ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1731 by gezelter, Thu May 31 12:25:30 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 < #include "integrators/RNEMD.hpp"
42 > #include <cmath>
43 > #include "rnemd/RNEMD.hpp"
44   #include "math/Vector3.hpp"
45 + #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47 + #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50 < #include "utils/OOPSEConstant.hpp"
50 > #include "utils/PhysicalConstants.hpp"
51   #include "utils/Tuple.hpp"
52  
53   #ifndef IS_MPI
54   #include "math/SeqRandNumGen.hpp"
55   #else
56   #include "math/ParallelRandNumGen.hpp"
57 + #include <mpi.h>
58   #endif
59  
60   #define HONKING_LARGE_VALUE 1.0e10
61  
62 < namespace oopse {
62 > using namespace std;
63 > namespace OpenMD {
64    
65 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
66 <    
65 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
66 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
67 >
68 >    failTrialCount_ = 0;
69 >    failRootCount_ = 0;
70 >
71      int seedValue;
72      Globals * simParams = info->getSimParams();
73 +    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
74  
75 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
75 >    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
76 >    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
77 >    stringToEnumMap_["KineticScaleVAM"] = rnemdKineticScaleVAM;
78 >    stringToEnumMap_["KineticScaleAM"] = rnemdKineticScaleAM;
79 >    stringToEnumMap_["PxScale"] = rnemdPxScale;
80 >    stringToEnumMap_["PyScale"] = rnemdPyScale;
81 >    stringToEnumMap_["PzScale"] = rnemdPzScale;
82      stringToEnumMap_["Px"] = rnemdPx;
83      stringToEnumMap_["Py"] = rnemdPy;
84      stringToEnumMap_["Pz"] = rnemdPz;
85 +    stringToEnumMap_["ShiftScaleV"] = rnemdShiftScaleV;
86 +    stringToEnumMap_["ShiftScaleVAM"] = rnemdShiftScaleVAM;
87      stringToEnumMap_["Unknown"] = rnemdUnknown;
88  
89 <    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
89 >    runTime_ = simParams->getRunTime();
90 >    statusTime_ = simParams->getStatusTime();
91 >
92 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
93      evaluator_.loadScriptString(rnemdObjectSelection_);
94      seleMan_.setSelectionSet(evaluator_.evaluate());
95  
75
96      // do some sanity checking
97  
98      int selectionCount = seleMan_.getSelectionCount();
# Line 80 | Line 100 | namespace oopse {
100  
101      if (selectionCount > nIntegrable) {
102        sprintf(painCave.errMsg,
103 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
103 >              "RNEMD: The current RNEMD_objectSelection,\n"
104                "\t\t%s\n"
105                "\thas resulted in %d selected objects.  However,\n"
106                "\tthe total number of integrable objects in the system\n"
# Line 90 | Line 110 | namespace oopse {
110                rnemdObjectSelection_.c_str(),
111                selectionCount, nIntegrable);
112        painCave.isFatal = 0;
113 +      painCave.severity = OPENMD_WARNING;
114        simError();
94
115      }
116      
117 <    const std::string st = simParams->getRNEMD_swapType();
117 >    const string st = rnemdParams->getExchangeType();
118  
119 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
119 >    map<string, RNEMDTypeEnum>::iterator i;
120      i = stringToEnumMap_.find(st);
121 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
121 >    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
122 >    if (rnemdType_ == rnemdUnknown) {
123 >      sprintf(painCave.errMsg,
124 >              "RNEMD: The current RNEMD_exchangeType,\n"
125 >              "\t\t%s\n"
126 >              "\tis not one of the recognized exchange types.\n",
127 >              st.c_str());
128 >      painCave.isFatal = 1;
129 >      painCave.severity = OPENMD_ERROR;
130 >      simError();
131 >    }
132 >    
133 >    outputTemp_ = false;
134 >    if (rnemdParams->haveOutputTemperature()) {
135 >      outputTemp_ = rnemdParams->getOutputTemperature();
136 >    } else if ((rnemdType_ == rnemdKineticSwap) ||
137 >               (rnemdType_ == rnemdKineticScale) ||
138 >               (rnemdType_ == rnemdKineticScaleVAM) ||
139 >               (rnemdType_ == rnemdKineticScaleAM)) {
140 >      outputTemp_ = true;
141 >    }
142 >    outputVx_ = false;
143 >    if (rnemdParams->haveOutputVx()) {
144 >      outputVx_ = rnemdParams->getOutputVx();
145 >    } else if ((rnemdType_ == rnemdPx) || (rnemdType_ == rnemdPxScale)) {
146 >      outputVx_ = true;
147 >    }
148 >    outputVy_ = false;
149 >    if (rnemdParams->haveOutputVy()) {
150 >      outputVy_ = rnemdParams->getOutputVy();
151 >    } else if ((rnemdType_ == rnemdPy) || (rnemdType_ == rnemdPyScale)) {
152 >      outputVy_ = true;
153 >    }
154 >    output3DTemp_ = false;
155 >    if (rnemdParams->haveOutputXyzTemperature()) {
156 >      output3DTemp_ = rnemdParams->getOutputXyzTemperature();
157 >    }
158 >    outputRotTemp_ = false;
159 >    if (rnemdParams->haveOutputRotTemperature()) {
160 >      outputRotTemp_ = rnemdParams->getOutputRotTemperature();
161 >    }
162 >    // James put this in.
163 >    outputDen_ = false;
164 >    if (rnemdParams->haveOutputDen()) {
165 >      outputDen_ = rnemdParams->getOutputDen();
166 >    }
167 >    outputAh_ = false;
168 >    if (rnemdParams->haveOutputAh()) {
169 >      outputAh_ = rnemdParams->getOutputAh();
170 >    }    
171 >    outputVz_ = false;
172 >    if (rnemdParams->haveOutputVz()) {
173 >      outputVz_ = rnemdParams->getOutputVz();
174 >    } else if ((rnemdType_ == rnemdPz) || (rnemdType_ == rnemdPzScale)) {
175 >      outputVz_ = true;
176 >    }
177 >    
178  
179 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
180 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
181 <    exchangeSum_ = 0.0;
179 > #ifdef IS_MPI
180 >    if (worldRank == 0) {
181 > #endif
182 >
183 >      //may have rnemdWriter separately
184 >      string rnemdFileName;
185 >
186 >      if (outputTemp_) {
187 >        rnemdFileName = "temperature.log";
188 >        tempLog_.open(rnemdFileName.c_str());
189 >      }
190 >      if (outputVx_) {
191 >        rnemdFileName = "velocityX.log";
192 >        vxzLog_.open(rnemdFileName.c_str());
193 >      }
194 >      if (outputVy_) {
195 >        rnemdFileName = "velocityY.log";
196 >        vyzLog_.open(rnemdFileName.c_str());
197 >      }
198 >
199 >      if (output3DTemp_) {
200 >        rnemdFileName = "temperatureX.log";
201 >        xTempLog_.open(rnemdFileName.c_str());
202 >        rnemdFileName = "temperatureY.log";
203 >        yTempLog_.open(rnemdFileName.c_str());
204 >        rnemdFileName = "temperatureZ.log";
205 >        zTempLog_.open(rnemdFileName.c_str());
206 >      }
207 >      if (outputRotTemp_) {
208 >        rnemdFileName = "temperatureR.log";
209 >        rotTempLog_.open(rnemdFileName.c_str());
210 >      }
211 >      
212 >      //James put this in
213 >      if (outputDen_) {
214 >        rnemdFileName = "Density.log";
215 >        denLog_.open(rnemdFileName.c_str());
216 >      }
217 >      if (outputAh_) {
218 >        rnemdFileName = "Ah.log";
219 >        AhLog_.open(rnemdFileName.c_str());
220 >      }
221 >      if (outputVz_) {
222 >        rnemdFileName = "velocityZ.log";
223 >        vzzLog_.open(rnemdFileName.c_str());
224 >      }
225 >      logFrameCount_ = 0;
226 > #ifdef IS_MPI
227 >    }
228 > #endif
229 >
230 >    set_RNEMD_exchange_time(rnemdParams->getExchangeTime());
231 >    set_RNEMD_nBins(rnemdParams->getNbins());
232 >    midBin_ = nBins_ / 2;
233 >    if (rnemdParams->haveBinShift()) {
234 >      if (rnemdParams->getBinShift()) {
235 >        zShift_ = 0.5 / (RealType)(nBins_);
236 >      } else {
237 >        zShift_ = 0.0;
238 >      }
239 >    } else {
240 >      zShift_ = 0.0;
241 >    }
242 >    //cerr << "I shift slabs by " << zShift_ << " Lz\n";
243 >    //shift slabs by half slab width, maybe useful in heterogeneous systems
244 >    //set to 0.0 if not using it; N/A in status output yet
245 >    if (rnemdParams->haveLogWidth()) {
246 >      set_RNEMD_logWidth(rnemdParams->getLogWidth());
247 >      /*arbitary rnemdLogWidth_, no checking;
248 >      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
249 >        cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
250 >        cerr << "Automaically set back to default.\n";
251 >        rnemdLogWidth_ = nBins_;
252 >      }*/
253 >    } else {
254 >      set_RNEMD_logWidth(nBins_);
255 >    }
256 >    tempHist_.resize(rnemdLogWidth_, 0.0);
257 >    tempCount_.resize(rnemdLogWidth_, 0);
258 >    pxzHist_.resize(rnemdLogWidth_, 0.0);
259 >    //vxzCount_.resize(rnemdLogWidth_, 0);
260 >    pyzHist_.resize(rnemdLogWidth_, 0.0);
261 >    //vyzCount_.resize(rnemdLogWidth_, 0);
262  
263 +    mHist_.resize(rnemdLogWidth_, 0.0);
264 +    xTempHist_.resize(rnemdLogWidth_, 0.0);
265 +    yTempHist_.resize(rnemdLogWidth_, 0.0);
266 +    zTempHist_.resize(rnemdLogWidth_, 0.0);
267 +    xyzTempCount_.resize(rnemdLogWidth_, 0);
268 +    rotTempHist_.resize(rnemdLogWidth_, 0.0);
269 +    rotTempCount_.resize(rnemdLogWidth_, 0);
270 +    // James put this in
271 +    DenHist_.resize(rnemdLogWidth_, 0.0);
272 +    pzzHist_.resize(rnemdLogWidth_, 0.0);
273 +
274 +    set_RNEMD_exchange_total(0.0);
275 +    if (rnemdParams->haveTargetFlux()) {
276 +      set_RNEMD_target_flux(rnemdParams->getTargetFlux());
277 +    } else {
278 +      set_RNEMD_target_flux(0.0);
279 +    }
280 +    if (rnemdParams->haveTargetJzKE()) {
281 +      set_RNEMD_target_JzKE(rnemdParams->getTargetJzKE());
282 +    } else {
283 +      set_RNEMD_target_JzKE(0.0);
284 +    }
285 +    if (rnemdParams->haveTargetJzpx()) {
286 +      set_RNEMD_target_jzpx(rnemdParams->getTargetJzpx());
287 +    } else {
288 +      set_RNEMD_target_jzpx(0.0);
289 +    }
290 +    jzp_.x() = targetJzpx_;
291 +    njzp_.x() = -targetJzpx_;
292 +    if (rnemdParams->haveTargetJzpy()) {
293 +      set_RNEMD_target_jzpy(rnemdParams->getTargetJzpy());
294 +    } else {
295 +      set_RNEMD_target_jzpy(0.0);
296 +    }
297 +    jzp_.y() = targetJzpy_;
298 +    njzp_.y() = -targetJzpy_;
299 +    if (rnemdParams->haveTargetJzpz()) {
300 +      set_RNEMD_target_jzpz(rnemdParams->getTargetJzpz());
301 +    } else {
302 +      set_RNEMD_target_jzpz(0.0);
303 +    }
304 +    jzp_.z() = targetJzpz_;
305 +    njzp_.z() = -targetJzpz_;
306 +
307   #ifndef IS_MPI
308      if (simParams->haveSeed()) {
309        seedValue = simParams->getSeed();
# Line 123 | Line 323 | namespace oopse {
323    
324    RNEMD::~RNEMD() {
325      delete randNumGen_;
326 +    
327 + #ifdef IS_MPI
328 +    if (worldRank == 0) {
329 + #endif
330 +      
331 +      sprintf(painCave.errMsg,
332 +              "RNEMD: total failed trials: %d\n",
333 +              failTrialCount_);
334 +      painCave.isFatal = 0;
335 +      painCave.severity = OPENMD_INFO;
336 +      simError();
337 +      
338 +      if (outputTemp_) tempLog_.close();
339 +      if (outputVx_)   vxzLog_.close();
340 +      if (outputVy_)   vyzLog_.close();
341 +
342 +      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale ||
343 +          rnemdType_ == rnemdPyScale) {
344 +        sprintf(painCave.errMsg,
345 +                "RNEMD: total root-checking warnings: %d\n",
346 +                failRootCount_);
347 +        painCave.isFatal = 0;
348 +        painCave.severity = OPENMD_INFO;
349 +        simError();
350 +      }
351 +      if (output3DTemp_) {
352 +        xTempLog_.close();
353 +        yTempLog_.close();
354 +        zTempLog_.close();
355 +      }
356 +      if (outputRotTemp_) rotTempLog_.close();
357 +      // James put this in
358 +      if (outputDen_) denLog_.close();
359 +      if (outputAh_)  AhLog_.close();
360 +      if (outputVz_)  vzzLog_.close();
361 +      
362 + #ifdef IS_MPI
363 +    }
364 + #endif
365    }
366  
367    void RNEMD::doSwap() {
129    int midBin = nBins_ / 2;
368  
369      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
370      Mat3x3d hmat = currentSnap_->getHmat();
# Line 160 | Line 398 | namespace oopse {
398        // which bin is this stuntdouble in?
399        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
400  
401 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
401 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
402  
403  
404        // if we're in bin 0 or the middleBin
405 <      if (binNo == 0 || binNo == midBin) {
405 >      if (binNo == 0 || binNo == midBin_) {
406          
407          RealType mass = sd->getMass();
408          Vector3d vel = sd->getVel();
409          RealType value;
410  
411          switch(rnemdType_) {
412 <        case rnemdKinetic :
412 >        case rnemdKineticSwap :
413            
414 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
415 <                          vel[2]*vel[2]);
416 <          if (sd->isDirectional()) {
414 >          value = mass * vel.lengthSquare();
415 >          
416 >          if (sd->isDirectional()) {
417              Vector3d angMom = sd->getJ();
418              Mat3x3d I = sd->getI();
419              
420              if (sd->isLinear()) {
421 <              int i = sd->linearAxis();
422 <              int j = (i + 1) % 3;
423 <              int k = (i + 2) % 3;
424 <              value += angMom[j] * angMom[j] / I(j, j) +
425 <                angMom[k] * angMom[k] / I(k, k);
421 >              int i = sd->linearAxis();
422 >              int j = (i + 1) % 3;
423 >              int k = (i + 2) % 3;
424 >              value += angMom[j] * angMom[j] / I(j, j) +
425 >                angMom[k] * angMom[k] / I(k, k);
426              } else {                        
427 <              value += angMom[0]*angMom[0]/I(0, 0)
428 <                + angMom[1]*angMom[1]/I(1, 1)
429 <                + angMom[2]*angMom[2]/I(2, 2);
427 >              value += angMom[0]*angMom[0]/I(0, 0)
428 >                + angMom[1]*angMom[1]/I(1, 1)
429 >                + angMom[2]*angMom[2]/I(2, 2);
430              }
431 <          }
432 <          value = value * 0.5 / OOPSEConstant::energyConvert;
431 >          } //angular momenta exchange enabled
432 >          //energyConvert temporarily disabled
433 >          //make exchangeSum_ comparable between swap & scale
434 >          //value = value * 0.5 / PhysicalConstants::energyConvert;
435 >          value *= 0.5;
436            break;
437          case rnemdPx :
438            value = mass * vel[0];
# Line 202 | Line 443 | namespace oopse {
443          case rnemdPz :
444            value = mass * vel[2];
445            break;
205        case rnemdUnknown :
446          default :
447            break;
448          }
# Line 218 | Line 458 | namespace oopse {
458                min_sd = sd;
459              }
460            }
461 <        } else {
461 >        } else { //midBin_
462            if (!max_found) {
463              max_val = value;
464              max_sd = sd;
# Line 243 | Line 483 | namespace oopse {
483      bool my_max_found = max_found;
484  
485      // Even if we didn't find a minimum, did someone else?
486 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
247 <                              1, MPI::BOOL, MPI::LAND);
248 <    
486 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
487      // Even if we didn't find a maximum, did someone else?
488 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
489 <                              1, MPI::BOOL, MPI::LAND);
490 <    
491 <    struct {
492 <      RealType val;
493 <      int rank;
494 <    } max_vals, min_vals;
495 <    
496 <    if (min_found) {
497 <      if (my_min_found)
488 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
489 > #endif
490 >
491 >    if (max_found && min_found) {
492 >
493 > #ifdef IS_MPI
494 >      struct {
495 >        RealType val;
496 >        int rank;
497 >      } max_vals, min_vals;
498 >      
499 >      if (my_min_found) {
500          min_vals.val = min_val;
501 <      else
501 >      } else {
502          min_vals.val = HONKING_LARGE_VALUE;
503 <      
503 >      }
504        min_vals.rank = worldRank;    
505        
506        // Who had the minimum?
507        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
508                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
509        min_val = min_vals.val;
270    }
510        
511 <    if (max_found) {
273 <      if (my_max_found)
511 >      if (my_max_found) {
512          max_vals.val = max_val;
513 <      else
513 >      } else {
514          max_vals.val = -HONKING_LARGE_VALUE;
515 <      
515 >      }
516        max_vals.rank = worldRank;    
517        
518        // Who had the maximum?
519        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
520                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
521        max_val = max_vals.val;
284    }
522   #endif
523 <
524 <    if (max_found && min_found) {
525 <      if (min_val< max_val) {
289 <
523 >      
524 >      if (min_val < max_val) {
525 >        
526   #ifdef IS_MPI      
527          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
528            // I have both maximum and minimum, so proceed like a single
529            // processor version:
530   #endif
531 <          // objects to be swapped: velocity & angular velocity
531 >
532            Vector3d min_vel = min_sd->getVel();
533            Vector3d max_vel = max_sd->getVel();
534            RealType temp_vel;
535            
536            switch(rnemdType_) {
537 <          case rnemdKinetic :
537 >          case rnemdKineticSwap :
538              min_sd->setVel(max_vel);
539              max_sd->setVel(min_vel);
540 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
540 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
541                Vector3d min_angMom = min_sd->getJ();
542                Vector3d max_angMom = max_sd->getJ();
543                min_sd->setJ(max_angMom);
544                max_sd->setJ(min_angMom);
545 <            }
545 >            }//angular momenta exchange enabled
546 >            //assumes same rigid body identity
547              break;
548            case rnemdPx :
549              temp_vel = min_vel.x();
# Line 329 | Line 566 | namespace oopse {
566              min_sd->setVel(min_vel);
567              max_sd->setVel(max_vel);
568              break;
332          case rnemdUnknown :
569            default :
570              break;
571            }
572 +
573   #ifdef IS_MPI
574            // the rest of the cases only apply in parallel simulations:
575          } else if (max_vals.rank == worldRank) {
# Line 349 | Line 586 | namespace oopse {
586                                     min_vals.rank, 0, status);
587            
588            switch(rnemdType_) {
589 <          case rnemdKinetic :
589 >          case rnemdKineticSwap :
590              max_sd->setVel(min_vel);
591 <            
591 >            //angular momenta exchange enabled
592              if (max_sd->isDirectional()) {
593                Vector3d min_angMom;
594                Vector3d max_angMom = max_sd->getJ();
595 <
595 >              
596                // point-to-point swap of the angular momentum vector
597                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
598                                         MPI::REALTYPE, min_vals.rank, 1,
599                                         min_angMom.getArrayPointer(), 3,
600                                         MPI::REALTYPE, min_vals.rank, 1,
601                                         status);
602 <
602 >              
603                max_sd->setJ(min_angMom);
604 <            }
604 >            }
605              break;
606            case rnemdPx :
607              max_vel.x() = min_vel.x();
# Line 378 | Line 615 | namespace oopse {
615              max_vel.z() = min_vel.z();
616              max_sd->setVel(max_vel);
617              break;
381          case rnemdUnknown :
618            default :
619              break;
620            }
# Line 396 | Line 632 | namespace oopse {
632                                     max_vals.rank, 0, status);
633            
634            switch(rnemdType_) {
635 <          case rnemdKinetic :
635 >          case rnemdKineticSwap :
636              min_sd->setVel(max_vel);
637 <            
637 >            //angular momenta exchange enabled
638              if (min_sd->isDirectional()) {
639                Vector3d min_angMom = min_sd->getJ();
640                Vector3d max_angMom;
641 <
641 >              
642                // point-to-point swap of the angular momentum vector
643                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
644                                         MPI::REALTYPE, max_vals.rank, 1,
645                                         max_angMom.getArrayPointer(), 3,
646                                         MPI::REALTYPE, max_vals.rank, 1,
647                                         status);
648 <
648 >              
649                min_sd->setJ(max_angMom);
650              }
651              break;
# Line 425 | Line 661 | namespace oopse {
661              min_vel.z() = max_vel.z();
662              min_sd->setVel(min_vel);
663              break;
428          case rnemdUnknown :
664            default :
665              break;
666            }
667          }
668   #endif
669          exchangeSum_ += max_val - min_val;
670 <      } else {
671 <        std::cerr << "exchange NOT performed.\nmin_val > max_val.\n";
670 >      } else {        
671 >        sprintf(painCave.errMsg,
672 >                "RNEMD: exchange NOT performed because min_val > max_val\n");
673 >        painCave.isFatal = 0;
674 >        painCave.severity = OPENMD_INFO;
675 >        simError();        
676 >        failTrialCount_++;
677        }
678      } else {
679 <      std::cerr << "exchange NOT performed.\none of the two slabs empty.\n";
679 >      sprintf(painCave.errMsg,
680 >              "RNEMD: exchange NOT performed because selected object\n"
681 >              "\tnot present in at least one of the two slabs.\n");
682 >      painCave.isFatal = 0;
683 >      painCave.severity = OPENMD_INFO;
684 >      simError();        
685 >      failTrialCount_++;
686      }
687      
688    }
689    
690 <  void RNEMD::getStatus() {
690 >  void RNEMD::doScale() {
691  
692      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
693      Mat3x3d hmat = currentSnap_->getHmat();
448    Stats& stat = currentSnap_->statData;
449    RealType time = currentSnap_->getTime();
694  
451    stat[Stats::RNEMD_SWAP_TOTAL] = exchangeSum_;
452
695      seleMan_.setSelectionSet(evaluator_.evaluate());
696  
697      int selei;
698      StuntDouble* sd;
699      int idx;
700  
701 <    std::vector<RealType> valueHist(nBins_, 0.0); // keeps track of what's
460 <                                                  // being averaged
461 <    std::vector<int> valueCount(nBins_, 0);       // keeps track of the
462 <                                                  // number of degrees of
463 <                                                  // freedom being averaged
701 >    vector<StuntDouble*> hotBin, coldBin;
702  
703 +    RealType Phx = 0.0;
704 +    RealType Phy = 0.0;
705 +    RealType Phz = 0.0;
706 +    RealType Khx = 0.0;
707 +    RealType Khy = 0.0;
708 +    RealType Khz = 0.0;
709 +    RealType Khw = 0.0;
710 +    RealType Pcx = 0.0;
711 +    RealType Pcy = 0.0;
712 +    RealType Pcz = 0.0;
713 +    RealType Kcx = 0.0;
714 +    RealType Kcy = 0.0;
715 +    RealType Kcz = 0.0;
716 +    RealType Kcw = 0.0;
717 +
718      for (sd = seleMan_.beginSelected(selei); sd != NULL;
719           sd = seleMan_.nextSelected(selei)) {
720 +
721 +      idx = sd->getLocalIndex();
722 +
723 +      Vector3d pos = sd->getPos();
724 +
725 +      // wrap the stuntdouble's position back into the box:
726 +
727 +      if (usePeriodicBoundaryConditions_)
728 +        currentSnap_->wrapVector(pos);
729 +
730 +      // which bin is this stuntdouble in?
731 +      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
732 +
733 +      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
734 +
735 +      // if we're in bin 0 or the middleBin
736 +      if (binNo == 0 || binNo == midBin_) {
737 +        
738 +        RealType mass = sd->getMass();
739 +        Vector3d vel = sd->getVel();
740 +      
741 +        if (binNo == 0) {
742 +          hotBin.push_back(sd);
743 +          Phx += mass * vel.x();
744 +          Phy += mass * vel.y();
745 +          Phz += mass * vel.z();
746 +          Khx += mass * vel.x() * vel.x();
747 +          Khy += mass * vel.y() * vel.y();
748 +          Khz += mass * vel.z() * vel.z();
749 +          //if (rnemdType_ == rnemdKineticScaleVAM) {
750 +          if (sd->isDirectional()) {
751 +            Vector3d angMom = sd->getJ();
752 +            Mat3x3d I = sd->getI();
753 +            if (sd->isLinear()) {
754 +              int i = sd->linearAxis();
755 +              int j = (i + 1) % 3;
756 +              int k = (i + 2) % 3;
757 +              Khw += angMom[j] * angMom[j] / I(j, j) +
758 +                angMom[k] * angMom[k] / I(k, k);
759 +            } else {
760 +              Khw += angMom[0]*angMom[0]/I(0, 0)
761 +                + angMom[1]*angMom[1]/I(1, 1)
762 +                + angMom[2]*angMom[2]/I(2, 2);
763 +            }
764 +          }
765 +          //}
766 +        } else { //midBin_
767 +          coldBin.push_back(sd);
768 +          Pcx += mass * vel.x();
769 +          Pcy += mass * vel.y();
770 +          Pcz += mass * vel.z();
771 +          Kcx += mass * vel.x() * vel.x();
772 +          Kcy += mass * vel.y() * vel.y();
773 +          Kcz += mass * vel.z() * vel.z();
774 +          //if (rnemdType_ == rnemdKineticScaleVAM) {
775 +          if (sd->isDirectional()) {
776 +            Vector3d angMom = sd->getJ();
777 +            Mat3x3d I = sd->getI();
778 +            if (sd->isLinear()) {
779 +              int i = sd->linearAxis();
780 +              int j = (i + 1) % 3;
781 +              int k = (i + 2) % 3;
782 +              Kcw += angMom[j] * angMom[j] / I(j, j) +
783 +                angMom[k] * angMom[k] / I(k, k);
784 +            } else {
785 +              Kcw += angMom[0]*angMom[0]/I(0, 0)
786 +                + angMom[1]*angMom[1]/I(1, 1)
787 +                + angMom[2]*angMom[2]/I(2, 2);
788 +            }
789 +          }
790 +          //}
791 +        }
792 +      }
793 +    }
794 +    
795 +    Khx *= 0.5;
796 +    Khy *= 0.5;
797 +    Khz *= 0.5;
798 +    Khw *= 0.5;
799 +    Kcx *= 0.5;
800 +    Kcy *= 0.5;
801 +    Kcz *= 0.5;
802 +    Kcw *= 0.5;
803 +
804 +    // std::cerr << "Khx= " << Khx << "\tKhy= " << Khy << "\tKhz= " << Khz
805 +    //        << "\tKhw= " << Khw << "\tKcx= " << Kcx << "\tKcy= " << Kcy
806 +    //        << "\tKcz= " << Kcz << "\tKcw= " << Kcw << "\n";
807 +    // std::cerr << "Phx= " << Phx << "\tPhy= " << Phy << "\tPhz= " << Phz
808 +    //        << "\tPcx= " << Pcx << "\tPcy= " << Pcy << "\tPcz= " <<Pcz<<"\n";
809 +
810 + #ifdef IS_MPI
811 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
812 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
813 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
814 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
815 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
816 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
817 +
818 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
819 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
820 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
821 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
822 +
823 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
824 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
825 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
826 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
827 + #endif
828 +
829 +    //solve coldBin coeff's first
830 +    RealType px = Pcx / Phx;
831 +    RealType py = Pcy / Phy;
832 +    RealType pz = Pcz / Phz;
833 +    RealType c, x, y, z;
834 +    bool successfulScale = false;
835 +    if ((rnemdType_ == rnemdKineticScaleVAM) ||
836 +        (rnemdType_ == rnemdKineticScaleAM)) {
837 +      //may need sanity check Khw & Kcw > 0
838 +
839 +      if (rnemdType_ == rnemdKineticScaleVAM) {
840 +        c = 1.0 - targetFlux_ / (Kcx + Kcy + Kcz + Kcw);
841 +      } else {
842 +        c = 1.0 - targetFlux_ / Kcw;
843 +      }
844 +
845 +      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
846 +        c = sqrt(c);
847 +        std::cerr << "cold slab scaling coefficient: " << c << endl;
848 +        //now convert to hotBin coefficient
849 +        RealType w = 0.0;
850 +        if (rnemdType_ ==  rnemdKineticScaleVAM) {
851 +          x = 1.0 + px * (1.0 - c);
852 +          y = 1.0 + py * (1.0 - c);
853 +          z = 1.0 + pz * (1.0 - c);
854 +          /* more complicated way
855 +             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
856 +             + Khx * px * px + Khy * py * py + Khz * pz * pz)
857 +             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
858 +             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
859 +             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
860 +             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
861 +          */
862 +          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
863 +              (fabs(z - 1.0) < 0.1)) {
864 +            w = 1.0 + (targetFlux_ + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
865 +                       + Khz * (1.0 - z * z)) / Khw;
866 +          }//no need to calculate w if x, y or z is out of range
867 +        } else {
868 +          w = 1.0 + targetFlux_ / Khw;
869 +        }
870 +        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
871 +          //if w is in the right range, so should be x, y, z.
872 +          vector<StuntDouble*>::iterator sdi;
873 +          Vector3d vel;
874 +          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
875 +            if (rnemdType_ == rnemdKineticScaleVAM) {
876 +              vel = (*sdi)->getVel() * c;
877 +              //vel.x() *= c;
878 +              //vel.y() *= c;
879 +              //vel.z() *= c;
880 +              (*sdi)->setVel(vel);
881 +            }
882 +            if ((*sdi)->isDirectional()) {
883 +              Vector3d angMom = (*sdi)->getJ() * c;
884 +              //angMom[0] *= c;
885 +              //angMom[1] *= c;
886 +              //angMom[2] *= c;
887 +              (*sdi)->setJ(angMom);
888 +            }
889 +          }
890 +          w = sqrt(w);
891 +          std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
892 +                    << "\twh= " << w << endl;
893 +          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
894 +            if (rnemdType_ == rnemdKineticScaleVAM) {
895 +              vel = (*sdi)->getVel();
896 +              vel.x() *= x;
897 +              vel.y() *= y;
898 +              vel.z() *= z;
899 +              (*sdi)->setVel(vel);
900 +            }
901 +            if ((*sdi)->isDirectional()) {
902 +              Vector3d angMom = (*sdi)->getJ() * w;
903 +              //angMom[0] *= w;
904 +              //angMom[1] *= w;
905 +              //angMom[2] *= w;
906 +              (*sdi)->setJ(angMom);
907 +            }
908 +          }
909 +          successfulScale = true;
910 +          exchangeSum_ += targetFlux_;
911 +        }
912 +      }
913 +    } else {
914 +      RealType a000, a110, c0, a001, a111, b01, b11, c1;
915 +      switch(rnemdType_) {
916 +      case rnemdKineticScale :
917 +        /* used hotBin coeff's & only scale x & y dimensions
918 +           RealType px = Phx / Pcx;
919 +           RealType py = Phy / Pcy;
920 +           a110 = Khy;
921 +           c0 = - Khx - Khy - targetFlux_;
922 +           a000 = Khx;
923 +           a111 = Kcy * py * py;
924 +           b11 = -2.0 * Kcy * py * (1.0 + py);
925 +           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
926 +           b01 = -2.0 * Kcx * px * (1.0 + px);
927 +           a001 = Kcx * px * px;
928 +        */
929 +        //scale all three dimensions, let c_x = c_y
930 +        a000 = Kcx + Kcy;
931 +        a110 = Kcz;
932 +        c0 = targetFlux_ - Kcx - Kcy - Kcz;
933 +        a001 = Khx * px * px + Khy * py * py;
934 +        a111 = Khz * pz * pz;
935 +        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
936 +        b11 = -2.0 * Khz * pz * (1.0 + pz);
937 +        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
938 +          + Khz * pz * (2.0 + pz) - targetFlux_;
939 +        break;
940 +      case rnemdPxScale :
941 +        c = 1 - targetFlux_ / Pcx;
942 +        a000 = Kcy;
943 +        a110 = Kcz;
944 +        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
945 +        a001 = py * py * Khy;
946 +        a111 = pz * pz * Khz;
947 +        b01 = -2.0 * Khy * py * (1.0 + py);
948 +        b11 = -2.0 * Khz * pz * (1.0 + pz);
949 +        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
950 +          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
951 +        break;
952 +      case rnemdPyScale :
953 +        c = 1 - targetFlux_ / Pcy;
954 +        a000 = Kcx;
955 +        a110 = Kcz;
956 +        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
957 +        a001 = px * px * Khx;
958 +        a111 = pz * pz * Khz;
959 +        b01 = -2.0 * Khx * px * (1.0 + px);
960 +        b11 = -2.0 * Khz * pz * (1.0 + pz);
961 +        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
962 +          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
963 +        break;
964 +      case rnemdPzScale ://we don't really do this, do we?
965 +        c = 1 - targetFlux_ / Pcz;
966 +        a000 = Kcx;
967 +        a110 = Kcy;
968 +        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
969 +        a001 = px * px * Khx;
970 +        a111 = py * py * Khy;
971 +        b01 = -2.0 * Khx * px * (1.0 + px);
972 +        b11 = -2.0 * Khy * py * (1.0 + py);
973 +        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
974 +          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
975 +        break;
976 +      default :
977 +        break;
978 +      }
979        
980 +      RealType v1 = a000 * a111 - a001 * a110;
981 +      RealType v2 = a000 * b01;
982 +      RealType v3 = a000 * b11;
983 +      RealType v4 = a000 * c1 - a001 * c0;
984 +      RealType v8 = a110 * b01;
985 +      RealType v10 = - b01 * c0;
986 +      
987 +      RealType u0 = v2 * v10 - v4 * v4;
988 +      RealType u1 = -2.0 * v3 * v4;
989 +      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
990 +      RealType u3 = -2.0 * v1 * v3;
991 +      RealType u4 = - v1 * v1;
992 +      //rescale coefficients
993 +      RealType maxAbs = fabs(u0);
994 +      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
995 +      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
996 +      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
997 +      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
998 +      u0 /= maxAbs;
999 +      u1 /= maxAbs;
1000 +      u2 /= maxAbs;
1001 +      u3 /= maxAbs;
1002 +      u4 /= maxAbs;
1003 +      //max_element(start, end) is also available.
1004 +      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1005 +      poly.setCoefficient(4, u4);
1006 +      poly.setCoefficient(3, u3);
1007 +      poly.setCoefficient(2, u2);
1008 +      poly.setCoefficient(1, u1);
1009 +      poly.setCoefficient(0, u0);
1010 +      vector<RealType> realRoots = poly.FindRealRoots();
1011 +      
1012 +      vector<RealType>::iterator ri;
1013 +      RealType r1, r2, alpha0;
1014 +      vector<pair<RealType,RealType> > rps;
1015 +      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1016 +        r2 = *ri;
1017 +        //check if FindRealRoots() give the right answer
1018 +        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1019 +          sprintf(painCave.errMsg,
1020 +                  "RNEMD Warning: polynomial solve seems to have an error!");
1021 +          painCave.isFatal = 0;
1022 +          simError();
1023 +          failRootCount_++;
1024 +        }
1025 +        //might not be useful w/o rescaling coefficients
1026 +        alpha0 = -c0 - a110 * r2 * r2;
1027 +        if (alpha0 >= 0.0) {
1028 +          r1 = sqrt(alpha0 / a000);
1029 +          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1030 +              < 1e-6)
1031 +            { rps.push_back(make_pair(r1, r2)); }
1032 +          if (r1 > 1e-6) { //r1 non-negative
1033 +            r1 = -r1;
1034 +            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1035 +                < 1e-6)
1036 +              { rps.push_back(make_pair(r1, r2)); }
1037 +          }
1038 +        }
1039 +      }
1040 +      // Consider combining together the solving pair part w/ the searching
1041 +      // best solution part so that we don't need the pairs vector
1042 +      if (!rps.empty()) {
1043 +        RealType smallestDiff = HONKING_LARGE_VALUE;
1044 +        RealType diff;
1045 +        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1046 +        vector<pair<RealType,RealType> >::iterator rpi;
1047 +        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1048 +          r1 = (*rpi).first;
1049 +          r2 = (*rpi).second;
1050 +          switch(rnemdType_) {
1051 +          case rnemdKineticScale :
1052 +            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1053 +              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1054 +              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1055 +            break;
1056 +          case rnemdPxScale :
1057 +            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1058 +              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1059 +            break;
1060 +          case rnemdPyScale :
1061 +            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1062 +              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1063 +            break;
1064 +          case rnemdPzScale :
1065 +            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1066 +              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1067 +          default :
1068 +            break;
1069 +          }
1070 +          if (diff < smallestDiff) {
1071 +            smallestDiff = diff;
1072 +            bestPair = *rpi;
1073 +          }
1074 +        }
1075 + #ifdef IS_MPI
1076 +        if (worldRank == 0) {
1077 + #endif
1078 +          sprintf(painCave.errMsg,
1079 +                  "RNEMD: roots r1= %lf\tr2 = %lf\n",
1080 +                  bestPair.first, bestPair.second);
1081 +          painCave.isFatal = 0;
1082 +          painCave.severity = OPENMD_INFO;
1083 +          simError();
1084 + #ifdef IS_MPI
1085 +        }
1086 + #endif
1087 +        
1088 +        switch(rnemdType_) {
1089 +        case rnemdKineticScale :
1090 +          x = bestPair.first;
1091 +          y = bestPair.first;
1092 +          z = bestPair.second;
1093 +          break;
1094 +        case rnemdPxScale :
1095 +          x = c;
1096 +          y = bestPair.first;
1097 +          z = bestPair.second;
1098 +          break;
1099 +        case rnemdPyScale :
1100 +          x = bestPair.first;
1101 +          y = c;
1102 +          z = bestPair.second;
1103 +          break;
1104 +        case rnemdPzScale :
1105 +          x = bestPair.first;
1106 +          y = bestPair.second;
1107 +          z = c;
1108 +          break;          
1109 +        default :
1110 +          break;
1111 +        }
1112 +        vector<StuntDouble*>::iterator sdi;
1113 +        Vector3d vel;
1114 +        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1115 +          vel = (*sdi)->getVel();
1116 +          vel.x() *= x;
1117 +          vel.y() *= y;
1118 +          vel.z() *= z;
1119 +          (*sdi)->setVel(vel);
1120 +        }
1121 +        //convert to hotBin coefficient
1122 +        x = 1.0 + px * (1.0 - x);
1123 +        y = 1.0 + py * (1.0 - y);
1124 +        z = 1.0 + pz * (1.0 - z);
1125 +        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1126 +          vel = (*sdi)->getVel();
1127 +          vel.x() *= x;
1128 +          vel.y() *= y;
1129 +          vel.z() *= z;
1130 +          (*sdi)->setVel(vel);
1131 +        }
1132 +        successfulScale = true;
1133 +        exchangeSum_ += targetFlux_;
1134 +      }
1135 +    }
1136 +    if (successfulScale != true) {
1137 +      sprintf(painCave.errMsg,
1138 +              "RNEMD: exchange NOT performed!\n");
1139 +      painCave.isFatal = 0;
1140 +      painCave.severity = OPENMD_INFO;
1141 +      simError();        
1142 +      failTrialCount_++;
1143 +    }
1144 +  }
1145 +
1146 +  void RNEMD::doShiftScale() {
1147 +
1148 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1149 +    RealType time = currentSnap_->getTime();    
1150 +    Mat3x3d hmat = currentSnap_->getHmat();
1151 +
1152 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1153 +
1154 +    int selei;
1155 +    StuntDouble* sd;
1156 +    int idx;
1157 +
1158 +    vector<StuntDouble*> hotBin, coldBin;
1159 +
1160 +    Vector3d Ph(V3Zero);
1161 +    RealType Mh = 0.0;
1162 +    RealType Kh = 0.0;
1163 +    Vector3d Pc(V3Zero);
1164 +    RealType Mc = 0.0;
1165 +    RealType Kc = 0.0;
1166 +    
1167 +
1168 +    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1169 +         sd = seleMan_.nextSelected(selei)) {
1170 +
1171 +      idx = sd->getLocalIndex();
1172 +
1173 +      Vector3d pos = sd->getPos();
1174 +
1175 +      // wrap the stuntdouble's position back into the box:
1176 +
1177 +      if (usePeriodicBoundaryConditions_)
1178 +        currentSnap_->wrapVector(pos);
1179 +
1180 +      // which bin is this stuntdouble in?
1181 +      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1182 +
1183 +      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1184 +
1185 +      // if we're in bin 0 or the middleBin
1186 +      if (binNo == 0 || binNo == midBin_) {
1187 +        
1188 +        RealType mass = sd->getMass();
1189 +        Vector3d vel = sd->getVel();
1190 +      
1191 +        if (binNo == 0) {
1192 +          hotBin.push_back(sd);
1193 +          //std::cerr << "before, velocity = " << vel << endl;
1194 +          Ph += mass * vel;
1195 +          //std::cerr << "after, velocity = " << vel << endl;
1196 +          Mh += mass;
1197 +          Kh += mass * vel.lengthSquare();
1198 +          if (rnemdType_ == rnemdShiftScaleVAM) {
1199 +            if (sd->isDirectional()) {
1200 +              Vector3d angMom = sd->getJ();
1201 +              Mat3x3d I = sd->getI();
1202 +              if (sd->isLinear()) {
1203 +                int i = sd->linearAxis();
1204 +                int j = (i + 1) % 3;
1205 +                int k = (i + 2) % 3;
1206 +                Kh += angMom[j] * angMom[j] / I(j, j) +
1207 +                  angMom[k] * angMom[k] / I(k, k);
1208 +              } else {
1209 +                Kh += angMom[0] * angMom[0] / I(0, 0) +
1210 +                  angMom[1] * angMom[1] / I(1, 1) +
1211 +                  angMom[2] * angMom[2] / I(2, 2);
1212 +              }
1213 +            }
1214 +          }
1215 +        } else { //midBin_
1216 +          coldBin.push_back(sd);
1217 +          Pc += mass * vel;
1218 +          Mc += mass;
1219 +          Kc += mass * vel.lengthSquare();
1220 +          if (rnemdType_ == rnemdShiftScaleVAM) {
1221 +            if (sd->isDirectional()) {
1222 +              Vector3d angMom = sd->getJ();
1223 +              Mat3x3d I = sd->getI();
1224 +              if (sd->isLinear()) {
1225 +                int i = sd->linearAxis();
1226 +                int j = (i + 1) % 3;
1227 +                int k = (i + 2) % 3;
1228 +                Kc += angMom[j] * angMom[j] / I(j, j) +
1229 +                  angMom[k] * angMom[k] / I(k, k);
1230 +              } else {
1231 +                Kc += angMom[0] * angMom[0] / I(0, 0) +
1232 +                  angMom[1] * angMom[1] / I(1, 1) +
1233 +                  angMom[2] * angMom[2] / I(2, 2);
1234 +              }
1235 +            }
1236 +          }
1237 +        }
1238 +      }
1239 +    }
1240 +    
1241 +    Kh *= 0.5;
1242 +    Kc *= 0.5;
1243 +
1244 +    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1245 +    //        << "\tKc= " << Kc << endl;
1246 +    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1247 +    
1248 + #ifdef IS_MPI
1249 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1250 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1251 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1252 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1253 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1254 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1255 + #endif
1256 +
1257 +    bool successfulExchange = false;
1258 +    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1259 +      Vector3d vc = Pc / Mc;
1260 +      Vector3d ac = njzp_ / Mc + vc;
1261 +      Vector3d acrec = njzp_ / Mc;
1262 +      RealType cNumerator = Kc - targetJzKE_ - 0.5 * Mc * ac.lengthSquare();
1263 +      if (cNumerator > 0.0) {
1264 +        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1265 +        if (cDenominator > 0.0) {
1266 +          RealType c = sqrt(cNumerator / cDenominator);
1267 +          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1268 +            Vector3d vh = Ph / Mh;
1269 +            Vector3d ah = jzp_ / Mh + vh;
1270 +            Vector3d ahrec = jzp_ / Mh;
1271 +            RealType hNumerator = Kh + targetJzKE_
1272 +              - 0.5 * Mh * ah.lengthSquare();
1273 +            if (hNumerator > 0.0) {
1274 +              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1275 +              if (hDenominator > 0.0) {
1276 +                RealType h = sqrt(hNumerator / hDenominator);
1277 +                if ((h > 0.9) && (h < 1.1)) {
1278 +                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1279 +                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1280 +                  vector<StuntDouble*>::iterator sdi;
1281 +                  Vector3d vel;
1282 +                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1283 +                    //vel = (*sdi)->getVel();
1284 +                    vel = ((*sdi)->getVel() - vc) * c + ac;
1285 +                    (*sdi)->setVel(vel);
1286 +                    if (rnemdType_ == rnemdShiftScaleVAM) {
1287 +                      if ((*sdi)->isDirectional()) {
1288 +                        Vector3d angMom = (*sdi)->getJ() * c;
1289 +                        (*sdi)->setJ(angMom);
1290 +                      }
1291 +                    }
1292 +                  }
1293 +                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1294 +                    //vel = (*sdi)->getVel();
1295 +                    vel = ((*sdi)->getVel() - vh) * h + ah;
1296 +                    (*sdi)->setVel(vel);
1297 +                    if (rnemdType_ == rnemdShiftScaleVAM) {
1298 +                      if ((*sdi)->isDirectional()) {
1299 +                        Vector3d angMom = (*sdi)->getJ() * h;
1300 +                        (*sdi)->setJ(angMom);
1301 +                      }
1302 +                    }
1303 +                  }
1304 +                  successfulExchange = true;
1305 +                  exchangeSum_ += targetFlux_;
1306 +                  // this is a redundant variable for doShiftScale() so that
1307 +                  // RNEMD can output one exchange quantity needed in a job.
1308 +                  // need a better way to do this.
1309 +                  //cerr << "acx =" << ac.x() << "ahx =" << ah.x() << '\n';
1310 +                  //cerr << "acy =" << ac.y() << "ahy =" << ah.y() << '\n';
1311 +                  //cerr << "acz =" << ac.z() << "ahz =" << ah.z() << '\n';
1312 +                  Asum_ += (ahrec.z() - acrec.z());
1313 +                  Jsum_ += (jzp_.z()*((1/Mh)+(1/Mc)));
1314 +                  AhCount_ = ahrec.z();
1315 +                  if (outputAh_) {
1316 +                    AhLog_ << time << "   ";
1317 +                    AhLog_ << AhCount_;
1318 +                    AhLog_ << endl;
1319 +                  }              
1320 +                }
1321 +              }
1322 +            }
1323 +          }
1324 +        }
1325 +      }
1326 +    }
1327 +    if (successfulExchange != true) {
1328 +      //   sprintf(painCave.errMsg,
1329 +      //              "RNEMD: exchange NOT performed!\n");
1330 +      //   painCave.isFatal = 0;
1331 +      //   painCave.severity = OPENMD_INFO;
1332 +      //   simError();        
1333 +      failTrialCount_++;
1334 +    }
1335 +  }
1336 +
1337 +  void RNEMD::doRNEMD() {
1338 +
1339 +    switch(rnemdType_) {
1340 +    case rnemdKineticScale :
1341 +    case rnemdKineticScaleVAM :
1342 +    case rnemdKineticScaleAM :
1343 +    case rnemdPxScale :
1344 +    case rnemdPyScale :
1345 +    case rnemdPzScale :
1346 +      doScale();
1347 +      break;
1348 +    case rnemdKineticSwap :
1349 +    case rnemdPx :
1350 +    case rnemdPy :
1351 +    case rnemdPz :
1352 +      doSwap();
1353 +      break;
1354 +    case rnemdShiftScaleV :
1355 +    case rnemdShiftScaleVAM :
1356 +      doShiftScale();
1357 +      break;
1358 +    case rnemdUnknown :
1359 +    default :
1360 +      break;
1361 +    }
1362 +  }
1363 +
1364 +  void RNEMD::collectData() {
1365 +
1366 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1367 +    Mat3x3d hmat = currentSnap_->getHmat();
1368 +
1369 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1370 +
1371 +    int selei;
1372 +    StuntDouble* sd;
1373 +    int idx;
1374 +
1375 +    logFrameCount_++;
1376 +
1377 +    // alternative approach, track all molecules instead of only those
1378 +    // selected for scaling/swapping:
1379 +    /*
1380 +    SimInfo::MoleculeIterator miter;
1381 +    vector<StuntDouble*>::iterator iiter;
1382 +    Molecule* mol;
1383 +    StuntDouble* integrableObject;
1384 +    for (mol = info_->beginMolecule(miter); mol != NULL;
1385 +      mol = info_->nextMolecule(miter))
1386 +      integrableObject is essentially sd
1387 +        for (integrableObject = mol->beginIntegrableObject(iiter);
1388 +             integrableObject != NULL;
1389 +             integrableObject = mol->nextIntegrableObject(iiter))
1390 +    */
1391 +    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1392 +         sd = seleMan_.nextSelected(selei)) {
1393 +      
1394        idx = sd->getLocalIndex();
1395        
1396        Vector3d pos = sd->getPos();
# Line 477 | Line 1403 | namespace oopse {
1403        // which bin is this stuntdouble in?
1404        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1405        
1406 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;    
1407 <      
1406 >      int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
1407 >        rnemdLogWidth_;
1408 >      // no symmetrization allowed due to arbitary rnemdLogWidth_
1409 >      /*
1410 >      if (rnemdLogWidth_ == midBin_ + 1)
1411 >        if (binNo > midBin_)
1412 >          binNo = nBins_ - binNo;
1413 >      */
1414        RealType mass = sd->getMass();
1415 +      mHist_[binNo] += mass;
1416        Vector3d vel = sd->getVel();
1417        RealType value;
1418 +      //RealType xVal, yVal, zVal;
1419  
1420 <      switch(rnemdType_) {
1421 <      case rnemdKinetic :
1422 <        
489 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
490 <                        vel[2]*vel[2]);
491 <        
492 <        valueCount[binNo] += 3;
1420 >      if (outputTemp_) {
1421 >        value = mass * vel.lengthSquare();
1422 >        tempCount_[binNo] += 3;
1423          if (sd->isDirectional()) {
1424            Vector3d angMom = sd->getJ();
1425            Mat3x3d I = sd->getI();
496          
1426            if (sd->isLinear()) {
1427              int i = sd->linearAxis();
1428              int j = (i + 1) % 3;
1429              int k = (i + 2) % 3;
1430              value += angMom[j] * angMom[j] / I(j, j) +
1431                angMom[k] * angMom[k] / I(k, k);
1432 <
504 <            valueCount[binNo] +=2;
505 <
1432 >            tempCount_[binNo] +=2;
1433            } else {
1434 <            value += angMom[0]*angMom[0]/I(0, 0)
1435 <              + angMom[1]*angMom[1]/I(1, 1)
1436 <              + angMom[2]*angMom[2]/I(2, 2);
1437 <            valueCount[binNo] +=3;
1434 >            value += angMom[0] * angMom[0] / I(0, 0) +
1435 >              angMom[1]*angMom[1]/I(1, 1) +
1436 >              angMom[2]*angMom[2]/I(2, 2);
1437 >            tempCount_[binNo] +=3;
1438            }
1439          }
1440 <        value = value / OOPSEConstant::energyConvert / OOPSEConstant::kb;
1441 <
1442 <        break;
1443 <      case rnemdPx :
1440 >        value = value / PhysicalConstants::energyConvert
1441 >          / PhysicalConstants::kb;//may move to getStatus()
1442 >        tempHist_[binNo] += value;
1443 >      }
1444 >      if (outputVx_) {
1445          value = mass * vel[0];
1446 <        valueCount[binNo]++;
1447 <        break;
1448 <      case rnemdPy :
1446 >        //vxzCount_[binNo]++;
1447 >        pxzHist_[binNo] += value;
1448 >      }
1449 >      if (outputVy_) {
1450          value = mass * vel[1];
1451 <        valueCount[binNo]++;
1452 <        break;
524 <      case rnemdPz :
525 <        value = mass * vel[2];
526 <        valueCount[binNo]++;
527 <        break;
528 <      case rnemdUnknown :
529 <      default :
530 <        break;
1451 >        //vyzCount_[binNo]++;
1452 >        pyzHist_[binNo] += value;
1453        }
1454 <      valueHist[binNo] += value;
1454 >
1455 >      if (output3DTemp_) {
1456 >        value = mass * vel.x() * vel.x();
1457 >        xTempHist_[binNo] += value;
1458 >        value = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1459 >          / PhysicalConstants::kb;
1460 >        yTempHist_[binNo] += value;
1461 >        value = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1462 >          / PhysicalConstants::kb;
1463 >        zTempHist_[binNo] += value;
1464 >        xyzTempCount_[binNo]++;
1465 >      }
1466 >      if (outputRotTemp_) {
1467 >        if (sd->isDirectional()) {
1468 >          Vector3d angMom = sd->getJ();
1469 >          Mat3x3d I = sd->getI();
1470 >          if (sd->isLinear()) {
1471 >            int i = sd->linearAxis();
1472 >            int j = (i + 1) % 3;
1473 >            int k = (i + 2) % 3;
1474 >            value = angMom[j] * angMom[j] / I(j, j) +
1475 >              angMom[k] * angMom[k] / I(k, k);
1476 >            rotTempCount_[binNo] +=2;
1477 >          } else {
1478 >            value = angMom[0] * angMom[0] / I(0, 0) +
1479 >              angMom[1] * angMom[1] / I(1, 1) +
1480 >              angMom[2] * angMom[2] / I(2, 2);
1481 >            rotTempCount_[binNo] +=3;
1482 >          }
1483 >        }
1484 >        value = value / PhysicalConstants::energyConvert
1485 >          / PhysicalConstants::kb;//may move to getStatus()
1486 >        rotTempHist_[binNo] += value;
1487 >      }
1488 >      // James put this in.
1489 >      if (outputDen_) {
1490 >        //value = 1.0;
1491 >        DenHist_[binNo] += 1;
1492 >      }
1493 >      if (outputVz_) {
1494 >        value = mass * vel[2];
1495 >        //vyzCount_[binNo]++;
1496 >        pzzHist_[binNo] += value;
1497 >      }    
1498      }
1499 +  }
1500  
1501 +  void RNEMD::getStarted() {
1502 +    collectData();
1503 +    /*now can output profile in step 0, but might not be useful;
1504 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1505 +    Stats& stat = currentSnap_->statData;
1506 +    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1507 +    */
1508 +    //may output a header for the log file here
1509 +    getStatus();
1510 +  }
1511 +
1512 +  void RNEMD::getStatus() {
1513 +
1514 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1515 +    Stats& stat = currentSnap_->statData;
1516 +    RealType time = currentSnap_->getTime();
1517 +
1518 +    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1519 +    //or to be more meaningful, define another item as exchangeSum_ / time
1520 +    int j;
1521 +
1522   #ifdef IS_MPI
1523  
1524      // all processors have the same number of bins, and STL vectors pack their
1525      // arrays, so in theory, this should be safe:
1526  
1527 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist[0],
1528 <                              nBins_, MPI::REALTYPE, MPI::SUM);
1529 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount[0],
1530 <                              nBins_, MPI::INT, MPI::SUM);
1531 <
1527 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &mHist_[0],
1528 >                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1529 >    if (outputTemp_) {
1530 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempHist_[0],
1531 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1532 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempCount_[0],
1533 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1534 >    }
1535 >    if (outputVx_) {
1536 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pxzHist_[0],
1537 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1538 >      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vxzCount_[0],
1539 >      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1540 >    }
1541 >    if (outputVy_) {
1542 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pyzHist_[0],
1543 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1544 >      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vyzCount_[0],
1545 >      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1546 >    }
1547 >    if (output3DTemp_) {
1548 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1549 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1550 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1551 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1552 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1553 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1554 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1555 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1556 >    }
1557 >    if (outputRotTemp_) {
1558 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempHist_[0],
1559 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1560 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempCount_[0],
1561 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1562 >    }
1563 >    // James put this in
1564 >    if (outputDen_) {
1565 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &DenHist_[0],
1566 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1567 >    }
1568 >    if (outputAh_) {
1569 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &AhCount_,
1570 >                                1, MPI::REALTYPE, MPI::SUM);
1571 >    }
1572 >    if (outputVz_) {
1573 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pzzHist_[0],
1574 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1575 >    }
1576 >    
1577      // If we're the root node, should we print out the results
1578      int worldRank = MPI::COMM_WORLD.Get_rank();
1579      if (worldRank == 0) {
1580   #endif
1581 <      
1582 <      std::cout << time;
1583 <      for (int j = 0; j < nBins_; j++)
1584 <        std::cout << "\t" << valueHist[j] / (RealType)valueCount[j];
1585 <      std::cout << "\n";
1586 <      
1581 >
1582 >      if (outputTemp_) {
1583 >        tempLog_ << time;
1584 >        for (j = 0; j < rnemdLogWidth_; j++) {
1585 >          tempLog_ << "\t" << tempHist_[j] / (RealType)tempCount_[j];
1586 >        }
1587 >        tempLog_ << endl;
1588 >      }
1589 >      if (outputVx_) {
1590 >        vxzLog_ << time;
1591 >        for (j = 0; j < rnemdLogWidth_; j++) {
1592 >          vxzLog_ << "\t" << pxzHist_[j] / mHist_[j];
1593 >        }
1594 >        vxzLog_ << endl;
1595 >      }
1596 >      if (outputVy_) {
1597 >        vyzLog_ << time;
1598 >        for (j = 0; j < rnemdLogWidth_; j++) {
1599 >          vyzLog_ << "\t" << pyzHist_[j] / mHist_[j];
1600 >        }
1601 >        vyzLog_ << endl;
1602 >      }
1603 >
1604 >      if (output3DTemp_) {
1605 >        RealType temp;
1606 >        xTempLog_ << time;
1607 >        for (j = 0; j < rnemdLogWidth_; j++) {
1608 >          if (outputVx_)
1609 >            xTempHist_[j] -= pxzHist_[j] * pxzHist_[j] / mHist_[j];
1610 >          temp = xTempHist_[j] / (RealType)xyzTempCount_[j]
1611 >            / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1612 >          xTempLog_ << "\t" << temp;
1613 >        }
1614 >        xTempLog_ << endl;
1615 >        yTempLog_ << time;
1616 >        for (j = 0; j < rnemdLogWidth_; j++) {
1617 >          yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1618 >        }
1619 >        yTempLog_ << endl;
1620 >        zTempLog_ << time;
1621 >        for (j = 0; j < rnemdLogWidth_; j++) {
1622 >          zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1623 >        }
1624 >        zTempLog_ << endl;
1625 >      }
1626 >      if (outputRotTemp_) {
1627 >        rotTempLog_ << time;
1628 >        for (j = 0; j < rnemdLogWidth_; j++) {
1629 >          rotTempLog_ << "\t" << rotTempHist_[j] / (RealType)rotTempCount_[j];
1630 >        }
1631 >        rotTempLog_ << endl;
1632 >      }
1633 >      // James put this in.
1634 >      Mat3x3d hmat = currentSnap_->getHmat();
1635 >      if (outputDen_) {
1636 >        denLog_ << time;
1637 >        for (j = 0; j < rnemdLogWidth_; j++) {
1638 >          
1639 >          RealType binVol = hmat(0,0) * hmat(1,1) * (hmat(2,2) / float(nBins_));
1640 >          denLog_ << "\t" << DenHist_[j] / (float(logFrameCount_) * binVol);
1641 >        }
1642 >        denLog_ << endl;
1643 >      }
1644 >      if (outputVz_) {
1645 >        vzzLog_ << time;
1646 >        for (j = 0; j < rnemdLogWidth_; j++) {
1647 >          vzzLog_ << "\t" << pzzHist_[j] / mHist_[j];
1648 >        }
1649 >        vzzLog_ << endl;
1650 >      }      
1651   #ifdef IS_MPI
1652      }
1653   #endif
1654 +
1655 +    for (j = 0; j < rnemdLogWidth_; j++) {
1656 +      mHist_[j] = 0.0;
1657 +    }
1658 +    if (outputTemp_)
1659 +      for (j = 0; j < rnemdLogWidth_; j++) {
1660 +        tempCount_[j] = 0;
1661 +        tempHist_[j] = 0.0;
1662 +      }
1663 +    if (outputVx_)
1664 +      for (j = 0; j < rnemdLogWidth_; j++) {
1665 +        //pxzCount_[j] = 0;
1666 +        pxzHist_[j] = 0.0;
1667 +      }
1668 +    if (outputVy_)
1669 +      for (j = 0; j < rnemdLogWidth_; j++) {
1670 +        //pyzCount_[j] = 0;
1671 +        pyzHist_[j] = 0.0;
1672 +      }
1673 +
1674 +    if (output3DTemp_)
1675 +      for (j = 0; j < rnemdLogWidth_; j++) {
1676 +        xTempHist_[j] = 0.0;
1677 +        yTempHist_[j] = 0.0;
1678 +        zTempHist_[j] = 0.0;
1679 +        xyzTempCount_[j] = 0;
1680 +      }
1681 +    if (outputRotTemp_)
1682 +      for (j = 0; j < rnemdLogWidth_; j++) {
1683 +        rotTempCount_[j] = 0;
1684 +        rotTempHist_[j] = 0.0;
1685 +      }
1686 +    // James put this in
1687 +    if (outputDen_)
1688 +      for (j = 0; j < rnemdLogWidth_; j++) {
1689 +        //pyzCount_[j] = 0;
1690 +        DenHist_[j] = 0.0;
1691 +      }
1692 +    if (outputVz_)
1693 +      for (j = 0; j < rnemdLogWidth_; j++) {
1694 +        //pyzCount_[j] = 0;
1695 +        pzzHist_[j] = 0.0;
1696 +      }    
1697 +     // reset the counter
1698 +    
1699 +    Numcount_++;
1700 +    if (Numcount_ > int(runTime_/statusTime_))
1701 +      cerr << "time =" << time << "  Asum =" << Asum_ << '\n';
1702 +    if (Numcount_ > int(runTime_/statusTime_))
1703 +      cerr << "time =" << time << "  Jsum =" << Jsum_ << '\n';
1704 +    
1705 +    logFrameCount_ = 0;
1706    }
1707   }
1708 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (property svn:keywords), Revision 1731 by gezelter, Thu May 31 12:25:30 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines