1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <cmath> |
43 |
#include "rnemd/RNEMD.hpp" |
44 |
#include "math/Vector3.hpp" |
45 |
#include "math/Vector.hpp" |
46 |
#include "math/SquareMatrix3.hpp" |
47 |
#include "math/Polynomial.hpp" |
48 |
#include "primitives/Molecule.hpp" |
49 |
#include "primitives/StuntDouble.hpp" |
50 |
#include "utils/PhysicalConstants.hpp" |
51 |
#include "utils/Tuple.hpp" |
52 |
#ifdef IS_MPI |
53 |
#include <mpi.h> |
54 |
#endif |
55 |
|
56 |
#define HONKING_LARGE_VALUE 1.0e10 |
57 |
|
58 |
using namespace std; |
59 |
namespace OpenMD { |
60 |
|
61 |
RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), |
62 |
usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { |
63 |
|
64 |
trialCount_ = 0; |
65 |
failTrialCount_ = 0; |
66 |
failRootCount_ = 0; |
67 |
|
68 |
int seedValue; |
69 |
Globals * simParams = info->getSimParams(); |
70 |
RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); |
71 |
|
72 |
doRNEMD_ = rnemdParams->getUseRNEMD(); |
73 |
if (!doRNEMD_) return; |
74 |
|
75 |
stringToMethod_["Swap"] = rnemdSwap; |
76 |
stringToMethod_["NIVS"] = rnemdNIVS; |
77 |
stringToMethod_["VSS"] = rnemdVSS; |
78 |
|
79 |
stringToFluxType_["KE"] = rnemdKE; |
80 |
stringToFluxType_["Px"] = rnemdPx; |
81 |
stringToFluxType_["Py"] = rnemdPy; |
82 |
stringToFluxType_["Pz"] = rnemdPz; |
83 |
stringToFluxType_["Pvector"] = rnemdPvector; |
84 |
stringToFluxType_["KE+Px"] = rnemdKePx; |
85 |
stringToFluxType_["KE+Py"] = rnemdKePy; |
86 |
stringToFluxType_["KE+Pvector"] = rnemdKePvector; |
87 |
|
88 |
runTime_ = simParams->getRunTime(); |
89 |
statusTime_ = simParams->getStatusTime(); |
90 |
|
91 |
rnemdObjectSelection_ = rnemdParams->getObjectSelection(); |
92 |
evaluator_.loadScriptString(rnemdObjectSelection_); |
93 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
94 |
|
95 |
const string methStr = rnemdParams->getMethod(); |
96 |
bool hasFluxType = rnemdParams->haveFluxType(); |
97 |
|
98 |
string fluxStr; |
99 |
if (hasFluxType) { |
100 |
fluxStr = rnemdParams->getFluxType(); |
101 |
} else { |
102 |
sprintf(painCave.errMsg, |
103 |
"RNEMD: No fluxType was set in the md file. This parameter,\n" |
104 |
"\twhich must be one of the following values:\n" |
105 |
"\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n" |
106 |
"\tmust be set to use RNEMD\n"); |
107 |
painCave.isFatal = 1; |
108 |
painCave.severity = OPENMD_ERROR; |
109 |
simError(); |
110 |
} |
111 |
|
112 |
bool hasKineticFlux = rnemdParams->haveKineticFlux(); |
113 |
bool hasMomentumFlux = rnemdParams->haveMomentumFlux(); |
114 |
bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector(); |
115 |
bool hasSlabWidth = rnemdParams->haveSlabWidth(); |
116 |
bool hasSlabACenter = rnemdParams->haveSlabACenter(); |
117 |
bool hasSlabBCenter = rnemdParams->haveSlabBCenter(); |
118 |
bool hasOutputFileName = rnemdParams->haveOutputFileName(); |
119 |
bool hasOutputFields = rnemdParams->haveOutputFields(); |
120 |
|
121 |
map<string, RNEMDMethod>::iterator i; |
122 |
i = stringToMethod_.find(methStr); |
123 |
if (i != stringToMethod_.end()) |
124 |
rnemdMethod_ = i->second; |
125 |
else { |
126 |
sprintf(painCave.errMsg, |
127 |
"RNEMD: The current method,\n" |
128 |
"\t\t%s is not one of the recognized\n" |
129 |
"\texchange methods: Swap, NIVS, or VSS\n", |
130 |
methStr.c_str()); |
131 |
painCave.isFatal = 1; |
132 |
painCave.severity = OPENMD_ERROR; |
133 |
simError(); |
134 |
} |
135 |
|
136 |
map<string, RNEMDFluxType>::iterator j; |
137 |
j = stringToFluxType_.find(fluxStr); |
138 |
if (j != stringToFluxType_.end()) |
139 |
rnemdFluxType_ = j->second; |
140 |
else { |
141 |
sprintf(painCave.errMsg, |
142 |
"RNEMD: The current fluxType,\n" |
143 |
"\t\t%s\n" |
144 |
"\tis not one of the recognized flux types.\n", |
145 |
fluxStr.c_str()); |
146 |
painCave.isFatal = 1; |
147 |
painCave.severity = OPENMD_ERROR; |
148 |
simError(); |
149 |
} |
150 |
|
151 |
bool methodFluxMismatch = false; |
152 |
bool hasCorrectFlux = false; |
153 |
switch(rnemdMethod_) { |
154 |
case rnemdSwap: |
155 |
switch (rnemdFluxType_) { |
156 |
case rnemdKE: |
157 |
hasCorrectFlux = hasKineticFlux; |
158 |
break; |
159 |
case rnemdPx: |
160 |
case rnemdPy: |
161 |
case rnemdPz: |
162 |
hasCorrectFlux = hasMomentumFlux; |
163 |
break; |
164 |
default : |
165 |
methodFluxMismatch = true; |
166 |
break; |
167 |
} |
168 |
break; |
169 |
case rnemdNIVS: |
170 |
switch (rnemdFluxType_) { |
171 |
case rnemdKE: |
172 |
case rnemdRotKE: |
173 |
case rnemdFullKE: |
174 |
hasCorrectFlux = hasKineticFlux; |
175 |
break; |
176 |
case rnemdPx: |
177 |
case rnemdPy: |
178 |
case rnemdPz: |
179 |
hasCorrectFlux = hasMomentumFlux; |
180 |
break; |
181 |
case rnemdKePx: |
182 |
case rnemdKePy: |
183 |
hasCorrectFlux = hasMomentumFlux && hasKineticFlux; |
184 |
break; |
185 |
default: |
186 |
methodFluxMismatch = true; |
187 |
break; |
188 |
} |
189 |
break; |
190 |
case rnemdVSS: |
191 |
switch (rnemdFluxType_) { |
192 |
case rnemdKE: |
193 |
case rnemdRotKE: |
194 |
case rnemdFullKE: |
195 |
hasCorrectFlux = hasKineticFlux; |
196 |
break; |
197 |
case rnemdPx: |
198 |
case rnemdPy: |
199 |
case rnemdPz: |
200 |
hasCorrectFlux = hasMomentumFlux; |
201 |
break; |
202 |
case rnemdPvector: |
203 |
hasCorrectFlux = hasMomentumFluxVector; |
204 |
break; |
205 |
case rnemdKePx: |
206 |
case rnemdKePy: |
207 |
hasCorrectFlux = hasMomentumFlux && hasKineticFlux; |
208 |
break; |
209 |
case rnemdKePvector: |
210 |
hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux; |
211 |
break; |
212 |
default: |
213 |
methodFluxMismatch = true; |
214 |
break; |
215 |
} |
216 |
default: |
217 |
break; |
218 |
} |
219 |
|
220 |
if (methodFluxMismatch) { |
221 |
sprintf(painCave.errMsg, |
222 |
"RNEMD: The current method,\n" |
223 |
"\t\t%s\n" |
224 |
"\tcannot be used with the current flux type, %s\n", |
225 |
methStr.c_str(), fluxStr.c_str()); |
226 |
painCave.isFatal = 1; |
227 |
painCave.severity = OPENMD_ERROR; |
228 |
simError(); |
229 |
} |
230 |
if (!hasCorrectFlux) { |
231 |
sprintf(painCave.errMsg, |
232 |
"RNEMD: The current method, %s, and flux type, %s,\n" |
233 |
"\tdid not have the correct flux value specified. Options\n" |
234 |
"\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n", |
235 |
methStr.c_str(), fluxStr.c_str()); |
236 |
painCave.isFatal = 1; |
237 |
painCave.severity = OPENMD_ERROR; |
238 |
simError(); |
239 |
} |
240 |
|
241 |
if (hasKineticFlux) { |
242 |
// convert the kcal / mol / Angstroms^2 / fs values in the md file |
243 |
// into amu / fs^3: |
244 |
kineticFlux_ = rnemdParams->getKineticFlux() |
245 |
* PhysicalConstants::energyConvert; |
246 |
} else { |
247 |
kineticFlux_ = 0.0; |
248 |
} |
249 |
if (hasMomentumFluxVector) { |
250 |
momentumFluxVector_ = rnemdParams->getMomentumFluxVector(); |
251 |
} else { |
252 |
momentumFluxVector_ = V3Zero; |
253 |
if (hasMomentumFlux) { |
254 |
RealType momentumFlux = rnemdParams->getMomentumFlux(); |
255 |
switch (rnemdFluxType_) { |
256 |
case rnemdPx: |
257 |
momentumFluxVector_.x() = momentumFlux; |
258 |
break; |
259 |
case rnemdPy: |
260 |
momentumFluxVector_.y() = momentumFlux; |
261 |
break; |
262 |
case rnemdPz: |
263 |
momentumFluxVector_.z() = momentumFlux; |
264 |
break; |
265 |
case rnemdKePx: |
266 |
momentumFluxVector_.x() = momentumFlux; |
267 |
break; |
268 |
case rnemdKePy: |
269 |
momentumFluxVector_.y() = momentumFlux; |
270 |
break; |
271 |
default: |
272 |
break; |
273 |
} |
274 |
} |
275 |
} |
276 |
|
277 |
// do some sanity checking |
278 |
|
279 |
int selectionCount = seleMan_.getSelectionCount(); |
280 |
int nIntegrable = info->getNGlobalIntegrableObjects(); |
281 |
|
282 |
if (selectionCount > nIntegrable) { |
283 |
sprintf(painCave.errMsg, |
284 |
"RNEMD: The current objectSelection,\n" |
285 |
"\t\t%s\n" |
286 |
"\thas resulted in %d selected objects. However,\n" |
287 |
"\tthe total number of integrable objects in the system\n" |
288 |
"\tis only %d. This is almost certainly not what you want\n" |
289 |
"\tto do. A likely cause of this is forgetting the _RB_0\n" |
290 |
"\tselector in the selection script!\n", |
291 |
rnemdObjectSelection_.c_str(), |
292 |
selectionCount, nIntegrable); |
293 |
painCave.isFatal = 0; |
294 |
painCave.severity = OPENMD_WARNING; |
295 |
simError(); |
296 |
} |
297 |
|
298 |
areaAccumulator_ = new Accumulator(); |
299 |
|
300 |
nBins_ = rnemdParams->getOutputBins(); |
301 |
|
302 |
data_.resize(RNEMD::ENDINDEX); |
303 |
OutputData z; |
304 |
z.units = "Angstroms"; |
305 |
z.title = "Z"; |
306 |
z.dataType = "RealType"; |
307 |
z.accumulator.reserve(nBins_); |
308 |
for (unsigned int i = 0; i < nBins_; i++) |
309 |
z.accumulator.push_back( new Accumulator() ); |
310 |
data_[Z] = z; |
311 |
outputMap_["Z"] = Z; |
312 |
|
313 |
OutputData temperature; |
314 |
temperature.units = "K"; |
315 |
temperature.title = "Temperature"; |
316 |
temperature.dataType = "RealType"; |
317 |
temperature.accumulator.reserve(nBins_); |
318 |
for (unsigned int i = 0; i < nBins_; i++) |
319 |
temperature.accumulator.push_back( new Accumulator() ); |
320 |
data_[TEMPERATURE] = temperature; |
321 |
outputMap_["TEMPERATURE"] = TEMPERATURE; |
322 |
|
323 |
OutputData velocity; |
324 |
velocity.units = "angstroms/fs"; |
325 |
velocity.title = "Velocity"; |
326 |
velocity.dataType = "Vector3d"; |
327 |
velocity.accumulator.reserve(nBins_); |
328 |
for (unsigned int i = 0; i < nBins_; i++) |
329 |
velocity.accumulator.push_back( new VectorAccumulator() ); |
330 |
data_[VELOCITY] = velocity; |
331 |
outputMap_["VELOCITY"] = VELOCITY; |
332 |
|
333 |
OutputData density; |
334 |
density.units = "g cm^-3"; |
335 |
density.title = "Density"; |
336 |
density.dataType = "RealType"; |
337 |
density.accumulator.reserve(nBins_); |
338 |
for (unsigned int i = 0; i < nBins_; i++) |
339 |
density.accumulator.push_back( new Accumulator() ); |
340 |
data_[DENSITY] = density; |
341 |
outputMap_["DENSITY"] = DENSITY; |
342 |
|
343 |
if (hasOutputFields) { |
344 |
parseOutputFileFormat(rnemdParams->getOutputFields()); |
345 |
} else { |
346 |
outputMask_.set(Z); |
347 |
switch (rnemdFluxType_) { |
348 |
case rnemdKE: |
349 |
case rnemdRotKE: |
350 |
case rnemdFullKE: |
351 |
outputMask_.set(TEMPERATURE); |
352 |
break; |
353 |
case rnemdPx: |
354 |
case rnemdPy: |
355 |
outputMask_.set(VELOCITY); |
356 |
break; |
357 |
case rnemdPz: |
358 |
case rnemdPvector: |
359 |
outputMask_.set(VELOCITY); |
360 |
outputMask_.set(DENSITY); |
361 |
break; |
362 |
case rnemdKePx: |
363 |
case rnemdKePy: |
364 |
outputMask_.set(TEMPERATURE); |
365 |
outputMask_.set(VELOCITY); |
366 |
break; |
367 |
case rnemdKePvector: |
368 |
outputMask_.set(TEMPERATURE); |
369 |
outputMask_.set(VELOCITY); |
370 |
outputMask_.set(DENSITY); |
371 |
break; |
372 |
default: |
373 |
break; |
374 |
} |
375 |
} |
376 |
|
377 |
if (hasOutputFileName) { |
378 |
rnemdFileName_ = rnemdParams->getOutputFileName(); |
379 |
} else { |
380 |
rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; |
381 |
} |
382 |
|
383 |
exchangeTime_ = rnemdParams->getExchangeTime(); |
384 |
|
385 |
Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); |
386 |
Mat3x3d hmat = currentSnap_->getHmat(); |
387 |
|
388 |
// Target exchange quantities (in each exchange) = 2 Lx Ly dt flux |
389 |
// Lx, Ly = box dimensions in x & y |
390 |
// dt = exchange time interval |
391 |
// flux = target flux |
392 |
|
393 |
RealType area = currentSnap_->getXYarea(); |
394 |
kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area; |
395 |
momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area; |
396 |
|
397 |
// total exchange sums are zeroed out at the beginning: |
398 |
|
399 |
kineticExchange_ = 0.0; |
400 |
momentumExchange_ = V3Zero; |
401 |
|
402 |
if (hasSlabWidth) |
403 |
slabWidth_ = rnemdParams->getSlabWidth(); |
404 |
else |
405 |
slabWidth_ = hmat(2,2) / 10.0; |
406 |
|
407 |
if (hasSlabACenter) |
408 |
slabACenter_ = rnemdParams->getSlabACenter(); |
409 |
else |
410 |
slabACenter_ = 0.0; |
411 |
|
412 |
if (hasSlabBCenter) |
413 |
slabBCenter_ = rnemdParams->getSlabBCenter(); |
414 |
else |
415 |
slabBCenter_ = hmat(2,2) / 2.0; |
416 |
|
417 |
} |
418 |
|
419 |
RNEMD::~RNEMD() { |
420 |
if (!doRNEMD_) return; |
421 |
#ifdef IS_MPI |
422 |
if (worldRank == 0) { |
423 |
#endif |
424 |
|
425 |
writeOutputFile(); |
426 |
|
427 |
rnemdFile_.close(); |
428 |
|
429 |
#ifdef IS_MPI |
430 |
} |
431 |
#endif |
432 |
} |
433 |
|
434 |
bool RNEMD::inSlabA(Vector3d pos) { |
435 |
return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_); |
436 |
} |
437 |
bool RNEMD::inSlabB(Vector3d pos) { |
438 |
return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_); |
439 |
} |
440 |
|
441 |
void RNEMD::doSwap() { |
442 |
if (!doRNEMD_) return; |
443 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
444 |
Mat3x3d hmat = currentSnap_->getHmat(); |
445 |
|
446 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
447 |
|
448 |
int selei; |
449 |
StuntDouble* sd; |
450 |
int idx; |
451 |
|
452 |
RealType min_val; |
453 |
bool min_found = false; |
454 |
StuntDouble* min_sd; |
455 |
|
456 |
RealType max_val; |
457 |
bool max_found = false; |
458 |
StuntDouble* max_sd; |
459 |
|
460 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
461 |
sd = seleMan_.nextSelected(selei)) { |
462 |
|
463 |
idx = sd->getLocalIndex(); |
464 |
|
465 |
Vector3d pos = sd->getPos(); |
466 |
|
467 |
// wrap the stuntdouble's position back into the box: |
468 |
|
469 |
if (usePeriodicBoundaryConditions_) |
470 |
currentSnap_->wrapVector(pos); |
471 |
bool inA = inSlabA(pos); |
472 |
bool inB = inSlabB(pos); |
473 |
|
474 |
if (inA || inB) { |
475 |
|
476 |
RealType mass = sd->getMass(); |
477 |
Vector3d vel = sd->getVel(); |
478 |
RealType value; |
479 |
|
480 |
switch(rnemdFluxType_) { |
481 |
case rnemdKE : |
482 |
|
483 |
value = mass * vel.lengthSquare(); |
484 |
|
485 |
if (sd->isDirectional()) { |
486 |
Vector3d angMom = sd->getJ(); |
487 |
Mat3x3d I = sd->getI(); |
488 |
|
489 |
if (sd->isLinear()) { |
490 |
int i = sd->linearAxis(); |
491 |
int j = (i + 1) % 3; |
492 |
int k = (i + 2) % 3; |
493 |
value += angMom[j] * angMom[j] / I(j, j) + |
494 |
angMom[k] * angMom[k] / I(k, k); |
495 |
} else { |
496 |
value += angMom[0]*angMom[0]/I(0, 0) |
497 |
+ angMom[1]*angMom[1]/I(1, 1) |
498 |
+ angMom[2]*angMom[2]/I(2, 2); |
499 |
} |
500 |
} //angular momenta exchange enabled |
501 |
value *= 0.5; |
502 |
break; |
503 |
case rnemdPx : |
504 |
value = mass * vel[0]; |
505 |
break; |
506 |
case rnemdPy : |
507 |
value = mass * vel[1]; |
508 |
break; |
509 |
case rnemdPz : |
510 |
value = mass * vel[2]; |
511 |
break; |
512 |
default : |
513 |
break; |
514 |
} |
515 |
|
516 |
if (inA == 0) { |
517 |
if (!min_found) { |
518 |
min_val = value; |
519 |
min_sd = sd; |
520 |
min_found = true; |
521 |
} else { |
522 |
if (min_val > value) { |
523 |
min_val = value; |
524 |
min_sd = sd; |
525 |
} |
526 |
} |
527 |
} else { |
528 |
if (!max_found) { |
529 |
max_val = value; |
530 |
max_sd = sd; |
531 |
max_found = true; |
532 |
} else { |
533 |
if (max_val < value) { |
534 |
max_val = value; |
535 |
max_sd = sd; |
536 |
} |
537 |
} |
538 |
} |
539 |
} |
540 |
} |
541 |
|
542 |
#ifdef IS_MPI |
543 |
int nProc, worldRank; |
544 |
|
545 |
nProc = MPI::COMM_WORLD.Get_size(); |
546 |
worldRank = MPI::COMM_WORLD.Get_rank(); |
547 |
|
548 |
bool my_min_found = min_found; |
549 |
bool my_max_found = max_found; |
550 |
|
551 |
// Even if we didn't find a minimum, did someone else? |
552 |
MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR); |
553 |
// Even if we didn't find a maximum, did someone else? |
554 |
MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR); |
555 |
#endif |
556 |
|
557 |
if (max_found && min_found) { |
558 |
|
559 |
#ifdef IS_MPI |
560 |
struct { |
561 |
RealType val; |
562 |
int rank; |
563 |
} max_vals, min_vals; |
564 |
|
565 |
if (my_min_found) { |
566 |
min_vals.val = min_val; |
567 |
} else { |
568 |
min_vals.val = HONKING_LARGE_VALUE; |
569 |
} |
570 |
min_vals.rank = worldRank; |
571 |
|
572 |
// Who had the minimum? |
573 |
MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals, |
574 |
1, MPI::REALTYPE_INT, MPI::MINLOC); |
575 |
min_val = min_vals.val; |
576 |
|
577 |
if (my_max_found) { |
578 |
max_vals.val = max_val; |
579 |
} else { |
580 |
max_vals.val = -HONKING_LARGE_VALUE; |
581 |
} |
582 |
max_vals.rank = worldRank; |
583 |
|
584 |
// Who had the maximum? |
585 |
MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals, |
586 |
1, MPI::REALTYPE_INT, MPI::MAXLOC); |
587 |
max_val = max_vals.val; |
588 |
#endif |
589 |
|
590 |
if (min_val < max_val) { |
591 |
|
592 |
#ifdef IS_MPI |
593 |
if (max_vals.rank == worldRank && min_vals.rank == worldRank) { |
594 |
// I have both maximum and minimum, so proceed like a single |
595 |
// processor version: |
596 |
#endif |
597 |
|
598 |
Vector3d min_vel = min_sd->getVel(); |
599 |
Vector3d max_vel = max_sd->getVel(); |
600 |
RealType temp_vel; |
601 |
|
602 |
switch(rnemdFluxType_) { |
603 |
case rnemdKE : |
604 |
min_sd->setVel(max_vel); |
605 |
max_sd->setVel(min_vel); |
606 |
if (min_sd->isDirectional() && max_sd->isDirectional()) { |
607 |
Vector3d min_angMom = min_sd->getJ(); |
608 |
Vector3d max_angMom = max_sd->getJ(); |
609 |
min_sd->setJ(max_angMom); |
610 |
max_sd->setJ(min_angMom); |
611 |
}//angular momenta exchange enabled |
612 |
//assumes same rigid body identity |
613 |
break; |
614 |
case rnemdPx : |
615 |
temp_vel = min_vel.x(); |
616 |
min_vel.x() = max_vel.x(); |
617 |
max_vel.x() = temp_vel; |
618 |
min_sd->setVel(min_vel); |
619 |
max_sd->setVel(max_vel); |
620 |
break; |
621 |
case rnemdPy : |
622 |
temp_vel = min_vel.y(); |
623 |
min_vel.y() = max_vel.y(); |
624 |
max_vel.y() = temp_vel; |
625 |
min_sd->setVel(min_vel); |
626 |
max_sd->setVel(max_vel); |
627 |
break; |
628 |
case rnemdPz : |
629 |
temp_vel = min_vel.z(); |
630 |
min_vel.z() = max_vel.z(); |
631 |
max_vel.z() = temp_vel; |
632 |
min_sd->setVel(min_vel); |
633 |
max_sd->setVel(max_vel); |
634 |
break; |
635 |
default : |
636 |
break; |
637 |
} |
638 |
|
639 |
#ifdef IS_MPI |
640 |
// the rest of the cases only apply in parallel simulations: |
641 |
} else if (max_vals.rank == worldRank) { |
642 |
// I had the max, but not the minimum |
643 |
|
644 |
Vector3d min_vel; |
645 |
Vector3d max_vel = max_sd->getVel(); |
646 |
MPI::Status status; |
647 |
|
648 |
// point-to-point swap of the velocity vector |
649 |
MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE, |
650 |
min_vals.rank, 0, |
651 |
min_vel.getArrayPointer(), 3, MPI::REALTYPE, |
652 |
min_vals.rank, 0, status); |
653 |
|
654 |
switch(rnemdFluxType_) { |
655 |
case rnemdKE : |
656 |
max_sd->setVel(min_vel); |
657 |
//angular momenta exchange enabled |
658 |
if (max_sd->isDirectional()) { |
659 |
Vector3d min_angMom; |
660 |
Vector3d max_angMom = max_sd->getJ(); |
661 |
|
662 |
// point-to-point swap of the angular momentum vector |
663 |
MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3, |
664 |
MPI::REALTYPE, min_vals.rank, 1, |
665 |
min_angMom.getArrayPointer(), 3, |
666 |
MPI::REALTYPE, min_vals.rank, 1, |
667 |
status); |
668 |
|
669 |
max_sd->setJ(min_angMom); |
670 |
} |
671 |
break; |
672 |
case rnemdPx : |
673 |
max_vel.x() = min_vel.x(); |
674 |
max_sd->setVel(max_vel); |
675 |
break; |
676 |
case rnemdPy : |
677 |
max_vel.y() = min_vel.y(); |
678 |
max_sd->setVel(max_vel); |
679 |
break; |
680 |
case rnemdPz : |
681 |
max_vel.z() = min_vel.z(); |
682 |
max_sd->setVel(max_vel); |
683 |
break; |
684 |
default : |
685 |
break; |
686 |
} |
687 |
} else if (min_vals.rank == worldRank) { |
688 |
// I had the minimum but not the maximum: |
689 |
|
690 |
Vector3d max_vel; |
691 |
Vector3d min_vel = min_sd->getVel(); |
692 |
MPI::Status status; |
693 |
|
694 |
// point-to-point swap of the velocity vector |
695 |
MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE, |
696 |
max_vals.rank, 0, |
697 |
max_vel.getArrayPointer(), 3, MPI::REALTYPE, |
698 |
max_vals.rank, 0, status); |
699 |
|
700 |
switch(rnemdFluxType_) { |
701 |
case rnemdKE : |
702 |
min_sd->setVel(max_vel); |
703 |
//angular momenta exchange enabled |
704 |
if (min_sd->isDirectional()) { |
705 |
Vector3d min_angMom = min_sd->getJ(); |
706 |
Vector3d max_angMom; |
707 |
|
708 |
// point-to-point swap of the angular momentum vector |
709 |
MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3, |
710 |
MPI::REALTYPE, max_vals.rank, 1, |
711 |
max_angMom.getArrayPointer(), 3, |
712 |
MPI::REALTYPE, max_vals.rank, 1, |
713 |
status); |
714 |
|
715 |
min_sd->setJ(max_angMom); |
716 |
} |
717 |
break; |
718 |
case rnemdPx : |
719 |
min_vel.x() = max_vel.x(); |
720 |
min_sd->setVel(min_vel); |
721 |
break; |
722 |
case rnemdPy : |
723 |
min_vel.y() = max_vel.y(); |
724 |
min_sd->setVel(min_vel); |
725 |
break; |
726 |
case rnemdPz : |
727 |
min_vel.z() = max_vel.z(); |
728 |
min_sd->setVel(min_vel); |
729 |
break; |
730 |
default : |
731 |
break; |
732 |
} |
733 |
} |
734 |
#endif |
735 |
|
736 |
switch(rnemdFluxType_) { |
737 |
case rnemdKE: |
738 |
kineticExchange_ += max_val - min_val; |
739 |
break; |
740 |
case rnemdPx: |
741 |
momentumExchange_.x() += max_val - min_val; |
742 |
break; |
743 |
case rnemdPy: |
744 |
momentumExchange_.y() += max_val - min_val; |
745 |
break; |
746 |
case rnemdPz: |
747 |
momentumExchange_.z() += max_val - min_val; |
748 |
break; |
749 |
default: |
750 |
break; |
751 |
} |
752 |
} else { |
753 |
sprintf(painCave.errMsg, |
754 |
"RNEMD::doSwap exchange NOT performed because min_val > max_val\n"); |
755 |
painCave.isFatal = 0; |
756 |
painCave.severity = OPENMD_INFO; |
757 |
simError(); |
758 |
failTrialCount_++; |
759 |
} |
760 |
} else { |
761 |
sprintf(painCave.errMsg, |
762 |
"RNEMD::doSwap exchange NOT performed because selected object\n" |
763 |
"\twas not present in at least one of the two slabs.\n"); |
764 |
painCave.isFatal = 0; |
765 |
painCave.severity = OPENMD_INFO; |
766 |
simError(); |
767 |
failTrialCount_++; |
768 |
} |
769 |
} |
770 |
|
771 |
void RNEMD::doNIVS() { |
772 |
if (!doRNEMD_) return; |
773 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
774 |
Mat3x3d hmat = currentSnap_->getHmat(); |
775 |
|
776 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
777 |
|
778 |
int selei; |
779 |
StuntDouble* sd; |
780 |
int idx; |
781 |
|
782 |
vector<StuntDouble*> hotBin, coldBin; |
783 |
|
784 |
RealType Phx = 0.0; |
785 |
RealType Phy = 0.0; |
786 |
RealType Phz = 0.0; |
787 |
RealType Khx = 0.0; |
788 |
RealType Khy = 0.0; |
789 |
RealType Khz = 0.0; |
790 |
RealType Khw = 0.0; |
791 |
RealType Pcx = 0.0; |
792 |
RealType Pcy = 0.0; |
793 |
RealType Pcz = 0.0; |
794 |
RealType Kcx = 0.0; |
795 |
RealType Kcy = 0.0; |
796 |
RealType Kcz = 0.0; |
797 |
RealType Kcw = 0.0; |
798 |
|
799 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
800 |
sd = seleMan_.nextSelected(selei)) { |
801 |
|
802 |
idx = sd->getLocalIndex(); |
803 |
|
804 |
Vector3d pos = sd->getPos(); |
805 |
|
806 |
// wrap the stuntdouble's position back into the box: |
807 |
|
808 |
if (usePeriodicBoundaryConditions_) |
809 |
currentSnap_->wrapVector(pos); |
810 |
|
811 |
// which bin is this stuntdouble in? |
812 |
bool inA = inSlabA(pos); |
813 |
bool inB = inSlabB(pos); |
814 |
|
815 |
if (inA || inB) { |
816 |
|
817 |
RealType mass = sd->getMass(); |
818 |
Vector3d vel = sd->getVel(); |
819 |
|
820 |
if (inA) { |
821 |
hotBin.push_back(sd); |
822 |
Phx += mass * vel.x(); |
823 |
Phy += mass * vel.y(); |
824 |
Phz += mass * vel.z(); |
825 |
Khx += mass * vel.x() * vel.x(); |
826 |
Khy += mass * vel.y() * vel.y(); |
827 |
Khz += mass * vel.z() * vel.z(); |
828 |
if (sd->isDirectional()) { |
829 |
Vector3d angMom = sd->getJ(); |
830 |
Mat3x3d I = sd->getI(); |
831 |
if (sd->isLinear()) { |
832 |
int i = sd->linearAxis(); |
833 |
int j = (i + 1) % 3; |
834 |
int k = (i + 2) % 3; |
835 |
Khw += angMom[j] * angMom[j] / I(j, j) + |
836 |
angMom[k] * angMom[k] / I(k, k); |
837 |
} else { |
838 |
Khw += angMom[0]*angMom[0]/I(0, 0) |
839 |
+ angMom[1]*angMom[1]/I(1, 1) |
840 |
+ angMom[2]*angMom[2]/I(2, 2); |
841 |
} |
842 |
} |
843 |
} else { |
844 |
coldBin.push_back(sd); |
845 |
Pcx += mass * vel.x(); |
846 |
Pcy += mass * vel.y(); |
847 |
Pcz += mass * vel.z(); |
848 |
Kcx += mass * vel.x() * vel.x(); |
849 |
Kcy += mass * vel.y() * vel.y(); |
850 |
Kcz += mass * vel.z() * vel.z(); |
851 |
if (sd->isDirectional()) { |
852 |
Vector3d angMom = sd->getJ(); |
853 |
Mat3x3d I = sd->getI(); |
854 |
if (sd->isLinear()) { |
855 |
int i = sd->linearAxis(); |
856 |
int j = (i + 1) % 3; |
857 |
int k = (i + 2) % 3; |
858 |
Kcw += angMom[j] * angMom[j] / I(j, j) + |
859 |
angMom[k] * angMom[k] / I(k, k); |
860 |
} else { |
861 |
Kcw += angMom[0]*angMom[0]/I(0, 0) |
862 |
+ angMom[1]*angMom[1]/I(1, 1) |
863 |
+ angMom[2]*angMom[2]/I(2, 2); |
864 |
} |
865 |
} |
866 |
} |
867 |
} |
868 |
} |
869 |
|
870 |
Khx *= 0.5; |
871 |
Khy *= 0.5; |
872 |
Khz *= 0.5; |
873 |
Khw *= 0.5; |
874 |
Kcx *= 0.5; |
875 |
Kcy *= 0.5; |
876 |
Kcz *= 0.5; |
877 |
Kcw *= 0.5; |
878 |
|
879 |
#ifdef IS_MPI |
880 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM); |
881 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM); |
882 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM); |
883 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM); |
884 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM); |
885 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM); |
886 |
|
887 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM); |
888 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM); |
889 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM); |
890 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM); |
891 |
|
892 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM); |
893 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM); |
894 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM); |
895 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM); |
896 |
#endif |
897 |
|
898 |
//solve coldBin coeff's first |
899 |
RealType px = Pcx / Phx; |
900 |
RealType py = Pcy / Phy; |
901 |
RealType pz = Pcz / Phz; |
902 |
RealType c, x, y, z; |
903 |
bool successfulScale = false; |
904 |
if ((rnemdFluxType_ == rnemdFullKE) || |
905 |
(rnemdFluxType_ == rnemdRotKE)) { |
906 |
//may need sanity check Khw & Kcw > 0 |
907 |
|
908 |
if (rnemdFluxType_ == rnemdFullKE) { |
909 |
c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw); |
910 |
} else { |
911 |
c = 1.0 - kineticTarget_ / Kcw; |
912 |
} |
913 |
|
914 |
if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients |
915 |
c = sqrt(c); |
916 |
//std::cerr << "cold slab scaling coefficient: " << c << endl; |
917 |
//now convert to hotBin coefficient |
918 |
RealType w = 0.0; |
919 |
if (rnemdFluxType_ == rnemdFullKE) { |
920 |
x = 1.0 + px * (1.0 - c); |
921 |
y = 1.0 + py * (1.0 - c); |
922 |
z = 1.0 + pz * (1.0 - c); |
923 |
/* more complicated way |
924 |
w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz |
925 |
+ Khx * px * px + Khy * py * py + Khz * pz * pz) |
926 |
- 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py) |
927 |
+ Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px) |
928 |
+ Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
929 |
- Kcx - Kcy - Kcz)) / Khw; the following is simpler |
930 |
*/ |
931 |
if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) && |
932 |
(fabs(z - 1.0) < 0.1)) { |
933 |
w = 1.0 + (kineticTarget_ |
934 |
+ Khx * (1.0 - x * x) + Khy * (1.0 - y * y) |
935 |
+ Khz * (1.0 - z * z)) / Khw; |
936 |
}//no need to calculate w if x, y or z is out of range |
937 |
} else { |
938 |
w = 1.0 + kineticTarget_ / Khw; |
939 |
} |
940 |
if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients |
941 |
//if w is in the right range, so should be x, y, z. |
942 |
vector<StuntDouble*>::iterator sdi; |
943 |
Vector3d vel; |
944 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
945 |
if (rnemdFluxType_ == rnemdFullKE) { |
946 |
vel = (*sdi)->getVel() * c; |
947 |
(*sdi)->setVel(vel); |
948 |
} |
949 |
if ((*sdi)->isDirectional()) { |
950 |
Vector3d angMom = (*sdi)->getJ() * c; |
951 |
(*sdi)->setJ(angMom); |
952 |
} |
953 |
} |
954 |
w = sqrt(w); |
955 |
// std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z |
956 |
// << "\twh= " << w << endl; |
957 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
958 |
if (rnemdFluxType_ == rnemdFullKE) { |
959 |
vel = (*sdi)->getVel(); |
960 |
vel.x() *= x; |
961 |
vel.y() *= y; |
962 |
vel.z() *= z; |
963 |
(*sdi)->setVel(vel); |
964 |
} |
965 |
if ((*sdi)->isDirectional()) { |
966 |
Vector3d angMom = (*sdi)->getJ() * w; |
967 |
(*sdi)->setJ(angMom); |
968 |
} |
969 |
} |
970 |
successfulScale = true; |
971 |
kineticExchange_ += kineticTarget_; |
972 |
} |
973 |
} |
974 |
} else { |
975 |
RealType a000, a110, c0, a001, a111, b01, b11, c1; |
976 |
switch(rnemdFluxType_) { |
977 |
case rnemdKE : |
978 |
/* used hotBin coeff's & only scale x & y dimensions |
979 |
RealType px = Phx / Pcx; |
980 |
RealType py = Phy / Pcy; |
981 |
a110 = Khy; |
982 |
c0 = - Khx - Khy - kineticTarget_; |
983 |
a000 = Khx; |
984 |
a111 = Kcy * py * py; |
985 |
b11 = -2.0 * Kcy * py * (1.0 + py); |
986 |
c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_; |
987 |
b01 = -2.0 * Kcx * px * (1.0 + px); |
988 |
a001 = Kcx * px * px; |
989 |
*/ |
990 |
//scale all three dimensions, let c_x = c_y |
991 |
a000 = Kcx + Kcy; |
992 |
a110 = Kcz; |
993 |
c0 = kineticTarget_ - Kcx - Kcy - Kcz; |
994 |
a001 = Khx * px * px + Khy * py * py; |
995 |
a111 = Khz * pz * pz; |
996 |
b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)); |
997 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
998 |
c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
999 |
+ Khz * pz * (2.0 + pz) - kineticTarget_; |
1000 |
break; |
1001 |
case rnemdPx : |
1002 |
c = 1 - momentumTarget_.x() / Pcx; |
1003 |
a000 = Kcy; |
1004 |
a110 = Kcz; |
1005 |
c0 = Kcx * c * c - Kcx - Kcy - Kcz; |
1006 |
a001 = py * py * Khy; |
1007 |
a111 = pz * pz * Khz; |
1008 |
b01 = -2.0 * Khy * py * (1.0 + py); |
1009 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
1010 |
c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
1011 |
+ Khx * (fastpow(c * px - px - 1.0, 2) - 1.0); |
1012 |
break; |
1013 |
case rnemdPy : |
1014 |
c = 1 - momentumTarget_.y() / Pcy; |
1015 |
a000 = Kcx; |
1016 |
a110 = Kcz; |
1017 |
c0 = Kcy * c * c - Kcx - Kcy - Kcz; |
1018 |
a001 = px * px * Khx; |
1019 |
a111 = pz * pz * Khz; |
1020 |
b01 = -2.0 * Khx * px * (1.0 + px); |
1021 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
1022 |
c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz) |
1023 |
+ Khy * (fastpow(c * py - py - 1.0, 2) - 1.0); |
1024 |
break; |
1025 |
case rnemdPz ://we don't really do this, do we? |
1026 |
c = 1 - momentumTarget_.z() / Pcz; |
1027 |
a000 = Kcx; |
1028 |
a110 = Kcy; |
1029 |
c0 = Kcz * c * c - Kcx - Kcy - Kcz; |
1030 |
a001 = px * px * Khx; |
1031 |
a111 = py * py * Khy; |
1032 |
b01 = -2.0 * Khx * px * (1.0 + px); |
1033 |
b11 = -2.0 * Khy * py * (1.0 + py); |
1034 |
c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
1035 |
+ Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0); |
1036 |
break; |
1037 |
default : |
1038 |
break; |
1039 |
} |
1040 |
|
1041 |
RealType v1 = a000 * a111 - a001 * a110; |
1042 |
RealType v2 = a000 * b01; |
1043 |
RealType v3 = a000 * b11; |
1044 |
RealType v4 = a000 * c1 - a001 * c0; |
1045 |
RealType v8 = a110 * b01; |
1046 |
RealType v10 = - b01 * c0; |
1047 |
|
1048 |
RealType u0 = v2 * v10 - v4 * v4; |
1049 |
RealType u1 = -2.0 * v3 * v4; |
1050 |
RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4; |
1051 |
RealType u3 = -2.0 * v1 * v3; |
1052 |
RealType u4 = - v1 * v1; |
1053 |
//rescale coefficients |
1054 |
RealType maxAbs = fabs(u0); |
1055 |
if (maxAbs < fabs(u1)) maxAbs = fabs(u1); |
1056 |
if (maxAbs < fabs(u2)) maxAbs = fabs(u2); |
1057 |
if (maxAbs < fabs(u3)) maxAbs = fabs(u3); |
1058 |
if (maxAbs < fabs(u4)) maxAbs = fabs(u4); |
1059 |
u0 /= maxAbs; |
1060 |
u1 /= maxAbs; |
1061 |
u2 /= maxAbs; |
1062 |
u3 /= maxAbs; |
1063 |
u4 /= maxAbs; |
1064 |
//max_element(start, end) is also available. |
1065 |
Polynomial<RealType> poly; //same as DoublePolynomial poly; |
1066 |
poly.setCoefficient(4, u4); |
1067 |
poly.setCoefficient(3, u3); |
1068 |
poly.setCoefficient(2, u2); |
1069 |
poly.setCoefficient(1, u1); |
1070 |
poly.setCoefficient(0, u0); |
1071 |
vector<RealType> realRoots = poly.FindRealRoots(); |
1072 |
|
1073 |
vector<RealType>::iterator ri; |
1074 |
RealType r1, r2, alpha0; |
1075 |
vector<pair<RealType,RealType> > rps; |
1076 |
for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) { |
1077 |
r2 = *ri; |
1078 |
//check if FindRealRoots() give the right answer |
1079 |
if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { |
1080 |
sprintf(painCave.errMsg, |
1081 |
"RNEMD Warning: polynomial solve seems to have an error!"); |
1082 |
painCave.isFatal = 0; |
1083 |
simError(); |
1084 |
failRootCount_++; |
1085 |
} |
1086 |
//might not be useful w/o rescaling coefficients |
1087 |
alpha0 = -c0 - a110 * r2 * r2; |
1088 |
if (alpha0 >= 0.0) { |
1089 |
r1 = sqrt(alpha0 / a000); |
1090 |
if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) |
1091 |
< 1e-6) |
1092 |
{ rps.push_back(make_pair(r1, r2)); } |
1093 |
if (r1 > 1e-6) { //r1 non-negative |
1094 |
r1 = -r1; |
1095 |
if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) |
1096 |
< 1e-6) |
1097 |
{ rps.push_back(make_pair(r1, r2)); } |
1098 |
} |
1099 |
} |
1100 |
} |
1101 |
// Consider combining together the solving pair part w/ the searching |
1102 |
// best solution part so that we don't need the pairs vector |
1103 |
if (!rps.empty()) { |
1104 |
RealType smallestDiff = HONKING_LARGE_VALUE; |
1105 |
RealType diff; |
1106 |
pair<RealType,RealType> bestPair = make_pair(1.0, 1.0); |
1107 |
vector<pair<RealType,RealType> >::iterator rpi; |
1108 |
for (rpi = rps.begin(); rpi != rps.end(); rpi++) { |
1109 |
r1 = (*rpi).first; |
1110 |
r2 = (*rpi).second; |
1111 |
switch(rnemdFluxType_) { |
1112 |
case rnemdKE : |
1113 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1114 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2) |
1115 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1116 |
break; |
1117 |
case rnemdPx : |
1118 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1119 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1120 |
break; |
1121 |
case rnemdPy : |
1122 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1123 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2); |
1124 |
break; |
1125 |
case rnemdPz : |
1126 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1127 |
+ fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2); |
1128 |
default : |
1129 |
break; |
1130 |
} |
1131 |
if (diff < smallestDiff) { |
1132 |
smallestDiff = diff; |
1133 |
bestPair = *rpi; |
1134 |
} |
1135 |
} |
1136 |
#ifdef IS_MPI |
1137 |
if (worldRank == 0) { |
1138 |
#endif |
1139 |
// sprintf(painCave.errMsg, |
1140 |
// "RNEMD: roots r1= %lf\tr2 = %lf\n", |
1141 |
// bestPair.first, bestPair.second); |
1142 |
// painCave.isFatal = 0; |
1143 |
// painCave.severity = OPENMD_INFO; |
1144 |
// simError(); |
1145 |
#ifdef IS_MPI |
1146 |
} |
1147 |
#endif |
1148 |
|
1149 |
switch(rnemdFluxType_) { |
1150 |
case rnemdKE : |
1151 |
x = bestPair.first; |
1152 |
y = bestPair.first; |
1153 |
z = bestPair.second; |
1154 |
break; |
1155 |
case rnemdPx : |
1156 |
x = c; |
1157 |
y = bestPair.first; |
1158 |
z = bestPair.second; |
1159 |
break; |
1160 |
case rnemdPy : |
1161 |
x = bestPair.first; |
1162 |
y = c; |
1163 |
z = bestPair.second; |
1164 |
break; |
1165 |
case rnemdPz : |
1166 |
x = bestPair.first; |
1167 |
y = bestPair.second; |
1168 |
z = c; |
1169 |
break; |
1170 |
default : |
1171 |
break; |
1172 |
} |
1173 |
vector<StuntDouble*>::iterator sdi; |
1174 |
Vector3d vel; |
1175 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1176 |
vel = (*sdi)->getVel(); |
1177 |
vel.x() *= x; |
1178 |
vel.y() *= y; |
1179 |
vel.z() *= z; |
1180 |
(*sdi)->setVel(vel); |
1181 |
} |
1182 |
//convert to hotBin coefficient |
1183 |
x = 1.0 + px * (1.0 - x); |
1184 |
y = 1.0 + py * (1.0 - y); |
1185 |
z = 1.0 + pz * (1.0 - z); |
1186 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1187 |
vel = (*sdi)->getVel(); |
1188 |
vel.x() *= x; |
1189 |
vel.y() *= y; |
1190 |
vel.z() *= z; |
1191 |
(*sdi)->setVel(vel); |
1192 |
} |
1193 |
successfulScale = true; |
1194 |
switch(rnemdFluxType_) { |
1195 |
case rnemdKE : |
1196 |
kineticExchange_ += kineticTarget_; |
1197 |
break; |
1198 |
case rnemdPx : |
1199 |
case rnemdPy : |
1200 |
case rnemdPz : |
1201 |
momentumExchange_ += momentumTarget_; |
1202 |
break; |
1203 |
default : |
1204 |
break; |
1205 |
} |
1206 |
} |
1207 |
} |
1208 |
if (successfulScale != true) { |
1209 |
sprintf(painCave.errMsg, |
1210 |
"RNEMD::doNIVS exchange NOT performed - roots that solve\n" |
1211 |
"\tthe constraint equations may not exist or there may be\n" |
1212 |
"\tno selected objects in one or both slabs.\n"); |
1213 |
painCave.isFatal = 0; |
1214 |
painCave.severity = OPENMD_INFO; |
1215 |
simError(); |
1216 |
failTrialCount_++; |
1217 |
} |
1218 |
} |
1219 |
|
1220 |
void RNEMD::doVSS() { |
1221 |
if (!doRNEMD_) return; |
1222 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1223 |
RealType time = currentSnap_->getTime(); |
1224 |
Mat3x3d hmat = currentSnap_->getHmat(); |
1225 |
|
1226 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1227 |
|
1228 |
int selei; |
1229 |
StuntDouble* sd; |
1230 |
int idx; |
1231 |
|
1232 |
vector<StuntDouble*> hotBin, coldBin; |
1233 |
|
1234 |
Vector3d Ph(V3Zero); |
1235 |
RealType Mh = 0.0; |
1236 |
RealType Kh = 0.0; |
1237 |
Vector3d Pc(V3Zero); |
1238 |
RealType Mc = 0.0; |
1239 |
RealType Kc = 0.0; |
1240 |
|
1241 |
|
1242 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1243 |
sd = seleMan_.nextSelected(selei)) { |
1244 |
|
1245 |
idx = sd->getLocalIndex(); |
1246 |
|
1247 |
Vector3d pos = sd->getPos(); |
1248 |
|
1249 |
// wrap the stuntdouble's position back into the box: |
1250 |
|
1251 |
if (usePeriodicBoundaryConditions_) |
1252 |
currentSnap_->wrapVector(pos); |
1253 |
|
1254 |
// which bin is this stuntdouble in? |
1255 |
bool inA = inSlabA(pos); |
1256 |
bool inB = inSlabB(pos); |
1257 |
|
1258 |
if (inA || inB) { |
1259 |
|
1260 |
RealType mass = sd->getMass(); |
1261 |
Vector3d vel = sd->getVel(); |
1262 |
|
1263 |
if (inA) { |
1264 |
hotBin.push_back(sd); |
1265 |
//std::cerr << "before, velocity = " << vel << endl; |
1266 |
Ph += mass * vel; |
1267 |
//std::cerr << "after, velocity = " << vel << endl; |
1268 |
Mh += mass; |
1269 |
Kh += mass * vel.lengthSquare(); |
1270 |
if (rnemdFluxType_ == rnemdFullKE) { |
1271 |
if (sd->isDirectional()) { |
1272 |
Vector3d angMom = sd->getJ(); |
1273 |
Mat3x3d I = sd->getI(); |
1274 |
if (sd->isLinear()) { |
1275 |
int i = sd->linearAxis(); |
1276 |
int j = (i + 1) % 3; |
1277 |
int k = (i + 2) % 3; |
1278 |
Kh += angMom[j] * angMom[j] / I(j, j) + |
1279 |
angMom[k] * angMom[k] / I(k, k); |
1280 |
} else { |
1281 |
Kh += angMom[0] * angMom[0] / I(0, 0) + |
1282 |
angMom[1] * angMom[1] / I(1, 1) + |
1283 |
angMom[2] * angMom[2] / I(2, 2); |
1284 |
} |
1285 |
} |
1286 |
} |
1287 |
} else { //midBin_ |
1288 |
coldBin.push_back(sd); |
1289 |
Pc += mass * vel; |
1290 |
Mc += mass; |
1291 |
Kc += mass * vel.lengthSquare(); |
1292 |
if (rnemdFluxType_ == rnemdFullKE) { |
1293 |
if (sd->isDirectional()) { |
1294 |
Vector3d angMom = sd->getJ(); |
1295 |
Mat3x3d I = sd->getI(); |
1296 |
if (sd->isLinear()) { |
1297 |
int i = sd->linearAxis(); |
1298 |
int j = (i + 1) % 3; |
1299 |
int k = (i + 2) % 3; |
1300 |
Kc += angMom[j] * angMom[j] / I(j, j) + |
1301 |
angMom[k] * angMom[k] / I(k, k); |
1302 |
} else { |
1303 |
Kc += angMom[0] * angMom[0] / I(0, 0) + |
1304 |
angMom[1] * angMom[1] / I(1, 1) + |
1305 |
angMom[2] * angMom[2] / I(2, 2); |
1306 |
} |
1307 |
} |
1308 |
} |
1309 |
} |
1310 |
} |
1311 |
} |
1312 |
|
1313 |
Kh *= 0.5; |
1314 |
Kc *= 0.5; |
1315 |
|
1316 |
// std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc |
1317 |
// << "\tKc= " << Kc << endl; |
1318 |
// std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl; |
1319 |
|
1320 |
#ifdef IS_MPI |
1321 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM); |
1322 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM); |
1323 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM); |
1324 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM); |
1325 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM); |
1326 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM); |
1327 |
#endif |
1328 |
|
1329 |
bool successfulExchange = false; |
1330 |
if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty |
1331 |
Vector3d vc = Pc / Mc; |
1332 |
Vector3d ac = -momentumTarget_ / Mc + vc; |
1333 |
Vector3d acrec = -momentumTarget_ / Mc; |
1334 |
RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare(); |
1335 |
if (cNumerator > 0.0) { |
1336 |
RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare(); |
1337 |
if (cDenominator > 0.0) { |
1338 |
RealType c = sqrt(cNumerator / cDenominator); |
1339 |
if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients |
1340 |
Vector3d vh = Ph / Mh; |
1341 |
Vector3d ah = momentumTarget_ / Mh + vh; |
1342 |
Vector3d ahrec = momentumTarget_ / Mh; |
1343 |
RealType hNumerator = Kh + kineticTarget_ |
1344 |
- 0.5 * Mh * ah.lengthSquare(); |
1345 |
if (hNumerator > 0.0) { |
1346 |
RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare(); |
1347 |
if (hDenominator > 0.0) { |
1348 |
RealType h = sqrt(hNumerator / hDenominator); |
1349 |
if ((h > 0.9) && (h < 1.1)) { |
1350 |
// std::cerr << "cold slab scaling coefficient: " << c << "\n"; |
1351 |
// std::cerr << "hot slab scaling coefficient: " << h << "\n"; |
1352 |
vector<StuntDouble*>::iterator sdi; |
1353 |
Vector3d vel; |
1354 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1355 |
//vel = (*sdi)->getVel(); |
1356 |
vel = ((*sdi)->getVel() - vc) * c + ac; |
1357 |
(*sdi)->setVel(vel); |
1358 |
if (rnemdFluxType_ == rnemdFullKE) { |
1359 |
if ((*sdi)->isDirectional()) { |
1360 |
Vector3d angMom = (*sdi)->getJ() * c; |
1361 |
(*sdi)->setJ(angMom); |
1362 |
} |
1363 |
} |
1364 |
} |
1365 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1366 |
//vel = (*sdi)->getVel(); |
1367 |
vel = ((*sdi)->getVel() - vh) * h + ah; |
1368 |
(*sdi)->setVel(vel); |
1369 |
if (rnemdFluxType_ == rnemdFullKE) { |
1370 |
if ((*sdi)->isDirectional()) { |
1371 |
Vector3d angMom = (*sdi)->getJ() * h; |
1372 |
(*sdi)->setJ(angMom); |
1373 |
} |
1374 |
} |
1375 |
} |
1376 |
successfulExchange = true; |
1377 |
kineticExchange_ += kineticTarget_; |
1378 |
momentumExchange_ += momentumTarget_; |
1379 |
} |
1380 |
} |
1381 |
} |
1382 |
} |
1383 |
} |
1384 |
} |
1385 |
} |
1386 |
if (successfulExchange != true) { |
1387 |
sprintf(painCave.errMsg, |
1388 |
"RNEMD::doVSS exchange NOT performed - roots that solve\n" |
1389 |
"\tthe constraint equations may not exist or there may be\n" |
1390 |
"\tno selected objects in one or both slabs.\n"); |
1391 |
painCave.isFatal = 0; |
1392 |
painCave.severity = OPENMD_INFO; |
1393 |
simError(); |
1394 |
failTrialCount_++; |
1395 |
} |
1396 |
} |
1397 |
|
1398 |
void RNEMD::doRNEMD() { |
1399 |
if (!doRNEMD_) return; |
1400 |
trialCount_++; |
1401 |
switch(rnemdMethod_) { |
1402 |
case rnemdSwap: |
1403 |
doSwap(); |
1404 |
break; |
1405 |
case rnemdNIVS: |
1406 |
doNIVS(); |
1407 |
break; |
1408 |
case rnemdVSS: |
1409 |
doVSS(); |
1410 |
break; |
1411 |
case rnemdUnkownMethod: |
1412 |
default : |
1413 |
break; |
1414 |
} |
1415 |
} |
1416 |
|
1417 |
void RNEMD::collectData() { |
1418 |
if (!doRNEMD_) return; |
1419 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1420 |
Mat3x3d hmat = currentSnap_->getHmat(); |
1421 |
|
1422 |
areaAccumulator_->add(currentSnap_->getXYarea()); |
1423 |
|
1424 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1425 |
|
1426 |
int selei; |
1427 |
StuntDouble* sd; |
1428 |
int idx; |
1429 |
|
1430 |
vector<RealType> binMass(nBins_, 0.0); |
1431 |
vector<RealType> binPx(nBins_, 0.0); |
1432 |
vector<RealType> binPy(nBins_, 0.0); |
1433 |
vector<RealType> binPz(nBins_, 0.0); |
1434 |
vector<RealType> binKE(nBins_, 0.0); |
1435 |
vector<int> binDOF(nBins_, 0); |
1436 |
vector<int> binCount(nBins_, 0); |
1437 |
|
1438 |
// alternative approach, track all molecules instead of only those |
1439 |
// selected for scaling/swapping: |
1440 |
/* |
1441 |
SimInfo::MoleculeIterator miter; |
1442 |
vector<StuntDouble*>::iterator iiter; |
1443 |
Molecule* mol; |
1444 |
StuntDouble* sd; |
1445 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
1446 |
mol = info_->nextMolecule(miter)) |
1447 |
sd is essentially sd |
1448 |
for (sd = mol->beginIntegrableObject(iiter); |
1449 |
sd != NULL; |
1450 |
sd = mol->nextIntegrableObject(iiter)) |
1451 |
*/ |
1452 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1453 |
sd = seleMan_.nextSelected(selei)) { |
1454 |
|
1455 |
idx = sd->getLocalIndex(); |
1456 |
|
1457 |
Vector3d pos = sd->getPos(); |
1458 |
|
1459 |
// wrap the stuntdouble's position back into the box: |
1460 |
|
1461 |
if (usePeriodicBoundaryConditions_) |
1462 |
currentSnap_->wrapVector(pos); |
1463 |
|
1464 |
|
1465 |
// which bin is this stuntdouble in? |
1466 |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1467 |
// Shift molecules by half a box to have bins start at 0 |
1468 |
// The modulo operator is used to wrap the case when we are |
1469 |
// beyond the end of the bins back to the beginning. |
1470 |
int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
1471 |
|
1472 |
RealType mass = sd->getMass(); |
1473 |
Vector3d vel = sd->getVel(); |
1474 |
|
1475 |
binCount[binNo]++; |
1476 |
binMass[binNo] += mass; |
1477 |
binPx[binNo] += mass*vel.x(); |
1478 |
binPy[binNo] += mass*vel.y(); |
1479 |
binPz[binNo] += mass*vel.z(); |
1480 |
binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); |
1481 |
binDOF[binNo] += 3; |
1482 |
|
1483 |
if (sd->isDirectional()) { |
1484 |
Vector3d angMom = sd->getJ(); |
1485 |
Mat3x3d I = sd->getI(); |
1486 |
if (sd->isLinear()) { |
1487 |
int i = sd->linearAxis(); |
1488 |
int j = (i + 1) % 3; |
1489 |
int k = (i + 2) % 3; |
1490 |
binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
1491 |
angMom[k] * angMom[k] / I(k, k)); |
1492 |
binDOF[binNo] += 2; |
1493 |
} else { |
1494 |
binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
1495 |
angMom[1] * angMom[1] / I(1, 1) + |
1496 |
angMom[2] * angMom[2] / I(2, 2)); |
1497 |
binDOF[binNo] += 3; |
1498 |
} |
1499 |
} |
1500 |
} |
1501 |
|
1502 |
|
1503 |
#ifdef IS_MPI |
1504 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0], |
1505 |
nBins_, MPI::INT, MPI::SUM); |
1506 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0], |
1507 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1508 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0], |
1509 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1510 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0], |
1511 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1512 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0], |
1513 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1514 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0], |
1515 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1516 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0], |
1517 |
nBins_, MPI::INT, MPI::SUM); |
1518 |
#endif |
1519 |
|
1520 |
Vector3d vel; |
1521 |
RealType den; |
1522 |
RealType temp; |
1523 |
RealType z; |
1524 |
for (int i = 0; i < nBins_; i++) { |
1525 |
z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); |
1526 |
vel.x() = binPx[i] / binMass[i]; |
1527 |
vel.y() = binPy[i] / binMass[i]; |
1528 |
vel.z() = binPz[i] / binMass[i]; |
1529 |
|
1530 |
den = binMass[i] * nBins_ * PhysicalConstants::densityConvert |
1531 |
/ currentSnap_->getVolume() ; |
1532 |
|
1533 |
temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * |
1534 |
PhysicalConstants::energyConvert); |
1535 |
|
1536 |
for (unsigned int j = 0; j < outputMask_.size(); ++j) { |
1537 |
if(outputMask_[j]) { |
1538 |
switch(j) { |
1539 |
case Z: |
1540 |
(data_[j].accumulator[i])->add(z); |
1541 |
break; |
1542 |
case TEMPERATURE: |
1543 |
data_[j].accumulator[i]->add(temp); |
1544 |
break; |
1545 |
case VELOCITY: |
1546 |
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); |
1547 |
break; |
1548 |
case DENSITY: |
1549 |
data_[j].accumulator[i]->add(den); |
1550 |
break; |
1551 |
} |
1552 |
} |
1553 |
} |
1554 |
} |
1555 |
} |
1556 |
|
1557 |
void RNEMD::getStarted() { |
1558 |
if (!doRNEMD_) return; |
1559 |
collectData(); |
1560 |
writeOutputFile(); |
1561 |
} |
1562 |
|
1563 |
void RNEMD::parseOutputFileFormat(const std::string& format) { |
1564 |
if (!doRNEMD_) return; |
1565 |
StringTokenizer tokenizer(format, " ,;|\t\n\r"); |
1566 |
|
1567 |
while(tokenizer.hasMoreTokens()) { |
1568 |
std::string token(tokenizer.nextToken()); |
1569 |
toUpper(token); |
1570 |
OutputMapType::iterator i = outputMap_.find(token); |
1571 |
if (i != outputMap_.end()) { |
1572 |
outputMask_.set(i->second); |
1573 |
} else { |
1574 |
sprintf( painCave.errMsg, |
1575 |
"RNEMD::parseOutputFileFormat: %s is not a recognized\n" |
1576 |
"\toutputFileFormat keyword.\n", token.c_str() ); |
1577 |
painCave.isFatal = 0; |
1578 |
painCave.severity = OPENMD_ERROR; |
1579 |
simError(); |
1580 |
} |
1581 |
} |
1582 |
} |
1583 |
|
1584 |
void RNEMD::writeOutputFile() { |
1585 |
if (!doRNEMD_) return; |
1586 |
|
1587 |
#ifdef IS_MPI |
1588 |
// If we're the root node, should we print out the results |
1589 |
int worldRank = MPI::COMM_WORLD.Get_rank(); |
1590 |
if (worldRank == 0) { |
1591 |
#endif |
1592 |
rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc ); |
1593 |
|
1594 |
if( !rnemdFile_ ){ |
1595 |
sprintf( painCave.errMsg, |
1596 |
"Could not open \"%s\" for RNEMD output.\n", |
1597 |
rnemdFileName_.c_str()); |
1598 |
painCave.isFatal = 1; |
1599 |
simError(); |
1600 |
} |
1601 |
|
1602 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1603 |
|
1604 |
RealType time = currentSnap_->getTime(); |
1605 |
RealType avgArea; |
1606 |
areaAccumulator_->getAverage(avgArea); |
1607 |
RealType Jz = kineticExchange_ / (2.0 * time * avgArea) |
1608 |
/ PhysicalConstants::energyConvert; |
1609 |
Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea); |
1610 |
|
1611 |
rnemdFile_ << "#######################################################\n"; |
1612 |
rnemdFile_ << "# RNEMD {\n"; |
1613 |
|
1614 |
map<string, RNEMDMethod>::iterator mi; |
1615 |
for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) { |
1616 |
if ( (*mi).second == rnemdMethod_) |
1617 |
rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n"; |
1618 |
} |
1619 |
map<string, RNEMDFluxType>::iterator fi; |
1620 |
for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) { |
1621 |
if ( (*fi).second == rnemdFluxType_) |
1622 |
rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n"; |
1623 |
} |
1624 |
|
1625 |
rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n"; |
1626 |
|
1627 |
rnemdFile_ << "# objectSelection = \"" |
1628 |
<< rnemdObjectSelection_ << "\";\n"; |
1629 |
rnemdFile_ << "# slabWidth = " << slabWidth_ << ";\n"; |
1630 |
rnemdFile_ << "# slabAcenter = " << slabACenter_ << ";\n"; |
1631 |
rnemdFile_ << "# slabBcenter = " << slabBCenter_ << ";\n"; |
1632 |
rnemdFile_ << "# }\n"; |
1633 |
rnemdFile_ << "#######################################################\n"; |
1634 |
rnemdFile_ << "# RNEMD report:\n"; |
1635 |
rnemdFile_ << "# running time = " << time << " fs\n"; |
1636 |
rnemdFile_ << "# target flux:\n"; |
1637 |
rnemdFile_ << "# kinetic = " |
1638 |
<< kineticFlux_ / PhysicalConstants::energyConvert |
1639 |
<< " (kcal/mol/A^2/fs)\n"; |
1640 |
rnemdFile_ << "# momentum = " << momentumFluxVector_ |
1641 |
<< " (amu/A/fs^2)\n"; |
1642 |
rnemdFile_ << "# target one-time exchanges:\n"; |
1643 |
rnemdFile_ << "# kinetic = " |
1644 |
<< kineticTarget_ / PhysicalConstants::energyConvert |
1645 |
<< " (kcal/mol)\n"; |
1646 |
rnemdFile_ << "# momentum = " << momentumTarget_ |
1647 |
<< " (amu*A/fs)\n"; |
1648 |
rnemdFile_ << "# actual exchange totals:\n"; |
1649 |
rnemdFile_ << "# kinetic = " |
1650 |
<< kineticExchange_ / PhysicalConstants::energyConvert |
1651 |
<< " (kcal/mol)\n"; |
1652 |
rnemdFile_ << "# momentum = " << momentumExchange_ |
1653 |
<< " (amu*A/fs)\n"; |
1654 |
rnemdFile_ << "# actual flux:\n"; |
1655 |
rnemdFile_ << "# kinetic = " << Jz |
1656 |
<< " (kcal/mol/A^2/fs)\n"; |
1657 |
rnemdFile_ << "# momentum = " << JzP |
1658 |
<< " (amu/A/fs^2)\n"; |
1659 |
rnemdFile_ << "# exchange statistics:\n"; |
1660 |
rnemdFile_ << "# attempted = " << trialCount_ << "\n"; |
1661 |
rnemdFile_ << "# failed = " << failTrialCount_ << "\n"; |
1662 |
if (rnemdMethod_ == rnemdNIVS) { |
1663 |
rnemdFile_ << "# NIVS root-check errors = " |
1664 |
<< failRootCount_ << "\n"; |
1665 |
} |
1666 |
rnemdFile_ << "#######################################################\n"; |
1667 |
|
1668 |
|
1669 |
|
1670 |
//write title |
1671 |
rnemdFile_ << "#"; |
1672 |
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
1673 |
if (outputMask_[i]) { |
1674 |
rnemdFile_ << "\t" << data_[i].title << |
1675 |
"(" << data_[i].units << ")"; |
1676 |
// add some extra tabs for column alignment |
1677 |
if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t"; |
1678 |
} |
1679 |
} |
1680 |
rnemdFile_ << std::endl; |
1681 |
|
1682 |
rnemdFile_.precision(8); |
1683 |
|
1684 |
for (unsigned int j = 0; j < nBins_; j++) { |
1685 |
|
1686 |
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
1687 |
if (outputMask_[i]) { |
1688 |
if (data_[i].dataType == "RealType") |
1689 |
writeReal(i,j); |
1690 |
else if (data_[i].dataType == "Vector3d") |
1691 |
writeVector(i,j); |
1692 |
else { |
1693 |
sprintf( painCave.errMsg, |
1694 |
"RNEMD found an unknown data type for: %s ", |
1695 |
data_[i].title.c_str()); |
1696 |
painCave.isFatal = 1; |
1697 |
simError(); |
1698 |
} |
1699 |
} |
1700 |
} |
1701 |
rnemdFile_ << std::endl; |
1702 |
|
1703 |
} |
1704 |
|
1705 |
rnemdFile_ << "#######################################################\n"; |
1706 |
rnemdFile_ << "# Standard Deviations in those quantities follow:\n"; |
1707 |
rnemdFile_ << "#######################################################\n"; |
1708 |
|
1709 |
|
1710 |
for (unsigned int j = 0; j < nBins_; j++) { |
1711 |
rnemdFile_ << "#"; |
1712 |
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
1713 |
if (outputMask_[i]) { |
1714 |
if (data_[i].dataType == "RealType") |
1715 |
writeRealStdDev(i,j); |
1716 |
else if (data_[i].dataType == "Vector3d") |
1717 |
writeVectorStdDev(i,j); |
1718 |
else { |
1719 |
sprintf( painCave.errMsg, |
1720 |
"RNEMD found an unknown data type for: %s ", |
1721 |
data_[i].title.c_str()); |
1722 |
painCave.isFatal = 1; |
1723 |
simError(); |
1724 |
} |
1725 |
} |
1726 |
} |
1727 |
rnemdFile_ << std::endl; |
1728 |
|
1729 |
} |
1730 |
|
1731 |
rnemdFile_.flush(); |
1732 |
rnemdFile_.close(); |
1733 |
|
1734 |
#ifdef IS_MPI |
1735 |
} |
1736 |
#endif |
1737 |
|
1738 |
} |
1739 |
|
1740 |
void RNEMD::writeReal(int index, unsigned int bin) { |
1741 |
if (!doRNEMD_) return; |
1742 |
assert(index >=0 && index < ENDINDEX); |
1743 |
assert(bin < nBins_); |
1744 |
RealType s; |
1745 |
|
1746 |
data_[index].accumulator[bin]->getAverage(s); |
1747 |
|
1748 |
if (! isinf(s) && ! isnan(s)) { |
1749 |
rnemdFile_ << "\t" << s; |
1750 |
} else{ |
1751 |
sprintf( painCave.errMsg, |
1752 |
"RNEMD detected a numerical error writing: %s for bin %d", |
1753 |
data_[index].title.c_str(), bin); |
1754 |
painCave.isFatal = 1; |
1755 |
simError(); |
1756 |
} |
1757 |
} |
1758 |
|
1759 |
void RNEMD::writeVector(int index, unsigned int bin) { |
1760 |
if (!doRNEMD_) return; |
1761 |
assert(index >=0 && index < ENDINDEX); |
1762 |
assert(bin < nBins_); |
1763 |
Vector3d s; |
1764 |
dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s); |
1765 |
if (isinf(s[0]) || isnan(s[0]) || |
1766 |
isinf(s[1]) || isnan(s[1]) || |
1767 |
isinf(s[2]) || isnan(s[2]) ) { |
1768 |
sprintf( painCave.errMsg, |
1769 |
"RNEMD detected a numerical error writing: %s for bin %d", |
1770 |
data_[index].title.c_str(), bin); |
1771 |
painCave.isFatal = 1; |
1772 |
simError(); |
1773 |
} else { |
1774 |
rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; |
1775 |
} |
1776 |
} |
1777 |
|
1778 |
void RNEMD::writeRealStdDev(int index, unsigned int bin) { |
1779 |
if (!doRNEMD_) return; |
1780 |
assert(index >=0 && index < ENDINDEX); |
1781 |
assert(bin < nBins_); |
1782 |
RealType s; |
1783 |
|
1784 |
data_[index].accumulator[bin]->getStdDev(s); |
1785 |
|
1786 |
if (! isinf(s) && ! isnan(s)) { |
1787 |
rnemdFile_ << "\t" << s; |
1788 |
} else{ |
1789 |
sprintf( painCave.errMsg, |
1790 |
"RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
1791 |
data_[index].title.c_str(), bin); |
1792 |
painCave.isFatal = 1; |
1793 |
simError(); |
1794 |
} |
1795 |
} |
1796 |
|
1797 |
void RNEMD::writeVectorStdDev(int index, unsigned int bin) { |
1798 |
if (!doRNEMD_) return; |
1799 |
assert(index >=0 && index < ENDINDEX); |
1800 |
assert(bin < nBins_); |
1801 |
Vector3d s; |
1802 |
dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s); |
1803 |
if (isinf(s[0]) || isnan(s[0]) || |
1804 |
isinf(s[1]) || isnan(s[1]) || |
1805 |
isinf(s[2]) || isnan(s[2]) ) { |
1806 |
sprintf( painCave.errMsg, |
1807 |
"RNEMD detected a numerical error writing: %s std. dev. for bin %d", |
1808 |
data_[index].title.c_str(), bin); |
1809 |
painCave.isFatal = 1; |
1810 |
simError(); |
1811 |
} else { |
1812 |
rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; |
1813 |
} |
1814 |
} |
1815 |
} |
1816 |
|