1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <cmath> |
43 |
#include "rnemd/RNEMD.hpp" |
44 |
#include "math/Vector3.hpp" |
45 |
#include "math/Vector.hpp" |
46 |
#include "math/SquareMatrix3.hpp" |
47 |
#include "math/Polynomial.hpp" |
48 |
#include "primitives/Molecule.hpp" |
49 |
#include "primitives/StuntDouble.hpp" |
50 |
#include "utils/PhysicalConstants.hpp" |
51 |
#include "utils/Tuple.hpp" |
52 |
#ifdef IS_MPI |
53 |
#include <mpi.h> |
54 |
#endif |
55 |
|
56 |
#define HONKING_LARGE_VALUE 1.0e10 |
57 |
|
58 |
using namespace std; |
59 |
namespace OpenMD { |
60 |
|
61 |
RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), |
62 |
usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { |
63 |
|
64 |
trialCount_ = 0; |
65 |
failTrialCount_ = 0; |
66 |
failRootCount_ = 0; |
67 |
|
68 |
int seedValue; |
69 |
Globals * simParams = info->getSimParams(); |
70 |
RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); |
71 |
|
72 |
stringToMethod_["Swap"] = rnemdSwap; |
73 |
stringToMethod_["NIVS"] = rnemdNIVS; |
74 |
stringToMethod_["VSS"] = rnemdVSS; |
75 |
|
76 |
stringToFluxType_["KE"] = rnemdKE; |
77 |
stringToFluxType_["Px"] = rnemdPx; |
78 |
stringToFluxType_["Py"] = rnemdPy; |
79 |
stringToFluxType_["Pz"] = rnemdPz; |
80 |
stringToFluxType_["KE+Px"] = rnemdKePx; |
81 |
stringToFluxType_["KE+Py"] = rnemdKePy; |
82 |
stringToFluxType_["KE+Pvector"] = rnemdKePvector; |
83 |
|
84 |
runTime_ = simParams->getRunTime(); |
85 |
statusTime_ = simParams->getStatusTime(); |
86 |
|
87 |
rnemdObjectSelection_ = rnemdParams->getObjectSelection(); |
88 |
evaluator_.loadScriptString(rnemdObjectSelection_); |
89 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
90 |
|
91 |
const string methStr = rnemdParams->getMethod(); |
92 |
bool hasFluxType = rnemdParams->haveFluxType(); |
93 |
|
94 |
string fluxStr; |
95 |
if (hasFluxType) { |
96 |
fluxStr = rnemdParams->getFluxType(); |
97 |
} else { |
98 |
sprintf(painCave.errMsg, |
99 |
"RNEMD: No fluxType was set in the md file. This parameter,\n" |
100 |
"\twhich must be one of the following values:\n" |
101 |
"\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n" |
102 |
"\tuse RNEMD\n"); |
103 |
painCave.isFatal = 1; |
104 |
painCave.severity = OPENMD_ERROR; |
105 |
simError(); |
106 |
} |
107 |
|
108 |
bool hasKineticFlux = rnemdParams->haveKineticFlux(); |
109 |
bool hasMomentumFlux = rnemdParams->haveMomentumFlux(); |
110 |
bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector(); |
111 |
bool hasSlabWidth = rnemdParams->haveSlabWidth(); |
112 |
bool hasSlabACenter = rnemdParams->haveSlabACenter(); |
113 |
bool hasSlabBCenter = rnemdParams->haveSlabBCenter(); |
114 |
bool hasOutputFileName = rnemdParams->haveOutputFileName(); |
115 |
bool hasOutputFields = rnemdParams->haveOutputFields(); |
116 |
|
117 |
map<string, RNEMDMethod>::iterator i; |
118 |
i = stringToMethod_.find(methStr); |
119 |
if (i != stringToMethod_.end()) |
120 |
rnemdMethod_ = i->second; |
121 |
else { |
122 |
sprintf(painCave.errMsg, |
123 |
"RNEMD: The current method,\n" |
124 |
"\t\t%s is not one of the recognized\n" |
125 |
"\texchange methods: Swap, NIVS, or VSS\n", |
126 |
methStr.c_str()); |
127 |
painCave.isFatal = 1; |
128 |
painCave.severity = OPENMD_ERROR; |
129 |
simError(); |
130 |
} |
131 |
|
132 |
map<string, RNEMDFluxType>::iterator j; |
133 |
j = stringToFluxType_.find(fluxStr); |
134 |
if (j != stringToFluxType_.end()) |
135 |
rnemdFluxType_ = j->second; |
136 |
else { |
137 |
sprintf(painCave.errMsg, |
138 |
"RNEMD: The current fluxType,\n" |
139 |
"\t\t%s\n" |
140 |
"\tis not one of the recognized flux types.\n", |
141 |
fluxStr.c_str()); |
142 |
painCave.isFatal = 1; |
143 |
painCave.severity = OPENMD_ERROR; |
144 |
simError(); |
145 |
} |
146 |
|
147 |
bool methodFluxMismatch = false; |
148 |
bool hasCorrectFlux = false; |
149 |
switch(rnemdMethod_) { |
150 |
case rnemdSwap: |
151 |
switch (rnemdFluxType_) { |
152 |
case rnemdKE: |
153 |
hasCorrectFlux = hasKineticFlux; |
154 |
break; |
155 |
case rnemdPx: |
156 |
case rnemdPy: |
157 |
case rnemdPz: |
158 |
hasCorrectFlux = hasMomentumFlux; |
159 |
break; |
160 |
default : |
161 |
methodFluxMismatch = true; |
162 |
break; |
163 |
} |
164 |
break; |
165 |
case rnemdNIVS: |
166 |
switch (rnemdFluxType_) { |
167 |
case rnemdKE: |
168 |
case rnemdRotKE: |
169 |
case rnemdFullKE: |
170 |
hasCorrectFlux = hasKineticFlux; |
171 |
break; |
172 |
case rnemdPx: |
173 |
case rnemdPy: |
174 |
case rnemdPz: |
175 |
hasCorrectFlux = hasMomentumFlux; |
176 |
break; |
177 |
case rnemdKePx: |
178 |
case rnemdKePy: |
179 |
hasCorrectFlux = hasMomentumFlux && hasKineticFlux; |
180 |
break; |
181 |
default: |
182 |
methodFluxMismatch = true; |
183 |
break; |
184 |
} |
185 |
break; |
186 |
case rnemdVSS: |
187 |
switch (rnemdFluxType_) { |
188 |
case rnemdKE: |
189 |
case rnemdRotKE: |
190 |
case rnemdFullKE: |
191 |
hasCorrectFlux = hasKineticFlux; |
192 |
break; |
193 |
case rnemdPx: |
194 |
case rnemdPy: |
195 |
case rnemdPz: |
196 |
hasCorrectFlux = hasMomentumFlux; |
197 |
break; |
198 |
case rnemdPvector: |
199 |
hasCorrectFlux = hasMomentumFluxVector; |
200 |
case rnemdKePx: |
201 |
case rnemdKePy: |
202 |
hasCorrectFlux = hasMomentumFlux && hasKineticFlux; |
203 |
break; |
204 |
case rnemdKePvector: |
205 |
hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux; |
206 |
break; |
207 |
default: |
208 |
methodFluxMismatch = true; |
209 |
break; |
210 |
} |
211 |
default: |
212 |
break; |
213 |
} |
214 |
|
215 |
if (methodFluxMismatch) { |
216 |
sprintf(painCave.errMsg, |
217 |
"RNEMD: The current method,\n" |
218 |
"\t\t%s\n" |
219 |
"\tcannot be used with the current flux type, %s\n", |
220 |
methStr.c_str(), fluxStr.c_str()); |
221 |
painCave.isFatal = 1; |
222 |
painCave.severity = OPENMD_ERROR; |
223 |
simError(); |
224 |
} |
225 |
if (!hasCorrectFlux) { |
226 |
sprintf(painCave.errMsg, |
227 |
"RNEMD: The current method,\n" |
228 |
"\t%s, and flux type %s\n" |
229 |
"\tdid not have the correct flux value specified. Options\n" |
230 |
"\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n", |
231 |
methStr.c_str(), fluxStr.c_str()); |
232 |
painCave.isFatal = 1; |
233 |
painCave.severity = OPENMD_ERROR; |
234 |
simError(); |
235 |
} |
236 |
|
237 |
if (hasKineticFlux) { |
238 |
kineticFlux_ = rnemdParams->getKineticFlux(); |
239 |
} else { |
240 |
kineticFlux_ = 0.0; |
241 |
} |
242 |
if (hasMomentumFluxVector) { |
243 |
momentumFluxVector_ = rnemdParams->getMomentumFluxVector(); |
244 |
} else { |
245 |
momentumFluxVector_ = V3Zero; |
246 |
if (hasMomentumFlux) { |
247 |
RealType momentumFlux = rnemdParams->getMomentumFlux(); |
248 |
switch (rnemdFluxType_) { |
249 |
case rnemdPx: |
250 |
momentumFluxVector_.x() = momentumFlux; |
251 |
break; |
252 |
case rnemdPy: |
253 |
momentumFluxVector_.y() = momentumFlux; |
254 |
break; |
255 |
case rnemdPz: |
256 |
momentumFluxVector_.z() = momentumFlux; |
257 |
break; |
258 |
case rnemdKePx: |
259 |
momentumFluxVector_.x() = momentumFlux; |
260 |
break; |
261 |
case rnemdKePy: |
262 |
momentumFluxVector_.y() = momentumFlux; |
263 |
break; |
264 |
default: |
265 |
break; |
266 |
} |
267 |
} |
268 |
} |
269 |
|
270 |
// do some sanity checking |
271 |
|
272 |
int selectionCount = seleMan_.getSelectionCount(); |
273 |
int nIntegrable = info->getNGlobalIntegrableObjects(); |
274 |
|
275 |
if (selectionCount > nIntegrable) { |
276 |
sprintf(painCave.errMsg, |
277 |
"RNEMD: The current objectSelection,\n" |
278 |
"\t\t%s\n" |
279 |
"\thas resulted in %d selected objects. However,\n" |
280 |
"\tthe total number of integrable objects in the system\n" |
281 |
"\tis only %d. This is almost certainly not what you want\n" |
282 |
"\tto do. A likely cause of this is forgetting the _RB_0\n" |
283 |
"\tselector in the selection script!\n", |
284 |
rnemdObjectSelection_.c_str(), |
285 |
selectionCount, nIntegrable); |
286 |
painCave.isFatal = 0; |
287 |
painCave.severity = OPENMD_WARNING; |
288 |
simError(); |
289 |
} |
290 |
|
291 |
nBins_ = rnemdParams->getOutputBins(); |
292 |
|
293 |
data_.resize(RNEMD::ENDINDEX); |
294 |
OutputData z; |
295 |
z.units = "Angstroms"; |
296 |
z.title = "Z"; |
297 |
z.dataType = "RealType"; |
298 |
z.accumulator.reserve(nBins_); |
299 |
for (unsigned int i = 0; i < nBins_; i++) |
300 |
z.accumulator.push_back( new Accumulator() ); |
301 |
data_[Z] = z; |
302 |
outputMap_["Z"] = Z; |
303 |
|
304 |
OutputData temperature; |
305 |
temperature.units = "K"; |
306 |
temperature.title = "Temperature"; |
307 |
temperature.dataType = "RealType"; |
308 |
temperature.accumulator.reserve(nBins_); |
309 |
for (unsigned int i = 0; i < nBins_; i++) |
310 |
temperature.accumulator.push_back( new Accumulator() ); |
311 |
data_[TEMPERATURE] = temperature; |
312 |
outputMap_["TEMPERATURE"] = TEMPERATURE; |
313 |
|
314 |
OutputData velocity; |
315 |
velocity.units = "amu/fs"; |
316 |
velocity.title = "Velocity"; |
317 |
velocity.dataType = "Vector3d"; |
318 |
velocity.accumulator.reserve(nBins_); |
319 |
for (unsigned int i = 0; i < nBins_; i++) |
320 |
velocity.accumulator.push_back( new VectorAccumulator() ); |
321 |
data_[VELOCITY] = velocity; |
322 |
outputMap_["VELOCITY"] = VELOCITY; |
323 |
|
324 |
OutputData density; |
325 |
density.units = "g cm^-3"; |
326 |
density.title = "Density"; |
327 |
density.dataType = "RealType"; |
328 |
density.accumulator.reserve(nBins_); |
329 |
for (unsigned int i = 0; i < nBins_; i++) |
330 |
density.accumulator.push_back( new Accumulator() ); |
331 |
data_[DENSITY] = density; |
332 |
outputMap_["DENSITY"] = DENSITY; |
333 |
|
334 |
if (hasOutputFields) { |
335 |
parseOutputFileFormat(rnemdParams->getOutputFields()); |
336 |
} else { |
337 |
outputMask_.set(Z); |
338 |
switch (rnemdFluxType_) { |
339 |
case rnemdKE: |
340 |
case rnemdRotKE: |
341 |
case rnemdFullKE: |
342 |
outputMask_.set(TEMPERATURE); |
343 |
break; |
344 |
case rnemdPx: |
345 |
case rnemdPy: |
346 |
outputMask_.set(VELOCITY); |
347 |
break; |
348 |
case rnemdPz: |
349 |
case rnemdPvector: |
350 |
outputMask_.set(VELOCITY); |
351 |
outputMask_.set(DENSITY); |
352 |
break; |
353 |
case rnemdKePx: |
354 |
case rnemdKePy: |
355 |
outputMask_.set(TEMPERATURE); |
356 |
outputMask_.set(VELOCITY); |
357 |
break; |
358 |
case rnemdKePvector: |
359 |
outputMask_.set(TEMPERATURE); |
360 |
outputMask_.set(VELOCITY); |
361 |
outputMask_.set(DENSITY); |
362 |
break; |
363 |
default: |
364 |
break; |
365 |
} |
366 |
} |
367 |
|
368 |
if (hasOutputFileName) { |
369 |
rnemdFileName_ = rnemdParams->getOutputFileName(); |
370 |
} else { |
371 |
rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; |
372 |
} |
373 |
|
374 |
exchangeTime_ = rnemdParams->getExchangeTime(); |
375 |
|
376 |
Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); |
377 |
Mat3x3d hmat = currentSnap_->getHmat(); |
378 |
|
379 |
// Target exchange quantities (in each exchange) = 2 Lx Ly dt flux |
380 |
// Lx, Ly = box dimensions in x & y |
381 |
// dt = exchange time interval |
382 |
// flux = target flux |
383 |
|
384 |
kineticTarget_ = 2.0*kineticFlux_*exchangeTime_*hmat(0,0)*hmat(1,1); |
385 |
momentumTarget_ = 2.0*momentumFluxVector_*exchangeTime_*hmat(0,0)*hmat(1,1); |
386 |
|
387 |
// total exchange sums are zeroed out at the beginning: |
388 |
|
389 |
kineticExchange_ = 0.0; |
390 |
momentumExchange_ = V3Zero; |
391 |
|
392 |
if (hasSlabWidth) |
393 |
slabWidth_ = rnemdParams->getSlabWidth(); |
394 |
else |
395 |
slabWidth_ = hmat(2,2) / 10.0; |
396 |
|
397 |
if (hasSlabACenter) |
398 |
slabACenter_ = rnemdParams->getSlabACenter(); |
399 |
else |
400 |
slabACenter_ = 0.0; |
401 |
|
402 |
if (hasSlabBCenter) |
403 |
slabBCenter_ = rnemdParams->getSlabBCenter(); |
404 |
else |
405 |
slabBCenter_ = hmat(2,2) / 2.0; |
406 |
|
407 |
} |
408 |
|
409 |
RNEMD::~RNEMD() { |
410 |
|
411 |
#ifdef IS_MPI |
412 |
if (worldRank == 0) { |
413 |
#endif |
414 |
|
415 |
writeOutputFile(); |
416 |
|
417 |
rnemdFile_.close(); |
418 |
|
419 |
#ifdef IS_MPI |
420 |
} |
421 |
#endif |
422 |
} |
423 |
|
424 |
bool RNEMD::inSlabA(Vector3d pos) { |
425 |
return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_); |
426 |
} |
427 |
bool RNEMD::inSlabB(Vector3d pos) { |
428 |
return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_); |
429 |
} |
430 |
|
431 |
void RNEMD::doSwap() { |
432 |
|
433 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
434 |
Mat3x3d hmat = currentSnap_->getHmat(); |
435 |
|
436 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
437 |
|
438 |
int selei; |
439 |
StuntDouble* sd; |
440 |
int idx; |
441 |
|
442 |
RealType min_val; |
443 |
bool min_found = false; |
444 |
StuntDouble* min_sd; |
445 |
|
446 |
RealType max_val; |
447 |
bool max_found = false; |
448 |
StuntDouble* max_sd; |
449 |
|
450 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
451 |
sd = seleMan_.nextSelected(selei)) { |
452 |
|
453 |
idx = sd->getLocalIndex(); |
454 |
|
455 |
Vector3d pos = sd->getPos(); |
456 |
|
457 |
// wrap the stuntdouble's position back into the box: |
458 |
|
459 |
if (usePeriodicBoundaryConditions_) |
460 |
currentSnap_->wrapVector(pos); |
461 |
bool inA = inSlabA(pos); |
462 |
bool inB = inSlabB(pos); |
463 |
|
464 |
if (inA || inB) { |
465 |
|
466 |
RealType mass = sd->getMass(); |
467 |
Vector3d vel = sd->getVel(); |
468 |
RealType value; |
469 |
|
470 |
switch(rnemdFluxType_) { |
471 |
case rnemdKE : |
472 |
|
473 |
value = mass * vel.lengthSquare(); |
474 |
|
475 |
if (sd->isDirectional()) { |
476 |
Vector3d angMom = sd->getJ(); |
477 |
Mat3x3d I = sd->getI(); |
478 |
|
479 |
if (sd->isLinear()) { |
480 |
int i = sd->linearAxis(); |
481 |
int j = (i + 1) % 3; |
482 |
int k = (i + 2) % 3; |
483 |
value += angMom[j] * angMom[j] / I(j, j) + |
484 |
angMom[k] * angMom[k] / I(k, k); |
485 |
} else { |
486 |
value += angMom[0]*angMom[0]/I(0, 0) |
487 |
+ angMom[1]*angMom[1]/I(1, 1) |
488 |
+ angMom[2]*angMom[2]/I(2, 2); |
489 |
} |
490 |
} //angular momenta exchange enabled |
491 |
//energyConvert temporarily disabled |
492 |
//make kineticExchange_ comparable between swap & scale |
493 |
//value = value * 0.5 / PhysicalConstants::energyConvert; |
494 |
value *= 0.5; |
495 |
break; |
496 |
case rnemdPx : |
497 |
value = mass * vel[0]; |
498 |
break; |
499 |
case rnemdPy : |
500 |
value = mass * vel[1]; |
501 |
break; |
502 |
case rnemdPz : |
503 |
value = mass * vel[2]; |
504 |
break; |
505 |
default : |
506 |
break; |
507 |
} |
508 |
|
509 |
if (inA == 0) { |
510 |
if (!min_found) { |
511 |
min_val = value; |
512 |
min_sd = sd; |
513 |
min_found = true; |
514 |
} else { |
515 |
if (min_val > value) { |
516 |
min_val = value; |
517 |
min_sd = sd; |
518 |
} |
519 |
} |
520 |
} else { |
521 |
if (!max_found) { |
522 |
max_val = value; |
523 |
max_sd = sd; |
524 |
max_found = true; |
525 |
} else { |
526 |
if (max_val < value) { |
527 |
max_val = value; |
528 |
max_sd = sd; |
529 |
} |
530 |
} |
531 |
} |
532 |
} |
533 |
} |
534 |
|
535 |
#ifdef IS_MPI |
536 |
int nProc, worldRank; |
537 |
|
538 |
nProc = MPI::COMM_WORLD.Get_size(); |
539 |
worldRank = MPI::COMM_WORLD.Get_rank(); |
540 |
|
541 |
bool my_min_found = min_found; |
542 |
bool my_max_found = max_found; |
543 |
|
544 |
// Even if we didn't find a minimum, did someone else? |
545 |
MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR); |
546 |
// Even if we didn't find a maximum, did someone else? |
547 |
MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR); |
548 |
#endif |
549 |
|
550 |
if (max_found && min_found) { |
551 |
|
552 |
#ifdef IS_MPI |
553 |
struct { |
554 |
RealType val; |
555 |
int rank; |
556 |
} max_vals, min_vals; |
557 |
|
558 |
if (my_min_found) { |
559 |
min_vals.val = min_val; |
560 |
} else { |
561 |
min_vals.val = HONKING_LARGE_VALUE; |
562 |
} |
563 |
min_vals.rank = worldRank; |
564 |
|
565 |
// Who had the minimum? |
566 |
MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals, |
567 |
1, MPI::REALTYPE_INT, MPI::MINLOC); |
568 |
min_val = min_vals.val; |
569 |
|
570 |
if (my_max_found) { |
571 |
max_vals.val = max_val; |
572 |
} else { |
573 |
max_vals.val = -HONKING_LARGE_VALUE; |
574 |
} |
575 |
max_vals.rank = worldRank; |
576 |
|
577 |
// Who had the maximum? |
578 |
MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals, |
579 |
1, MPI::REALTYPE_INT, MPI::MAXLOC); |
580 |
max_val = max_vals.val; |
581 |
#endif |
582 |
|
583 |
if (min_val < max_val) { |
584 |
|
585 |
#ifdef IS_MPI |
586 |
if (max_vals.rank == worldRank && min_vals.rank == worldRank) { |
587 |
// I have both maximum and minimum, so proceed like a single |
588 |
// processor version: |
589 |
#endif |
590 |
|
591 |
Vector3d min_vel = min_sd->getVel(); |
592 |
Vector3d max_vel = max_sd->getVel(); |
593 |
RealType temp_vel; |
594 |
|
595 |
switch(rnemdFluxType_) { |
596 |
case rnemdKE : |
597 |
min_sd->setVel(max_vel); |
598 |
max_sd->setVel(min_vel); |
599 |
if (min_sd->isDirectional() && max_sd->isDirectional()) { |
600 |
Vector3d min_angMom = min_sd->getJ(); |
601 |
Vector3d max_angMom = max_sd->getJ(); |
602 |
min_sd->setJ(max_angMom); |
603 |
max_sd->setJ(min_angMom); |
604 |
}//angular momenta exchange enabled |
605 |
//assumes same rigid body identity |
606 |
break; |
607 |
case rnemdPx : |
608 |
temp_vel = min_vel.x(); |
609 |
min_vel.x() = max_vel.x(); |
610 |
max_vel.x() = temp_vel; |
611 |
min_sd->setVel(min_vel); |
612 |
max_sd->setVel(max_vel); |
613 |
break; |
614 |
case rnemdPy : |
615 |
temp_vel = min_vel.y(); |
616 |
min_vel.y() = max_vel.y(); |
617 |
max_vel.y() = temp_vel; |
618 |
min_sd->setVel(min_vel); |
619 |
max_sd->setVel(max_vel); |
620 |
break; |
621 |
case rnemdPz : |
622 |
temp_vel = min_vel.z(); |
623 |
min_vel.z() = max_vel.z(); |
624 |
max_vel.z() = temp_vel; |
625 |
min_sd->setVel(min_vel); |
626 |
max_sd->setVel(max_vel); |
627 |
break; |
628 |
default : |
629 |
break; |
630 |
} |
631 |
|
632 |
#ifdef IS_MPI |
633 |
// the rest of the cases only apply in parallel simulations: |
634 |
} else if (max_vals.rank == worldRank) { |
635 |
// I had the max, but not the minimum |
636 |
|
637 |
Vector3d min_vel; |
638 |
Vector3d max_vel = max_sd->getVel(); |
639 |
MPI::Status status; |
640 |
|
641 |
// point-to-point swap of the velocity vector |
642 |
MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE, |
643 |
min_vals.rank, 0, |
644 |
min_vel.getArrayPointer(), 3, MPI::REALTYPE, |
645 |
min_vals.rank, 0, status); |
646 |
|
647 |
switch(rnemdFluxType_) { |
648 |
case rnemdKE : |
649 |
max_sd->setVel(min_vel); |
650 |
//angular momenta exchange enabled |
651 |
if (max_sd->isDirectional()) { |
652 |
Vector3d min_angMom; |
653 |
Vector3d max_angMom = max_sd->getJ(); |
654 |
|
655 |
// point-to-point swap of the angular momentum vector |
656 |
MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3, |
657 |
MPI::REALTYPE, min_vals.rank, 1, |
658 |
min_angMom.getArrayPointer(), 3, |
659 |
MPI::REALTYPE, min_vals.rank, 1, |
660 |
status); |
661 |
|
662 |
max_sd->setJ(min_angMom); |
663 |
} |
664 |
break; |
665 |
case rnemdPx : |
666 |
max_vel.x() = min_vel.x(); |
667 |
max_sd->setVel(max_vel); |
668 |
break; |
669 |
case rnemdPy : |
670 |
max_vel.y() = min_vel.y(); |
671 |
max_sd->setVel(max_vel); |
672 |
break; |
673 |
case rnemdPz : |
674 |
max_vel.z() = min_vel.z(); |
675 |
max_sd->setVel(max_vel); |
676 |
break; |
677 |
default : |
678 |
break; |
679 |
} |
680 |
} else if (min_vals.rank == worldRank) { |
681 |
// I had the minimum but not the maximum: |
682 |
|
683 |
Vector3d max_vel; |
684 |
Vector3d min_vel = min_sd->getVel(); |
685 |
MPI::Status status; |
686 |
|
687 |
// point-to-point swap of the velocity vector |
688 |
MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE, |
689 |
max_vals.rank, 0, |
690 |
max_vel.getArrayPointer(), 3, MPI::REALTYPE, |
691 |
max_vals.rank, 0, status); |
692 |
|
693 |
switch(rnemdFluxType_) { |
694 |
case rnemdKE : |
695 |
min_sd->setVel(max_vel); |
696 |
//angular momenta exchange enabled |
697 |
if (min_sd->isDirectional()) { |
698 |
Vector3d min_angMom = min_sd->getJ(); |
699 |
Vector3d max_angMom; |
700 |
|
701 |
// point-to-point swap of the angular momentum vector |
702 |
MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3, |
703 |
MPI::REALTYPE, max_vals.rank, 1, |
704 |
max_angMom.getArrayPointer(), 3, |
705 |
MPI::REALTYPE, max_vals.rank, 1, |
706 |
status); |
707 |
|
708 |
min_sd->setJ(max_angMom); |
709 |
} |
710 |
break; |
711 |
case rnemdPx : |
712 |
min_vel.x() = max_vel.x(); |
713 |
min_sd->setVel(min_vel); |
714 |
break; |
715 |
case rnemdPy : |
716 |
min_vel.y() = max_vel.y(); |
717 |
min_sd->setVel(min_vel); |
718 |
break; |
719 |
case rnemdPz : |
720 |
min_vel.z() = max_vel.z(); |
721 |
min_sd->setVel(min_vel); |
722 |
break; |
723 |
default : |
724 |
break; |
725 |
} |
726 |
} |
727 |
#endif |
728 |
|
729 |
switch(rnemdFluxType_) { |
730 |
case rnemdKE: |
731 |
cerr << "KE\n"; |
732 |
kineticExchange_ += max_val - min_val; |
733 |
break; |
734 |
case rnemdPx: |
735 |
momentumExchange_.x() += max_val - min_val; |
736 |
break; |
737 |
case rnemdPy: |
738 |
momentumExchange_.y() += max_val - min_val; |
739 |
break; |
740 |
case rnemdPz: |
741 |
momentumExchange_.z() += max_val - min_val; |
742 |
break; |
743 |
default: |
744 |
cerr << "default\n"; |
745 |
break; |
746 |
} |
747 |
} else { |
748 |
sprintf(painCave.errMsg, |
749 |
"RNEMD::doSwap exchange NOT performed because min_val > max_val\n"); |
750 |
painCave.isFatal = 0; |
751 |
painCave.severity = OPENMD_INFO; |
752 |
simError(); |
753 |
failTrialCount_++; |
754 |
} |
755 |
} else { |
756 |
sprintf(painCave.errMsg, |
757 |
"RNEMD::doSwap exchange NOT performed because selected object\n" |
758 |
"\twas not present in at least one of the two slabs.\n"); |
759 |
painCave.isFatal = 0; |
760 |
painCave.severity = OPENMD_INFO; |
761 |
simError(); |
762 |
failTrialCount_++; |
763 |
} |
764 |
} |
765 |
|
766 |
void RNEMD::doNIVS() { |
767 |
|
768 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
769 |
Mat3x3d hmat = currentSnap_->getHmat(); |
770 |
|
771 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
772 |
|
773 |
int selei; |
774 |
StuntDouble* sd; |
775 |
int idx; |
776 |
|
777 |
vector<StuntDouble*> hotBin, coldBin; |
778 |
|
779 |
RealType Phx = 0.0; |
780 |
RealType Phy = 0.0; |
781 |
RealType Phz = 0.0; |
782 |
RealType Khx = 0.0; |
783 |
RealType Khy = 0.0; |
784 |
RealType Khz = 0.0; |
785 |
RealType Khw = 0.0; |
786 |
RealType Pcx = 0.0; |
787 |
RealType Pcy = 0.0; |
788 |
RealType Pcz = 0.0; |
789 |
RealType Kcx = 0.0; |
790 |
RealType Kcy = 0.0; |
791 |
RealType Kcz = 0.0; |
792 |
RealType Kcw = 0.0; |
793 |
|
794 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
795 |
sd = seleMan_.nextSelected(selei)) { |
796 |
|
797 |
idx = sd->getLocalIndex(); |
798 |
|
799 |
Vector3d pos = sd->getPos(); |
800 |
|
801 |
// wrap the stuntdouble's position back into the box: |
802 |
|
803 |
if (usePeriodicBoundaryConditions_) |
804 |
currentSnap_->wrapVector(pos); |
805 |
|
806 |
// which bin is this stuntdouble in? |
807 |
bool inA = inSlabA(pos); |
808 |
bool inB = inSlabB(pos); |
809 |
|
810 |
if (inA || inB) { |
811 |
|
812 |
RealType mass = sd->getMass(); |
813 |
Vector3d vel = sd->getVel(); |
814 |
|
815 |
if (inA) { |
816 |
hotBin.push_back(sd); |
817 |
Phx += mass * vel.x(); |
818 |
Phy += mass * vel.y(); |
819 |
Phz += mass * vel.z(); |
820 |
Khx += mass * vel.x() * vel.x(); |
821 |
Khy += mass * vel.y() * vel.y(); |
822 |
Khz += mass * vel.z() * vel.z(); |
823 |
if (sd->isDirectional()) { |
824 |
Vector3d angMom = sd->getJ(); |
825 |
Mat3x3d I = sd->getI(); |
826 |
if (sd->isLinear()) { |
827 |
int i = sd->linearAxis(); |
828 |
int j = (i + 1) % 3; |
829 |
int k = (i + 2) % 3; |
830 |
Khw += angMom[j] * angMom[j] / I(j, j) + |
831 |
angMom[k] * angMom[k] / I(k, k); |
832 |
} else { |
833 |
Khw += angMom[0]*angMom[0]/I(0, 0) |
834 |
+ angMom[1]*angMom[1]/I(1, 1) |
835 |
+ angMom[2]*angMom[2]/I(2, 2); |
836 |
} |
837 |
} |
838 |
} else { |
839 |
coldBin.push_back(sd); |
840 |
Pcx += mass * vel.x(); |
841 |
Pcy += mass * vel.y(); |
842 |
Pcz += mass * vel.z(); |
843 |
Kcx += mass * vel.x() * vel.x(); |
844 |
Kcy += mass * vel.y() * vel.y(); |
845 |
Kcz += mass * vel.z() * vel.z(); |
846 |
if (sd->isDirectional()) { |
847 |
Vector3d angMom = sd->getJ(); |
848 |
Mat3x3d I = sd->getI(); |
849 |
if (sd->isLinear()) { |
850 |
int i = sd->linearAxis(); |
851 |
int j = (i + 1) % 3; |
852 |
int k = (i + 2) % 3; |
853 |
Kcw += angMom[j] * angMom[j] / I(j, j) + |
854 |
angMom[k] * angMom[k] / I(k, k); |
855 |
} else { |
856 |
Kcw += angMom[0]*angMom[0]/I(0, 0) |
857 |
+ angMom[1]*angMom[1]/I(1, 1) |
858 |
+ angMom[2]*angMom[2]/I(2, 2); |
859 |
} |
860 |
} |
861 |
} |
862 |
} |
863 |
} |
864 |
|
865 |
Khx *= 0.5; |
866 |
Khy *= 0.5; |
867 |
Khz *= 0.5; |
868 |
Khw *= 0.5; |
869 |
Kcx *= 0.5; |
870 |
Kcy *= 0.5; |
871 |
Kcz *= 0.5; |
872 |
Kcw *= 0.5; |
873 |
|
874 |
#ifdef IS_MPI |
875 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM); |
876 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM); |
877 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM); |
878 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM); |
879 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM); |
880 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM); |
881 |
|
882 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM); |
883 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM); |
884 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM); |
885 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM); |
886 |
|
887 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM); |
888 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM); |
889 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM); |
890 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM); |
891 |
#endif |
892 |
|
893 |
//solve coldBin coeff's first |
894 |
RealType px = Pcx / Phx; |
895 |
RealType py = Pcy / Phy; |
896 |
RealType pz = Pcz / Phz; |
897 |
RealType c, x, y, z; |
898 |
bool successfulScale = false; |
899 |
if ((rnemdFluxType_ == rnemdFullKE) || |
900 |
(rnemdFluxType_ == rnemdRotKE)) { |
901 |
//may need sanity check Khw & Kcw > 0 |
902 |
|
903 |
if (rnemdFluxType_ == rnemdFullKE) { |
904 |
c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw); |
905 |
} else { |
906 |
c = 1.0 - kineticTarget_ / Kcw; |
907 |
} |
908 |
|
909 |
if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients |
910 |
c = sqrt(c); |
911 |
//std::cerr << "cold slab scaling coefficient: " << c << endl; |
912 |
//now convert to hotBin coefficient |
913 |
RealType w = 0.0; |
914 |
if (rnemdFluxType_ == rnemdFullKE) { |
915 |
x = 1.0 + px * (1.0 - c); |
916 |
y = 1.0 + py * (1.0 - c); |
917 |
z = 1.0 + pz * (1.0 - c); |
918 |
/* more complicated way |
919 |
w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz |
920 |
+ Khx * px * px + Khy * py * py + Khz * pz * pz) |
921 |
- 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py) |
922 |
+ Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px) |
923 |
+ Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
924 |
- Kcx - Kcy - Kcz)) / Khw; the following is simpler |
925 |
*/ |
926 |
if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) && |
927 |
(fabs(z - 1.0) < 0.1)) { |
928 |
w = 1.0 + (kineticTarget_ |
929 |
+ Khx * (1.0 - x * x) + Khy * (1.0 - y * y) |
930 |
+ Khz * (1.0 - z * z)) / Khw; |
931 |
}//no need to calculate w if x, y or z is out of range |
932 |
} else { |
933 |
w = 1.0 + kineticTarget_ / Khw; |
934 |
} |
935 |
if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients |
936 |
//if w is in the right range, so should be x, y, z. |
937 |
vector<StuntDouble*>::iterator sdi; |
938 |
Vector3d vel; |
939 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
940 |
if (rnemdFluxType_ == rnemdFullKE) { |
941 |
vel = (*sdi)->getVel() * c; |
942 |
(*sdi)->setVel(vel); |
943 |
} |
944 |
if ((*sdi)->isDirectional()) { |
945 |
Vector3d angMom = (*sdi)->getJ() * c; |
946 |
(*sdi)->setJ(angMom); |
947 |
} |
948 |
} |
949 |
w = sqrt(w); |
950 |
// std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z |
951 |
// << "\twh= " << w << endl; |
952 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
953 |
if (rnemdFluxType_ == rnemdFullKE) { |
954 |
vel = (*sdi)->getVel(); |
955 |
vel.x() *= x; |
956 |
vel.y() *= y; |
957 |
vel.z() *= z; |
958 |
(*sdi)->setVel(vel); |
959 |
} |
960 |
if ((*sdi)->isDirectional()) { |
961 |
Vector3d angMom = (*sdi)->getJ() * w; |
962 |
(*sdi)->setJ(angMom); |
963 |
} |
964 |
} |
965 |
successfulScale = true; |
966 |
kineticExchange_ += kineticTarget_; |
967 |
} |
968 |
} |
969 |
} else { |
970 |
RealType a000, a110, c0, a001, a111, b01, b11, c1; |
971 |
switch(rnemdFluxType_) { |
972 |
case rnemdKE : |
973 |
/* used hotBin coeff's & only scale x & y dimensions |
974 |
RealType px = Phx / Pcx; |
975 |
RealType py = Phy / Pcy; |
976 |
a110 = Khy; |
977 |
c0 = - Khx - Khy - kineticTarget_; |
978 |
a000 = Khx; |
979 |
a111 = Kcy * py * py; |
980 |
b11 = -2.0 * Kcy * py * (1.0 + py); |
981 |
c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_; |
982 |
b01 = -2.0 * Kcx * px * (1.0 + px); |
983 |
a001 = Kcx * px * px; |
984 |
*/ |
985 |
//scale all three dimensions, let c_x = c_y |
986 |
a000 = Kcx + Kcy; |
987 |
a110 = Kcz; |
988 |
c0 = kineticTarget_ - Kcx - Kcy - Kcz; |
989 |
a001 = Khx * px * px + Khy * py * py; |
990 |
a111 = Khz * pz * pz; |
991 |
b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)); |
992 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
993 |
c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
994 |
+ Khz * pz * (2.0 + pz) - kineticTarget_; |
995 |
break; |
996 |
case rnemdPx : |
997 |
c = 1 - momentumTarget_.x() / Pcx; |
998 |
a000 = Kcy; |
999 |
a110 = Kcz; |
1000 |
c0 = Kcx * c * c - Kcx - Kcy - Kcz; |
1001 |
a001 = py * py * Khy; |
1002 |
a111 = pz * pz * Khz; |
1003 |
b01 = -2.0 * Khy * py * (1.0 + py); |
1004 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
1005 |
c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
1006 |
+ Khx * (fastpow(c * px - px - 1.0, 2) - 1.0); |
1007 |
break; |
1008 |
case rnemdPy : |
1009 |
c = 1 - momentumTarget_.y() / Pcy; |
1010 |
a000 = Kcx; |
1011 |
a110 = Kcz; |
1012 |
c0 = Kcy * c * c - Kcx - Kcy - Kcz; |
1013 |
a001 = px * px * Khx; |
1014 |
a111 = pz * pz * Khz; |
1015 |
b01 = -2.0 * Khx * px * (1.0 + px); |
1016 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
1017 |
c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz) |
1018 |
+ Khy * (fastpow(c * py - py - 1.0, 2) - 1.0); |
1019 |
break; |
1020 |
case rnemdPz ://we don't really do this, do we? |
1021 |
c = 1 - momentumTarget_.z() / Pcz; |
1022 |
a000 = Kcx; |
1023 |
a110 = Kcy; |
1024 |
c0 = Kcz * c * c - Kcx - Kcy - Kcz; |
1025 |
a001 = px * px * Khx; |
1026 |
a111 = py * py * Khy; |
1027 |
b01 = -2.0 * Khx * px * (1.0 + px); |
1028 |
b11 = -2.0 * Khy * py * (1.0 + py); |
1029 |
c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
1030 |
+ Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0); |
1031 |
break; |
1032 |
default : |
1033 |
break; |
1034 |
} |
1035 |
|
1036 |
RealType v1 = a000 * a111 - a001 * a110; |
1037 |
RealType v2 = a000 * b01; |
1038 |
RealType v3 = a000 * b11; |
1039 |
RealType v4 = a000 * c1 - a001 * c0; |
1040 |
RealType v8 = a110 * b01; |
1041 |
RealType v10 = - b01 * c0; |
1042 |
|
1043 |
RealType u0 = v2 * v10 - v4 * v4; |
1044 |
RealType u1 = -2.0 * v3 * v4; |
1045 |
RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4; |
1046 |
RealType u3 = -2.0 * v1 * v3; |
1047 |
RealType u4 = - v1 * v1; |
1048 |
//rescale coefficients |
1049 |
RealType maxAbs = fabs(u0); |
1050 |
if (maxAbs < fabs(u1)) maxAbs = fabs(u1); |
1051 |
if (maxAbs < fabs(u2)) maxAbs = fabs(u2); |
1052 |
if (maxAbs < fabs(u3)) maxAbs = fabs(u3); |
1053 |
if (maxAbs < fabs(u4)) maxAbs = fabs(u4); |
1054 |
u0 /= maxAbs; |
1055 |
u1 /= maxAbs; |
1056 |
u2 /= maxAbs; |
1057 |
u3 /= maxAbs; |
1058 |
u4 /= maxAbs; |
1059 |
//max_element(start, end) is also available. |
1060 |
Polynomial<RealType> poly; //same as DoublePolynomial poly; |
1061 |
poly.setCoefficient(4, u4); |
1062 |
poly.setCoefficient(3, u3); |
1063 |
poly.setCoefficient(2, u2); |
1064 |
poly.setCoefficient(1, u1); |
1065 |
poly.setCoefficient(0, u0); |
1066 |
vector<RealType> realRoots = poly.FindRealRoots(); |
1067 |
|
1068 |
vector<RealType>::iterator ri; |
1069 |
RealType r1, r2, alpha0; |
1070 |
vector<pair<RealType,RealType> > rps; |
1071 |
for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) { |
1072 |
r2 = *ri; |
1073 |
//check if FindRealRoots() give the right answer |
1074 |
if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { |
1075 |
sprintf(painCave.errMsg, |
1076 |
"RNEMD Warning: polynomial solve seems to have an error!"); |
1077 |
painCave.isFatal = 0; |
1078 |
simError(); |
1079 |
failRootCount_++; |
1080 |
} |
1081 |
//might not be useful w/o rescaling coefficients |
1082 |
alpha0 = -c0 - a110 * r2 * r2; |
1083 |
if (alpha0 >= 0.0) { |
1084 |
r1 = sqrt(alpha0 / a000); |
1085 |
if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) |
1086 |
< 1e-6) |
1087 |
{ rps.push_back(make_pair(r1, r2)); } |
1088 |
if (r1 > 1e-6) { //r1 non-negative |
1089 |
r1 = -r1; |
1090 |
if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) |
1091 |
< 1e-6) |
1092 |
{ rps.push_back(make_pair(r1, r2)); } |
1093 |
} |
1094 |
} |
1095 |
} |
1096 |
// Consider combining together the solving pair part w/ the searching |
1097 |
// best solution part so that we don't need the pairs vector |
1098 |
if (!rps.empty()) { |
1099 |
RealType smallestDiff = HONKING_LARGE_VALUE; |
1100 |
RealType diff; |
1101 |
pair<RealType,RealType> bestPair = make_pair(1.0, 1.0); |
1102 |
vector<pair<RealType,RealType> >::iterator rpi; |
1103 |
for (rpi = rps.begin(); rpi != rps.end(); rpi++) { |
1104 |
r1 = (*rpi).first; |
1105 |
r2 = (*rpi).second; |
1106 |
switch(rnemdFluxType_) { |
1107 |
case rnemdKE : |
1108 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1109 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2) |
1110 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1111 |
break; |
1112 |
case rnemdPx : |
1113 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1114 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1115 |
break; |
1116 |
case rnemdPy : |
1117 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1118 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2); |
1119 |
break; |
1120 |
case rnemdPz : |
1121 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1122 |
+ fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2); |
1123 |
default : |
1124 |
break; |
1125 |
} |
1126 |
if (diff < smallestDiff) { |
1127 |
smallestDiff = diff; |
1128 |
bestPair = *rpi; |
1129 |
} |
1130 |
} |
1131 |
#ifdef IS_MPI |
1132 |
if (worldRank == 0) { |
1133 |
#endif |
1134 |
// sprintf(painCave.errMsg, |
1135 |
// "RNEMD: roots r1= %lf\tr2 = %lf\n", |
1136 |
// bestPair.first, bestPair.second); |
1137 |
// painCave.isFatal = 0; |
1138 |
// painCave.severity = OPENMD_INFO; |
1139 |
// simError(); |
1140 |
#ifdef IS_MPI |
1141 |
} |
1142 |
#endif |
1143 |
|
1144 |
switch(rnemdFluxType_) { |
1145 |
case rnemdKE : |
1146 |
x = bestPair.first; |
1147 |
y = bestPair.first; |
1148 |
z = bestPair.second; |
1149 |
break; |
1150 |
case rnemdPx : |
1151 |
x = c; |
1152 |
y = bestPair.first; |
1153 |
z = bestPair.second; |
1154 |
break; |
1155 |
case rnemdPy : |
1156 |
x = bestPair.first; |
1157 |
y = c; |
1158 |
z = bestPair.second; |
1159 |
break; |
1160 |
case rnemdPz : |
1161 |
x = bestPair.first; |
1162 |
y = bestPair.second; |
1163 |
z = c; |
1164 |
break; |
1165 |
default : |
1166 |
break; |
1167 |
} |
1168 |
vector<StuntDouble*>::iterator sdi; |
1169 |
Vector3d vel; |
1170 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1171 |
vel = (*sdi)->getVel(); |
1172 |
vel.x() *= x; |
1173 |
vel.y() *= y; |
1174 |
vel.z() *= z; |
1175 |
(*sdi)->setVel(vel); |
1176 |
} |
1177 |
//convert to hotBin coefficient |
1178 |
x = 1.0 + px * (1.0 - x); |
1179 |
y = 1.0 + py * (1.0 - y); |
1180 |
z = 1.0 + pz * (1.0 - z); |
1181 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1182 |
vel = (*sdi)->getVel(); |
1183 |
vel.x() *= x; |
1184 |
vel.y() *= y; |
1185 |
vel.z() *= z; |
1186 |
(*sdi)->setVel(vel); |
1187 |
} |
1188 |
successfulScale = true; |
1189 |
switch(rnemdFluxType_) { |
1190 |
case rnemdKE : |
1191 |
kineticExchange_ += kineticTarget_; |
1192 |
break; |
1193 |
case rnemdPx : |
1194 |
case rnemdPy : |
1195 |
case rnemdPz : |
1196 |
momentumExchange_ += momentumTarget_; |
1197 |
break; |
1198 |
default : |
1199 |
break; |
1200 |
} |
1201 |
} |
1202 |
} |
1203 |
if (successfulScale != true) { |
1204 |
sprintf(painCave.errMsg, |
1205 |
"RNEMD::doNIVS exchange NOT performed - roots that solve\n" |
1206 |
"\tthe constraint equations may not exist or there may be\n" |
1207 |
"\tno selected objects in one or both slabs.\n"); |
1208 |
painCave.isFatal = 0; |
1209 |
painCave.severity = OPENMD_INFO; |
1210 |
simError(); |
1211 |
failTrialCount_++; |
1212 |
} |
1213 |
} |
1214 |
|
1215 |
void RNEMD::doVSS() { |
1216 |
|
1217 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1218 |
RealType time = currentSnap_->getTime(); |
1219 |
Mat3x3d hmat = currentSnap_->getHmat(); |
1220 |
|
1221 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1222 |
|
1223 |
int selei; |
1224 |
StuntDouble* sd; |
1225 |
int idx; |
1226 |
|
1227 |
vector<StuntDouble*> hotBin, coldBin; |
1228 |
|
1229 |
Vector3d Ph(V3Zero); |
1230 |
RealType Mh = 0.0; |
1231 |
RealType Kh = 0.0; |
1232 |
Vector3d Pc(V3Zero); |
1233 |
RealType Mc = 0.0; |
1234 |
RealType Kc = 0.0; |
1235 |
|
1236 |
|
1237 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1238 |
sd = seleMan_.nextSelected(selei)) { |
1239 |
|
1240 |
idx = sd->getLocalIndex(); |
1241 |
|
1242 |
Vector3d pos = sd->getPos(); |
1243 |
|
1244 |
// wrap the stuntdouble's position back into the box: |
1245 |
|
1246 |
if (usePeriodicBoundaryConditions_) |
1247 |
currentSnap_->wrapVector(pos); |
1248 |
|
1249 |
// which bin is this stuntdouble in? |
1250 |
bool inA = inSlabA(pos); |
1251 |
bool inB = inSlabB(pos); |
1252 |
|
1253 |
if (inA || inB) { |
1254 |
|
1255 |
RealType mass = sd->getMass(); |
1256 |
Vector3d vel = sd->getVel(); |
1257 |
|
1258 |
if (inA) { |
1259 |
hotBin.push_back(sd); |
1260 |
//std::cerr << "before, velocity = " << vel << endl; |
1261 |
Ph += mass * vel; |
1262 |
//std::cerr << "after, velocity = " << vel << endl; |
1263 |
Mh += mass; |
1264 |
Kh += mass * vel.lengthSquare(); |
1265 |
if (rnemdFluxType_ == rnemdFullKE) { |
1266 |
if (sd->isDirectional()) { |
1267 |
Vector3d angMom = sd->getJ(); |
1268 |
Mat3x3d I = sd->getI(); |
1269 |
if (sd->isLinear()) { |
1270 |
int i = sd->linearAxis(); |
1271 |
int j = (i + 1) % 3; |
1272 |
int k = (i + 2) % 3; |
1273 |
Kh += angMom[j] * angMom[j] / I(j, j) + |
1274 |
angMom[k] * angMom[k] / I(k, k); |
1275 |
} else { |
1276 |
Kh += angMom[0] * angMom[0] / I(0, 0) + |
1277 |
angMom[1] * angMom[1] / I(1, 1) + |
1278 |
angMom[2] * angMom[2] / I(2, 2); |
1279 |
} |
1280 |
} |
1281 |
} |
1282 |
} else { //midBin_ |
1283 |
coldBin.push_back(sd); |
1284 |
Pc += mass * vel; |
1285 |
Mc += mass; |
1286 |
Kc += mass * vel.lengthSquare(); |
1287 |
if (rnemdFluxType_ == rnemdFullKE) { |
1288 |
if (sd->isDirectional()) { |
1289 |
Vector3d angMom = sd->getJ(); |
1290 |
Mat3x3d I = sd->getI(); |
1291 |
if (sd->isLinear()) { |
1292 |
int i = sd->linearAxis(); |
1293 |
int j = (i + 1) % 3; |
1294 |
int k = (i + 2) % 3; |
1295 |
Kc += angMom[j] * angMom[j] / I(j, j) + |
1296 |
angMom[k] * angMom[k] / I(k, k); |
1297 |
} else { |
1298 |
Kc += angMom[0] * angMom[0] / I(0, 0) + |
1299 |
angMom[1] * angMom[1] / I(1, 1) + |
1300 |
angMom[2] * angMom[2] / I(2, 2); |
1301 |
} |
1302 |
} |
1303 |
} |
1304 |
} |
1305 |
} |
1306 |
} |
1307 |
|
1308 |
Kh *= 0.5; |
1309 |
Kc *= 0.5; |
1310 |
|
1311 |
// std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc |
1312 |
// << "\tKc= " << Kc << endl; |
1313 |
// std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl; |
1314 |
|
1315 |
#ifdef IS_MPI |
1316 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM); |
1317 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM); |
1318 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM); |
1319 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM); |
1320 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM); |
1321 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM); |
1322 |
#endif |
1323 |
|
1324 |
bool successfulExchange = false; |
1325 |
if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty |
1326 |
Vector3d vc = Pc / Mc; |
1327 |
Vector3d ac = -momentumTarget_ / Mc + vc; |
1328 |
Vector3d acrec = -momentumTarget_ / Mc; |
1329 |
RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare(); |
1330 |
if (cNumerator > 0.0) { |
1331 |
RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare(); |
1332 |
if (cDenominator > 0.0) { |
1333 |
RealType c = sqrt(cNumerator / cDenominator); |
1334 |
if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients |
1335 |
Vector3d vh = Ph / Mh; |
1336 |
Vector3d ah = momentumTarget_ / Mh + vh; |
1337 |
Vector3d ahrec = momentumTarget_ / Mh; |
1338 |
RealType hNumerator = Kh + kineticTarget_ |
1339 |
- 0.5 * Mh * ah.lengthSquare(); |
1340 |
if (hNumerator > 0.0) { |
1341 |
RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare(); |
1342 |
if (hDenominator > 0.0) { |
1343 |
RealType h = sqrt(hNumerator / hDenominator); |
1344 |
if ((h > 0.9) && (h < 1.1)) { |
1345 |
// std::cerr << "cold slab scaling coefficient: " << c << "\n"; |
1346 |
// std::cerr << "hot slab scaling coefficient: " << h << "\n"; |
1347 |
vector<StuntDouble*>::iterator sdi; |
1348 |
Vector3d vel; |
1349 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1350 |
//vel = (*sdi)->getVel(); |
1351 |
vel = ((*sdi)->getVel() - vc) * c + ac; |
1352 |
(*sdi)->setVel(vel); |
1353 |
if (rnemdFluxType_ == rnemdFullKE) { |
1354 |
if ((*sdi)->isDirectional()) { |
1355 |
Vector3d angMom = (*sdi)->getJ() * c; |
1356 |
(*sdi)->setJ(angMom); |
1357 |
} |
1358 |
} |
1359 |
} |
1360 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1361 |
//vel = (*sdi)->getVel(); |
1362 |
vel = ((*sdi)->getVel() - vh) * h + ah; |
1363 |
(*sdi)->setVel(vel); |
1364 |
if (rnemdFluxType_ == rnemdFullKE) { |
1365 |
if ((*sdi)->isDirectional()) { |
1366 |
Vector3d angMom = (*sdi)->getJ() * h; |
1367 |
(*sdi)->setJ(angMom); |
1368 |
} |
1369 |
} |
1370 |
} |
1371 |
successfulExchange = true; |
1372 |
kineticExchange_ += kineticTarget_; |
1373 |
momentumExchange_ += momentumTarget_; |
1374 |
} |
1375 |
} |
1376 |
} |
1377 |
} |
1378 |
} |
1379 |
} |
1380 |
} |
1381 |
if (successfulExchange != true) { |
1382 |
sprintf(painCave.errMsg, |
1383 |
"RNEMD::doVSS exchange NOT performed - roots that solve\n" |
1384 |
"\tthe constraint equations may not exist or there may be\n" |
1385 |
"\tno selected objects in one or both slabs.\n"); |
1386 |
painCave.isFatal = 0; |
1387 |
painCave.severity = OPENMD_INFO; |
1388 |
simError(); |
1389 |
failTrialCount_++; |
1390 |
} |
1391 |
} |
1392 |
|
1393 |
void RNEMD::doRNEMD() { |
1394 |
|
1395 |
trialCount_++; |
1396 |
switch(rnemdMethod_) { |
1397 |
case rnemdSwap: |
1398 |
doSwap(); |
1399 |
break; |
1400 |
case rnemdNIVS: |
1401 |
doNIVS(); |
1402 |
break; |
1403 |
case rnemdVSS: |
1404 |
doVSS(); |
1405 |
break; |
1406 |
case rnemdUnkownMethod: |
1407 |
default : |
1408 |
break; |
1409 |
} |
1410 |
} |
1411 |
|
1412 |
void RNEMD::collectData() { |
1413 |
|
1414 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1415 |
Mat3x3d hmat = currentSnap_->getHmat(); |
1416 |
|
1417 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1418 |
|
1419 |
int selei; |
1420 |
StuntDouble* sd; |
1421 |
int idx; |
1422 |
|
1423 |
vector<RealType> binMass(nBins_, 0.0); |
1424 |
vector<RealType> binPx(nBins_, 0.0); |
1425 |
vector<RealType> binPy(nBins_, 0.0); |
1426 |
vector<RealType> binPz(nBins_, 0.0); |
1427 |
vector<RealType> binKE(nBins_, 0.0); |
1428 |
vector<int> binDOF(nBins_, 0); |
1429 |
vector<int> binCount(nBins_, 0); |
1430 |
|
1431 |
// alternative approach, track all molecules instead of only those |
1432 |
// selected for scaling/swapping: |
1433 |
/* |
1434 |
SimInfo::MoleculeIterator miter; |
1435 |
vector<StuntDouble*>::iterator iiter; |
1436 |
Molecule* mol; |
1437 |
StuntDouble* sd; |
1438 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
1439 |
mol = info_->nextMolecule(miter)) |
1440 |
sd is essentially sd |
1441 |
for (sd = mol->beginIntegrableObject(iiter); |
1442 |
sd != NULL; |
1443 |
sd = mol->nextIntegrableObject(iiter)) |
1444 |
*/ |
1445 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1446 |
sd = seleMan_.nextSelected(selei)) { |
1447 |
|
1448 |
idx = sd->getLocalIndex(); |
1449 |
|
1450 |
Vector3d pos = sd->getPos(); |
1451 |
|
1452 |
// wrap the stuntdouble's position back into the box: |
1453 |
|
1454 |
if (usePeriodicBoundaryConditions_) |
1455 |
currentSnap_->wrapVector(pos); |
1456 |
|
1457 |
// which bin is this stuntdouble in? |
1458 |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1459 |
// Shift molecules by half a box to have bins start at 0 |
1460 |
// The modulo operator is used to wrap the case when we are |
1461 |
// beyond the end of the bins back to the beginning. |
1462 |
int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
1463 |
|
1464 |
RealType mass = sd->getMass(); |
1465 |
Vector3d vel = sd->getVel(); |
1466 |
|
1467 |
binCount[binNo]++; |
1468 |
binMass[binNo] += mass; |
1469 |
binPx[binNo] += mass*vel.x(); |
1470 |
binPy[binNo] += mass*vel.y(); |
1471 |
binPz[binNo] += mass*vel.z(); |
1472 |
binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); |
1473 |
binDOF[binNo] += 3; |
1474 |
|
1475 |
if (sd->isDirectional()) { |
1476 |
Vector3d angMom = sd->getJ(); |
1477 |
Mat3x3d I = sd->getI(); |
1478 |
if (sd->isLinear()) { |
1479 |
int i = sd->linearAxis(); |
1480 |
int j = (i + 1) % 3; |
1481 |
int k = (i + 2) % 3; |
1482 |
binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + |
1483 |
angMom[k] * angMom[k] / I(k, k)); |
1484 |
binDOF[binNo] += 2; |
1485 |
} else { |
1486 |
binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + |
1487 |
angMom[1] * angMom[1] / I(1, 1) + |
1488 |
angMom[2] * angMom[2] / I(2, 2)); |
1489 |
binDOF[binNo] += 3; |
1490 |
} |
1491 |
} |
1492 |
} |
1493 |
|
1494 |
|
1495 |
#ifdef IS_MPI |
1496 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0], |
1497 |
nBins_, MPI::INT, MPI::SUM); |
1498 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0], |
1499 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1500 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0], |
1501 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1502 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0], |
1503 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1504 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0], |
1505 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1506 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0], |
1507 |
nBins_, MPI::REALTYPE, MPI::SUM); |
1508 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0], |
1509 |
nBins_, MPI::INT, MPI::SUM); |
1510 |
#endif |
1511 |
|
1512 |
Vector3d vel; |
1513 |
RealType den; |
1514 |
RealType temp; |
1515 |
RealType z; |
1516 |
for (int i = 0; i < nBins_; i++) { |
1517 |
z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); |
1518 |
vel.x() = binPx[i] / binMass[i]; |
1519 |
vel.y() = binPy[i] / binMass[i]; |
1520 |
vel.z() = binPz[i] / binMass[i]; |
1521 |
den = binCount[i] * nBins_ / (hmat(0,0) * hmat(1,1) * hmat(2,2)); |
1522 |
temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * |
1523 |
PhysicalConstants::energyConvert); |
1524 |
|
1525 |
for (unsigned int j = 0; j < outputMask_.size(); ++j) { |
1526 |
if(outputMask_[j]) { |
1527 |
switch(j) { |
1528 |
case Z: |
1529 |
(data_[j].accumulator[i])->add(z); |
1530 |
break; |
1531 |
case TEMPERATURE: |
1532 |
data_[j].accumulator[i]->add(temp); |
1533 |
break; |
1534 |
case VELOCITY: |
1535 |
dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); |
1536 |
break; |
1537 |
case DENSITY: |
1538 |
data_[j].accumulator[i]->add(den); |
1539 |
break; |
1540 |
} |
1541 |
} |
1542 |
} |
1543 |
} |
1544 |
} |
1545 |
|
1546 |
void RNEMD::getStarted() { |
1547 |
collectData(); |
1548 |
writeOutputFile(); |
1549 |
} |
1550 |
|
1551 |
void RNEMD::parseOutputFileFormat(const std::string& format) { |
1552 |
StringTokenizer tokenizer(format, " ,;|\t\n\r"); |
1553 |
|
1554 |
while(tokenizer.hasMoreTokens()) { |
1555 |
std::string token(tokenizer.nextToken()); |
1556 |
toUpper(token); |
1557 |
OutputMapType::iterator i = outputMap_.find(token); |
1558 |
if (i != outputMap_.end()) { |
1559 |
outputMask_.set(i->second); |
1560 |
} else { |
1561 |
sprintf( painCave.errMsg, |
1562 |
"RNEMD::parseOutputFileFormat: %s is not a recognized\n" |
1563 |
"\toutputFileFormat keyword.\n", token.c_str() ); |
1564 |
painCave.isFatal = 0; |
1565 |
painCave.severity = OPENMD_ERROR; |
1566 |
simError(); |
1567 |
} |
1568 |
} |
1569 |
} |
1570 |
|
1571 |
void RNEMD::writeOutputFile() { |
1572 |
|
1573 |
#ifdef IS_MPI |
1574 |
// If we're the root node, should we print out the results |
1575 |
int worldRank = MPI::COMM_WORLD.Get_rank(); |
1576 |
if (worldRank == 0) { |
1577 |
#endif |
1578 |
rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc ); |
1579 |
|
1580 |
if( !rnemdFile_ ){ |
1581 |
sprintf( painCave.errMsg, |
1582 |
"Could not open \"%s\" for RNEMD output.\n", |
1583 |
rnemdFileName_.c_str()); |
1584 |
painCave.isFatal = 1; |
1585 |
simError(); |
1586 |
} |
1587 |
|
1588 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1589 |
|
1590 |
RealType time = currentSnap_->getTime(); |
1591 |
|
1592 |
|
1593 |
rnemdFile_ << "#######################################################\n"; |
1594 |
rnemdFile_ << "# RNEMD {\n"; |
1595 |
|
1596 |
map<string, RNEMDMethod>::iterator mi; |
1597 |
for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) { |
1598 |
if ( (*mi).second == rnemdMethod_) |
1599 |
rnemdFile_ << "# exchangeMethod = " << (*mi).first << "\n"; |
1600 |
} |
1601 |
map<string, RNEMDFluxType>::iterator fi; |
1602 |
for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) { |
1603 |
if ( (*fi).second == rnemdFluxType_) |
1604 |
rnemdFile_ << "# fluxType = " << (*fi).first << "\n"; |
1605 |
} |
1606 |
|
1607 |
rnemdFile_ << "# exchangeTime = " << exchangeTime_ << " fs\n"; |
1608 |
|
1609 |
rnemdFile_ << "# objectSelection = \"" |
1610 |
<< rnemdObjectSelection_ << "\"\n"; |
1611 |
rnemdFile_ << "# slabWidth = " << slabWidth_ << " angstroms\n"; |
1612 |
rnemdFile_ << "# slabAcenter = " << slabACenter_ << " angstroms\n"; |
1613 |
rnemdFile_ << "# slabBcenter = " << slabBCenter_ << " angstroms\n"; |
1614 |
rnemdFile_ << "# }\n"; |
1615 |
rnemdFile_ << "#######################################################\n"; |
1616 |
|
1617 |
rnemdFile_ << "# running time = " << time << " fs\n"; |
1618 |
rnemdFile_ << "# target kinetic flux = " << kineticFlux_ << "\n"; |
1619 |
rnemdFile_ << "# target momentum flux = " << momentumFluxVector_ << "\n"; |
1620 |
|
1621 |
rnemdFile_ << "# target one-time kinetic exchange = " << kineticTarget_ |
1622 |
<< "\n"; |
1623 |
rnemdFile_ << "# target one-time momentum exchange = " << momentumTarget_ |
1624 |
<< "\n"; |
1625 |
|
1626 |
rnemdFile_ << "# actual kinetic exchange = " << kineticExchange_ << "\n"; |
1627 |
rnemdFile_ << "# actual momentum exchange = " << momentumExchange_ |
1628 |
<< "\n"; |
1629 |
|
1630 |
rnemdFile_ << "# attempted exchanges: " << trialCount_ << "\n"; |
1631 |
rnemdFile_ << "# failed exchanges: " << failTrialCount_ << "\n"; |
1632 |
|
1633 |
|
1634 |
if (rnemdMethod_ == rnemdNIVS) { |
1635 |
rnemdFile_ << "# NIVS root-check warnings: " << failRootCount_ << "\n"; |
1636 |
} |
1637 |
|
1638 |
rnemdFile_ << "#######################################################\n"; |
1639 |
|
1640 |
|
1641 |
|
1642 |
//write title |
1643 |
rnemdFile_ << "#"; |
1644 |
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
1645 |
if (outputMask_[i]) { |
1646 |
rnemdFile_ << "\t" << data_[i].title << |
1647 |
"(" << data_[i].units << ")"; |
1648 |
} |
1649 |
} |
1650 |
rnemdFile_ << std::endl; |
1651 |
|
1652 |
rnemdFile_.precision(8); |
1653 |
|
1654 |
for (unsigned int j = 0; j < nBins_; j++) { |
1655 |
|
1656 |
for (unsigned int i = 0; i < outputMask_.size(); ++i) { |
1657 |
if (outputMask_[i]) { |
1658 |
if (data_[i].dataType == "RealType") |
1659 |
writeReal(i,j); |
1660 |
else if (data_[i].dataType == "Vector3d") |
1661 |
writeVector(i,j); |
1662 |
else { |
1663 |
sprintf( painCave.errMsg, |
1664 |
"RNEMD found an unknown data type for: %s ", |
1665 |
data_[i].title.c_str()); |
1666 |
painCave.isFatal = 1; |
1667 |
simError(); |
1668 |
} |
1669 |
} |
1670 |
} |
1671 |
rnemdFile_ << std::endl; |
1672 |
|
1673 |
} |
1674 |
|
1675 |
rnemdFile_.flush(); |
1676 |
rnemdFile_.close(); |
1677 |
|
1678 |
#ifdef IS_MPI |
1679 |
} |
1680 |
#endif |
1681 |
|
1682 |
} |
1683 |
|
1684 |
void RNEMD::writeReal(int index, unsigned int bin) { |
1685 |
assert(index >=0 && index < ENDINDEX); |
1686 |
assert(bin >=0 && bin < nBins_); |
1687 |
RealType s; |
1688 |
|
1689 |
data_[index].accumulator[bin]->getAverage(s); |
1690 |
|
1691 |
if (! isinf(s) && ! isnan(s)) { |
1692 |
rnemdFile_ << "\t" << s; |
1693 |
} else{ |
1694 |
sprintf( painCave.errMsg, |
1695 |
"RNEMD detected a numerical error writing: %s for bin %d", |
1696 |
data_[index].title.c_str(), bin); |
1697 |
painCave.isFatal = 1; |
1698 |
simError(); |
1699 |
} |
1700 |
} |
1701 |
|
1702 |
void RNEMD::writeVector(int index, unsigned int bin) { |
1703 |
assert(index >=0 && index < ENDINDEX); |
1704 |
assert(bin >=0 && bin < nBins_); |
1705 |
Vector3d s; |
1706 |
dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s); |
1707 |
if (isinf(s[0]) || isnan(s[0]) || |
1708 |
isinf(s[1]) || isnan(s[1]) || |
1709 |
isinf(s[2]) || isnan(s[2]) ) { |
1710 |
sprintf( painCave.errMsg, |
1711 |
"RNEMD detected a numerical error writing: %s for bin %d", |
1712 |
data_[index].title.c_str(), bin); |
1713 |
painCave.isFatal = 1; |
1714 |
simError(); |
1715 |
} else { |
1716 |
rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; |
1717 |
} |
1718 |
} |
1719 |
} |
1720 |
|