ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1627 by gezelter, Tue Sep 13 22:05:04 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 + #include <cmath>
43   #include "integrators/RNEMD.hpp"
44 + #include "math/Vector3.hpp"
45   #include "math/SquareMatrix3.hpp"
46 + #include "math/Polynomial.hpp"
47   #include "primitives/Molecule.hpp"
48   #include "primitives/StuntDouble.hpp"
49 + #include "utils/PhysicalConstants.hpp"
50 + #include "utils/Tuple.hpp"
51  
52   #ifndef IS_MPI
53   #include "math/SeqRandNumGen.hpp"
54   #else
55 + #include <mpi.h>
56   #include "math/ParallelRandNumGen.hpp"
57   #endif
58  
59 < /* Remove me after testing*/
54 < /*
55 < #include <cstdio>
56 < #include <iostream>
57 < */
58 < /*End remove me*/
59 > #define HONKING_LARGE_VALUE 1.0e10
60  
61 < namespace oopse {
61 > namespace OpenMD {
62    
63 <  RNEMD::RNEMD(SimInfo* info) : info_(info) {
64 <    
63 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
64 >
65 >    failTrialCount_ = 0;
66 >    failRootCount_ = 0;
67 >
68      int seedValue;
69      Globals * simParams = info->getSimParams();
70  
71 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
71 >    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
72 >    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
73 >    stringToEnumMap_["PxScale"] = rnemdPxScale;
74 >    stringToEnumMap_["PyScale"] = rnemdPyScale;
75 >    stringToEnumMap_["PzScale"] = rnemdPzScale;
76      stringToEnumMap_["Px"] = rnemdPx;
77      stringToEnumMap_["Py"] = rnemdPy;
78      stringToEnumMap_["Pz"] = rnemdPz;
79      stringToEnumMap_["Unknown"] = rnemdUnknown;
80  
81 <    const std::string st = simParams->getRNEMD_swapType();
81 >    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
82 >    evaluator_.loadScriptString(rnemdObjectSelection_);
83 >    seleMan_.setSelectionSet(evaluator_.evaluate());
84  
85 +    // do some sanity checking
86 +
87 +    int selectionCount = seleMan_.getSelectionCount();
88 +    int nIntegrable = info->getNGlobalIntegrableObjects();
89 +
90 +    if (selectionCount > nIntegrable) {
91 +      sprintf(painCave.errMsg,
92 +              "RNEMD warning: The current RNEMD_objectSelection,\n"
93 +              "\t\t%s\n"
94 +              "\thas resulted in %d selected objects.  However,\n"
95 +              "\tthe total number of integrable objects in the system\n"
96 +              "\tis only %d.  This is almost certainly not what you want\n"
97 +              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
98 +              "\tselector in the selection script!\n",
99 +              rnemdObjectSelection_.c_str(),
100 +              selectionCount, nIntegrable);
101 +      painCave.isFatal = 0;
102 +      simError();
103 +
104 +    }
105 +    
106 +    const std::string st = simParams->getRNEMD_exchangeType();
107 +
108      std::map<std::string, RNEMDTypeEnum>::iterator i;
109      i = stringToEnumMap_.find(st);
110 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
110 >    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
111 >    if (rnemdType_ == rnemdUnknown) {
112 >      std::cerr << "WARNING! RNEMD Type Unknown!\n";
113 >    }
114  
115 + #ifdef IS_MPI
116 +    if (worldRank == 0) {
117 + #endif
118  
119 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
119 >      std::string rnemdFileName;
120 >      std::string xTempFileName;
121 >      std::string yTempFileName;
122 >      std::string zTempFileName;
123 >      switch(rnemdType_) {
124 >      case rnemdKineticSwap :
125 >      case rnemdKineticScale :
126 >        rnemdFileName = "temperature.log";
127 >        break;
128 >      case rnemdPx :
129 >      case rnemdPxScale :
130 >      case rnemdPy :
131 >      case rnemdPyScale :
132 >        rnemdFileName = "momemtum.log";
133 >        xTempFileName = "temperatureX.log";
134 >        yTempFileName = "temperatureY.log";
135 >        zTempFileName = "temperatureZ.log";
136 >        xTempLog_.open(xTempFileName.c_str());
137 >        yTempLog_.open(yTempFileName.c_str());
138 >        zTempLog_.open(zTempFileName.c_str());
139 >        break;
140 >      case rnemdPz :
141 >      case rnemdPzScale :
142 >      case rnemdUnknown :
143 >      default :
144 >        rnemdFileName = "rnemd.log";
145 >        break;
146 >      }
147 >      rnemdLog_.open(rnemdFileName.c_str());
148 >
149 > #ifdef IS_MPI
150 >    }
151 > #endif
152 >
153 >    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
154      set_RNEMD_nBins(simParams->getRNEMD_nBins());
155 <    exchangeSum_ = 0.0;
156 <    
155 >    midBin_ = nBins_ / 2;
156 >    if (simParams->haveRNEMD_logWidth()) {
157 >      rnemdLogWidth_ = simParams->getRNEMD_logWidth();
158 >      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
159 >        std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
160 >        std::cerr << "Automaically set back to default.\n";
161 >        rnemdLogWidth_ = nBins_;
162 >      }
163 >    } else {
164 >      rnemdLogWidth_ = nBins_;
165 >    }
166 >    valueHist_.resize(rnemdLogWidth_, 0.0);
167 >    valueCount_.resize(rnemdLogWidth_, 0);
168 >    xTempHist_.resize(rnemdLogWidth_, 0.0);
169 >    yTempHist_.resize(rnemdLogWidth_, 0.0);
170 >    zTempHist_.resize(rnemdLogWidth_, 0.0);
171 >
172 >    set_RNEMD_exchange_total(0.0);
173 >    if (simParams->haveRNEMD_targetFlux()) {
174 >      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
175 >    } else {
176 >      set_RNEMD_target_flux(0.0);
177 >    }
178 >
179   #ifndef IS_MPI
180      if (simParams->haveSeed()) {
181        seedValue = simParams->getSeed();
# Line 100 | Line 195 | namespace oopse {
195    
196    RNEMD::~RNEMD() {
197      delete randNumGen_;
198 +    
199 + #ifdef IS_MPI
200 +    if (worldRank == 0) {
201 + #endif
202 +      std::cerr << "total fail trials: " << failTrialCount_ << "\n";
203 +      rnemdLog_.close();
204 +      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
205 +        std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
206 +      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) {
207 +        xTempLog_.close();
208 +        yTempLog_.close();
209 +        zTempLog_.close();
210 +      }
211 + #ifdef IS_MPI
212 +    }
213 + #endif
214    }
215  
216    void RNEMD::doSwap() {
217 <    std::cerr << "in RNEMD!\n";  
218 <    std::cerr << "nBins = " << nBins_ << "\n";
219 <    std::cerr << "swapTime = " << swapTime_ << "\n";
220 <    std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
221 <    std::cerr << "swapType = " << rnemdType_ << "\n";
222 <  }  
217 >
218 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
219 >    Mat3x3d hmat = currentSnap_->getHmat();
220 >
221 >    seleMan_.setSelectionSet(evaluator_.evaluate());
222 >
223 >    int selei;
224 >    StuntDouble* sd;
225 >    int idx;
226 >
227 >    RealType min_val;
228 >    bool min_found = false;  
229 >    StuntDouble* min_sd;
230 >
231 >    RealType max_val;
232 >    bool max_found = false;
233 >    StuntDouble* max_sd;
234 >
235 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
236 >         sd = seleMan_.nextSelected(selei)) {
237 >
238 >      idx = sd->getLocalIndex();
239 >
240 >      Vector3d pos = sd->getPos();
241 >
242 >      // wrap the stuntdouble's position back into the box:
243 >
244 >      if (usePeriodicBoundaryConditions_)
245 >        currentSnap_->wrapVector(pos);
246 >
247 >      // which bin is this stuntdouble in?
248 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
249 >
250 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
251 >
252 >
253 >      // if we're in bin 0 or the middleBin
254 >      if (binNo == 0 || binNo == midBin_) {
255 >        
256 >        RealType mass = sd->getMass();
257 >        Vector3d vel = sd->getVel();
258 >        RealType value;
259 >
260 >        switch(rnemdType_) {
261 >        case rnemdKineticSwap :
262 >          
263 >          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
264 >                          vel[2]*vel[2]);
265 >          if (sd->isDirectional()) {
266 >            Vector3d angMom = sd->getJ();
267 >            Mat3x3d I = sd->getI();
268 >            
269 >            if (sd->isLinear()) {
270 >              int i = sd->linearAxis();
271 >              int j = (i + 1) % 3;
272 >              int k = (i + 2) % 3;
273 >              value += angMom[j] * angMom[j] / I(j, j) +
274 >                angMom[k] * angMom[k] / I(k, k);
275 >            } else {                        
276 >              value += angMom[0]*angMom[0]/I(0, 0)
277 >                + angMom[1]*angMom[1]/I(1, 1)
278 >                + angMom[2]*angMom[2]/I(2, 2);
279 >            }
280 >          }
281 >          //make exchangeSum_ comparable between swap & scale
282 >          //temporarily without using energyConvert
283 >          //value = value * 0.5 / PhysicalConstants::energyConvert;
284 >          value *= 0.5;
285 >          break;
286 >        case rnemdPx :
287 >          value = mass * vel[0];
288 >          break;
289 >        case rnemdPy :
290 >          value = mass * vel[1];
291 >          break;
292 >        case rnemdPz :
293 >          value = mass * vel[2];
294 >          break;
295 >        default :
296 >          break;
297 >        }
298 >        
299 >        if (binNo == 0) {
300 >          if (!min_found) {
301 >            min_val = value;
302 >            min_sd = sd;
303 >            min_found = true;
304 >          } else {
305 >            if (min_val > value) {
306 >              min_val = value;
307 >              min_sd = sd;
308 >            }
309 >          }
310 >        } else { //midBin_
311 >          if (!max_found) {
312 >            max_val = value;
313 >            max_sd = sd;
314 >            max_found = true;
315 >          } else {
316 >            if (max_val < value) {
317 >              max_val = value;
318 >              max_sd = sd;
319 >            }
320 >          }      
321 >        }
322 >      }
323 >    }
324 >
325 > #ifdef IS_MPI
326 >    int nProc, worldRank;
327 >
328 >    nProc = MPI::COMM_WORLD.Get_size();
329 >    worldRank = MPI::COMM_WORLD.Get_rank();
330 >
331 >    bool my_min_found = min_found;
332 >    bool my_max_found = max_found;
333 >
334 >    // Even if we didn't find a minimum, did someone else?
335 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
336 >                              1, MPI::BOOL, MPI::LAND);
337 >    
338 >    // Even if we didn't find a maximum, did someone else?
339 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
340 >                              1, MPI::BOOL, MPI::LAND);
341 >    
342 >    struct {
343 >      RealType val;
344 >      int rank;
345 >    } max_vals, min_vals;
346 >    
347 >    if (min_found) {
348 >      if (my_min_found)
349 >        min_vals.val = min_val;
350 >      else
351 >        min_vals.val = HONKING_LARGE_VALUE;
352 >      
353 >      min_vals.rank = worldRank;    
354 >      
355 >      // Who had the minimum?
356 >      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
357 >                                1, MPI::REALTYPE_INT, MPI::MINLOC);
358 >      min_val = min_vals.val;
359 >    }
360 >      
361 >    if (max_found) {
362 >      if (my_max_found)
363 >        max_vals.val = max_val;
364 >      else
365 >        max_vals.val = -HONKING_LARGE_VALUE;
366 >      
367 >      max_vals.rank = worldRank;    
368 >      
369 >      // Who had the maximum?
370 >      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
371 >                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
372 >      max_val = max_vals.val;
373 >    }
374 > #endif
375 >
376 >    if (max_found && min_found) {
377 >      if (min_val< max_val) {
378 >
379 > #ifdef IS_MPI      
380 >        if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
381 >          // I have both maximum and minimum, so proceed like a single
382 >          // processor version:
383 > #endif
384 >          // objects to be swapped: velocity & angular velocity
385 >          Vector3d min_vel = min_sd->getVel();
386 >          Vector3d max_vel = max_sd->getVel();
387 >          RealType temp_vel;
388 >          
389 >          switch(rnemdType_) {
390 >          case rnemdKineticSwap :
391 >            min_sd->setVel(max_vel);
392 >            max_sd->setVel(min_vel);
393 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
394 >              Vector3d min_angMom = min_sd->getJ();
395 >              Vector3d max_angMom = max_sd->getJ();
396 >              min_sd->setJ(max_angMom);
397 >              max_sd->setJ(min_angMom);
398 >            }
399 >            break;
400 >          case rnemdPx :
401 >            temp_vel = min_vel.x();
402 >            min_vel.x() = max_vel.x();
403 >            max_vel.x() = temp_vel;
404 >            min_sd->setVel(min_vel);
405 >            max_sd->setVel(max_vel);
406 >            break;
407 >          case rnemdPy :
408 >            temp_vel = min_vel.y();
409 >            min_vel.y() = max_vel.y();
410 >            max_vel.y() = temp_vel;
411 >            min_sd->setVel(min_vel);
412 >            max_sd->setVel(max_vel);
413 >            break;
414 >          case rnemdPz :
415 >            temp_vel = min_vel.z();
416 >            min_vel.z() = max_vel.z();
417 >            max_vel.z() = temp_vel;
418 >            min_sd->setVel(min_vel);
419 >            max_sd->setVel(max_vel);
420 >            break;
421 >          default :
422 >            break;
423 >          }
424 > #ifdef IS_MPI
425 >          // the rest of the cases only apply in parallel simulations:
426 >        } else if (max_vals.rank == worldRank) {
427 >          // I had the max, but not the minimum
428 >          
429 >          Vector3d min_vel;
430 >          Vector3d max_vel = max_sd->getVel();
431 >          MPI::Status status;
432 >
433 >          // point-to-point swap of the velocity vector
434 >          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
435 >                                   min_vals.rank, 0,
436 >                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
437 >                                   min_vals.rank, 0, status);
438 >          
439 >          switch(rnemdType_) {
440 >          case rnemdKineticSwap :
441 >            max_sd->setVel(min_vel);
442 >            
443 >            if (max_sd->isDirectional()) {
444 >              Vector3d min_angMom;
445 >              Vector3d max_angMom = max_sd->getJ();
446 >
447 >              // point-to-point swap of the angular momentum vector
448 >              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
449 >                                       MPI::REALTYPE, min_vals.rank, 1,
450 >                                       min_angMom.getArrayPointer(), 3,
451 >                                       MPI::REALTYPE, min_vals.rank, 1,
452 >                                       status);
453 >
454 >              max_sd->setJ(min_angMom);
455 >            }
456 >            break;
457 >          case rnemdPx :
458 >            max_vel.x() = min_vel.x();
459 >            max_sd->setVel(max_vel);
460 >            break;
461 >          case rnemdPy :
462 >            max_vel.y() = min_vel.y();
463 >            max_sd->setVel(max_vel);
464 >            break;
465 >          case rnemdPz :
466 >            max_vel.z() = min_vel.z();
467 >            max_sd->setVel(max_vel);
468 >            break;
469 >          default :
470 >            break;
471 >          }
472 >        } else if (min_vals.rank == worldRank) {
473 >          // I had the minimum but not the maximum:
474 >          
475 >          Vector3d max_vel;
476 >          Vector3d min_vel = min_sd->getVel();
477 >          MPI::Status status;
478 >          
479 >          // point-to-point swap of the velocity vector
480 >          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
481 >                                   max_vals.rank, 0,
482 >                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
483 >                                   max_vals.rank, 0, status);
484 >          
485 >          switch(rnemdType_) {
486 >          case rnemdKineticSwap :
487 >            min_sd->setVel(max_vel);
488 >            
489 >            if (min_sd->isDirectional()) {
490 >              Vector3d min_angMom = min_sd->getJ();
491 >              Vector3d max_angMom;
492 >
493 >              // point-to-point swap of the angular momentum vector
494 >              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
495 >                                       MPI::REALTYPE, max_vals.rank, 1,
496 >                                       max_angMom.getArrayPointer(), 3,
497 >                                       MPI::REALTYPE, max_vals.rank, 1,
498 >                                       status);
499 >
500 >              min_sd->setJ(max_angMom);
501 >            }
502 >            break;
503 >          case rnemdPx :
504 >            min_vel.x() = max_vel.x();
505 >            min_sd->setVel(min_vel);
506 >            break;
507 >          case rnemdPy :
508 >            min_vel.y() = max_vel.y();
509 >            min_sd->setVel(min_vel);
510 >            break;
511 >          case rnemdPz :
512 >            min_vel.z() = max_vel.z();
513 >            min_sd->setVel(min_vel);
514 >            break;
515 >          default :
516 >            break;
517 >          }
518 >        }
519 > #endif
520 >        exchangeSum_ += max_val - min_val;
521 >      } else {
522 >        std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
523 >        failTrialCount_++;
524 >      }
525 >    } else {
526 >      std::cerr << "exchange NOT performed!\n";
527 >      std::cerr << "at least one of the two slabs empty.\n";
528 >      failTrialCount_++;
529 >    }
530 >    
531 >  }
532 >  
533 >  void RNEMD::doScale() {
534 >
535 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
536 >    Mat3x3d hmat = currentSnap_->getHmat();
537 >
538 >    seleMan_.setSelectionSet(evaluator_.evaluate());
539 >
540 >    int selei;
541 >    StuntDouble* sd;
542 >    int idx;
543 >
544 >    std::vector<StuntDouble*> hotBin, coldBin;
545 >
546 >    RealType Phx = 0.0;
547 >    RealType Phy = 0.0;
548 >    RealType Phz = 0.0;
549 >    RealType Khx = 0.0;
550 >    RealType Khy = 0.0;
551 >    RealType Khz = 0.0;
552 >    RealType Pcx = 0.0;
553 >    RealType Pcy = 0.0;
554 >    RealType Pcz = 0.0;
555 >    RealType Kcx = 0.0;
556 >    RealType Kcy = 0.0;
557 >    RealType Kcz = 0.0;
558 >
559 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
560 >         sd = seleMan_.nextSelected(selei)) {
561 >
562 >      idx = sd->getLocalIndex();
563 >
564 >      Vector3d pos = sd->getPos();
565 >
566 >      // wrap the stuntdouble's position back into the box:
567 >
568 >      if (usePeriodicBoundaryConditions_)
569 >        currentSnap_->wrapVector(pos);
570 >
571 >      // which bin is this stuntdouble in?
572 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
573 >
574 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
575 >
576 >      // if we're in bin 0 or the middleBin
577 >      if (binNo == 0 || binNo == midBin_) {
578 >        
579 >        RealType mass = sd->getMass();
580 >        Vector3d vel = sd->getVel();
581 >      
582 >        if (binNo == 0) {
583 >          hotBin.push_back(sd);
584 >          Phx += mass * vel.x();
585 >          Phy += mass * vel.y();
586 >          Phz += mass * vel.z();
587 >          Khx += mass * vel.x() * vel.x();
588 >          Khy += mass * vel.y() * vel.y();
589 >          Khz += mass * vel.z() * vel.z();
590 >        } else { //midBin_
591 >          coldBin.push_back(sd);
592 >          Pcx += mass * vel.x();
593 >          Pcy += mass * vel.y();
594 >          Pcz += mass * vel.z();
595 >          Kcx += mass * vel.x() * vel.x();
596 >          Kcy += mass * vel.y() * vel.y();
597 >          Kcz += mass * vel.z() * vel.z();
598 >        }
599 >      }
600 >    }
601 >
602 >    Khx *= 0.5;
603 >    Khy *= 0.5;
604 >    Khz *= 0.5;
605 >    Kcx *= 0.5;
606 >    Kcy *= 0.5;
607 >    Kcz *= 0.5;
608 >
609 > #ifdef IS_MPI
610 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
611 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
612 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
613 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
614 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
615 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
616 >
617 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
618 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
619 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
620 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
621 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
622 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
623 > #endif
624 >
625 >    //use coldBin coeff's
626 >    RealType px = Pcx / Phx;
627 >    RealType py = Pcy / Phy;
628 >    RealType pz = Pcz / Phz;
629 >
630 >    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
631 >    switch(rnemdType_) {
632 >    case rnemdKineticScale :
633 >    /*used hotBin coeff's & only scale x & y dimensions
634 >      RealType px = Phx / Pcx;
635 >      RealType py = Phy / Pcy;
636 >      a110 = Khy;
637 >      c0 = - Khx - Khy - targetFlux_;
638 >      a000 = Khx;
639 >      a111 = Kcy * py * py
640 >      b11 = -2.0 * Kcy * py * (1.0 + py);
641 >      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
642 >      b01 = -2.0 * Kcx * px * (1.0 + px);
643 >      a001 = Kcx * px * px;
644 >    */
645 >
646 >      //scale all three dimensions, let c_x = c_y
647 >      a000 = Kcx + Kcy;
648 >      a110 = Kcz;
649 >      c0 = targetFlux_ - Kcx - Kcy - Kcz;
650 >      a001 = Khx * px * px + Khy * py * py;
651 >      a111 = Khz * pz * pz;
652 >      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
653 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
654 >      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
655 >         + Khz * pz * (2.0 + pz) - targetFlux_;
656 >      break;
657 >    case rnemdPxScale :
658 >      c = 1 - targetFlux_ / Pcx;
659 >      a000 = Kcy;
660 >      a110 = Kcz;
661 >      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
662 >      a001 = py * py * Khy;
663 >      a111 = pz * pz * Khz;
664 >      b01 = -2.0 * Khy * py * (1.0 + py);
665 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
666 >      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
667 >         + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
668 >      break;
669 >    case rnemdPyScale :
670 >      c = 1 - targetFlux_ / Pcy;
671 >      a000 = Kcx;
672 >      a110 = Kcz;
673 >      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
674 >      a001 = px * px * Khx;
675 >      a111 = pz * pz * Khz;
676 >      b01 = -2.0 * Khx * px * (1.0 + px);
677 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
678 >      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
679 >         + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
680 >      break;
681 >    case rnemdPzScale ://we don't really do this, do we?
682 >      c = 1 - targetFlux_ / Pcz;
683 >      a000 = Kcx;
684 >      a110 = Kcy;
685 >      c0 = Kcz * c * c - Kcx - Kcy - Kcz;
686 >      a001 = px * px * Khx;
687 >      a111 = py * py * Khy;
688 >      b01 = -2.0 * Khx * px * (1.0 + px);
689 >      b11 = -2.0 * Khy * py * (1.0 + py);
690 >      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
691 >        + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
692 >      break;      
693 >    default :
694 >      break;
695 >    }
696 >
697 >    RealType v1 = a000 * a111 - a001 * a110;
698 >    RealType v2 = a000 * b01;
699 >    RealType v3 = a000 * b11;
700 >    RealType v4 = a000 * c1 - a001 * c0;
701 >    RealType v8 = a110 * b01;
702 >    RealType v10 = - b01 * c0;
703 >
704 >    RealType u0 = v2 * v10 - v4 * v4;
705 >    RealType u1 = -2.0 * v3 * v4;
706 >    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
707 >    RealType u3 = -2.0 * v1 * v3;
708 >    RealType u4 = - v1 * v1;
709 >    //rescale coefficients
710 >    RealType maxAbs = fabs(u0);
711 >    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
712 >    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
713 >    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
714 >    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
715 >    u0 /= maxAbs;
716 >    u1 /= maxAbs;
717 >    u2 /= maxAbs;
718 >    u3 /= maxAbs;
719 >    u4 /= maxAbs;
720 >    //max_element(start, end) is also available.
721 >    Polynomial<RealType> poly; //same as DoublePolynomial poly;
722 >    poly.setCoefficient(4, u4);
723 >    poly.setCoefficient(3, u3);
724 >    poly.setCoefficient(2, u2);
725 >    poly.setCoefficient(1, u1);
726 >    poly.setCoefficient(0, u0);
727 >    std::vector<RealType> realRoots = poly.FindRealRoots();
728 >
729 >    std::vector<RealType>::iterator ri;
730 >    RealType r1, r2, alpha0;
731 >    std::vector<std::pair<RealType,RealType> > rps;
732 >    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
733 >      r2 = *ri;
734 >      //check if FindRealRoots() give the right answer
735 >      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
736 >        sprintf(painCave.errMsg,
737 >                "RNEMD Warning: polynomial solve seems to have an error!");
738 >        painCave.isFatal = 0;
739 >        simError();
740 >        failRootCount_++;
741 >      }
742 >      //might not be useful w/o rescaling coefficients
743 >      alpha0 = -c0 - a110 * r2 * r2;
744 >      if (alpha0 >= 0.0) {
745 >        r1 = sqrt(alpha0 / a000);
746 >        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
747 >          { rps.push_back(std::make_pair(r1, r2)); }
748 >        if (r1 > 1e-6) { //r1 non-negative
749 >          r1 = -r1;
750 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
751 >            { rps.push_back(std::make_pair(r1, r2)); }
752 >        }
753 >      }
754 >    }
755 >    // Consider combininig together the solving pair part w/ the searching
756 >    // best solution part so that we don't need the pairs vector
757 >    if (!rps.empty()) {
758 >      RealType smallestDiff = HONKING_LARGE_VALUE;
759 >      RealType diff;
760 >      std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
761 >      std::vector<std::pair<RealType,RealType> >::iterator rpi;
762 >      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
763 >        r1 = (*rpi).first;
764 >        r2 = (*rpi).second;
765 >        switch(rnemdType_) {
766 >        case rnemdKineticScale :
767 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
768 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
769 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
770 >          break;
771 >        case rnemdPxScale :
772 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
773 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
774 >          break;
775 >        case rnemdPyScale :
776 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
777 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
778 >          break;
779 >        case rnemdPzScale :
780 >        default :
781 >          break;
782 >        }
783 >        if (diff < smallestDiff) {
784 >          smallestDiff = diff;
785 >          bestPair = *rpi;
786 >        }
787 >      }
788 > #ifdef IS_MPI
789 >      if (worldRank == 0) {
790 > #endif
791 >        std::cerr << "we choose r1 = " << bestPair.first
792 >                  << " and r2 = " << bestPair.second << "\n";
793 > #ifdef IS_MPI
794 >      }
795 > #endif
796 >
797 >      RealType x, y, z;
798 >        switch(rnemdType_) {
799 >        case rnemdKineticScale :
800 >          x = bestPair.first;
801 >          y = bestPair.first;
802 >          z = bestPair.second;
803 >          break;
804 >        case rnemdPxScale :
805 >          x = c;
806 >          y = bestPair.first;
807 >          z = bestPair.second;
808 >          break;
809 >        case rnemdPyScale :
810 >          x = bestPair.first;
811 >          y = c;
812 >          z = bestPair.second;
813 >          break;
814 >        case rnemdPzScale :
815 >          x = bestPair.first;
816 >          y = bestPair.second;
817 >          z = c;
818 >          break;          
819 >        default :
820 >          break;
821 >        }
822 >      std::vector<StuntDouble*>::iterator sdi;
823 >      Vector3d vel;
824 >      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
825 >        vel = (*sdi)->getVel();
826 >        vel.x() *= x;
827 >        vel.y() *= y;
828 >        vel.z() *= z;
829 >        (*sdi)->setVel(vel);
830 >      }
831 >      //convert to hotBin coefficient
832 >      x = 1.0 + px * (1.0 - x);
833 >      y = 1.0 + py * (1.0 - y);
834 >      z = 1.0 + pz * (1.0 - z);
835 >      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
836 >        vel = (*sdi)->getVel();
837 >        vel.x() *= x;
838 >        vel.y() *= y;
839 >        vel.z() *= z;
840 >        (*sdi)->setVel(vel);
841 >      }
842 >      exchangeSum_ += targetFlux_;
843 >      //we may want to check whether the exchange has been successful
844 >    } else {
845 >      std::cerr << "exchange NOT performed!\n";//MPI incompatible
846 >      failTrialCount_++;
847 >    }
848 >
849 >  }
850 >
851 >  void RNEMD::doRNEMD() {
852 >
853 >    switch(rnemdType_) {
854 >    case rnemdKineticScale :
855 >    case rnemdPxScale :
856 >    case rnemdPyScale :
857 >    case rnemdPzScale :
858 >      doScale();
859 >      break;
860 >    case rnemdKineticSwap :
861 >    case rnemdPx :
862 >    case rnemdPy :
863 >    case rnemdPz :
864 >      doSwap();
865 >      break;
866 >    case rnemdUnknown :
867 >    default :
868 >      break;
869 >    }
870 >  }
871 >
872 >  void RNEMD::collectData() {
873 >
874 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
875 >    Mat3x3d hmat = currentSnap_->getHmat();
876 >
877 >    seleMan_.setSelectionSet(evaluator_.evaluate());
878 >
879 >    int selei;
880 >    StuntDouble* sd;
881 >    int idx;
882 >
883 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
884 >         sd = seleMan_.nextSelected(selei)) {
885 >      
886 >      idx = sd->getLocalIndex();
887 >      
888 >      Vector3d pos = sd->getPos();
889 >
890 >      // wrap the stuntdouble's position back into the box:
891 >      
892 >      if (usePeriodicBoundaryConditions_)
893 >        currentSnap_->wrapVector(pos);
894 >      
895 >      // which bin is this stuntdouble in?
896 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
897 >      
898 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
899 >
900 >      if (rnemdLogWidth_ == midBin_ + 1)
901 >        if (binNo > midBin_)
902 >          binNo = nBins_ - binNo;
903 >
904 >      RealType mass = sd->getMass();
905 >      Vector3d vel = sd->getVel();
906 >      RealType value;
907 >      RealType xVal, yVal, zVal;
908 >
909 >      switch(rnemdType_) {
910 >      case rnemdKineticSwap :
911 >      case rnemdKineticScale :
912 >        
913 >        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
914 >                        vel[2]*vel[2]);
915 >        
916 >        valueCount_[binNo] += 3;
917 >        if (sd->isDirectional()) {
918 >          Vector3d angMom = sd->getJ();
919 >          Mat3x3d I = sd->getI();
920 >          
921 >          if (sd->isLinear()) {
922 >            int i = sd->linearAxis();
923 >            int j = (i + 1) % 3;
924 >            int k = (i + 2) % 3;
925 >            value += angMom[j] * angMom[j] / I(j, j) +
926 >              angMom[k] * angMom[k] / I(k, k);
927 >
928 >            valueCount_[binNo] +=2;
929 >
930 >          } else {
931 >            value += angMom[0]*angMom[0]/I(0, 0)
932 >              + angMom[1]*angMom[1]/I(1, 1)
933 >              + angMom[2]*angMom[2]/I(2, 2);
934 >            valueCount_[binNo] +=3;
935 >          }
936 >        }
937 >        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
938 >
939 >        break;
940 >      case rnemdPx :
941 >      case rnemdPxScale :
942 >        value = mass * vel[0];
943 >        valueCount_[binNo]++;
944 >        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
945 >          / PhysicalConstants::kb;
946 >        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
947 >          / PhysicalConstants::kb;
948 >        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
949 >          / PhysicalConstants::kb;
950 >        xTempHist_[binNo] += xVal;
951 >        yTempHist_[binNo] += yVal;
952 >        zTempHist_[binNo] += zVal;
953 >        break;
954 >      case rnemdPy :
955 >      case rnemdPyScale :
956 >        value = mass * vel[1];
957 >        valueCount_[binNo]++;
958 >        break;
959 >      case rnemdPz :
960 >      case rnemdPzScale :
961 >        value = mass * vel[2];
962 >        valueCount_[binNo]++;
963 >        break;
964 >      case rnemdUnknown :
965 >      default :
966 >        break;
967 >      }
968 >      valueHist_[binNo] += value;
969 >    }
970 >
971 >  }
972 >
973 >  void RNEMD::getStarted() {
974 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
975 >    Stats& stat = currentSnap_->statData;
976 >    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
977 >  }
978 >
979 >  void RNEMD::getStatus() {
980 >
981 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
982 >    Stats& stat = currentSnap_->statData;
983 >    RealType time = currentSnap_->getTime();
984 >
985 >    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
986 >    //or to be more meaningful, define another item as exchangeSum_ / time
987 >    int j;
988 >
989 > #ifdef IS_MPI
990 >
991 >    // all processors have the same number of bins, and STL vectors pack their
992 >    // arrays, so in theory, this should be safe:
993 >
994 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
995 >                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
996 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
997 >                              rnemdLogWidth_, MPI::INT, MPI::SUM);
998 >    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) {
999 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1000 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1001 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1002 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1003 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1004 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1005 >    }
1006 >    // If we're the root node, should we print out the results
1007 >    int worldRank = MPI::COMM_WORLD.Get_rank();
1008 >    if (worldRank == 0) {
1009 > #endif
1010 >      rnemdLog_ << time;
1011 >      for (j = 0; j < rnemdLogWidth_; j++) {
1012 >        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
1013 >      }
1014 >      rnemdLog_ << "\n";
1015 >      if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) {
1016 >        xTempLog_ << time;      
1017 >        for (j = 0; j < rnemdLogWidth_; j++) {
1018 >          xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j];
1019 >        }
1020 >        xTempLog_ << "\n";
1021 >        yTempLog_ << time;
1022 >        for (j = 0; j < rnemdLogWidth_; j++) {
1023 >          yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j];
1024 >        }
1025 >        yTempLog_ << "\n";
1026 >        zTempLog_ << time;
1027 >        for (j = 0; j < rnemdLogWidth_; j++) {
1028 >          zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j];
1029 >        }
1030 >        zTempLog_ << "\n";
1031 >      }
1032 > #ifdef IS_MPI
1033 >    }
1034 > #endif
1035 >    for (j = 0; j < rnemdLogWidth_; j++) {
1036 >      valueCount_[j] = 0;
1037 >      valueHist_[j] = 0.0;
1038 >    }
1039 >    if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale)
1040 >      for (j = 0; j < rnemdLogWidth_; j++) {
1041 >        xTempHist_[j] = 0.0;
1042 >        yTempHist_[j] = 0.0;
1043 >        zTempHist_[j] = 0.0;
1044 >      }
1045 >  }
1046   }

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1627 by gezelter, Tue Sep 13 22:05:04 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines