 >      temperature.accumulator.push_back( new Accumulator() );
321 >    data_[TEMPERATURE] = temperature;
322 >    outputMap_["TEMPERATURE"] =  TEMPERATURE;
323 >
324 >    OutputData velocity;
325 >    velocity.units = "angstroms/fs";
326 >    velocity.title =  "Velocity";  
327 >    velocity.dataType = "Vector3d";
328 >    velocity.accumulator.reserve(nBins_);
329 >    for (unsigned int i = 0; i < nBins_; i++)
330 >      velocity.accumulator.push_back( new VectorAccumulator() );
331 >    data_[VELOCITY] = velocity;
332 >    outputMap_["VELOCITY"] = VELOCITY;
333 >
334 >    OutputData density;
335 >    density.units =  "g cm^-3";
336 >    density.title =  "Density";
337 >    density.dataType = "RealType";
338 >    density.accumulator.reserve(nBins_);
339 >    for (unsigned int i = 0; i < nBins_; i++)
340 >      density.accumulator.push_back( new Accumulator() );
341 >    data_[DENSITY] = density;
342 >    outputMap_["DENSITY"] =  DENSITY;
343 >
344 >    if (hasOutputFields) {
345 >      parseOutputFileFormat(rnemdParams->getOutputFields());
346 >    } else {
347 >      outputMask_.set(Z);
348 >      switch (rnemdFluxType_) {
349 >      case rnemdKE:
350 >      case rnemdRotKE:
351 >      case rnemdFullKE:
352 >        outputMask_.set(TEMPERATURE);
353 >        break;
354 >      case rnemdPx:
355 >      case rnemdPy:
356 >        outputMask_.set(VELOCITY);
357 >        break;
358 >      case rnemdPz:        
359 >      case rnemdPvector:
360 >        outputMask_.set(VELOCITY);
361 >        outputMask_.set(DENSITY);
362 >        break;
363 >      case rnemdKePx:
364 >      case rnemdKePy:
365 >        outputMask_.set(TEMPERATURE);
366 >        outputMask_.set(VELOCITY);
367 >        break;
368 >      case rnemdKePvector:
369 >        outputMask_.set(TEMPERATURE);
370 >        outputMask_.set(VELOCITY);
371 >        outputMask_.set(DENSITY);        
372 >        break;
373 >      default:
374 >        break;
375 >      }
376 >    }
377 >      
378 >    if (hasOutputFileName) {
379 >      rnemdFileName_ = rnemdParams->getOutputFileName();
380 >    } else {
381 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
382 >    }          
383 >
384 >    exchangeTime_ = rnemdParams->getExchangeTime();
385 >
386 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
387 >    Mat3x3d hmat = currentSnap_->getHmat();
388    
389 +    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
390 +    // Lx, Ly = box dimensions in x & y
391 +    // dt = exchange time interval
392 +    // flux = target flux
393 +
394 +    RealType area = currentSnap_->getXYarea();
395 +    kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
396 +    momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
397 +
398 +    // total exchange sums are zeroed out at the beginning:
399 +
400 +    kineticExchange_ = 0.0;
401 +    momentumExchange_ = V3Zero;
402 +
403 +    if (hasSlabWidth)
404 +      slabWidth_ = rnemdParams->getSlabWidth();
405 +    else
406 +      slabWidth_ = hmat(2,2) / 10.0;
407 +  
408 +    if (hasSlabACenter)
409 +      slabACenter_ = rnemdParams->getSlabACenter();
410 +    else
411 +      slabACenter_ = 0.0;
412 +    
413 +    if (hasSlabBCenter)
414 +      slabBCenter_ = rnemdParams->getSlabBCenter();
415 +    else
416 +      slabBCenter_ = hmat(2,2) / 2.0;
417 +    
418 +  }
419 +  
420    RNEMD::~RNEMD() {
421 <    delete randNumGen_;
422 <    //profile_.close();
421 >    if (!doRNEMD_) return;
422 > #ifdef IS_MPI
423 >    if (worldRank == 0) {
424 > #endif
425 >
426 >      writeOutputFile();
427 >
428 >      rnemdFile_.close();
429 >      
430 > #ifdef IS_MPI
431 >    }
432 > #endif
433    }
434 +  
435 +  bool RNEMD::inSlabA(Vector3d pos) {
436 +    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
437 +  }
438 +  bool RNEMD::inSlabB(Vector3d pos) {
439 +    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
440 +  }
441  
442    void RNEMD::doSwap() {
443 <    //std::cerr << "in RNEMD!\n";  
118 <    //std::cerr << "nBins = " << nBins_ << "\n";
119 <    int midBin = nBins_ / 2;
120 <    //std::cerr << "midBin = " << midBin << "\n";
121 <    //std::cerr << "swapTime = " << swapTime_ << "\n";
122 <    //std::cerr << "swapType = " << rnemdType_ << "\n";
123 <    //std::cerr << "selection = " << rnemdObjectSelection_ << "\n";
124 <
443 >    if (!doRNEMD_) return;
444      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
445      Mat3x3d hmat = currentSnap_->getHmat();
446  
128    //std::cerr << "hmat = " << hmat << "\n";
129
447      seleMan_.setSelectionSet(evaluator_.evaluate());
448  
132    //std::cerr << "selectionCount = " << seleMan_.getSelectionCount() << "\n\n";
133
449      int selei;
450      StuntDouble* sd;
451      int idx;
# Line 154 | Line 469 | namespace oopse {
469  
470        if (usePeriodicBoundaryConditions_)
471          currentSnap_->wrapVector(pos);
472 +      bool inA = inSlabA(pos);
473 +      bool inB = inSlabB(pos);
474  
475 <      // which bin is this stuntdouble in?
159 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
160 <
161 <      int binNo = int((nBins_-1) * (pos.z() + 0.5*hmat(2,2)) / hmat(2,2));
162 <
163 <      //std::cerr << "pos.z() = " << pos.z() << " bin = " << binNo << "\n";
164 <
165 <      // if we're in bin 0 or the middleBin
166 <      if (binNo == 0 || binNo == midBin) {
475 >      if (inA || inB) {
476          
477          RealType mass = sd->getMass();
478          Vector3d vel = sd->getVel();
479          RealType value;
480 <
481 <        switch(rnemdType_) {
482 <        case rnemdKinetic :
480 >        
481 >        switch(rnemdFluxType_) {
482 >        case rnemdKE :
483            
484 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
485 <                          vel[2]*vel[2]);
486 <          
178 <          if (sd->isDirectional()) {
484 >          value = mass * vel.lengthSquare();
485 >          
486 >          if (sd->isDirectional()) {
487              Vector3d angMom = sd->getJ();
488              Mat3x3d I = sd->getI();
489              
490              if (sd->isLinear()) {
491 <              int i = sd->linearAxis();
492 <              int j = (i + 1) % 3;
493 <              int k = (i + 2) % 3;
494 <              value += angMom[j] * angMom[j] / I(j, j) +
495 <                angMom[k] * angMom[k] / I(k, k);
491 >              int i = sd->linearAxis();
492 >              int j = (i + 1) % 3;
493 >              int k = (i + 2) % 3;
494 >              value += angMom[j] * angMom[j] / I(j, j) +
495 >                angMom[k] * angMom[k] / I(k, k);
496              } else {                        
497 <              value += angMom[0]*angMom[0]/I(0, 0)
498 <                + angMom[1]*angMom[1]/I(1, 1)
499 <                + angMom[2]*angMom[2]/I(2, 2);
497 >              value += angMom[0]*angMom[0]/I(0, 0)
498 >                + angMom[1]*angMom[1]/I(1, 1)
499 >                + angMom[2]*angMom[2]/I(2, 2);
500              }
501 <          }
502 <          value = value * 0.5 / OOPSEConstant::energyConvert;
501 >          } //angular momenta exchange enabled
502 >          value *= 0.5;
503            break;
504          case rnemdPx :
505            value = mass * vel[0];
# Line 202 | Line 510 | namespace oopse {
510          case rnemdPz :
511            value = mass * vel[2];
512            break;
205        case rnemdUnknown :
513          default :
514            break;
515          }
516          
517 <        if (binNo == 0) {
517 >        if (inA == 0) {
518            if (!min_found) {
519              min_val = value;
520              min_sd = sd;
# Line 218 | Line 525 | namespace oopse {
525                min_sd = sd;
526              }
527            }
528 <        } else {
528 >        } else {
529            if (!max_found) {
530              max_val = value;
531              max_sd = sd;
# Line 232 | Line 539 | namespace oopse {
539          }
540        }
541      }
235    //std::cerr << "smallest value = " << min_val  << "\n";
236    //std::cerr << "largest value = " << max_val << "\n";
542      
543 <    // missing:  swap information in parallel
543 > #ifdef IS_MPI
544 >    int nProc, worldRank;
545 >    
546 >    nProc = MPI::COMM_WORLD.Get_size();
547 >    worldRank = MPI::COMM_WORLD.Get_rank();
548  
549 +    bool my_min_found = min_found;
550 +    bool my_max_found = max_found;
551 +
552 +    // Even if we didn't find a minimum, did someone else?
553 +    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
554 +    // Even if we didn't find a maximum, did someone else?
555 +    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
556 + #endif
557 +
558      if (max_found && min_found) {
559 <      if (min_val< max_val) {
560 <        Vector3d min_vel = min_sd->getVel();
561 <        Vector3d max_vel = max_sd->getVel();
562 <        RealType temp_vel;
563 <        switch(rnemdType_) {
564 <        case rnemdKinetic :
565 <          min_sd->setVel(max_vel);
566 <          max_sd->setVel(min_vel);                
567 <          if (min_sd->isDirectional() && max_sd->isDirectional()) {
568 <            Vector3d min_angMom = min_sd->getJ();
569 <            Vector3d max_angMom = max_sd->getJ();
570 <            min_sd->setJ(max_angMom);
571 <            max_sd->setJ(min_angMom);
559 >
560 > #ifdef IS_MPI
561 >      struct {
562 >        RealType val;
563 >        int rank;
564 >      } max_vals, min_vals;
565 >      
566 >      if (my_min_found) {
567 >        min_vals.val = min_val;
568 >      } else {
569 >        min_vals.val = HONKING_LARGE_VALUE;
570 >      }
571 >      min_vals.rank = worldRank;    
572 >      
573 >      // Who had the minimum?
574 >      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
575 >                                1, MPI::REALTYPE_INT, MPI::MINLOC);
576 >      min_val = min_vals.val;
577 >      
578 >      if (my_max_found) {
579 >        max_vals.val = max_val;
580 >      } else {
581 >        max_vals.val = -HONKING_LARGE_VALUE;
582 >      }
583 >      max_vals.rank = worldRank;    
584 >      
585 >      // Who had the maximum?
586 >      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
587 >                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
588 >      max_val = max_vals.val;
589 > #endif
590 >      
591 >      if (min_val < max_val) {
592 >        
593 > #ifdef IS_MPI      
594 >        if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
595 >          // I have both maximum and minimum, so proceed like a single
596 >          // processor version:
597 > #endif
598 >
599 >          Vector3d min_vel = min_sd->getVel();
600 >          Vector3d max_vel = max_sd->getVel();
601 >          RealType temp_vel;
602 >          
603 >          switch(rnemdFluxType_) {
604 >          case rnemdKE :
605 >            min_sd->setVel(max_vel);
606 >            max_sd->setVel(min_vel);
607 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
608 >              Vector3d min_angMom = min_sd->getJ();
609 >              Vector3d max_angMom = max_sd->getJ();
610 >              min_sd->setJ(max_angMom);
611 >              max_sd->setJ(min_angMom);
612 >            }//angular momenta exchange enabled
613 >            //assumes same rigid body identity
614 >            break;
615 >          case rnemdPx :
616 >            temp_vel = min_vel.x();
617 >            min_vel.x() = max_vel.x();
618 >            max_vel.x() = temp_vel;
619 >            min_sd->setVel(min_vel);
620 >            max_sd->setVel(max_vel);
621 >            break;
622 >          case rnemdPy :
623 >            temp_vel = min_vel.y();
624 >            min_vel.y() = max_vel.y();
625 >            max_vel.y() = temp_vel;
626 >            min_sd->setVel(min_vel);
627 >            max_sd->setVel(max_vel);
628 >            break;
629 >          case rnemdPz :
630 >            temp_vel = min_vel.z();
631 >            min_vel.z() = max_vel.z();
632 >            max_vel.z() = temp_vel;
633 >            min_sd->setVel(min_vel);
634 >            max_sd->setVel(max_vel);
635 >            break;
636 >          default :
637 >            break;
638 >          }
639 >
640 > #ifdef IS_MPI
641 >          // the rest of the cases only apply in parallel simulations:
642 >        } else if (max_vals.rank == worldRank) {
643 >          // I had the max, but not the minimum
644 >          
645 >          Vector3d min_vel;
646 >          Vector3d max_vel = max_sd->getVel();
647 >          MPI::Status status;
648 >
649 >          // point-to-point swap of the velocity vector
650 >          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
651 >                                   min_vals.rank, 0,
652 >                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
653 >                                   min_vals.rank, 0, status);
654 >          
655 >          switch(rnemdFluxType_) {
656 >          case rnemdKE :
657 >            max_sd->setVel(min_vel);
658 >            //angular momenta exchange enabled
659 >            if (max_sd->isDirectional()) {
660 >              Vector3d min_angMom;
661 >              Vector3d max_angMom = max_sd->getJ();
662 >              
663 >              // point-to-point swap of the angular momentum vector
664 >              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
665 >                                       MPI::REALTYPE, min_vals.rank, 1,
666 >                                       min_angMom.getArrayPointer(), 3,
667 >                                       MPI::REALTYPE, min_vals.rank, 1,
668 >                                       status);
669 >              
670 >              max_sd->setJ(min_angMom);
671 >            }
672 >            break;
673 >          case rnemdPx :
674 >            max_vel.x() = min_vel.x();
675 >            max_sd->setVel(max_vel);
676 >            break;
677 >          case rnemdPy :
678 >            max_vel.y() = min_vel.y();
679 >            max_sd->setVel(max_vel);
680 >            break;
681 >          case rnemdPz :
682 >            max_vel.z() = min_vel.z();
683 >            max_sd->setVel(max_vel);
684 >            break;
685 >          default :
686 >            break;
687 >          }
688 >        } else if (min_vals.rank == worldRank) {
689 >          // I had the minimum but not the maximum:
690 >          
691 >          Vector3d max_vel;
692 >          Vector3d min_vel = min_sd->getVel();
693 >          MPI::Status status;
694 >          
695 >          // point-to-point swap of the velocity vector
696 >          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
697 >                                   max_vals.rank, 0,
698 >                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
699 >                                   max_vals.rank, 0, status);
700 >          
701 >          switch(rnemdFluxType_) {
702 >          case rnemdKE :
703 >            min_sd->setVel(max_vel);
704 >            //angular momenta exchange enabled
705 >            if (min_sd->isDirectional()) {
706 >              Vector3d min_angMom = min_sd->getJ();
707 >              Vector3d max_angMom;
708 >              
709 >              // point-to-point swap of the angular momentum vector
710 >              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
711 >                                       MPI::REALTYPE, max_vals.rank, 1,
712 >                                       max_angMom.getArrayPointer(), 3,
713 >                                       MPI::REALTYPE, max_vals.rank, 1,
714 >                                       status);
715 >              
716 >              min_sd->setJ(max_angMom);
717 >            }
718 >            break;
719 >          case rnemdPx :
720 >            min_vel.x() = max_vel.x();
721 >            min_sd->setVel(min_vel);
722 >            break;
723 >          case rnemdPy :
724 >            min_vel.y() = max_vel.y();
725 >            min_sd->setVel(min_vel);
726 >            break;
727 >          case rnemdPz :
728 >            min_vel.z() = max_vel.z();
729 >            min_sd->setVel(min_vel);
730 >            break;
731 >          default :
732 >            break;
733 >          }
734 >        }
735 > #endif
736 >        
737 >        switch(rnemdFluxType_) {
738 >        case rnemdKE:
739 >          kineticExchange_ += max_val - min_val;
740 >          break;
741 >        case rnemdPx:
742 >          momentumExchange_.x() += max_val - min_val;
743 >          break;
744 >        case rnemdPy:
745 >          momentumExchange_.y() += max_val - min_val;
746 >          break;
747 >        case rnemdPz:
748 >          momentumExchange_.z() += max_val - min_val;
749 >          break;
750 >        default:
751 >          break;
752 >        }
753 >      } else {        
754 >        sprintf(painCave.errMsg,
755 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
756 >        painCave.isFatal = 0;
757 >        painCave.severity = OPENMD_INFO;
758 >        simError();        
759 >        failTrialCount_++;
760 >      }
761 >    } else {
762 >      sprintf(painCave.errMsg,
763 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
764 >              "\twas not present in at least one of the two slabs.\n");
765 >      painCave.isFatal = 0;
766 >      painCave.severity = OPENMD_INFO;
767 >      simError();        
768 >      failTrialCount_++;
769 >    }    
770 >  }
771 >  
772 >  void RNEMD::doNIVS() {
773 >    if (!doRNEMD_) return;
774 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
775 >    Mat3x3d hmat = currentSnap_->getHmat();
776 >
777 >    seleMan_.setSelectionSet(evaluator_.evaluate());
778 >
779 >    int selei;
780 >    StuntDouble* sd;
781 >    int idx;
782 >
783 >    vector<StuntDouble*> hotBin, coldBin;
784 >
785 >    RealType Phx = 0.0;
786 >    RealType Phy = 0.0;
787 >    RealType Phz = 0.0;
788 >    RealType Khx = 0.0;
789 >    RealType Khy = 0.0;
790 >    RealType Khz = 0.0;
791 >    RealType Khw = 0.0;
792 >    RealType Pcx = 0.0;
793 >    RealType Pcy = 0.0;
794 >    RealType Pcz = 0.0;
795 >    RealType Kcx = 0.0;
796 >    RealType Kcy = 0.0;
797 >    RealType Kcz = 0.0;
798 >    RealType Kcw = 0.0;
799 >
800 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
801 >         sd = seleMan_.nextSelected(selei)) {
802 >
803 >      idx = sd->getLocalIndex();
804 >
805 >      Vector3d pos = sd->getPos();
806 >
807 >      // wrap the stuntdouble's position back into the box:
808 >
809 >      if (usePeriodicBoundaryConditions_)
810 >        currentSnap_->wrapVector(pos);
811 >
812 >      // which bin is this stuntdouble in?
813 >      bool inA = inSlabA(pos);
814 >      bool inB = inSlabB(pos);
815 >
816 >      if (inA || inB) {
817 >              
818 >        RealType mass = sd->getMass();
819 >        Vector3d vel = sd->getVel();
820 >      
821 >        if (inA) {
822 >          hotBin.push_back(sd);
823 >          Phx += mass * vel.x();
824 >          Phy += mass * vel.y();
825 >          Phz += mass * vel.z();
826 >          Khx += mass * vel.x() * vel.x();
827 >          Khy += mass * vel.y() * vel.y();
828 >          Khz += mass * vel.z() * vel.z();
829 >          if (sd->isDirectional()) {
830 >            Vector3d angMom = sd->getJ();
831 >            Mat3x3d I = sd->getI();
832 >            if (sd->isLinear()) {
833 >              int i = sd->linearAxis();
834 >              int j = (i + 1) % 3;
835 >              int k = (i + 2) % 3;
836 >              Khw += angMom[j] * angMom[j] / I(j, j) +
837 >                angMom[k] * angMom[k] / I(k, k);
838 >            } else {
839 >              Khw += angMom[0]*angMom[0]/I(0, 0)
840 >                + angMom[1]*angMom[1]/I(1, 1)
841 >                + angMom[2]*angMom[2]/I(2, 2);
842 >            }
843            }
844 <          break;
845 <        case rnemdPx :
846 <          temp_vel = min_vel.x();
847 <          min_vel.x() = max_vel.x();
848 <          max_vel.x() = temp_vel;
849 <          min_sd->setVel(min_vel);
850 <          max_sd->setVel(max_vel);
844 >        } else {
845 >          coldBin.push_back(sd);
846 >          Pcx += mass * vel.x();
847 >          Pcy += mass * vel.y();
848 >          Pcz += mass * vel.z();
849 >          Kcx += mass * vel.x() * vel.x();
850 >          Kcy += mass * vel.y() * vel.y();
851 >          Kcz += mass * vel.z() * vel.z();
852 >          if (sd->isDirectional()) {
853 >            Vector3d angMom = sd->getJ();
854 >            Mat3x3d I = sd->getI();
855 >            if (sd->isLinear()) {
856 >              int i = sd->linearAxis();
857 >              int j = (i + 1) % 3;
858 >              int k = (i + 2) % 3;
859 >              Kcw += angMom[j] * angMom[j] / I(j, j) +
860 >                angMom[k] * angMom[k] / I(k, k);
861 >            } else {
862 >              Kcw += angMom[0]*angMom[0]/I(0, 0)
863 >                + angMom[1]*angMom[1]/I(1, 1)
864 >                + angMom[2]*angMom[2]/I(2, 2);
865 >            }
866 >          }
867 >        }
868 >      }
869 >    }
870 >    
871 >    Khx *= 0.5;
872 >    Khy *= 0.5;
873 >    Khz *= 0.5;
874 >    Khw *= 0.5;
875 >    Kcx *= 0.5;
876 >    Kcy *= 0.5;
877 >    Kcz *= 0.5;
878 >    Kcw *= 0.5;
879 >
880 > #ifdef IS_MPI
881 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
882 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
883 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
884 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
885 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
886 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
887 >
888 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
889 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
890 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
891 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
892 >
893 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
894 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
895 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
896 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
897 > #endif
898 >
899 >    //solve coldBin coeff's first
900 >    RealType px = Pcx / Phx;
901 >    RealType py = Pcy / Phy;
902 >    RealType pz = Pcz / Phz;
903 >    RealType c, x, y, z;
904 >    bool successfulScale = false;
905 >    if ((rnemdFluxType_ == rnemdFullKE) ||
906 >        (rnemdFluxType_ == rnemdRotKE)) {
907 >      //may need sanity check Khw & Kcw > 0
908 >
909 >      if (rnemdFluxType_ == rnemdFullKE) {
910 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
911 >      } else {
912 >        c = 1.0 - kineticTarget_ / Kcw;
913 >      }
914 >
915 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
916 >        c = sqrt(c);
917 >
918 >        RealType w = 0.0;
919 >        if (rnemdFluxType_ ==  rnemdFullKE) {
920 >          x = 1.0 + px * (1.0 - c);
921 >          y = 1.0 + py * (1.0 - c);
922 >          z = 1.0 + pz * (1.0 - c);
923 >          /* more complicated way
924 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
925 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
926 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
927 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
928 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
929 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
930 >          */
931 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
932 >              (fabs(z - 1.0) < 0.1)) {
933 >            w = 1.0 + (kineticTarget_
934 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
935 >                       + Khz * (1.0 - z * z)) / Khw;
936 >          }//no need to calculate w if x, y or z is out of range
937 >        } else {
938 >          w = 1.0 + kineticTarget_ / Khw;
939 >        }
940 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
941 >          //if w is in the right range, so should be x, y, z.
942 >          vector<StuntDouble*>::iterator sdi;
943 >          Vector3d vel;
944 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
945 >            if (rnemdFluxType_ == rnemdFullKE) {
946 >              vel = (*sdi)->getVel() * c;
947 >              (*sdi)->setVel(vel);
948 >            }
949 >            if ((*sdi)->isDirectional()) {
950 >              Vector3d angMom = (*sdi)->getJ() * c;
951 >              (*sdi)->setJ(angMom);
952 >            }
953 >          }
954 >          w = sqrt(w);
955 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
956 >            if (rnemdFluxType_ == rnemdFullKE) {
957 >              vel = (*sdi)->getVel();
958 >              vel.x() *= x;
959 >              vel.y() *= y;
960 >              vel.z() *= z;
961 >              (*sdi)->setVel(vel);
962 >            }
963 >            if ((*sdi)->isDirectional()) {
964 >              Vector3d angMom = (*sdi)->getJ() * w;
965 >              (*sdi)->setJ(angMom);
966 >            }
967 >          }
968 >          successfulScale = true;
969 >          kineticExchange_ += kineticTarget_;
970 >        }
971 >      }
972 >    } else {
973 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
974 >      switch(rnemdFluxType_) {
975 >      case rnemdKE :
976 >        /* used hotBin coeff's & only scale x & y dimensions
977 >           RealType px = Phx / Pcx;
978 >           RealType py = Phy / Pcy;
979 >           a110 = Khy;
980 >           c0 = - Khx - Khy - kineticTarget_;
981 >           a000 = Khx;
982 >           a111 = Kcy * py * py;
983 >           b11 = -2.0 * Kcy * py * (1.0 + py);
984 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
985 >           b01 = -2.0 * Kcx * px * (1.0 + px);
986 >           a001 = Kcx * px * px;
987 >        */
988 >        //scale all three dimensions, let c_x = c_y
989 >        a000 = Kcx + Kcy;
990 >        a110 = Kcz;
991 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
992 >        a001 = Khx * px * px + Khy * py * py;
993 >        a111 = Khz * pz * pz;
994 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
995 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
996 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
997 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
998 >        break;
999 >      case rnemdPx :
1000 >        c = 1 - momentumTarget_.x() / Pcx;
1001 >        a000 = Kcy;
1002 >        a110 = Kcz;
1003 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1004 >        a001 = py * py * Khy;
1005 >        a111 = pz * pz * Khz;
1006 >        b01 = -2.0 * Khy * py * (1.0 + py);
1007 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1008 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1009 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1010 >        break;
1011 >      case rnemdPy :
1012 >        c = 1 - momentumTarget_.y() / Pcy;
1013 >        a000 = Kcx;
1014 >        a110 = Kcz;
1015 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1016 >        a001 = px * px * Khx;
1017 >        a111 = pz * pz * Khz;
1018 >        b01 = -2.0 * Khx * px * (1.0 + px);
1019 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1020 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1021 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1022 >        break;
1023 >      case rnemdPz ://we don't really do this, do we?
1024 >        c = 1 - momentumTarget_.z() / Pcz;
1025 >        a000 = Kcx;
1026 >        a110 = Kcy;
1027 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1028 >        a001 = px * px * Khx;
1029 >        a111 = py * py * Khy;
1030 >        b01 = -2.0 * Khx * px * (1.0 + px);
1031 >        b11 = -2.0 * Khy * py * (1.0 + py);
1032 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1033 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1034 >        break;
1035 >      default :
1036 >        break;
1037 >      }
1038 >      
1039 >      RealType v1 = a000 * a111 - a001 * a110;
1040 >      RealType v2 = a000 * b01;
1041 >      RealType v3 = a000 * b11;
1042 >      RealType v4 = a000 * c1 - a001 * c0;
1043 >      RealType v8 = a110 * b01;
1044 >      RealType v10 = - b01 * c0;
1045 >      
1046 >      RealType u0 = v2 * v10 - v4 * v4;
1047 >      RealType u1 = -2.0 * v3 * v4;
1048 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1049 >      RealType u3 = -2.0 * v1 * v3;
1050 >      RealType u4 = - v1 * v1;
1051 >      //rescale coefficients
1052 >      RealType maxAbs = fabs(u0);
1053 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1054 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1055 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1056 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1057 >      u0 /= maxAbs;
1058 >      u1 /= maxAbs;
1059 >      u2 /= maxAbs;
1060 >      u3 /= maxAbs;
1061 >      u4 /= maxAbs;
1062 >      //max_element(start, end) is also available.
1063 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1064 >      poly.setCoefficient(4, u4);
1065 >      poly.setCoefficient(3, u3);
1066 >      poly.setCoefficient(2, u2);
1067 >      poly.setCoefficient(1, u1);
1068 >      poly.setCoefficient(0, u0);
1069 >      vector<RealType> realRoots = poly.FindRealRoots();
1070 >      
1071 >      vector<RealType>::iterator ri;
1072 >      RealType r1, r2, alpha0;
1073 >      vector<pair<RealType,RealType> > rps;
1074 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1075 >        r2 = *ri;
1076 >        //check if FindRealRoots() give the right answer
1077 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1078 >          sprintf(painCave.errMsg,
1079 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1080 >          painCave.isFatal = 0;
1081 >          simError();
1082 >          failRootCount_++;
1083 >        }
1084 >        //might not be useful w/o rescaling coefficients
1085 >        alpha0 = -c0 - a110 * r2 * r2;
1086 >        if (alpha0 >= 0.0) {
1087 >          r1 = sqrt(alpha0 / a000);
1088 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1089 >              < 1e-6)
1090 >            { rps.push_back(make_pair(r1, r2)); }
1091 >          if (r1 > 1e-6) { //r1 non-negative
1092 >            r1 = -r1;
1093 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1094 >                < 1e-6)
1095 >              { rps.push_back(make_pair(r1, r2)); }
1096 >          }
1097 >        }
1098 >      }
1099 >      // Consider combining together the solving pair part w/ the searching
1100 >      // best solution part so that we don't need the pairs vector
1101 >      if (!rps.empty()) {
1102 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1103 >        RealType diff;
1104 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1105 >        vector<pair<RealType,RealType> >::iterator rpi;
1106 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1107 >          r1 = (*rpi).first;
1108 >          r2 = (*rpi).second;
1109 >          switch(rnemdFluxType_) {
1110 >          case rnemdKE :
1111 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1112 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1113 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1114 >            break;
1115 >          case rnemdPx :
1116 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1117 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1118 >            break;
1119 >          case rnemdPy :
1120 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1121 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1122 >            break;
1123 >          case rnemdPz :
1124 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1125 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1126 >          default :
1127 >            break;
1128 >          }
1129 >          if (diff < smallestDiff) {
1130 >            smallestDiff = diff;
1131 >            bestPair = *rpi;
1132 >          }
1133 >        }
1134 > #ifdef IS_MPI
1135 >        if (worldRank == 0) {
1136 > #endif
1137 >          // sprintf(painCave.errMsg,
1138 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1139 >          //         bestPair.first, bestPair.second);
1140 >          // painCave.isFatal = 0;
1141 >          // painCave.severity = OPENMD_INFO;
1142 >          // simError();
1143 > #ifdef IS_MPI
1144 >        }
1145 > #endif
1146 >        
1147 >        switch(rnemdFluxType_) {
1148 >        case rnemdKE :
1149 >          x = bestPair.first;
1150 >          y = bestPair.first;
1151 >          z = bestPair.second;
1152            break;
1153 +        case rnemdPx :
1154 +          x = c;
1155 +          y = bestPair.first;
1156 +          z = bestPair.second;
1157 +          break;
1158          case rnemdPy :
1159 <          temp_vel = min_vel.y();
1160 <          min_vel.y() = max_vel.y();
1161 <          max_vel.y() = temp_vel;
267 <          min_sd->setVel(min_vel);
268 <          max_sd->setVel(max_vel);
1159 >          x = bestPair.first;
1160 >          y = c;
1161 >          z = bestPair.second;
1162            break;
1163          case rnemdPz :
1164 <          temp_vel = min_vel.z();
1165 <          min_vel.z() = max_vel.z();
1166 <          max_vel.z() = temp_vel;
1167 <          min_sd->setVel(min_vel);
1168 <          max_sd->setVel(max_vel);
1164 >          x = bestPair.first;
1165 >          y = bestPair.second;
1166 >          z = c;
1167 >          break;          
1168 >        default :
1169            break;
1170 <        case rnemdUnknown :
1170 >        }
1171 >        vector<StuntDouble*>::iterator sdi;
1172 >        Vector3d vel;
1173 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1174 >          vel = (*sdi)->getVel();
1175 >          vel.x() *= x;
1176 >          vel.y() *= y;
1177 >          vel.z() *= z;
1178 >          (*sdi)->setVel(vel);
1179 >        }
1180 >        //convert to hotBin coefficient
1181 >        x = 1.0 + px * (1.0 - x);
1182 >        y = 1.0 + py * (1.0 - y);
1183 >        z = 1.0 + pz * (1.0 - z);
1184 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1185 >          vel = (*sdi)->getVel();
1186 >          vel.x() *= x;
1187 >          vel.y() *= y;
1188 >          vel.z() *= z;
1189 >          (*sdi)->setVel(vel);
1190 >        }
1191 >        successfulScale = true;
1192 >        switch(rnemdFluxType_) {
1193 >        case rnemdKE :
1194 >          kineticExchange_ += kineticTarget_;
1195 >          break;
1196 >        case rnemdPx :
1197 >        case rnemdPy :
1198 >        case rnemdPz :
1199 >          momentumExchange_ += momentumTarget_;
1200 >          break;          
1201          default :
1202            break;
1203 +        }      
1204 +      }
1205 +    }
1206 +    if (successfulScale != true) {
1207 +      sprintf(painCave.errMsg,
1208 +              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1209 +              "\tthe constraint equations may not exist or there may be\n"
1210 +              "\tno selected objects in one or both slabs.\n");
1211 +      painCave.isFatal = 0;
1212 +      painCave.severity = OPENMD_INFO;
1213 +      simError();        
1214 +      failTrialCount_++;
1215 +    }
1216 +  }
1217 +
1218 +  void RNEMD::doVSS() {
1219 +    if (!doRNEMD_) return;
1220 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1221 +    RealType time = currentSnap_->getTime();    
1222 +    Mat3x3d hmat = currentSnap_->getHmat();
1223 +
1224 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1225 +
1226 +    int selei;
1227 +    StuntDouble* sd;
1228 +    int idx;
1229 +
1230 +    vector<StuntDouble*> hotBin, coldBin;
1231 +
1232 +    Vector3d Ph(V3Zero);
1233 +    RealType Mh = 0.0;
1234 +    RealType Kh = 0.0;
1235 +    Vector3d Pc(V3Zero);
1236 +    RealType Mc = 0.0;
1237 +    RealType Kc = 0.0;
1238 +    
1239 +
1240 +    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1241 +         sd = seleMan_.nextSelected(selei)) {
1242 +
1243 +      idx = sd->getLocalIndex();
1244 +
1245 +      Vector3d pos = sd->getPos();
1246 +
1247 +      // wrap the stuntdouble's position back into the box:
1248 +
1249 +      if (usePeriodicBoundaryConditions_)
1250 +        currentSnap_->wrapVector(pos);
1251 +
1252 +      // which bin is this stuntdouble in?
1253 +      bool inA = inSlabA(pos);
1254 +      bool inB = inSlabB(pos);
1255 +      
1256 +      if (inA || inB) {
1257 +        
1258 +        RealType mass = sd->getMass();
1259 +        Vector3d vel = sd->getVel();
1260 +      
1261 +        if (inA) {
1262 +          hotBin.push_back(sd);
1263 +          Ph += mass * vel;
1264 +          Mh += mass;
1265 +          Kh += mass * vel.lengthSquare();
1266 +          if (rnemdFluxType_ == rnemdFullKE) {
1267 +            if (sd->isDirectional()) {
1268 +              Vector3d angMom = sd->getJ();
1269 +              Mat3x3d I = sd->getI();
1270 +              if (sd->isLinear()) {
1271 +                int i = sd->linearAxis();
1272 +                int j = (i + 1) % 3;
1273 +                int k = (i + 2) % 3;
1274 +                Kh += angMom[j] * angMom[j] / I(j, j) +
1275 +                  angMom[k] * angMom[k] / I(k, k);
1276 +              } else {
1277 +                Kh += angMom[0] * angMom[0] / I(0, 0) +
1278 +                  angMom[1] * angMom[1] / I(1, 1) +
1279 +                  angMom[2] * angMom[2] / I(2, 2);
1280 +              }
1281 +            }
1282 +          }
1283 +        } else { //midBin_
1284 +          coldBin.push_back(sd);
1285 +          Pc += mass * vel;
1286 +          Mc += mass;
1287 +          Kc += mass * vel.lengthSquare();
1288 +          if (rnemdFluxType_ == rnemdFullKE) {
1289 +            if (sd->isDirectional()) {
1290 +              Vector3d angMom = sd->getJ();
1291 +              Mat3x3d I = sd->getI();
1292 +              if (sd->isLinear()) {
1293 +                int i = sd->linearAxis();
1294 +                int j = (i + 1) % 3;
1295 +                int k = (i + 2) % 3;
1296 +                Kc += angMom[j] * angMom[j] / I(j, j) +
1297 +                  angMom[k] * angMom[k] / I(k, k);
1298 +              } else {
1299 +                Kc += angMom[0] * angMom[0] / I(0, 0) +
1300 +                  angMom[1] * angMom[1] / I(1, 1) +
1301 +                  angMom[2] * angMom[2] / I(2, 2);
1302 +              }
1303 +            }
1304 +          }
1305          }
281      exchangeSum_ += max_val - min_val;
282      } else {
283        std::cerr << "exchange NOT performed.\nmin_val > max_val.\n";
1306        }
285    } else {
286      std::cerr << "exchange NOT performed.\none of the two slabs empty.\n";
1307      }
1308 <    std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
1308 >    
1309 >    Kh *= 0.5;
1310 >    Kc *= 0.5;
1311 >    
1312 > #ifdef IS_MPI
1313 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1314 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1315 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1316 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1317 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1318 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1319 > #endif
1320 >
1321 >    bool successfulExchange = false;
1322 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1323 >      Vector3d vc = Pc / Mc;
1324 >      Vector3d ac = -momentumTarget_ / Mc + vc;
1325 >      Vector3d acrec = -momentumTarget_ / Mc;
1326 >      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1327 >      if (cNumerator > 0.0) {
1328 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1329 >        if (cDenominator > 0.0) {
1330 >          RealType c = sqrt(cNumerator / cDenominator);
1331 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1332 >            Vector3d vh = Ph / Mh;
1333 >            Vector3d ah = momentumTarget_ / Mh + vh;
1334 >            Vector3d ahrec = momentumTarget_ / Mh;
1335 >            RealType hNumerator = Kh + kineticTarget_
1336 >              - 0.5 * Mh * ah.lengthSquare();
1337 >            if (hNumerator > 0.0) {
1338 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1339 >              if (hDenominator > 0.0) {
1340 >                RealType h = sqrt(hNumerator / hDenominator);
1341 >                if ((h > 0.9) && (h < 1.1)) {
1342 >
1343 >                  vector<StuntDouble*>::iterator sdi;
1344 >                  Vector3d vel;
1345 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1346 >                    //vel = (*sdi)->getVel();
1347 >                    vel = ((*sdi)->getVel() - vc) * c + ac;
1348 >                    (*sdi)->setVel(vel);
1349 >                    if (rnemdFluxType_ == rnemdFullKE) {
1350 >                      if ((*sdi)->isDirectional()) {
1351 >                        Vector3d angMom = (*sdi)->getJ() * c;
1352 >                        (*sdi)->setJ(angMom);
1353 >                      }
1354 >                    }
1355 >                  }
1356 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1357 >                    //vel = (*sdi)->getVel();
1358 >                    vel = ((*sdi)->getVel() - vh) * h + ah;
1359 >                    (*sdi)->setVel(vel);
1360 >                    if (rnemdFluxType_ == rnemdFullKE) {
1361 >                      if ((*sdi)->isDirectional()) {
1362 >                        Vector3d angMom = (*sdi)->getJ() * h;
1363 >                        (*sdi)->setJ(angMom);
1364 >                      }
1365 >                    }
1366 >                  }
1367 >                  successfulExchange = true;
1368 >                  kineticExchange_ += kineticTarget_;
1369 >                  momentumExchange_ += momentumTarget_;
1370 >                }
1371 >              }
1372 >            }
1373 >          }
1374 >        }
1375 >      }
1376 >    }
1377 >    if (successfulExchange != true) {
1378 >      sprintf(painCave.errMsg,
1379 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1380 >              "\tthe constraint equations may not exist or there may be\n"
1381 >              "\tno selected objects in one or both slabs.\n");
1382 >      painCave.isFatal = 0;
1383 >      painCave.severity = OPENMD_INFO;
1384 >      simError();        
1385 >      failTrialCount_++;
1386 >    }
1387    }
1388  
1389 <  void RNEMD::getStatus() {
1390 <    //std::cerr << "in RNEMD!\n";  
1391 <    //std::cerr << "nBins = " << nBins_ << "\n";
1392 <    int midBin = nBins_ / 2;
1393 <    //std::cerr << "midBin = " << midBin << "\n";
1394 <    //std::cerr << "swapTime = " << swapTime_ << "\n";
1395 <    //std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
1396 <    //std::cerr << "swapType = " << rnemdType_ << "\n";
1397 <    //std::cerr << "selection = " << rnemdObjectSelection_ << "\n";
1389 >  void RNEMD::doRNEMD() {
1390 >    if (!doRNEMD_) return;
1391 >    trialCount_++;
1392 >    switch(rnemdMethod_) {
1393 >    case rnemdSwap:
1394 >      doSwap();
1395 >      break;
1396 >    case rnemdNIVS:
1397 >      doNIVS();
1398 >      break;
1399 >    case rnemdVSS:
1400 >      doVSS();
1401 >      break;
1402 >    case rnemdUnkownMethod:
1403 >    default :
1404 >      break;
1405 >    }
1406 >  }
1407  
1408 +  void RNEMD::collectData() {
1409 +    if (!doRNEMD_) return;
1410      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1411      Mat3x3d hmat = currentSnap_->getHmat();
1412  
1413 <    //std::cerr << "hmat = " << hmat << "\n";
1413 >    areaAccumulator_->add(currentSnap_->getXYarea());
1414  
1415      seleMan_.setSelectionSet(evaluator_.evaluate());
1416  
1417 <    //std::cerr << "selectionCount = " << seleMan_.getSelectionCount() << "\n\n";
309 <
310 <    int selei;
1417 >    int selei(0);
1418      StuntDouble* sd;
1419      int idx;
313    /*
314    RealType min_val;
315    bool min_found = false;  
316    StuntDouble* min_sd;
1420  
1421 <    RealType max_val;
1422 <    bool max_found = false;
1423 <    StuntDouble* max_sd;
1421 >    vector<RealType> binMass(nBins_, 0.0);
1422 >    vector<RealType> binPx(nBins_, 0.0);
1423 >    vector<RealType> binPy(nBins_, 0.0);
1424 >    vector<RealType> binPz(nBins_, 0.0);
1425 >    vector<RealType> binKE(nBins_, 0.0);
1426 >    vector<int> binDOF(nBins_, 0);
1427 >    vector<int> binCount(nBins_, 0);
1428 >
1429 >    // alternative approach, track all molecules instead of only those
1430 >    // selected for scaling/swapping:
1431 >    /*
1432 >    SimInfo::MoleculeIterator miter;
1433 >    vector<StuntDouble*>::iterator iiter;
1434 >    Molecule* mol;
1435 >    StuntDouble* sd;
1436 >    for (mol = info_->beginMolecule(miter); mol != NULL;
1437 >      mol = info_->nextMolecule(miter))
1438 >      sd is essentially sd
1439 >        for (sd = mol->beginIntegrableObject(iiter);
1440 >             sd != NULL;
1441 >             sd = mol->nextIntegrableObject(iiter))
1442      */
1443 <    std::vector<RealType> valueHist;  // keeps track of what's being averaged
323 <    std::vector<int> valueCount; // keeps track of the number of degrees of
324 <                                 // freedom being averaged
325 <    valueHist.resize(nBins_);
326 <    valueCount.resize(nBins_);
327 <    //do they initialize themselves to zero automatically?
1443 >
1444      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1445           sd = seleMan_.nextSelected(selei)) {
1446 <      
1446 >    
1447        idx = sd->getLocalIndex();
1448        
1449        Vector3d pos = sd->getPos();
# Line 336 | Line 1452 | namespace oopse {
1452        
1453        if (usePeriodicBoundaryConditions_)
1454          currentSnap_->wrapVector(pos);
1455 <      
1455 >
1456 >
1457        // which bin is this stuntdouble in?
1458        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1459 <      
1460 <      int binNo = int((nBins_-1) * (pos.z()+0.5*hmat(2,2)) / hmat(2,2));
1461 <      
1462 <      //std::cerr << "pos.z() = " << pos.z() << " bin = " << binNo << "\n";
1463 <      
1459 >      // Shift molecules by half a box to have bins start at 0
1460 >      // The modulo operator is used to wrap the case when we are
1461 >      // beyond the end of the bins back to the beginning.
1462 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1463 >
1464        RealType mass = sd->getMass();
1465        Vector3d vel = sd->getVel();
349      //std::cerr << "mass = " << mass << " vel = " << vel << "\n";
350      RealType value;
1466  
1467 <      switch(rnemdType_) {
1468 <      case rnemdKinetic :
1469 <        
1470 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
1471 <                        vel[2]*vel[2]);
1472 <        
1473 <        valueCount[binNo] += 3;
1467 >      binCount[binNo]++;
1468 >      binMass[binNo] += mass;
1469 >      binPx[binNo] += mass*vel.x();
1470 >      binPy[binNo] += mass*vel.y();
1471 >      binPz[binNo] += mass*vel.z();
1472 >      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1473 >      binDOF[binNo] += 3;
1474  
1475 <        if (sd->isDirectional()) {
1476 <          Vector3d angMom = sd->getJ();
1477 <          Mat3x3d I = sd->getI();
1478 <          
1479 <          if (sd->isLinear()) {
1480 <            int i = sd->linearAxis();
1481 <            int j = (i + 1) % 3;
1482 <            int k = (i + 2) % 3;
1483 <            value += angMom[j] * angMom[j] / I(j, j) +
1484 <              angMom[k] * angMom[k] / I(k, k);
1475 >      if (sd->isDirectional()) {
1476 >        Vector3d angMom = sd->getJ();
1477 >        Mat3x3d I = sd->getI();
1478 >        if (sd->isLinear()) {
1479 >          int i = sd->linearAxis();
1480 >          int j = (i + 1) % 3;
1481 >          int k = (i + 2) % 3;
1482 >          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1483 >                                 angMom[k] * angMom[k] / I(k, k));
1484 >          binDOF[binNo] += 2;
1485 >        } else {
1486 >          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1487 >                                 angMom[1] * angMom[1] / I(1, 1) +
1488 >                                 angMom[2] * angMom[2] / I(2, 2));
1489 >          binDOF[binNo] += 3;
1490 >        }
1491 >      }
1492 >    }
1493 >    
1494 > #ifdef IS_MPI
1495 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1496 >                              nBins_, MPI::INT, MPI::SUM);
1497 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1498 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1499 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1500 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1501 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1502 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1503 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1504 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1505 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1506 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1507 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1508 >                              nBins_, MPI::INT, MPI::SUM);
1509 > #endif
1510  
1511 <            valueCount[binNo] +=2;
1511 >    Vector3d vel;
1512 >    RealType den;
1513 >    RealType temp;
1514 >    RealType z;
1515 >    for (int i = 0; i < nBins_; i++) {
1516 >      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1517 >      vel.x() = binPx[i] / binMass[i];
1518 >      vel.y() = binPy[i] / binMass[i];
1519 >      vel.z() = binPz[i] / binMass[i];
1520  
1521 <          } else {                        
1522 <            value += angMom[0]*angMom[0]/I(0, 0)
375 <              + angMom[1]*angMom[1]/I(1, 1)
376 <              + angMom[2]*angMom[2]/I(2, 2);
377 <            valueCount[binNo] +=3;
1521 >      den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1522 >        / currentSnap_->getVolume() ;
1523  
1524 <          }
1525 <        }
1526 <        //std::cerr <<"this value = " << value << "\n";
1527 <        value *= 0.5 / OOPSEConstant::energyConvert;  // get it in kcal / mol
1528 <        value *= 2.0 / OOPSEConstant::kb;             // convert to temperature
1529 <        //std::cerr <<"this value = " << value << "\n";
1530 <        break;
1531 <      case rnemdPx :
1532 <        value = mass * vel[0];
1533 <        valueCount[binNo]++;
1534 <        break;
1535 <      case rnemdPy :
1536 <        value = mass * vel[1];
1537 <        valueCount[binNo]++;
1538 <        break;
1539 <      case rnemdPz :
1540 <        value = mass * vel[2];
1541 <        valueCount[binNo]++;
1542 <        break;
1543 <      case rnemdUnknown :
399 <      default :
400 <        break;
1524 >      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1525 >                               PhysicalConstants::energyConvert);
1526 >  
1527 >      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1528 >        if(outputMask_[j]) {
1529 >          switch(j) {
1530 >          case Z:
1531 >            (data_[j].accumulator[i])->add(z);
1532 >            break;
1533 >          case TEMPERATURE:
1534 >            data_[j].accumulator[i]->add(temp);
1535 >            break;
1536 >          case VELOCITY:
1537 >            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1538 >            break;
1539 >          case DENSITY:
1540 >            data_[j].accumulator[i]->add(den);
1541 >            break;
1542 >          }
1543 >        }
1544        }
402      //std::cerr << "bin = " << binNo << " value = " << value ;
403      valueHist[binNo] += value;
404      //std::cerr << " hist = " << valueHist[binNo] << " count = " << valueCount[binNo] << "\n";
1545      }
1546 +  }
1547 +
1548 +  void RNEMD::getStarted() {
1549 +    if (!doRNEMD_) return;
1550 +    collectData();
1551 +    writeOutputFile();
1552 +  }
1553 +
1554 +  void RNEMD::parseOutputFileFormat(const std::string& format) {
1555 +    if (!doRNEMD_) return;
1556 +    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1557      
1558 <    std::cout << counter_++;
1559 <    for (int j = 0; j < nBins_; j++)
1560 <      std::cout << "\t" << valueHist[j] / (RealType)valueCount[j];
1561 <    std::cout << "\n";
1558 >    while(tokenizer.hasMoreTokens()) {
1559 >      std::string token(tokenizer.nextToken());
1560 >      toUpper(token);
1561 >      OutputMapType::iterator i = outputMap_.find(token);
1562 >      if (i != outputMap_.end()) {
1563 >        outputMask_.set(i->second);
1564 >      } else {
1565 >        sprintf( painCave.errMsg,
1566 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1567 >                 "\toutputFileFormat keyword.\n", token.c_str() );
1568 >        painCave.isFatal = 0;
1569 >        painCave.severity = OPENMD_ERROR;
1570 >        simError();            
1571 >      }
1572 >    }  
1573    }
1574 +  
1575 +  void RNEMD::writeOutputFile() {
1576 +    if (!doRNEMD_) return;
1577 +    
1578 + #ifdef IS_MPI
1579 +    // If we're the root node, should we print out the results
1580 +    int worldRank = MPI::COMM_WORLD.Get_rank();
1581 +    if (worldRank == 0) {
1582 + #endif
1583 +      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1584 +      
1585 +      if( !rnemdFile_ ){        
1586 +        sprintf( painCave.errMsg,
1587 +                 "Could not open \"%s\" for RNEMD output.\n",
1588 +                 rnemdFileName_.c_str());
1589 +        painCave.isFatal = 1;
1590 +        simError();
1591 +      }
1592 +
1593 +      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1594 +
1595 +      RealType time = currentSnap_->getTime();
1596 +      RealType avgArea;
1597 +      areaAccumulator_->getAverage(avgArea);
1598 +      RealType Jz = kineticExchange_ / (2.0 * time * avgArea)
1599 +        / PhysicalConstants::energyConvert;
1600 +      Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);      
1601 +
1602 +      rnemdFile_ << "#######################################################\n";
1603 +      rnemdFile_ << "# RNEMD {\n";
1604 +
1605 +      map<string, RNEMDMethod>::iterator mi;
1606 +      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1607 +        if ( (*mi).second == rnemdMethod_)
1608 +          rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n";
1609 +      }
1610 +      map<string, RNEMDFluxType>::iterator fi;
1611 +      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1612 +        if ( (*fi).second == rnemdFluxType_)
1613 +          rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n";
1614 +      }
1615 +      
1616 +      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n";
1617 +
1618 +      rnemdFile_ << "#    objectSelection = \""
1619 +                 << rnemdObjectSelection_ << "\";\n";
1620 +      rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n";
1621 +      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n";
1622 +      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n";
1623 +      rnemdFile_ << "# }\n";
1624 +      rnemdFile_ << "#######################################################\n";
1625 +      rnemdFile_ << "# RNEMD report:\n";      
1626 +      rnemdFile_ << "#     running time = " << time << " fs\n";
1627 +      rnemdFile_ << "#     target flux:\n";
1628 +      rnemdFile_ << "#         kinetic = "
1629 +                 << kineticFlux_ / PhysicalConstants::energyConvert
1630 +                 << " (kcal/mol/A^2/fs)\n";
1631 +      rnemdFile_ << "#         momentum = " << momentumFluxVector_
1632 +                 << " (amu/A/fs^2)\n";
1633 +      rnemdFile_ << "#     target one-time exchanges:\n";
1634 +      rnemdFile_ << "#         kinetic = "
1635 +                 << kineticTarget_ / PhysicalConstants::energyConvert
1636 +                 << " (kcal/mol)\n";
1637 +      rnemdFile_ << "#         momentum = " << momentumTarget_
1638 +                 << " (amu*A/fs)\n";
1639 +      rnemdFile_ << "#     actual exchange totals:\n";
1640 +      rnemdFile_ << "#         kinetic = "
1641 +                 << kineticExchange_ / PhysicalConstants::energyConvert
1642 +                 << " (kcal/mol)\n";
1643 +      rnemdFile_ << "#         momentum = " << momentumExchange_
1644 +                 << " (amu*A/fs)\n";      
1645 +      rnemdFile_ << "#     actual flux:\n";
1646 +      rnemdFile_ << "#         kinetic = " << Jz
1647 +                 << " (kcal/mol/A^2/fs)\n";
1648 +      rnemdFile_ << "#         momentum = " << JzP
1649 +                 << " (amu/A/fs^2)\n";
1650 +      rnemdFile_ << "#     exchange statistics:\n";
1651 +      rnemdFile_ << "#         attempted = " << trialCount_ << "\n";
1652 +      rnemdFile_ << "#         failed = " << failTrialCount_ << "\n";    
1653 +      if (rnemdMethod_ == rnemdNIVS) {
1654 +        rnemdFile_ << "#         NIVS root-check errors = "
1655 +                   << failRootCount_ << "\n";
1656 +      }
1657 +      rnemdFile_ << "#######################################################\n";
1658 +      
1659 +      
1660 +      
1661 +      //write title
1662 +      rnemdFile_ << "#";
1663 +      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1664 +        if (outputMask_[i]) {
1665 +          rnemdFile_ << "\t" << data_[i].title <<
1666 +            "(" << data_[i].units << ")";
1667 +          // add some extra tabs for column alignment
1668 +          if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
1669 +        }
1670 +      }
1671 +      rnemdFile_ << std::endl;
1672 +      
1673 +      rnemdFile_.precision(8);
1674 +      
1675 +      for (unsigned int j = 0; j < nBins_; j++) {        
1676 +        
1677 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1678 +          if (outputMask_[i]) {
1679 +            if (data_[i].dataType == "RealType")
1680 +              writeReal(i,j);
1681 +            else if (data_[i].dataType == "Vector3d")
1682 +              writeVector(i,j);
1683 +            else {
1684 +              sprintf( painCave.errMsg,
1685 +                       "RNEMD found an unknown data type for: %s ",
1686 +                       data_[i].title.c_str());
1687 +              painCave.isFatal = 1;
1688 +              simError();
1689 +            }
1690 +          }
1691 +        }
1692 +        rnemdFile_ << std::endl;
1693 +        
1694 +      }        
1695 +
1696 +      rnemdFile_ << "#######################################################\n";
1697 +      rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1698 +      rnemdFile_ << "#######################################################\n";
1699 +
1700 +
1701 +      for (unsigned int j = 0; j < nBins_; j++) {        
1702 +        rnemdFile_ << "#";
1703 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1704 +          if (outputMask_[i]) {
1705 +            if (data_[i].dataType == "RealType")
1706 +              writeRealStdDev(i,j);
1707 +            else if (data_[i].dataType == "Vector3d")
1708 +              writeVectorStdDev(i,j);
1709 +            else {
1710 +              sprintf( painCave.errMsg,
1711 +                       "RNEMD found an unknown data type for: %s ",
1712 +                       data_[i].title.c_str());
1713 +              painCave.isFatal = 1;
1714 +              simError();
1715 +            }
1716 +          }
1717 +        }
1718 +        rnemdFile_ << std::endl;
1719 +        
1720 +      }        
1721 +      
1722 +      rnemdFile_.flush();
1723 +      rnemdFile_.close();
1724 +      
1725 + #ifdef IS_MPI
1726 +    }
1727 + #endif
1728 +    
1729 +  }
1730 +  
1731 +  void RNEMD::writeReal(int index, unsigned int bin) {
1732 +    if (!doRNEMD_) return;
1733 +    assert(index >=0 && index < ENDINDEX);
1734 +    assert(bin < nBins_);
1735 +    RealType s;
1736 +    
1737 +    data_[index].accumulator[bin]->getAverage(s);
1738 +    
1739 +    if (! isinf(s) && ! isnan(s)) {
1740 +      rnemdFile_ << "\t" << s;
1741 +    } else{
1742 +      sprintf( painCave.errMsg,
1743 +               "RNEMD detected a numerical error writing: %s for bin %d",
1744 +               data_[index].title.c_str(), bin);
1745 +      painCave.isFatal = 1;
1746 +      simError();
1747 +    }    
1748 +  }
1749 +  
1750 +  void RNEMD::writeVector(int index, unsigned int bin) {
1751 +    if (!doRNEMD_) return;
1752 +    assert(index >=0 && index < ENDINDEX);
1753 +    assert(bin < nBins_);
1754 +    Vector3d s;
1755 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1756 +    if (isinf(s[0]) || isnan(s[0]) ||
1757 +        isinf(s[1]) || isnan(s[1]) ||
1758 +        isinf(s[2]) || isnan(s[2]) ) {      
1759 +      sprintf( painCave.errMsg,
1760 +               "RNEMD detected a numerical error writing: %s for bin %d",
1761 +               data_[index].title.c_str(), bin);
1762 +      painCave.isFatal = 1;
1763 +      simError();
1764 +    } else {
1765 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1766 +    }
1767 +  }  
1768 +
1769 +  void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1770 +    if (!doRNEMD_) return;
1771 +    assert(index >=0 && index < ENDINDEX);
1772 +    assert(bin < nBins_);
1773 +    RealType s;
1774 +    
1775 +    data_[index].accumulator[bin]->getStdDev(s);
1776 +    
1777 +    if (! isinf(s) && ! isnan(s)) {
1778 +      rnemdFile_ << "\t" << s;
1779 +    } else{
1780 +      sprintf( painCave.errMsg,
1781 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1782 +               data_[index].title.c_str(), bin);
1783 +      painCave.isFatal = 1;
1784 +      simError();
1785 +    }    
1786 +  }
1787 +  
1788 +  void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1789 +    if (!doRNEMD_) return;
1790 +    assert(index >=0 && index < ENDINDEX);
1791 +    assert(bin < nBins_);
1792 +    Vector3d s;
1793 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1794 +    if (isinf(s[0]) || isnan(s[0]) ||
1795 +        isinf(s[1]) || isnan(s[1]) ||
1796 +        isinf(s[2]) || isnan(s[2]) ) {      
1797 +      sprintf( painCave.errMsg,
1798 +               "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1799 +               data_[index].title.c_str(), bin);
1800 +      painCave.isFatal = 1;
1801 +      simError();
1802 +    } else {
1803 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1804 +    }
1805 +  }  
1806   }
1807 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1339 by gezelter, Thu Apr 23 18:31:05 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (property svn:keywords), Revision 1803 by gezelter, Wed Oct 3 14:20:07 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines