ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1465 by chuckv, Fri Jul 9 23:08:25 2010 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1773 by gezelter, Tue Aug 7 18:26:40 2012 UTC

# Line 40 | Line 40
40   */
41  
42   #include <cmath>
43 < #include "integrators/RNEMD.hpp"
43 > #include "rnemd/RNEMD.hpp"
44   #include "math/Vector3.hpp"
45 + #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47   #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50   #include "utils/PhysicalConstants.hpp"
51   #include "utils/Tuple.hpp"
52 <
53 < #ifndef IS_MPI
53 < #include "math/SeqRandNumGen.hpp"
54 < #else
55 < #include "math/ParallelRandNumGen.hpp"
52 > #ifdef IS_MPI
53 > #include <mpi.h>
54   #endif
55  
56   #define HONKING_LARGE_VALUE 1.0e10
57  
58 + using namespace std;
59   namespace OpenMD {
60    
61 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
61 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
62 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63  
64 +    trialCount_ = 0;
65      failTrialCount_ = 0;
66      failRootCount_ = 0;
67  
68      int seedValue;
69      Globals * simParams = info->getSimParams();
70 +    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
71  
72 <    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
73 <    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
74 <    stringToEnumMap_["PxScale"] = rnemdPxScale;
73 <    stringToEnumMap_["PyScale"] = rnemdPyScale;
74 <    stringToEnumMap_["PzScale"] = rnemdPzScale;
75 <    stringToEnumMap_["Px"] = rnemdPx;
76 <    stringToEnumMap_["Py"] = rnemdPy;
77 <    stringToEnumMap_["Pz"] = rnemdPz;
78 <    stringToEnumMap_["Unknown"] = rnemdUnknown;
72 >    stringToMethod_["Swap"]  = rnemdSwap;
73 >    stringToMethod_["NIVS"]  = rnemdNIVS;
74 >    stringToMethod_["VSS"]   = rnemdVSS;
75  
76 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
76 >    stringToFluxType_["KE"]  = rnemdKE;
77 >    stringToFluxType_["Px"]  = rnemdPx;
78 >    stringToFluxType_["Py"]  = rnemdPy;
79 >    stringToFluxType_["Pz"]  = rnemdPz;
80 >    stringToFluxType_["KE+Px"]  = rnemdKePx;
81 >    stringToFluxType_["KE+Py"]  = rnemdKePy;
82 >    stringToFluxType_["KE+Pvector"]  = rnemdKePvector;
83 >
84 >    runTime_ = simParams->getRunTime();
85 >    statusTime_ = simParams->getStatusTime();
86 >
87 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
88      evaluator_.loadScriptString(rnemdObjectSelection_);
89      seleMan_.setSelectionSet(evaluator_.evaluate());
90  
91 +    const string methStr = rnemdParams->getMethod();
92 +    bool hasFluxType = rnemdParams->haveFluxType();
93 +
94 +    string fluxStr;
95 +    if (hasFluxType) {
96 +      fluxStr = rnemdParams->getFluxType();
97 +    } else {
98 +      sprintf(painCave.errMsg,
99 +              "RNEMD: No fluxType was set in the md file.  This parameter,\n"
100 +              "\twhich must be one of the following values:\n"
101 +              "\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n"
102 +              "\tuse RNEMD\n");
103 +      painCave.isFatal = 1;
104 +      painCave.severity = OPENMD_ERROR;
105 +      simError();
106 +    }
107 +
108 +    bool hasKineticFlux = rnemdParams->haveKineticFlux();
109 +    bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
110 +    bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
111 +    bool hasSlabWidth = rnemdParams->haveSlabWidth();
112 +    bool hasSlabACenter = rnemdParams->haveSlabACenter();
113 +    bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
114 +    bool hasOutputFileName = rnemdParams->haveOutputFileName();
115 +    bool hasOutputFields = rnemdParams->haveOutputFields();
116 +    
117 +    map<string, RNEMDMethod>::iterator i;
118 +    i = stringToMethod_.find(methStr);
119 +    if (i != stringToMethod_.end())
120 +      rnemdMethod_ = i->second;
121 +    else {
122 +      sprintf(painCave.errMsg,
123 +              "RNEMD: The current method,\n"
124 +              "\t\t%s is not one of the recognized\n"
125 +              "\texchange methods: Swap, NIVS, or VSS\n",
126 +              methStr.c_str());
127 +      painCave.isFatal = 1;
128 +      painCave.severity = OPENMD_ERROR;
129 +      simError();
130 +    }
131 +
132 +    map<string, RNEMDFluxType>::iterator j;
133 +    j = stringToFluxType_.find(fluxStr);
134 +    if (j != stringToFluxType_.end())
135 +      rnemdFluxType_ = j->second;
136 +    else {
137 +      sprintf(painCave.errMsg,
138 +              "RNEMD: The current fluxType,\n"
139 +              "\t\t%s\n"
140 +              "\tis not one of the recognized flux types.\n",
141 +              fluxStr.c_str());
142 +      painCave.isFatal = 1;
143 +      painCave.severity = OPENMD_ERROR;
144 +      simError();
145 +    }
146 +
147 +    bool methodFluxMismatch = false;
148 +    bool hasCorrectFlux = false;
149 +    switch(rnemdMethod_) {
150 +    case rnemdSwap:
151 +      switch (rnemdFluxType_) {
152 +      case rnemdKE:
153 +        hasCorrectFlux = hasKineticFlux;
154 +        break;
155 +      case rnemdPx:
156 +      case rnemdPy:
157 +      case rnemdPz:
158 +        hasCorrectFlux = hasMomentumFlux;
159 +        break;
160 +      default :
161 +        methodFluxMismatch = true;
162 +        break;
163 +      }
164 +      break;
165 +    case rnemdNIVS:
166 +      switch (rnemdFluxType_) {
167 +      case rnemdKE:
168 +      case rnemdRotKE:
169 +      case rnemdFullKE:
170 +        hasCorrectFlux = hasKineticFlux;
171 +        break;
172 +      case rnemdPx:
173 +      case rnemdPy:
174 +      case rnemdPz:
175 +        hasCorrectFlux = hasMomentumFlux;
176 +        break;
177 +      case rnemdKePx:
178 +      case rnemdKePy:
179 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
180 +        break;
181 +      default:
182 +        methodFluxMismatch = true;
183 +        break;
184 +      }
185 +      break;
186 +    case rnemdVSS:
187 +      switch (rnemdFluxType_) {
188 +      case rnemdKE:
189 +      case rnemdRotKE:
190 +      case rnemdFullKE:
191 +        hasCorrectFlux = hasKineticFlux;
192 +        break;
193 +      case rnemdPx:
194 +      case rnemdPy:
195 +      case rnemdPz:
196 +        hasCorrectFlux = hasMomentumFlux;
197 +        break;
198 +      case rnemdPvector:
199 +        hasCorrectFlux = hasMomentumFluxVector;
200 +      case rnemdKePx:
201 +      case rnemdKePy:
202 +        hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
203 +        break;
204 +      case rnemdKePvector:
205 +        hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
206 +        break;
207 +      default:
208 +        methodFluxMismatch = true;
209 +        break;
210 +      }
211 +    default:
212 +      break;
213 +    }
214 +
215 +    if (methodFluxMismatch) {
216 +      sprintf(painCave.errMsg,
217 +              "RNEMD: The current method,\n"
218 +              "\t\t%s\n"
219 +              "\tcannot be used with the current flux type, %s\n",
220 +              methStr.c_str(), fluxStr.c_str());
221 +      painCave.isFatal = 1;
222 +      painCave.severity = OPENMD_ERROR;
223 +      simError();        
224 +    }
225 +    if (!hasCorrectFlux) {
226 +      sprintf(painCave.errMsg,
227 +              "RNEMD: The current method,\n"
228 +              "\t%s, and flux type %s\n"
229 +              "\tdid not have the correct flux value specified. Options\n"
230 +              "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
231 +              methStr.c_str(), fluxStr.c_str());
232 +      painCave.isFatal = 1;
233 +      painCave.severity = OPENMD_ERROR;
234 +      simError();        
235 +    }
236 +
237 +    if (hasKineticFlux) {
238 +      kineticFlux_ = rnemdParams->getKineticFlux();
239 +    } else {
240 +      kineticFlux_ = 0.0;
241 +    }
242 +    if (hasMomentumFluxVector) {
243 +      momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
244 +    } else {
245 +      momentumFluxVector_ = V3Zero;
246 +      if (hasMomentumFlux) {
247 +        RealType momentumFlux = rnemdParams->getMomentumFlux();
248 +        switch (rnemdFluxType_) {
249 +        case rnemdPx:
250 +          momentumFluxVector_.x() = momentumFlux;
251 +          break;
252 +        case rnemdPy:
253 +          momentumFluxVector_.y() = momentumFlux;
254 +          break;
255 +        case rnemdPz:
256 +          momentumFluxVector_.z() = momentumFlux;
257 +          break;
258 +        case rnemdKePx:
259 +          momentumFluxVector_.x() = momentumFlux;
260 +          break;
261 +        case rnemdKePy:
262 +          momentumFluxVector_.y() = momentumFlux;
263 +          break;
264 +        default:
265 +          break;
266 +        }
267 +      }    
268 +    }
269 +
270      // do some sanity checking
271  
272      int selectionCount = seleMan_.getSelectionCount();
# Line 88 | Line 274 | namespace OpenMD {
274  
275      if (selectionCount > nIntegrable) {
276        sprintf(painCave.errMsg,
277 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
277 >              "RNEMD: The current objectSelection,\n"
278                "\t\t%s\n"
279                "\thas resulted in %d selected objects.  However,\n"
280                "\tthe total number of integrable objects in the system\n"
# Line 98 | Line 284 | namespace OpenMD {
284                rnemdObjectSelection_.c_str(),
285                selectionCount, nIntegrable);
286        painCave.isFatal = 0;
287 +      painCave.severity = OPENMD_WARNING;
288        simError();
102
289      }
104    
105    const std::string st = simParams->getRNEMD_exchangeType();
290  
291 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
108 <    i = stringToEnumMap_.find(st);
109 <    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
110 <    if (rnemdType_ == rnemdUnknown) {
111 <      std::cerr << "WARNING! RNEMD Type Unknown!\n";
112 <    }
291 >    nBins_ = rnemdParams->getOutputBins();
292  
293 < #ifdef IS_MPI
294 <    if (worldRank == 0) {
295 < #endif
293 >    data_.resize(RNEMD::ENDINDEX);
294 >    OutputData z;
295 >    z.units =  "Angstroms";
296 >    z.title =  "Z";
297 >    z.dataType = "RealType";
298 >    z.accumulator.reserve(nBins_);
299 >    for (unsigned int i = 0; i < nBins_; i++)
300 >      z.accumulator.push_back( new Accumulator() );
301 >    data_[Z] = z;
302 >    outputMap_["Z"] =  Z;
303  
304 <      std::string rnemdFileName;
305 <      std::string xTempFileName;
306 <      std::string yTempFileName;
307 <      std::string zTempFileName;
308 <      switch(rnemdType_) {
309 <      case rnemdKineticSwap :
310 <      case rnemdKineticScale :
311 <        rnemdFileName = "temperature.log";
304 >    OutputData temperature;
305 >    temperature.units =  "K";
306 >    temperature.title =  "Temperature";
307 >    temperature.dataType = "RealType";
308 >    temperature.accumulator.reserve(nBins_);
309 >    for (unsigned int i = 0; i < nBins_; i++)
310 >      temperature.accumulator.push_back( new Accumulator() );
311 >    data_[TEMPERATURE] = temperature;
312 >    outputMap_["TEMPERATURE"] =  TEMPERATURE;
313 >
314 >    OutputData velocity;
315 >    velocity.units = "amu/fs";
316 >    velocity.title =  "Velocity";  
317 >    velocity.dataType = "Vector3d";
318 >    velocity.accumulator.reserve(nBins_);
319 >    for (unsigned int i = 0; i < nBins_; i++)
320 >      velocity.accumulator.push_back( new VectorAccumulator() );
321 >    data_[VELOCITY] = velocity;
322 >    outputMap_["VELOCITY"] = VELOCITY;
323 >
324 >    OutputData density;
325 >    density.units =  "g cm^-3";
326 >    density.title =  "Density";
327 >    density.dataType = "RealType";
328 >    density.accumulator.reserve(nBins_);
329 >    for (unsigned int i = 0; i < nBins_; i++)
330 >      density.accumulator.push_back( new Accumulator() );
331 >    data_[DENSITY] = density;
332 >    outputMap_["DENSITY"] =  DENSITY;
333 >
334 >    if (hasOutputFields) {
335 >      parseOutputFileFormat(rnemdParams->getOutputFields());
336 >    } else {
337 >      outputMask_.set(Z);
338 >      switch (rnemdFluxType_) {
339 >      case rnemdKE:
340 >      case rnemdRotKE:
341 >      case rnemdFullKE:
342 >        outputMask_.set(TEMPERATURE);
343          break;
344 <      case rnemdPx :
345 <      case rnemdPxScale :
346 <      case rnemdPy :
130 <      case rnemdPyScale :
131 <        rnemdFileName = "momemtum.log";
132 <        xTempFileName = "temperatureX.log";
133 <        yTempFileName = "temperatureY.log";
134 <        zTempFileName = "temperatureZ.log";
135 <        xTempLog_.open(xTempFileName.c_str());
136 <        yTempLog_.open(yTempFileName.c_str());
137 <        zTempLog_.open(zTempFileName.c_str());
344 >      case rnemdPx:
345 >      case rnemdPy:
346 >        outputMask_.set(VELOCITY);
347          break;
348 <      case rnemdPz :
349 <      case rnemdPzScale :
350 <      case rnemdUnknown :
351 <      default :
143 <        rnemdFileName = "rnemd.log";
348 >      case rnemdPz:        
349 >      case rnemdPvector:
350 >        outputMask_.set(VELOCITY);
351 >        outputMask_.set(DENSITY);
352          break;
353 +      case rnemdKePx:
354 +      case rnemdKePy:
355 +        outputMask_.set(TEMPERATURE);
356 +        outputMask_.set(VELOCITY);
357 +        break;
358 +      case rnemdKePvector:
359 +        outputMask_.set(TEMPERATURE);
360 +        outputMask_.set(VELOCITY);
361 +        outputMask_.set(DENSITY);        
362 +        break;
363 +      default:
364 +        break;
365        }
146      rnemdLog_.open(rnemdFileName.c_str());
147
148 #ifdef IS_MPI
366      }
367 < #endif
368 <
369 <    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
153 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
154 <    midBin_ = nBins_ / 2;
155 <    if (simParams->haveRNEMD_logWidth()) {
156 <      rnemdLogWidth_ = simParams->getRNEMD_logWidth();
157 <      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
158 <        std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
159 <        std::cerr << "Automaically set back to default.\n";
160 <        rnemdLogWidth_ = nBins_;
161 <      }
367 >      
368 >    if (hasOutputFileName) {
369 >      rnemdFileName_ = rnemdParams->getOutputFileName();
370      } else {
371 <      rnemdLogWidth_ = nBins_;
372 <    }
165 <    valueHist_.resize(rnemdLogWidth_, 0.0);
166 <    valueCount_.resize(rnemdLogWidth_, 0);
167 <    xTempHist_.resize(rnemdLogWidth_, 0.0);
168 <    yTempHist_.resize(rnemdLogWidth_, 0.0);
169 <    zTempHist_.resize(rnemdLogWidth_, 0.0);
371 >      rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
372 >    }          
373  
374 <    set_RNEMD_exchange_total(0.0);
172 <    if (simParams->haveRNEMD_targetFlux()) {
173 <      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
174 <    } else {
175 <      set_RNEMD_target_flux(0.0);
176 <    }
374 >    exchangeTime_ = rnemdParams->getExchangeTime();
375  
376 < #ifndef IS_MPI
377 <    if (simParams->haveSeed()) {
180 <      seedValue = simParams->getSeed();
181 <      randNumGen_ = new SeqRandNumGen(seedValue);
182 <    }else {
183 <      randNumGen_ = new SeqRandNumGen();
184 <    }    
185 < #else
186 <    if (simParams->haveSeed()) {
187 <      seedValue = simParams->getSeed();
188 <      randNumGen_ = new ParallelRandNumGen(seedValue);
189 <    }else {
190 <      randNumGen_ = new ParallelRandNumGen();
191 <    }    
192 < #endif
193 <  }
376 >    Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
377 >    Mat3x3d hmat = currentSnap_->getHmat();
378    
379 +    // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux
380 +    // Lx, Ly = box dimensions in x & y
381 +    // dt = exchange time interval
382 +    // flux = target flux
383 +
384 +    kineticTarget_ = 2.0*kineticFlux_*exchangeTime_*hmat(0,0)*hmat(1,1);
385 +    momentumTarget_ = 2.0*momentumFluxVector_*exchangeTime_*hmat(0,0)*hmat(1,1);
386 +
387 +    // total exchange sums are zeroed out at the beginning:
388 +
389 +    kineticExchange_ = 0.0;
390 +    momentumExchange_ = V3Zero;
391 +
392 +    if (hasSlabWidth)
393 +      slabWidth_ = rnemdParams->getSlabWidth();
394 +    else
395 +      slabWidth_ = hmat(2,2) / 10.0;
396 +  
397 +    if (hasSlabACenter)
398 +      slabACenter_ = rnemdParams->getSlabACenter();
399 +    else
400 +      slabACenter_ = 0.0;
401 +    
402 +    if (hasSlabBCenter)
403 +      slabBCenter_ = rnemdParams->getSlabBCenter();
404 +    else
405 +      slabBCenter_ = hmat(2,2) / 2.0;
406 +    
407 +  }
408 +  
409    RNEMD::~RNEMD() {
196    delete randNumGen_;
410      
411   #ifdef IS_MPI
412      if (worldRank == 0) {
413   #endif
414 <      std::cerr << "total fail trials: " << failTrialCount_ << "\n";
415 <      rnemdLog_.close();
416 <      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
417 <        std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
418 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) {
206 <        xTempLog_.close();
207 <        yTempLog_.close();
208 <        zTempLog_.close();
209 <      }
414 >
415 >      writeOutputFile();
416 >
417 >      rnemdFile_.close();
418 >      
419   #ifdef IS_MPI
420      }
421   #endif
422    }
423 +  
424 +  bool RNEMD::inSlabA(Vector3d pos) {
425 +    return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
426 +  }
427 +  bool RNEMD::inSlabB(Vector3d pos) {
428 +    return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
429 +  }
430  
431    void RNEMD::doSwap() {
432  
# Line 242 | Line 458 | namespace OpenMD {
458  
459        if (usePeriodicBoundaryConditions_)
460          currentSnap_->wrapVector(pos);
461 +      bool inA = inSlabA(pos);
462 +      bool inB = inSlabB(pos);
463  
464 <      // which bin is this stuntdouble in?
247 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
248 <
249 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
250 <
251 <
252 <      // if we're in bin 0 or the middleBin
253 <      if (binNo == 0 || binNo == midBin_) {
464 >      if (inA || inB) {
465          
466          RealType mass = sd->getMass();
467          Vector3d vel = sd->getVel();
468          RealType value;
469 <
470 <        switch(rnemdType_) {
471 <        case rnemdKineticSwap :
469 >        
470 >        switch(rnemdFluxType_) {
471 >        case rnemdKE :
472            
473 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
474 <                          vel[2]*vel[2]);
475 <          if (sd->isDirectional()) {
473 >          value = mass * vel.lengthSquare();
474 >          
475 >          if (sd->isDirectional()) {
476              Vector3d angMom = sd->getJ();
477              Mat3x3d I = sd->getI();
478              
479              if (sd->isLinear()) {
480 <              int i = sd->linearAxis();
481 <              int j = (i + 1) % 3;
482 <              int k = (i + 2) % 3;
483 <              value += angMom[j] * angMom[j] / I(j, j) +
484 <                angMom[k] * angMom[k] / I(k, k);
480 >              int i = sd->linearAxis();
481 >              int j = (i + 1) % 3;
482 >              int k = (i + 2) % 3;
483 >              value += angMom[j] * angMom[j] / I(j, j) +
484 >                angMom[k] * angMom[k] / I(k, k);
485              } else {                        
486 <              value += angMom[0]*angMom[0]/I(0, 0)
487 <                + angMom[1]*angMom[1]/I(1, 1)
488 <                + angMom[2]*angMom[2]/I(2, 2);
486 >              value += angMom[0]*angMom[0]/I(0, 0)
487 >                + angMom[1]*angMom[1]/I(1, 1)
488 >                + angMom[2]*angMom[2]/I(2, 2);
489              }
490 <          }
491 <          //make exchangeSum_ comparable between swap & scale
492 <          //temporarily without using energyConvert
490 >          } //angular momenta exchange enabled
491 >          //energyConvert temporarily disabled
492 >          //make kineticExchange_ comparable between swap & scale
493            //value = value * 0.5 / PhysicalConstants::energyConvert;
494            value *= 0.5;
495            break;
# Line 295 | Line 506 | namespace OpenMD {
506            break;
507          }
508          
509 <        if (binNo == 0) {
509 >        if (inA == 0) {
510            if (!min_found) {
511              min_val = value;
512              min_sd = sd;
# Line 306 | Line 517 | namespace OpenMD {
517                min_sd = sd;
518              }
519            }
520 <        } else { //midBin_
520 >        } else {
521            if (!max_found) {
522              max_val = value;
523              max_sd = sd;
# Line 320 | Line 531 | namespace OpenMD {
531          }
532        }
533      }
534 <
534 >    
535   #ifdef IS_MPI
536      int nProc, worldRank;
537 <
537 >    
538      nProc = MPI::COMM_WORLD.Get_size();
539      worldRank = MPI::COMM_WORLD.Get_rank();
540  
# Line 331 | Line 542 | namespace OpenMD {
542      bool my_max_found = max_found;
543  
544      // Even if we didn't find a minimum, did someone else?
545 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
335 <                              1, MPI::BOOL, MPI::LAND);
336 <    
545 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
546      // Even if we didn't find a maximum, did someone else?
547 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
548 <                              1, MPI::BOOL, MPI::LAND);
549 <    
550 <    struct {
551 <      RealType val;
552 <      int rank;
553 <    } max_vals, min_vals;
554 <    
555 <    if (min_found) {
556 <      if (my_min_found)
547 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
548 > #endif
549 >
550 >    if (max_found && min_found) {
551 >
552 > #ifdef IS_MPI
553 >      struct {
554 >        RealType val;
555 >        int rank;
556 >      } max_vals, min_vals;
557 >      
558 >      if (my_min_found) {
559          min_vals.val = min_val;
560 <      else
560 >      } else {
561          min_vals.val = HONKING_LARGE_VALUE;
562 <      
562 >      }
563        min_vals.rank = worldRank;    
564        
565        // Who had the minimum?
566        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
567                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
568        min_val = min_vals.val;
358    }
569        
570 <    if (max_found) {
361 <      if (my_max_found)
570 >      if (my_max_found) {
571          max_vals.val = max_val;
572 <      else
572 >      } else {
573          max_vals.val = -HONKING_LARGE_VALUE;
574 <      
574 >      }
575        max_vals.rank = worldRank;    
576        
577        // Who had the maximum?
578        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
579                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
580        max_val = max_vals.val;
372    }
581   #endif
582 <
583 <    if (max_found && min_found) {
584 <      if (min_val< max_val) {
377 <
582 >      
583 >      if (min_val < max_val) {
584 >        
585   #ifdef IS_MPI      
586          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
587            // I have both maximum and minimum, so proceed like a single
588            // processor version:
589   #endif
590 <          // objects to be swapped: velocity & angular velocity
590 >
591            Vector3d min_vel = min_sd->getVel();
592            Vector3d max_vel = max_sd->getVel();
593            RealType temp_vel;
594            
595 <          switch(rnemdType_) {
596 <          case rnemdKineticSwap :
595 >          switch(rnemdFluxType_) {
596 >          case rnemdKE :
597              min_sd->setVel(max_vel);
598              max_sd->setVel(min_vel);
599 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
599 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
600                Vector3d min_angMom = min_sd->getJ();
601                Vector3d max_angMom = max_sd->getJ();
602                min_sd->setJ(max_angMom);
603                max_sd->setJ(min_angMom);
604 <            }
604 >            }//angular momenta exchange enabled
605 >            //assumes same rigid body identity
606              break;
607            case rnemdPx :
608              temp_vel = min_vel.x();
# Line 420 | Line 628 | namespace OpenMD {
628            default :
629              break;
630            }
631 +
632   #ifdef IS_MPI
633            // the rest of the cases only apply in parallel simulations:
634          } else if (max_vals.rank == worldRank) {
# Line 435 | Line 644 | namespace OpenMD {
644                                     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
645                                     min_vals.rank, 0, status);
646            
647 <          switch(rnemdType_) {
648 <          case rnemdKineticSwap :
647 >          switch(rnemdFluxType_) {
648 >          case rnemdKE :
649              max_sd->setVel(min_vel);
650 <            
650 >            //angular momenta exchange enabled
651              if (max_sd->isDirectional()) {
652                Vector3d min_angMom;
653                Vector3d max_angMom = max_sd->getJ();
654 <
654 >              
655                // point-to-point swap of the angular momentum vector
656                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
657                                         MPI::REALTYPE, min_vals.rank, 1,
658                                         min_angMom.getArrayPointer(), 3,
659                                         MPI::REALTYPE, min_vals.rank, 1,
660                                         status);
661 <
661 >              
662                max_sd->setJ(min_angMom);
663 <            }
663 >            }
664              break;
665            case rnemdPx :
666              max_vel.x() = min_vel.x();
# Line 481 | Line 690 | namespace OpenMD {
690                                     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
691                                     max_vals.rank, 0, status);
692            
693 <          switch(rnemdType_) {
694 <          case rnemdKineticSwap :
693 >          switch(rnemdFluxType_) {
694 >          case rnemdKE :
695              min_sd->setVel(max_vel);
696 <            
696 >            //angular momenta exchange enabled
697              if (min_sd->isDirectional()) {
698                Vector3d min_angMom = min_sd->getJ();
699                Vector3d max_angMom;
700 <
700 >              
701                // point-to-point swap of the angular momentum vector
702                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
703                                         MPI::REALTYPE, max_vals.rank, 1,
704                                         max_angMom.getArrayPointer(), 3,
705                                         MPI::REALTYPE, max_vals.rank, 1,
706                                         status);
707 <
707 >              
708                min_sd->setJ(max_angMom);
709              }
710              break;
# Line 516 | Line 725 | namespace OpenMD {
725            }
726          }
727   #endif
728 <        exchangeSum_ += max_val - min_val;
729 <      } else {
730 <        std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
728 >        
729 >        switch(rnemdFluxType_) {
730 >        case rnemdKE:
731 >          cerr << "KE\n";
732 >          kineticExchange_ += max_val - min_val;
733 >          break;
734 >        case rnemdPx:
735 >          momentumExchange_.x() += max_val - min_val;
736 >          break;
737 >        case rnemdPy:
738 >          momentumExchange_.y() += max_val - min_val;
739 >          break;
740 >        case rnemdPz:
741 >          momentumExchange_.z() += max_val - min_val;
742 >          break;
743 >        default:
744 >          cerr << "default\n";
745 >          break;
746 >        }
747 >      } else {        
748 >        sprintf(painCave.errMsg,
749 >                "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
750 >        painCave.isFatal = 0;
751 >        painCave.severity = OPENMD_INFO;
752 >        simError();        
753          failTrialCount_++;
754        }
755      } else {
756 <      std::cerr << "exchange NOT performed!\n";
757 <      std::cerr << "at least one of the two slabs empty.\n";
756 >      sprintf(painCave.errMsg,
757 >              "RNEMD::doSwap exchange NOT performed because selected object\n"
758 >              "\twas not present in at least one of the two slabs.\n");
759 >      painCave.isFatal = 0;
760 >      painCave.severity = OPENMD_INFO;
761 >      simError();        
762        failTrialCount_++;
763 <    }
529 <    
763 >    }    
764    }
765    
766 <  void RNEMD::doScale() {
766 >  void RNEMD::doNIVS() {
767  
768      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
769      Mat3x3d hmat = currentSnap_->getHmat();
# Line 540 | Line 774 | namespace OpenMD {
774      StuntDouble* sd;
775      int idx;
776  
777 <    std::vector<StuntDouble*> hotBin, coldBin;
777 >    vector<StuntDouble*> hotBin, coldBin;
778  
779      RealType Phx = 0.0;
780      RealType Phy = 0.0;
# Line 548 | Line 782 | namespace OpenMD {
782      RealType Khx = 0.0;
783      RealType Khy = 0.0;
784      RealType Khz = 0.0;
785 +    RealType Khw = 0.0;
786      RealType Pcx = 0.0;
787      RealType Pcy = 0.0;
788      RealType Pcz = 0.0;
789      RealType Kcx = 0.0;
790      RealType Kcy = 0.0;
791      RealType Kcz = 0.0;
792 +    RealType Kcw = 0.0;
793  
794      for (sd = seleMan_.beginSelected(selei); sd != NULL;
795           sd = seleMan_.nextSelected(selei)) {
# Line 568 | Line 804 | namespace OpenMD {
804          currentSnap_->wrapVector(pos);
805  
806        // which bin is this stuntdouble in?
807 <      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
807 >      bool inA = inSlabA(pos);
808 >      bool inB = inSlabB(pos);
809  
810 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
811 <
575 <      // if we're in bin 0 or the middleBin
576 <      if (binNo == 0 || binNo == midBin_) {
577 <        
810 >      if (inA || inB) {
811 >              
812          RealType mass = sd->getMass();
813          Vector3d vel = sd->getVel();
814        
815 <        if (binNo == 0) {
815 >        if (inA) {
816            hotBin.push_back(sd);
817            Phx += mass * vel.x();
818            Phy += mass * vel.y();
# Line 586 | Line 820 | namespace OpenMD {
820            Khx += mass * vel.x() * vel.x();
821            Khy += mass * vel.y() * vel.y();
822            Khz += mass * vel.z() * vel.z();
823 <        } else { //midBin_
823 >          if (sd->isDirectional()) {
824 >            Vector3d angMom = sd->getJ();
825 >            Mat3x3d I = sd->getI();
826 >            if (sd->isLinear()) {
827 >              int i = sd->linearAxis();
828 >              int j = (i + 1) % 3;
829 >              int k = (i + 2) % 3;
830 >              Khw += angMom[j] * angMom[j] / I(j, j) +
831 >                angMom[k] * angMom[k] / I(k, k);
832 >            } else {
833 >              Khw += angMom[0]*angMom[0]/I(0, 0)
834 >                + angMom[1]*angMom[1]/I(1, 1)
835 >                + angMom[2]*angMom[2]/I(2, 2);
836 >            }
837 >          }
838 >        } else {
839            coldBin.push_back(sd);
840            Pcx += mass * vel.x();
841            Pcy += mass * vel.y();
# Line 594 | Line 843 | namespace OpenMD {
843            Kcx += mass * vel.x() * vel.x();
844            Kcy += mass * vel.y() * vel.y();
845            Kcz += mass * vel.z() * vel.z();
846 +          if (sd->isDirectional()) {
847 +            Vector3d angMom = sd->getJ();
848 +            Mat3x3d I = sd->getI();
849 +            if (sd->isLinear()) {
850 +              int i = sd->linearAxis();
851 +              int j = (i + 1) % 3;
852 +              int k = (i + 2) % 3;
853 +              Kcw += angMom[j] * angMom[j] / I(j, j) +
854 +                angMom[k] * angMom[k] / I(k, k);
855 +            } else {
856 +              Kcw += angMom[0]*angMom[0]/I(0, 0)
857 +                + angMom[1]*angMom[1]/I(1, 1)
858 +                + angMom[2]*angMom[2]/I(2, 2);
859 +            }
860 +          }
861          }
862        }
863      }
864 <
864 >    
865      Khx *= 0.5;
866      Khy *= 0.5;
867      Khz *= 0.5;
868 +    Khw *= 0.5;
869      Kcx *= 0.5;
870      Kcy *= 0.5;
871      Kcz *= 0.5;
872 +    Kcw *= 0.5;
873  
874   #ifdef IS_MPI
875      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
# Line 616 | Line 882 | namespace OpenMD {
882      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
883      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
884      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
885 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
886 +
887      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
888      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
889      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
890 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
891   #endif
892  
893 <    //use coldBin coeff's
893 >    //solve coldBin coeff's first
894      RealType px = Pcx / Phx;
895      RealType py = Pcy / Phy;
896      RealType pz = Pcz / Phz;
897 +    RealType c, x, y, z;
898 +    bool successfulScale = false;
899 +    if ((rnemdFluxType_ == rnemdFullKE) ||
900 +        (rnemdFluxType_ == rnemdRotKE)) {
901 +      //may need sanity check Khw & Kcw > 0
902  
903 <    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
904 <    switch(rnemdType_) {
905 <    case rnemdKineticScale :
906 <    /*used hotBin coeff's & only scale x & y dimensions
907 <      RealType px = Phx / Pcx;
634 <      RealType py = Phy / Pcy;
635 <      a110 = Khy;
636 <      c0 = - Khx - Khy - targetFlux_;
637 <      a000 = Khx;
638 <      a111 = Kcy * py * py
639 <      b11 = -2.0 * Kcy * py * (1.0 + py);
640 <      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
641 <      b01 = -2.0 * Kcx * px * (1.0 + px);
642 <      a001 = Kcx * px * px;
643 <    */
903 >      if (rnemdFluxType_ == rnemdFullKE) {
904 >        c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
905 >      } else {
906 >        c = 1.0 - kineticTarget_ / Kcw;
907 >      }
908  
909 <      //scale all three dimensions, let c_x = c_y
910 <      a000 = Kcx + Kcy;
911 <      a110 = Kcz;
912 <      c0 = targetFlux_ - Kcx - Kcy - Kcz;
913 <      a001 = Khx * px * px + Khy * py * py;
914 <      a111 = Khz * pz * pz;
915 <      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
916 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
917 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
918 <         + Khz * pz * (2.0 + pz) - targetFlux_;
919 <      break;
920 <    case rnemdPxScale :
921 <      c = 1 - targetFlux_ / Pcx;
922 <      a000 = Kcy;
923 <      a110 = Kcz;
924 <      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
925 <      a001 = py * py * Khy;
926 <      a111 = pz * pz * Khz;
927 <      b01 = -2.0 * Khy * py * (1.0 + py);
928 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
929 <      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
930 <         + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
931 <      break;
932 <    case rnemdPyScale :
933 <      c = 1 - targetFlux_ / Pcy;
934 <      a000 = Kcx;
935 <      a110 = Kcz;
936 <      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
937 <      a001 = px * px * Khx;
938 <      a111 = pz * pz * Khz;
939 <      b01 = -2.0 * Khx * px * (1.0 + px);
940 <      b11 = -2.0 * Khz * pz * (1.0 + pz);
941 <      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
942 <         + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
943 <      break;
944 <    case rnemdPzScale ://we don't really do this, do we?
945 <      c = 1 - targetFlux_ / Pcz;
946 <      a000 = Kcx;
947 <      a110 = Kcy;
948 <      c0 = Kcz * c * c - Kcx - Kcy - Kcz;
949 <      a001 = px * px * Khx;
950 <      a111 = py * py * Khy;
951 <      b01 = -2.0 * Khx * px * (1.0 + px);
952 <      b11 = -2.0 * Khy * py * (1.0 + py);
953 <      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
954 <        + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
955 <      break;      
956 <    default :
957 <      break;
909 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
910 >        c = sqrt(c);
911 >        //std::cerr << "cold slab scaling coefficient: " << c << endl;
912 >        //now convert to hotBin coefficient
913 >        RealType w = 0.0;
914 >        if (rnemdFluxType_ ==  rnemdFullKE) {
915 >          x = 1.0 + px * (1.0 - c);
916 >          y = 1.0 + py * (1.0 - c);
917 >          z = 1.0 + pz * (1.0 - c);
918 >          /* more complicated way
919 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
920 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
921 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
922 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
923 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
924 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
925 >          */
926 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
927 >              (fabs(z - 1.0) < 0.1)) {
928 >            w = 1.0 + (kineticTarget_
929 >                       + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
930 >                       + Khz * (1.0 - z * z)) / Khw;
931 >          }//no need to calculate w if x, y or z is out of range
932 >        } else {
933 >          w = 1.0 + kineticTarget_ / Khw;
934 >        }
935 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
936 >          //if w is in the right range, so should be x, y, z.
937 >          vector<StuntDouble*>::iterator sdi;
938 >          Vector3d vel;
939 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
940 >            if (rnemdFluxType_ == rnemdFullKE) {
941 >              vel = (*sdi)->getVel() * c;
942 >              (*sdi)->setVel(vel);
943 >            }
944 >            if ((*sdi)->isDirectional()) {
945 >              Vector3d angMom = (*sdi)->getJ() * c;
946 >              (*sdi)->setJ(angMom);
947 >            }
948 >          }
949 >          w = sqrt(w);
950 >          // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
951 >          //           << "\twh= " << w << endl;
952 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
953 >            if (rnemdFluxType_ == rnemdFullKE) {
954 >              vel = (*sdi)->getVel();
955 >              vel.x() *= x;
956 >              vel.y() *= y;
957 >              vel.z() *= z;
958 >              (*sdi)->setVel(vel);
959 >            }
960 >            if ((*sdi)->isDirectional()) {
961 >              Vector3d angMom = (*sdi)->getJ() * w;
962 >              (*sdi)->setJ(angMom);
963 >            }
964 >          }
965 >          successfulScale = true;
966 >          kineticExchange_ += kineticTarget_;
967 >        }
968 >      }
969 >    } else {
970 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
971 >      switch(rnemdFluxType_) {
972 >      case rnemdKE :
973 >        /* used hotBin coeff's & only scale x & y dimensions
974 >           RealType px = Phx / Pcx;
975 >           RealType py = Phy / Pcy;
976 >           a110 = Khy;
977 >           c0 = - Khx - Khy - kineticTarget_;
978 >           a000 = Khx;
979 >           a111 = Kcy * py * py;
980 >           b11 = -2.0 * Kcy * py * (1.0 + py);
981 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
982 >           b01 = -2.0 * Kcx * px * (1.0 + px);
983 >           a001 = Kcx * px * px;
984 >        */
985 >        //scale all three dimensions, let c_x = c_y
986 >        a000 = Kcx + Kcy;
987 >        a110 = Kcz;
988 >        c0 = kineticTarget_ - Kcx - Kcy - Kcz;
989 >        a001 = Khx * px * px + Khy * py * py;
990 >        a111 = Khz * pz * pz;
991 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
992 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
993 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
994 >          + Khz * pz * (2.0 + pz) - kineticTarget_;
995 >        break;
996 >      case rnemdPx :
997 >        c = 1 - momentumTarget_.x() / Pcx;
998 >        a000 = Kcy;
999 >        a110 = Kcz;
1000 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1001 >        a001 = py * py * Khy;
1002 >        a111 = pz * pz * Khz;
1003 >        b01 = -2.0 * Khy * py * (1.0 + py);
1004 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1005 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1006 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1007 >        break;
1008 >      case rnemdPy :
1009 >        c = 1 - momentumTarget_.y() / Pcy;
1010 >        a000 = Kcx;
1011 >        a110 = Kcz;
1012 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1013 >        a001 = px * px * Khx;
1014 >        a111 = pz * pz * Khz;
1015 >        b01 = -2.0 * Khx * px * (1.0 + px);
1016 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
1017 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1018 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1019 >        break;
1020 >      case rnemdPz ://we don't really do this, do we?
1021 >        c = 1 - momentumTarget_.z() / Pcz;
1022 >        a000 = Kcx;
1023 >        a110 = Kcy;
1024 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1025 >        a001 = px * px * Khx;
1026 >        a111 = py * py * Khy;
1027 >        b01 = -2.0 * Khx * px * (1.0 + px);
1028 >        b11 = -2.0 * Khy * py * (1.0 + py);
1029 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1030 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1031 >        break;
1032 >      default :
1033 >        break;
1034 >      }
1035 >      
1036 >      RealType v1 = a000 * a111 - a001 * a110;
1037 >      RealType v2 = a000 * b01;
1038 >      RealType v3 = a000 * b11;
1039 >      RealType v4 = a000 * c1 - a001 * c0;
1040 >      RealType v8 = a110 * b01;
1041 >      RealType v10 = - b01 * c0;
1042 >      
1043 >      RealType u0 = v2 * v10 - v4 * v4;
1044 >      RealType u1 = -2.0 * v3 * v4;
1045 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1046 >      RealType u3 = -2.0 * v1 * v3;
1047 >      RealType u4 = - v1 * v1;
1048 >      //rescale coefficients
1049 >      RealType maxAbs = fabs(u0);
1050 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1051 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1052 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1053 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1054 >      u0 /= maxAbs;
1055 >      u1 /= maxAbs;
1056 >      u2 /= maxAbs;
1057 >      u3 /= maxAbs;
1058 >      u4 /= maxAbs;
1059 >      //max_element(start, end) is also available.
1060 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1061 >      poly.setCoefficient(4, u4);
1062 >      poly.setCoefficient(3, u3);
1063 >      poly.setCoefficient(2, u2);
1064 >      poly.setCoefficient(1, u1);
1065 >      poly.setCoefficient(0, u0);
1066 >      vector<RealType> realRoots = poly.FindRealRoots();
1067 >      
1068 >      vector<RealType>::iterator ri;
1069 >      RealType r1, r2, alpha0;
1070 >      vector<pair<RealType,RealType> > rps;
1071 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1072 >        r2 = *ri;
1073 >        //check if FindRealRoots() give the right answer
1074 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1075 >          sprintf(painCave.errMsg,
1076 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1077 >          painCave.isFatal = 0;
1078 >          simError();
1079 >          failRootCount_++;
1080 >        }
1081 >        //might not be useful w/o rescaling coefficients
1082 >        alpha0 = -c0 - a110 * r2 * r2;
1083 >        if (alpha0 >= 0.0) {
1084 >          r1 = sqrt(alpha0 / a000);
1085 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1086 >              < 1e-6)
1087 >            { rps.push_back(make_pair(r1, r2)); }
1088 >          if (r1 > 1e-6) { //r1 non-negative
1089 >            r1 = -r1;
1090 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1091 >                < 1e-6)
1092 >              { rps.push_back(make_pair(r1, r2)); }
1093 >          }
1094 >        }
1095 >      }
1096 >      // Consider combining together the solving pair part w/ the searching
1097 >      // best solution part so that we don't need the pairs vector
1098 >      if (!rps.empty()) {
1099 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1100 >        RealType diff;
1101 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1102 >        vector<pair<RealType,RealType> >::iterator rpi;
1103 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1104 >          r1 = (*rpi).first;
1105 >          r2 = (*rpi).second;
1106 >          switch(rnemdFluxType_) {
1107 >          case rnemdKE :
1108 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1109 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1110 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1111 >            break;
1112 >          case rnemdPx :
1113 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1114 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1115 >            break;
1116 >          case rnemdPy :
1117 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1118 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1119 >            break;
1120 >          case rnemdPz :
1121 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1122 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1123 >          default :
1124 >            break;
1125 >          }
1126 >          if (diff < smallestDiff) {
1127 >            smallestDiff = diff;
1128 >            bestPair = *rpi;
1129 >          }
1130 >        }
1131 > #ifdef IS_MPI
1132 >        if (worldRank == 0) {
1133 > #endif
1134 >          // sprintf(painCave.errMsg,
1135 >          //         "RNEMD: roots r1= %lf\tr2 = %lf\n",
1136 >          //         bestPair.first, bestPair.second);
1137 >          // painCave.isFatal = 0;
1138 >          // painCave.severity = OPENMD_INFO;
1139 >          // simError();
1140 > #ifdef IS_MPI
1141 >        }
1142 > #endif
1143 >        
1144 >        switch(rnemdFluxType_) {
1145 >        case rnemdKE :
1146 >          x = bestPair.first;
1147 >          y = bestPair.first;
1148 >          z = bestPair.second;
1149 >          break;
1150 >        case rnemdPx :
1151 >          x = c;
1152 >          y = bestPair.first;
1153 >          z = bestPair.second;
1154 >          break;
1155 >        case rnemdPy :
1156 >          x = bestPair.first;
1157 >          y = c;
1158 >          z = bestPair.second;
1159 >          break;
1160 >        case rnemdPz :
1161 >          x = bestPair.first;
1162 >          y = bestPair.second;
1163 >          z = c;
1164 >          break;          
1165 >        default :
1166 >          break;
1167 >        }
1168 >        vector<StuntDouble*>::iterator sdi;
1169 >        Vector3d vel;
1170 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1171 >          vel = (*sdi)->getVel();
1172 >          vel.x() *= x;
1173 >          vel.y() *= y;
1174 >          vel.z() *= z;
1175 >          (*sdi)->setVel(vel);
1176 >        }
1177 >        //convert to hotBin coefficient
1178 >        x = 1.0 + px * (1.0 - x);
1179 >        y = 1.0 + py * (1.0 - y);
1180 >        z = 1.0 + pz * (1.0 - z);
1181 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1182 >          vel = (*sdi)->getVel();
1183 >          vel.x() *= x;
1184 >          vel.y() *= y;
1185 >          vel.z() *= z;
1186 >          (*sdi)->setVel(vel);
1187 >        }
1188 >        successfulScale = true;
1189 >        switch(rnemdFluxType_) {
1190 >        case rnemdKE :
1191 >          kineticExchange_ += kineticTarget_;
1192 >          break;
1193 >        case rnemdPx :
1194 >        case rnemdPy :
1195 >        case rnemdPz :
1196 >          momentumExchange_ += momentumTarget_;
1197 >          break;          
1198 >        default :
1199 >          break;
1200 >        }      
1201 >      }
1202      }
1203 +    if (successfulScale != true) {
1204 +      sprintf(painCave.errMsg,
1205 +              "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1206 +              "\tthe constraint equations may not exist or there may be\n"
1207 +              "\tno selected objects in one or both slabs.\n");
1208 +      painCave.isFatal = 0;
1209 +      painCave.severity = OPENMD_INFO;
1210 +      simError();        
1211 +      failTrialCount_++;
1212 +    }
1213 +  }
1214  
1215 <    RealType v1 = a000 * a111 - a001 * a110;
697 <    RealType v2 = a000 * b01;
698 <    RealType v3 = a000 * b11;
699 <    RealType v4 = a000 * c1 - a001 * c0;
700 <    RealType v8 = a110 * b01;
701 <    RealType v10 = - b01 * c0;
1215 >  void RNEMD::doVSS() {
1216  
1217 <    RealType u0 = v2 * v10 - v4 * v4;
1218 <    RealType u1 = -2.0 * v3 * v4;
1219 <    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
706 <    RealType u3 = -2.0 * v1 * v3;
707 <    RealType u4 = - v1 * v1;
708 <    //rescale coefficients
709 <    RealType maxAbs = fabs(u0);
710 <    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
711 <    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
712 <    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
713 <    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
714 <    u0 /= maxAbs;
715 <    u1 /= maxAbs;
716 <    u2 /= maxAbs;
717 <    u3 /= maxAbs;
718 <    u4 /= maxAbs;
719 <    //max_element(start, end) is also available.
720 <    Polynomial<RealType> poly; //same as DoublePolynomial poly;
721 <    poly.setCoefficient(4, u4);
722 <    poly.setCoefficient(3, u3);
723 <    poly.setCoefficient(2, u2);
724 <    poly.setCoefficient(1, u1);
725 <    poly.setCoefficient(0, u0);
726 <    std::vector<RealType> realRoots = poly.FindRealRoots();
1217 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1218 >    RealType time = currentSnap_->getTime();    
1219 >    Mat3x3d hmat = currentSnap_->getHmat();
1220  
1221 <    std::vector<RealType>::iterator ri;
1222 <    RealType r1, r2, alpha0;
1223 <    std::vector<std::pair<RealType,RealType> > rps;
1224 <    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1225 <      r2 = *ri;
1226 <      //check if FindRealRoots() give the right answer
1227 <      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1228 <        sprintf(painCave.errMsg,
1229 <                "RNEMD Warning: polynomial solve seems to have an error!");
1230 <        painCave.isFatal = 0;
1231 <        simError();
1232 <        failRootCount_++;
1221 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1222 >
1223 >    int selei;
1224 >    StuntDouble* sd;
1225 >    int idx;
1226 >
1227 >    vector<StuntDouble*> hotBin, coldBin;
1228 >
1229 >    Vector3d Ph(V3Zero);
1230 >    RealType Mh = 0.0;
1231 >    RealType Kh = 0.0;
1232 >    Vector3d Pc(V3Zero);
1233 >    RealType Mc = 0.0;
1234 >    RealType Kc = 0.0;
1235 >    
1236 >
1237 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1238 >         sd = seleMan_.nextSelected(selei)) {
1239 >
1240 >      idx = sd->getLocalIndex();
1241 >
1242 >      Vector3d pos = sd->getPos();
1243 >
1244 >      // wrap the stuntdouble's position back into the box:
1245 >
1246 >      if (usePeriodicBoundaryConditions_)
1247 >        currentSnap_->wrapVector(pos);
1248 >
1249 >      // which bin is this stuntdouble in?
1250 >      bool inA = inSlabA(pos);
1251 >      bool inB = inSlabB(pos);
1252 >      
1253 >      if (inA || inB) {
1254 >        
1255 >        RealType mass = sd->getMass();
1256 >        Vector3d vel = sd->getVel();
1257 >      
1258 >        if (inA) {
1259 >          hotBin.push_back(sd);
1260 >          //std::cerr << "before, velocity = " << vel << endl;
1261 >          Ph += mass * vel;
1262 >          //std::cerr << "after, velocity = " << vel << endl;
1263 >          Mh += mass;
1264 >          Kh += mass * vel.lengthSquare();
1265 >          if (rnemdFluxType_ == rnemdFullKE) {
1266 >            if (sd->isDirectional()) {
1267 >              Vector3d angMom = sd->getJ();
1268 >              Mat3x3d I = sd->getI();
1269 >              if (sd->isLinear()) {
1270 >                int i = sd->linearAxis();
1271 >                int j = (i + 1) % 3;
1272 >                int k = (i + 2) % 3;
1273 >                Kh += angMom[j] * angMom[j] / I(j, j) +
1274 >                  angMom[k] * angMom[k] / I(k, k);
1275 >              } else {
1276 >                Kh += angMom[0] * angMom[0] / I(0, 0) +
1277 >                  angMom[1] * angMom[1] / I(1, 1) +
1278 >                  angMom[2] * angMom[2] / I(2, 2);
1279 >              }
1280 >            }
1281 >          }
1282 >        } else { //midBin_
1283 >          coldBin.push_back(sd);
1284 >          Pc += mass * vel;
1285 >          Mc += mass;
1286 >          Kc += mass * vel.lengthSquare();
1287 >          if (rnemdFluxType_ == rnemdFullKE) {
1288 >            if (sd->isDirectional()) {
1289 >              Vector3d angMom = sd->getJ();
1290 >              Mat3x3d I = sd->getI();
1291 >              if (sd->isLinear()) {
1292 >                int i = sd->linearAxis();
1293 >                int j = (i + 1) % 3;
1294 >                int k = (i + 2) % 3;
1295 >                Kc += angMom[j] * angMom[j] / I(j, j) +
1296 >                  angMom[k] * angMom[k] / I(k, k);
1297 >              } else {
1298 >                Kc += angMom[0] * angMom[0] / I(0, 0) +
1299 >                  angMom[1] * angMom[1] / I(1, 1) +
1300 >                  angMom[2] * angMom[2] / I(2, 2);
1301 >              }
1302 >            }
1303 >          }
1304 >        }
1305        }
741      //might not be useful w/o rescaling coefficients
742      alpha0 = -c0 - a110 * r2 * r2;
743      if (alpha0 >= 0.0) {
744        r1 = sqrt(alpha0 / a000);
745        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
746          { rps.push_back(std::make_pair(r1, r2)); }
747        if (r1 > 1e-6) { //r1 non-negative
748          r1 = -r1;
749          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
750            { rps.push_back(std::make_pair(r1, r2)); }
751        }
752      }
1306      }
1307 <    // Consider combininig together the solving pair part w/ the searching
1308 <    // best solution part so that we don't need the pairs vector
1309 <    if (!rps.empty()) {
1310 <      RealType smallestDiff = HONKING_LARGE_VALUE;
1311 <      RealType diff;
1312 <      std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
1313 <      std::vector<std::pair<RealType,RealType> >::iterator rpi;
1314 <      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
762 <        r1 = (*rpi).first;
763 <        r2 = (*rpi).second;
764 <        switch(rnemdType_) {
765 <        case rnemdKineticScale :
766 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
767 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
768 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
769 <          break;
770 <        case rnemdPxScale :
771 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
772 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
773 <          break;
774 <        case rnemdPyScale :
775 <          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
776 <            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
777 <          break;
778 <        case rnemdPzScale :
779 <        default :
780 <          break;
781 <        }
782 <        if (diff < smallestDiff) {
783 <          smallestDiff = diff;
784 <          bestPair = *rpi;
785 <        }
786 <      }
1307 >    
1308 >    Kh *= 0.5;
1309 >    Kc *= 0.5;
1310 >
1311 >    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1312 >    //        << "\tKc= " << Kc << endl;
1313 >    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1314 >    
1315   #ifdef IS_MPI
1316 <      if (worldRank == 0) {
1316 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1317 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1318 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1319 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1320 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1321 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1322   #endif
790        std::cerr << "we choose r1 = " << bestPair.first
791                  << " and r2 = " << bestPair.second << "\n";
792 #ifdef IS_MPI
793      }
794 #endif
1323  
1324 <      RealType x, y, z;
1325 <        switch(rnemdType_) {
1326 <        case rnemdKineticScale :
1327 <          x = bestPair.first;
1328 <          y = bestPair.first;
1329 <          z = bestPair.second;
1330 <          break;
1331 <        case rnemdPxScale :
1332 <          x = c;
1333 <          y = bestPair.first;
1334 <          z = bestPair.second;
1335 <          break;
1336 <        case rnemdPyScale :
1337 <          x = bestPair.first;
1338 <          y = c;
1339 <          z = bestPair.second;
1340 <          break;
1341 <        case rnemdPzScale :
1342 <          x = bestPair.first;
1343 <          y = bestPair.second;
1344 <          z = c;
1345 <          break;          
1346 <        default :
1347 <          break;
1348 <        }
1349 <      std::vector<StuntDouble*>::iterator sdi;
1350 <      Vector3d vel;
1351 <      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1352 <        vel = (*sdi)->getVel();
1353 <        vel.x() *= x;
1354 <        vel.y() *= y;
1355 <        vel.z() *= z;
1356 <        (*sdi)->setVel(vel);
1324 >    bool successfulExchange = false;
1325 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1326 >      Vector3d vc = Pc / Mc;
1327 >      Vector3d ac = -momentumTarget_ / Mc + vc;
1328 >      Vector3d acrec = -momentumTarget_ / Mc;
1329 >      RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1330 >      if (cNumerator > 0.0) {
1331 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1332 >        if (cDenominator > 0.0) {
1333 >          RealType c = sqrt(cNumerator / cDenominator);
1334 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1335 >            Vector3d vh = Ph / Mh;
1336 >            Vector3d ah = momentumTarget_ / Mh + vh;
1337 >            Vector3d ahrec = momentumTarget_ / Mh;
1338 >            RealType hNumerator = Kh + kineticTarget_
1339 >              - 0.5 * Mh * ah.lengthSquare();
1340 >            if (hNumerator > 0.0) {
1341 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1342 >              if (hDenominator > 0.0) {
1343 >                RealType h = sqrt(hNumerator / hDenominator);
1344 >                if ((h > 0.9) && (h < 1.1)) {
1345 >                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1346 >                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1347 >                  vector<StuntDouble*>::iterator sdi;
1348 >                  Vector3d vel;
1349 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1350 >                    //vel = (*sdi)->getVel();
1351 >                    vel = ((*sdi)->getVel() - vc) * c + ac;
1352 >                    (*sdi)->setVel(vel);
1353 >                    if (rnemdFluxType_ == rnemdFullKE) {
1354 >                      if ((*sdi)->isDirectional()) {
1355 >                        Vector3d angMom = (*sdi)->getJ() * c;
1356 >                        (*sdi)->setJ(angMom);
1357 >                      }
1358 >                    }
1359 >                  }
1360 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1361 >                    //vel = (*sdi)->getVel();
1362 >                    vel = ((*sdi)->getVel() - vh) * h + ah;
1363 >                    (*sdi)->setVel(vel);
1364 >                    if (rnemdFluxType_ == rnemdFullKE) {
1365 >                      if ((*sdi)->isDirectional()) {
1366 >                        Vector3d angMom = (*sdi)->getJ() * h;
1367 >                        (*sdi)->setJ(angMom);
1368 >                      }
1369 >                    }
1370 >                  }
1371 >                  successfulExchange = true;
1372 >                  kineticExchange_ += kineticTarget_;
1373 >                  momentumExchange_ += momentumTarget_;
1374 >                }
1375 >              }
1376 >            }
1377 >          }
1378 >        }
1379        }
1380 <      //convert to hotBin coefficient
1381 <      x = 1.0 + px * (1.0 - x);
1382 <      y = 1.0 + py * (1.0 - y);
1383 <      z = 1.0 + pz * (1.0 - z);
1384 <      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1385 <        vel = (*sdi)->getVel();
1386 <        vel.x() *= x;
1387 <        vel.y() *= y;
1388 <        vel.z() *= z;
839 <        (*sdi)->setVel(vel);
840 <      }
841 <      exchangeSum_ += targetFlux_;
842 <      //we may want to check whether the exchange has been successful
843 <    } else {
844 <      std::cerr << "exchange NOT performed!\n";//MPI incompatible
1380 >    }
1381 >    if (successfulExchange != true) {
1382 >      sprintf(painCave.errMsg,
1383 >              "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1384 >              "\tthe constraint equations may not exist or there may be\n"
1385 >              "\tno selected objects in one or both slabs.\n");
1386 >      painCave.isFatal = 0;
1387 >      painCave.severity = OPENMD_INFO;
1388 >      simError();        
1389        failTrialCount_++;
1390      }
847
1391    }
1392  
1393    void RNEMD::doRNEMD() {
1394  
1395 <    switch(rnemdType_) {
1396 <    case rnemdKineticScale :
1397 <    case rnemdPxScale :
855 <    case rnemdPyScale :
856 <    case rnemdPzScale :
857 <      doScale();
858 <      break;
859 <    case rnemdKineticSwap :
860 <    case rnemdPx :
861 <    case rnemdPy :
862 <    case rnemdPz :
1395 >    trialCount_++;
1396 >    switch(rnemdMethod_) {
1397 >    case rnemdSwap:
1398        doSwap();
1399        break;
1400 <    case rnemdUnknown :
1400 >    case rnemdNIVS:
1401 >      doNIVS();
1402 >      break;
1403 >    case rnemdVSS:
1404 >      doVSS();
1405 >      break;
1406 >    case rnemdUnkownMethod:
1407      default :
1408        break;
1409      }
# Line 879 | Line 1420 | namespace OpenMD {
1420      StuntDouble* sd;
1421      int idx;
1422  
1423 +    vector<RealType> binMass(nBins_, 0.0);
1424 +    vector<RealType> binPx(nBins_, 0.0);
1425 +    vector<RealType> binPy(nBins_, 0.0);
1426 +    vector<RealType> binPz(nBins_, 0.0);
1427 +    vector<RealType> binKE(nBins_, 0.0);
1428 +    vector<int> binDOF(nBins_, 0);
1429 +    vector<int> binCount(nBins_, 0);
1430 +
1431 +    // alternative approach, track all molecules instead of only those
1432 +    // selected for scaling/swapping:
1433 +    /*
1434 +    SimInfo::MoleculeIterator miter;
1435 +    vector<StuntDouble*>::iterator iiter;
1436 +    Molecule* mol;
1437 +    StuntDouble* sd;
1438 +    for (mol = info_->beginMolecule(miter); mol != NULL;
1439 +      mol = info_->nextMolecule(miter))
1440 +      sd is essentially sd
1441 +        for (sd = mol->beginIntegrableObject(iiter);
1442 +             sd != NULL;
1443 +             sd = mol->nextIntegrableObject(iiter))
1444 +    */
1445      for (sd = seleMan_.beginSelected(selei); sd != NULL;
1446           sd = seleMan_.nextSelected(selei)) {
1447        
# Line 890 | Line 1453 | namespace OpenMD {
1453        
1454        if (usePeriodicBoundaryConditions_)
1455          currentSnap_->wrapVector(pos);
1456 <      
1456 >
1457        // which bin is this stuntdouble in?
1458        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1459 <      
1459 >      // Shift molecules by half a box to have bins start at 0
1460 >      // The modulo operator is used to wrap the case when we are
1461 >      // beyond the end of the bins back to the beginning.
1462        int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1463 <
899 <      if (rnemdLogWidth_ == midBin_ + 1)
900 <        if (binNo > midBin_)
901 <          binNo = nBins_ - binNo;
902 <
1463 >    
1464        RealType mass = sd->getMass();
1465        Vector3d vel = sd->getVel();
905      RealType value;
906      RealType xVal, yVal, zVal;
1466  
1467 <      switch(rnemdType_) {
1468 <      case rnemdKineticSwap :
1469 <      case rnemdKineticScale :
1470 <        
1471 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
1472 <                        vel[2]*vel[2]);
1473 <        
915 <        valueCount_[binNo] += 3;
916 <        if (sd->isDirectional()) {
917 <          Vector3d angMom = sd->getJ();
918 <          Mat3x3d I = sd->getI();
919 <          
920 <          if (sd->isLinear()) {
921 <            int i = sd->linearAxis();
922 <            int j = (i + 1) % 3;
923 <            int k = (i + 2) % 3;
924 <            value += angMom[j] * angMom[j] / I(j, j) +
925 <              angMom[k] * angMom[k] / I(k, k);
1467 >      binCount[binNo]++;
1468 >      binMass[binNo] += mass;
1469 >      binPx[binNo] += mass*vel.x();
1470 >      binPy[binNo] += mass*vel.y();
1471 >      binPz[binNo] += mass*vel.z();
1472 >      binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1473 >      binDOF[binNo] += 3;
1474  
1475 <            valueCount_[binNo] +=2;
1475 >      if (sd->isDirectional()) {
1476 >        Vector3d angMom = sd->getJ();
1477 >        Mat3x3d I = sd->getI();
1478 >        if (sd->isLinear()) {
1479 >          int i = sd->linearAxis();
1480 >          int j = (i + 1) % 3;
1481 >          int k = (i + 2) % 3;
1482 >          binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1483 >                                 angMom[k] * angMom[k] / I(k, k));
1484 >          binDOF[binNo] += 2;
1485 >        } else {
1486 >          binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1487 >                                 angMom[1] * angMom[1] / I(1, 1) +
1488 >                                 angMom[2] * angMom[2] / I(2, 2));
1489 >          binDOF[binNo] += 3;
1490 >        }
1491 >      }
1492 >    }
1493 >    
1494  
1495 <          } else {
1496 <            value += angMom[0]*angMom[0]/I(0, 0)
1497 <              + angMom[1]*angMom[1]/I(1, 1)
1498 <              + angMom[2]*angMom[2]/I(2, 2);
1499 <            valueCount_[binNo] +=3;
1500 <          }
1501 <        }
1502 <        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1495 > #ifdef IS_MPI
1496 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1497 >                              nBins_, MPI::INT, MPI::SUM);
1498 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1499 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1500 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1501 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1502 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1503 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1504 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1505 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1506 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1507 >                              nBins_, MPI::REALTYPE, MPI::SUM);
1508 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1509 >                              nBins_, MPI::INT, MPI::SUM);
1510 > #endif
1511  
1512 <        break;
1513 <      case rnemdPx :
1514 <      case rnemdPxScale :
1515 <        value = mass * vel[0];
1516 <        valueCount_[binNo]++;
1517 <        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
1518 <          / PhysicalConstants::kb;
1519 <        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1520 <          / PhysicalConstants::kb;
1521 <        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1522 <          / PhysicalConstants::kb;
1523 <        xTempHist_[binNo] += xVal;
1524 <        yTempHist_[binNo] += yVal;
1525 <        zTempHist_[binNo] += zVal;
1526 <        break;
1527 <      case rnemdPy :
1528 <      case rnemdPyScale :
1529 <        value = mass * vel[1];
1530 <        valueCount_[binNo]++;
1531 <        break;
1532 <      case rnemdPz :
1533 <      case rnemdPzScale :
1534 <        value = mass * vel[2];
1535 <        valueCount_[binNo]++;
1536 <        break;
1537 <      case rnemdUnknown :
1538 <      default :
1539 <        break;
1512 >    Vector3d vel;
1513 >    RealType den;
1514 >    RealType temp;
1515 >    RealType z;
1516 >    for (int i = 0; i < nBins_; i++) {
1517 >      z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1518 >      vel.x() = binPx[i] / binMass[i];
1519 >      vel.y() = binPy[i] / binMass[i];
1520 >      vel.z() = binPz[i] / binMass[i];
1521 >      den = binCount[i] * nBins_ / (hmat(0,0) * hmat(1,1) * hmat(2,2));
1522 >      temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1523 >                               PhysicalConstants::energyConvert);
1524 >
1525 >      for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1526 >        if(outputMask_[j]) {
1527 >          switch(j) {
1528 >          case Z:
1529 >            (data_[j].accumulator[i])->add(z);
1530 >            break;
1531 >          case TEMPERATURE:
1532 >            data_[j].accumulator[i]->add(temp);
1533 >            break;
1534 >          case VELOCITY:
1535 >            dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1536 >            break;
1537 >          case DENSITY:
1538 >            data_[j].accumulator[i]->add(den);
1539 >            break;
1540 >          }
1541 >        }
1542        }
967      valueHist_[binNo] += value;
1543      }
969
1544    }
1545  
1546    void RNEMD::getStarted() {
1547 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1548 <    Stats& stat = currentSnap_->statData;
975 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1547 >    collectData();
1548 >    writeOutputFile();
1549    }
1550  
1551 <  void RNEMD::getStatus() {
1552 <
1553 <    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1554 <    Stats& stat = currentSnap_->statData;
1555 <    RealType time = currentSnap_->getTime();
1556 <
1557 <    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1558 <    //or to be more meaningful, define another item as exchangeSum_ / time
1559 <    int j;
1560 <
1551 >  void RNEMD::parseOutputFileFormat(const std::string& format) {
1552 >    StringTokenizer tokenizer(format, " ,;|\t\n\r");
1553 >    
1554 >    while(tokenizer.hasMoreTokens()) {
1555 >      std::string token(tokenizer.nextToken());
1556 >      toUpper(token);
1557 >      OutputMapType::iterator i = outputMap_.find(token);
1558 >      if (i != outputMap_.end()) {
1559 >        outputMask_.set(i->second);
1560 >      } else {
1561 >        sprintf( painCave.errMsg,
1562 >                 "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1563 >                 "\toutputFileFormat keyword.\n", token.c_str() );
1564 >        painCave.isFatal = 0;
1565 >        painCave.severity = OPENMD_ERROR;
1566 >        simError();            
1567 >      }
1568 >    }  
1569 >  }
1570 >  
1571 >  void RNEMD::writeOutputFile() {
1572 >    
1573   #ifdef IS_MPI
989
990    // all processors have the same number of bins, and STL vectors pack their
991    // arrays, so in theory, this should be safe:
992
993    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
994                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
995    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
996                              rnemdLogWidth_, MPI::INT, MPI::SUM);
997    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) {
998      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
999                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1000      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1001                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1002      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1003                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1004    }
1574      // If we're the root node, should we print out the results
1575      int worldRank = MPI::COMM_WORLD.Get_rank();
1576      if (worldRank == 0) {
1577   #endif
1578 <      rnemdLog_ << time;
1579 <      for (j = 0; j < rnemdLogWidth_; j++) {
1580 <        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
1578 >      rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1579 >      
1580 >      if( !rnemdFile_ ){        
1581 >        sprintf( painCave.errMsg,
1582 >                 "Could not open \"%s\" for RNEMD output.\n",
1583 >                 rnemdFileName_.c_str());
1584 >        painCave.isFatal = 1;
1585 >        simError();
1586        }
1587 <      rnemdLog_ << "\n";
1588 <      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) {
1589 <        xTempLog_ << time;      
1590 <        for (j = 0; j < rnemdLogWidth_; j++) {
1591 <          xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j];
1587 >
1588 >      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1589 >
1590 >      RealType time = currentSnap_->getTime();
1591 >      
1592 >      
1593 >      rnemdFile_ << "#######################################################\n";
1594 >      rnemdFile_ << "# RNEMD {\n";
1595 >
1596 >      map<string, RNEMDMethod>::iterator mi;
1597 >      for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1598 >        if ( (*mi).second == rnemdMethod_)
1599 >          rnemdFile_ << "#    exchangeMethod  = " << (*mi).first << "\n";
1600 >      }
1601 >      map<string, RNEMDFluxType>::iterator fi;
1602 >      for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1603 >        if ( (*fi).second == rnemdFluxType_)
1604 >          rnemdFile_ << "#    fluxType  = " << (*fi).first << "\n";
1605 >      }
1606 >      
1607 >      rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << " fs\n";
1608 >
1609 >      rnemdFile_ << "#    objectSelection = \""
1610 >                 << rnemdObjectSelection_ << "\"\n";
1611 >      rnemdFile_ << "#    slabWidth = " << slabWidth_ << " angstroms\n";
1612 >      rnemdFile_ << "#    slabAcenter = " << slabACenter_ << " angstroms\n";
1613 >      rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << " angstroms\n";
1614 >      rnemdFile_ << "# }\n";
1615 >      rnemdFile_ << "#######################################################\n";
1616 >      
1617 >      rnemdFile_ << "# running time = " << time << " fs\n";
1618 >      rnemdFile_ << "# target kinetic flux = " << kineticFlux_ << "\n";
1619 >      rnemdFile_ << "# target momentum flux = " << momentumFluxVector_ << "\n";
1620 >      
1621 >      rnemdFile_ << "# target one-time kinetic exchange = " << kineticTarget_
1622 >                 << "\n";
1623 >      rnemdFile_ << "# target one-time momentum exchange = " << momentumTarget_
1624 >                 << "\n";
1625 >      
1626 >      rnemdFile_ << "# actual kinetic exchange = " << kineticExchange_ << "\n";
1627 >      rnemdFile_ << "# actual momentum exchange = " << momentumExchange_
1628 >                 << "\n";
1629 >      
1630 >      rnemdFile_ << "# attempted exchanges: " << trialCount_ << "\n";
1631 >      rnemdFile_ << "# failed exchanges: " << failTrialCount_ << "\n";
1632 >
1633 >      
1634 >      if (rnemdMethod_ == rnemdNIVS) {
1635 >        rnemdFile_ << "# NIVS root-check warnings: " << failRootCount_ << "\n";
1636 >      }
1637 >
1638 >      rnemdFile_ << "#######################################################\n";
1639 >      
1640 >      
1641 >      
1642 >      //write title
1643 >      rnemdFile_ << "#";
1644 >      for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1645 >        if (outputMask_[i]) {
1646 >          rnemdFile_ << "\t" << data_[i].title <<
1647 >            "(" << data_[i].units << ")";
1648          }
1019        xTempLog_ << "\n";
1020        yTempLog_ << time;
1021        for (j = 0; j < rnemdLogWidth_; j++) {
1022          yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j];
1023        }
1024        yTempLog_ << "\n";
1025        zTempLog_ << time;
1026        for (j = 0; j < rnemdLogWidth_; j++) {
1027          zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j];
1028        }
1029        zTempLog_ << "\n";
1649        }
1650 +      rnemdFile_ << std::endl;
1651 +      
1652 +      rnemdFile_.precision(8);
1653 +      
1654 +      for (unsigned int j = 0; j < nBins_; j++) {        
1655 +        
1656 +        for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1657 +          if (outputMask_[i]) {
1658 +            if (data_[i].dataType == "RealType")
1659 +              writeReal(i,j);
1660 +            else if (data_[i].dataType == "Vector3d")
1661 +              writeVector(i,j);
1662 +            else {
1663 +              sprintf( painCave.errMsg,
1664 +                       "RNEMD found an unknown data type for: %s ",
1665 +                       data_[i].title.c_str());
1666 +              painCave.isFatal = 1;
1667 +              simError();
1668 +            }
1669 +          }
1670 +        }
1671 +        rnemdFile_ << std::endl;
1672 +        
1673 +      }        
1674 +      
1675 +      rnemdFile_.flush();
1676 +      rnemdFile_.close();
1677 +      
1678   #ifdef IS_MPI
1679      }
1680   #endif
1681 <    for (j = 0; j < rnemdLogWidth_; j++) {
1035 <      valueCount_[j] = 0;
1036 <      valueHist_[j] = 0.0;
1037 <    }
1038 <    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale)
1039 <      for (j = 0; j < rnemdLogWidth_; j++) {
1040 <        xTempHist_[j] = 0.0;
1041 <        yTempHist_[j] = 0.0;
1042 <        zTempHist_[j] = 0.0;
1043 <      }
1681 >    
1682    }
1683 +  
1684 +  void RNEMD::writeReal(int index, unsigned int bin) {
1685 +    assert(index >=0 && index < ENDINDEX);
1686 +    assert(bin >=0 && bin < nBins_);
1687 +    RealType s;
1688 +    
1689 +    data_[index].accumulator[bin]->getAverage(s);
1690 +    
1691 +    if (! isinf(s) && ! isnan(s)) {
1692 +      rnemdFile_ << "\t" << s;
1693 +    } else{
1694 +      sprintf( painCave.errMsg,
1695 +               "RNEMD detected a numerical error writing: %s for bin %d",
1696 +               data_[index].title.c_str(), bin);
1697 +      painCave.isFatal = 1;
1698 +      simError();
1699 +    }    
1700 +  }
1701 +  
1702 +  void RNEMD::writeVector(int index, unsigned int bin) {
1703 +    assert(index >=0 && index < ENDINDEX);
1704 +    assert(bin >=0 && bin < nBins_);
1705 +    Vector3d s;
1706 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1707 +    if (isinf(s[0]) || isnan(s[0]) ||
1708 +        isinf(s[1]) || isnan(s[1]) ||
1709 +        isinf(s[2]) || isnan(s[2]) ) {      
1710 +      sprintf( painCave.errMsg,
1711 +               "RNEMD detected a numerical error writing: %s for bin %d",
1712 +               data_[index].title.c_str(), bin);
1713 +      painCave.isFatal = 1;
1714 +      simError();
1715 +    } else {
1716 +      rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1717 +    }
1718 +  }  
1719   }
1720 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines