ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1722 by gezelter, Thu May 24 14:23:40 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 + #include <cmath>
43   #include "integrators/RNEMD.hpp"
44   #include "math/Vector3.hpp"
45 + #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47 + #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50 < #include "utils/OOPSEConstant.hpp"
50 > #include "utils/PhysicalConstants.hpp"
51   #include "utils/Tuple.hpp"
52  
53   #ifndef IS_MPI
# Line 55 | Line 58
58  
59   #define HONKING_LARGE_VALUE 1.0e10
60  
61 < namespace oopse {
61 > using namespace std;
62 > namespace OpenMD {
63    
64 <  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
65 <    
64 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
65 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
66 >
67 >    failTrialCount_ = 0;
68 >    failRootCount_ = 0;
69 >
70      int seedValue;
71      Globals * simParams = info->getSimParams();
72  
73 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
73 >    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
74 >    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
75 >    stringToEnumMap_["KineticScaleVAM"] = rnemdKineticScaleVAM;
76 >    stringToEnumMap_["KineticScaleAM"] = rnemdKineticScaleAM;
77 >    stringToEnumMap_["PxScale"] = rnemdPxScale;
78 >    stringToEnumMap_["PyScale"] = rnemdPyScale;
79 >    stringToEnumMap_["PzScale"] = rnemdPzScale;
80      stringToEnumMap_["Px"] = rnemdPx;
81      stringToEnumMap_["Py"] = rnemdPy;
82      stringToEnumMap_["Pz"] = rnemdPz;
83 +    stringToEnumMap_["ShiftScaleV"] = rnemdShiftScaleV;
84 +    stringToEnumMap_["ShiftScaleVAM"] = rnemdShiftScaleVAM;
85      stringToEnumMap_["Unknown"] = rnemdUnknown;
86  
87      rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
88      evaluator_.loadScriptString(rnemdObjectSelection_);
89      seleMan_.setSelectionSet(evaluator_.evaluate());
90  
75
91      // do some sanity checking
92  
93      int selectionCount = seleMan_.getSelectionCount();
# Line 80 | Line 95 | namespace oopse {
95  
96      if (selectionCount > nIntegrable) {
97        sprintf(painCave.errMsg,
98 <              "RNEMD warning: The current RNEMD_objectSelection,\n"
98 >              "RNEMD: The current RNEMD_objectSelection,\n"
99                "\t\t%s\n"
100                "\thas resulted in %d selected objects.  However,\n"
101                "\tthe total number of integrable objects in the system\n"
# Line 90 | Line 105 | namespace oopse {
105                rnemdObjectSelection_.c_str(),
106                selectionCount, nIntegrable);
107        painCave.isFatal = 0;
108 +      painCave.severity = OPENMD_WARNING;
109        simError();
94
110      }
111      
112 <    const std::string st = simParams->getRNEMD_swapType();
112 >    const string st = simParams->getRNEMD_exchangeType();
113  
114 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
114 >    map<string, RNEMDTypeEnum>::iterator i;
115      i = stringToEnumMap_.find(st);
116 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
116 >    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
117 >    if (rnemdType_ == rnemdUnknown) {
118 >      sprintf(painCave.errMsg,
119 >              "RNEMD: The current RNEMD_exchangeType,\n"
120 >              "\t\t%s\n"
121 >              "\tis not one of the recognized exchange types.\n",
122 >              st.c_str());
123 >      painCave.isFatal = 1;
124 >      painCave.severity = OPENMD_ERROR;
125 >      simError();
126 >    }
127 >    
128 >    outputTemp_ = false;
129 >    if (simParams->haveRNEMD_outputTemperature()) {
130 >      outputTemp_ = simParams->getRNEMD_outputTemperature();
131 >    } else if ((rnemdType_ == rnemdKineticSwap) ||
132 >               (rnemdType_ == rnemdKineticScale) ||
133 >               (rnemdType_ == rnemdKineticScaleVAM) ||
134 >               (rnemdType_ == rnemdKineticScaleAM)) {
135 >      outputTemp_ = true;
136 >    }
137 >    outputVx_ = false;
138 >    if (simParams->haveRNEMD_outputVx()) {
139 >      outputVx_ = simParams->getRNEMD_outputVx();
140 >    } else if ((rnemdType_ == rnemdPx) || (rnemdType_ == rnemdPxScale)) {
141 >      outputVx_ = true;
142 >    }
143 >    outputVy_ = false;
144 >    if (simParams->haveRNEMD_outputVy()) {
145 >      outputVy_ = simParams->getRNEMD_outputVy();
146 >    } else if ((rnemdType_ == rnemdPy) || (rnemdType_ == rnemdPyScale)) {
147 >      outputVy_ = true;
148 >    }
149 >    output3DTemp_ = false;
150 >    if (simParams->haveRNEMD_outputXyzTemperature()) {
151 >      output3DTemp_ = simParams->getRNEMD_outputXyzTemperature();
152 >    }
153 >    outputRotTemp_ = false;
154 >    if (simParams->haveRNEMD_outputRotTemperature()) {
155 >      outputRotTemp_ = simParams->getRNEMD_outputRotTemperature();
156 >    }
157  
158 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
158 > #ifdef IS_MPI
159 >    if (worldRank == 0) {
160 > #endif
161 >
162 >      //may have rnemdWriter separately
163 >      string rnemdFileName;
164 >
165 >      if (outputTemp_) {
166 >        rnemdFileName = "temperature.log";
167 >        tempLog_.open(rnemdFileName.c_str());
168 >      }
169 >      if (outputVx_) {
170 >        rnemdFileName = "velocityX.log";
171 >        vxzLog_.open(rnemdFileName.c_str());
172 >      }
173 >      if (outputVy_) {
174 >        rnemdFileName = "velocityY.log";
175 >        vyzLog_.open(rnemdFileName.c_str());
176 >      }
177 >
178 >      if (output3DTemp_) {
179 >        rnemdFileName = "temperatureX.log";
180 >        xTempLog_.open(rnemdFileName.c_str());
181 >        rnemdFileName = "temperatureY.log";
182 >        yTempLog_.open(rnemdFileName.c_str());
183 >        rnemdFileName = "temperatureZ.log";
184 >        zTempLog_.open(rnemdFileName.c_str());
185 >      }
186 >      if (outputRotTemp_) {
187 >        rnemdFileName = "temperatureR.log";
188 >        rotTempLog_.open(rnemdFileName.c_str());
189 >      }
190 >
191 > #ifdef IS_MPI
192 >    }
193 > #endif
194 >
195 >    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
196      set_RNEMD_nBins(simParams->getRNEMD_nBins());
197 <    exchangeSum_ = 0.0;
197 >    midBin_ = nBins_ / 2;
198 >    if (simParams->haveRNEMD_binShift()) {
199 >      if (simParams->getRNEMD_binShift()) {
200 >        zShift_ = 0.5 / (RealType)(nBins_);
201 >      } else {
202 >        zShift_ = 0.0;
203 >      }
204 >    } else {
205 >      zShift_ = 0.0;
206 >    }
207 >    //cerr << "I shift slabs by " << zShift_ << " Lz\n";
208 >    //shift slabs by half slab width, maybe useful in heterogeneous systems
209 >    //set to 0.0 if not using it; N/A in status output yet
210 >    if (simParams->haveRNEMD_logWidth()) {
211 >      set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
212 >      /*arbitary rnemdLogWidth_, no checking;
213 >      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
214 >        cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
215 >        cerr << "Automaically set back to default.\n";
216 >        rnemdLogWidth_ = nBins_;
217 >      }*/
218 >    } else {
219 >      set_RNEMD_logWidth(nBins_);
220 >    }
221 >    tempHist_.resize(rnemdLogWidth_, 0.0);
222 >    tempCount_.resize(rnemdLogWidth_, 0);
223 >    pxzHist_.resize(rnemdLogWidth_, 0.0);
224 >    //vxzCount_.resize(rnemdLogWidth_, 0);
225 >    pyzHist_.resize(rnemdLogWidth_, 0.0);
226 >    //vyzCount_.resize(rnemdLogWidth_, 0);
227 >
228 >    mHist_.resize(rnemdLogWidth_, 0.0);
229 >    xTempHist_.resize(rnemdLogWidth_, 0.0);
230 >    yTempHist_.resize(rnemdLogWidth_, 0.0);
231 >    zTempHist_.resize(rnemdLogWidth_, 0.0);
232 >    xyzTempCount_.resize(rnemdLogWidth_, 0);
233 >    rotTempHist_.resize(rnemdLogWidth_, 0.0);
234 >    rotTempCount_.resize(rnemdLogWidth_, 0);
235 >
236 >    set_RNEMD_exchange_total(0.0);
237 >    if (simParams->haveRNEMD_targetFlux()) {
238 >      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
239 >    } else {
240 >      set_RNEMD_target_flux(0.0);
241 >    }
242 >    if (simParams->haveRNEMD_targetJzKE()) {
243 >      set_RNEMD_target_JzKE(simParams->getRNEMD_targetJzKE());
244 >    } else {
245 >      set_RNEMD_target_JzKE(0.0);
246 >    }
247 >    if (simParams->haveRNEMD_targetJzpx()) {
248 >      set_RNEMD_target_jzpx(simParams->getRNEMD_targetJzpx());
249 >    } else {
250 >      set_RNEMD_target_jzpx(0.0);
251 >    }
252 >    jzp_.x() = targetJzpx_;
253 >    njzp_.x() = -targetJzpx_;
254 >    if (simParams->haveRNEMD_targetJzpy()) {
255 >      set_RNEMD_target_jzpy(simParams->getRNEMD_targetJzpy());
256 >    } else {
257 >      set_RNEMD_target_jzpy(0.0);
258 >    }
259 >    jzp_.y() = targetJzpy_;
260 >    njzp_.y() = -targetJzpy_;
261 >    if (simParams->haveRNEMD_targetJzpz()) {
262 >      set_RNEMD_target_jzpz(simParams->getRNEMD_targetJzpz());
263 >    } else {
264 >      set_RNEMD_target_jzpz(0.0);
265 >    }
266 >    jzp_.z() = targetJzpz_;
267 >    njzp_.z() = -targetJzpz_;
268  
269   #ifndef IS_MPI
270      if (simParams->haveSeed()) {
# Line 123 | Line 285 | namespace oopse {
285    
286    RNEMD::~RNEMD() {
287      delete randNumGen_;
288 +    
289 + #ifdef IS_MPI
290 +    if (worldRank == 0) {
291 + #endif
292 +      
293 +      sprintf(painCave.errMsg,
294 +              "RNEMD: total failed trials: %d\n",
295 +              failTrialCount_);
296 +      painCave.isFatal = 0;
297 +      painCave.severity = OPENMD_INFO;
298 +      simError();
299 +
300 +      if (outputTemp_) tempLog_.close();
301 +      if (outputVx_)   vxzLog_.close();
302 +      if (outputVy_)   vyzLog_.close();
303 +
304 +      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale ||
305 +          rnemdType_ == rnemdPyScale) {
306 +        sprintf(painCave.errMsg,
307 +                "RNEMD: total root-checking warnings: %d\n",
308 +                failRootCount_);
309 +        painCave.isFatal = 0;
310 +        painCave.severity = OPENMD_INFO;
311 +        simError();
312 +      }
313 +      if (output3DTemp_) {
314 +        xTempLog_.close();
315 +        yTempLog_.close();
316 +        zTempLog_.close();
317 +      }
318 +      if (outputRotTemp_) rotTempLog_.close();
319 +
320 + #ifdef IS_MPI
321 +    }
322 + #endif
323    }
324  
325    void RNEMD::doSwap() {
129    int midBin = nBins_ / 2;
326  
327      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
328      Mat3x3d hmat = currentSnap_->getHmat();
# Line 160 | Line 356 | namespace oopse {
356        // which bin is this stuntdouble in?
357        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
358  
359 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
359 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
360  
361  
362        // if we're in bin 0 or the middleBin
363 <      if (binNo == 0 || binNo == midBin) {
363 >      if (binNo == 0 || binNo == midBin_) {
364          
365          RealType mass = sd->getMass();
366          Vector3d vel = sd->getVel();
367          RealType value;
368  
369          switch(rnemdType_) {
370 <        case rnemdKinetic :
370 >        case rnemdKineticSwap :
371            
372 <          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
373 <                          vel[2]*vel[2]);
374 <          if (sd->isDirectional()) {
372 >          value = mass * vel.lengthSquare();
373 >          
374 >          if (sd->isDirectional()) {
375              Vector3d angMom = sd->getJ();
376              Mat3x3d I = sd->getI();
377              
378              if (sd->isLinear()) {
379 <              int i = sd->linearAxis();
380 <              int j = (i + 1) % 3;
381 <              int k = (i + 2) % 3;
382 <              value += angMom[j] * angMom[j] / I(j, j) +
383 <                angMom[k] * angMom[k] / I(k, k);
379 >              int i = sd->linearAxis();
380 >              int j = (i + 1) % 3;
381 >              int k = (i + 2) % 3;
382 >              value += angMom[j] * angMom[j] / I(j, j) +
383 >                angMom[k] * angMom[k] / I(k, k);
384              } else {                        
385 <              value += angMom[0]*angMom[0]/I(0, 0)
386 <                + angMom[1]*angMom[1]/I(1, 1)
387 <                + angMom[2]*angMom[2]/I(2, 2);
385 >              value += angMom[0]*angMom[0]/I(0, 0)
386 >                + angMom[1]*angMom[1]/I(1, 1)
387 >                + angMom[2]*angMom[2]/I(2, 2);
388              }
389 <          }
390 <          value = value * 0.5 / OOPSEConstant::energyConvert;
389 >          } //angular momenta exchange enabled
390 >          //energyConvert temporarily disabled
391 >          //make exchangeSum_ comparable between swap & scale
392 >          //value = value * 0.5 / PhysicalConstants::energyConvert;
393 >          value *= 0.5;
394            break;
395          case rnemdPx :
396            value = mass * vel[0];
# Line 202 | Line 401 | namespace oopse {
401          case rnemdPz :
402            value = mass * vel[2];
403            break;
205        case rnemdUnknown :
404          default :
405            break;
406          }
# Line 218 | Line 416 | namespace oopse {
416                min_sd = sd;
417              }
418            }
419 <        } else {
419 >        } else { //midBin_
420            if (!max_found) {
421              max_val = value;
422              max_sd = sd;
# Line 243 | Line 441 | namespace oopse {
441      bool my_max_found = max_found;
442  
443      // Even if we didn't find a minimum, did someone else?
444 <    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
247 <                              1, MPI::BOOL, MPI::LAND);
248 <    
444 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
445      // Even if we didn't find a maximum, did someone else?
446 <    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
447 <                              1, MPI::BOOL, MPI::LAND);
446 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
447 > #endif
448 >
449 >    if (max_found && min_found) {
450 >
451 > #ifdef IS_MPI
452 >      struct {
453 >        RealType val;
454 >        int rank;
455 >      } max_vals, min_vals;
456      
457 <    struct {
254 <      RealType val;
255 <      int rank;
256 <    } max_vals, min_vals;
257 <    
258 <    if (min_found) {
259 <      if (my_min_found)
457 >      if (my_min_found) {
458          min_vals.val = min_val;
459 <      else
459 >      } else {
460          min_vals.val = HONKING_LARGE_VALUE;
461 <      
461 >      }
462        min_vals.rank = worldRank;    
463        
464        // Who had the minimum?
465        MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
466                                  1, MPI::REALTYPE_INT, MPI::MINLOC);
467        min_val = min_vals.val;
270    }
468        
469 <    if (max_found) {
273 <      if (my_max_found)
469 >      if (my_max_found) {
470          max_vals.val = max_val;
471 <      else
471 >      } else {
472          max_vals.val = -HONKING_LARGE_VALUE;
473 <      
473 >      }
474        max_vals.rank = worldRank;    
475        
476        // Who had the maximum?
477        MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
478                                  1, MPI::REALTYPE_INT, MPI::MAXLOC);
479        max_val = max_vals.val;
284    }
480   #endif
481 <
482 <    if (max_found && min_found) {
483 <      if (min_val< max_val) {
289 <
481 >      
482 >      if (min_val < max_val) {
483 >        
484   #ifdef IS_MPI      
485          if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
486            // I have both maximum and minimum, so proceed like a single
487            // processor version:
488   #endif
489 <          // objects to be swapped: velocity & angular velocity
489 >
490            Vector3d min_vel = min_sd->getVel();
491            Vector3d max_vel = max_sd->getVel();
492            RealType temp_vel;
493            
494            switch(rnemdType_) {
495 <          case rnemdKinetic :
495 >          case rnemdKineticSwap :
496              min_sd->setVel(max_vel);
497              max_sd->setVel(min_vel);
498 <            if (min_sd->isDirectional() && max_sd->isDirectional()) {
498 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
499                Vector3d min_angMom = min_sd->getJ();
500                Vector3d max_angMom = max_sd->getJ();
501                min_sd->setJ(max_angMom);
502                max_sd->setJ(min_angMom);
503 <            }
503 >            }//angular momenta exchange enabled
504 >            //assumes same rigid body identity
505              break;
506            case rnemdPx :
507              temp_vel = min_vel.x();
# Line 329 | Line 524 | namespace oopse {
524              min_sd->setVel(min_vel);
525              max_sd->setVel(max_vel);
526              break;
332          case rnemdUnknown :
527            default :
528              break;
529            }
530 +
531   #ifdef IS_MPI
532            // the rest of the cases only apply in parallel simulations:
533          } else if (max_vals.rank == worldRank) {
# Line 349 | Line 544 | namespace oopse {
544                                     min_vals.rank, 0, status);
545            
546            switch(rnemdType_) {
547 <          case rnemdKinetic :
547 >          case rnemdKineticSwap :
548              max_sd->setVel(min_vel);
549 <            
549 >            //angular momenta exchange enabled
550              if (max_sd->isDirectional()) {
551                Vector3d min_angMom;
552                Vector3d max_angMom = max_sd->getJ();
553 <
553 >              
554                // point-to-point swap of the angular momentum vector
555                MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
556                                         MPI::REALTYPE, min_vals.rank, 1,
557                                         min_angMom.getArrayPointer(), 3,
558                                         MPI::REALTYPE, min_vals.rank, 1,
559                                         status);
560 <
560 >              
561                max_sd->setJ(min_angMom);
562 <            }
562 >            }
563              break;
564            case rnemdPx :
565              max_vel.x() = min_vel.x();
# Line 378 | Line 573 | namespace oopse {
573              max_vel.z() = min_vel.z();
574              max_sd->setVel(max_vel);
575              break;
381          case rnemdUnknown :
576            default :
577              break;
578            }
# Line 396 | Line 590 | namespace oopse {
590                                     max_vals.rank, 0, status);
591            
592            switch(rnemdType_) {
593 <          case rnemdKinetic :
593 >          case rnemdKineticSwap :
594              min_sd->setVel(max_vel);
595 <            
595 >            //angular momenta exchange enabled
596              if (min_sd->isDirectional()) {
597                Vector3d min_angMom = min_sd->getJ();
598                Vector3d max_angMom;
599 <
599 >              
600                // point-to-point swap of the angular momentum vector
601                MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
602                                         MPI::REALTYPE, max_vals.rank, 1,
603                                         max_angMom.getArrayPointer(), 3,
604                                         MPI::REALTYPE, max_vals.rank, 1,
605                                         status);
606 <
606 >              
607                min_sd->setJ(max_angMom);
608              }
609              break;
# Line 425 | Line 619 | namespace oopse {
619              min_vel.z() = max_vel.z();
620              min_sd->setVel(min_vel);
621              break;
428          case rnemdUnknown :
622            default :
623              break;
624            }
625          }
626   #endif
627          exchangeSum_ += max_val - min_val;
628 <      } else {
629 <        std::cerr << "exchange NOT performed.\nmin_val > max_val.\n";
628 >      } else {        
629 >        sprintf(painCave.errMsg,
630 >                "RNEMD: exchange NOT performed because min_val > max_val\n");
631 >        painCave.isFatal = 0;
632 >        painCave.severity = OPENMD_INFO;
633 >        simError();        
634 >        failTrialCount_++;
635        }
636      } else {
637 <      std::cerr << "exchange NOT performed.\none of the two slabs empty.\n";
637 >      sprintf(painCave.errMsg,
638 >              "RNEMD: exchange NOT performed because selected object\n"
639 >              "\tnot present in at least one of the two slabs.\n");
640 >      painCave.isFatal = 0;
641 >      painCave.severity = OPENMD_INFO;
642 >      simError();        
643 >      failTrialCount_++;
644      }
645      
646    }
647    
648 <  void RNEMD::getStatus() {
648 >  void RNEMD::doScale() {
649  
650      Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
651      Mat3x3d hmat = currentSnap_->getHmat();
448    Stats& stat = currentSnap_->statData;
449    RealType time = currentSnap_->getTime();
652  
451    stat[Stats::RNEMD_SWAP_TOTAL] = exchangeSum_;
452
653      seleMan_.setSelectionSet(evaluator_.evaluate());
654  
655      int selei;
656      StuntDouble* sd;
657      int idx;
658  
659 <    std::vector<RealType> valueHist(nBins_, 0.0); // keeps track of what's
460 <                                                  // being averaged
461 <    std::vector<int> valueCount(nBins_, 0);       // keeps track of the
462 <                                                  // number of degrees of
463 <                                                  // freedom being averaged
659 >    vector<StuntDouble*> hotBin, coldBin;
660  
661 +    RealType Phx = 0.0;
662 +    RealType Phy = 0.0;
663 +    RealType Phz = 0.0;
664 +    RealType Khx = 0.0;
665 +    RealType Khy = 0.0;
666 +    RealType Khz = 0.0;
667 +    RealType Khw = 0.0;
668 +    RealType Pcx = 0.0;
669 +    RealType Pcy = 0.0;
670 +    RealType Pcz = 0.0;
671 +    RealType Kcx = 0.0;
672 +    RealType Kcy = 0.0;
673 +    RealType Kcz = 0.0;
674 +    RealType Kcw = 0.0;
675 +
676      for (sd = seleMan_.beginSelected(selei); sd != NULL;
677           sd = seleMan_.nextSelected(selei)) {
678 +
679 +      idx = sd->getLocalIndex();
680 +
681 +      Vector3d pos = sd->getPos();
682 +
683 +      // wrap the stuntdouble's position back into the box:
684 +
685 +      if (usePeriodicBoundaryConditions_)
686 +        currentSnap_->wrapVector(pos);
687 +
688 +      // which bin is this stuntdouble in?
689 +      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
690 +
691 +      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
692 +
693 +      // if we're in bin 0 or the middleBin
694 +      if (binNo == 0 || binNo == midBin_) {
695 +        
696 +        RealType mass = sd->getMass();
697 +        Vector3d vel = sd->getVel();
698 +      
699 +        if (binNo == 0) {
700 +          hotBin.push_back(sd);
701 +          Phx += mass * vel.x();
702 +          Phy += mass * vel.y();
703 +          Phz += mass * vel.z();
704 +          Khx += mass * vel.x() * vel.x();
705 +          Khy += mass * vel.y() * vel.y();
706 +          Khz += mass * vel.z() * vel.z();
707 +          //if (rnemdType_ == rnemdKineticScaleVAM) {
708 +          if (sd->isDirectional()) {
709 +            Vector3d angMom = sd->getJ();
710 +            Mat3x3d I = sd->getI();
711 +            if (sd->isLinear()) {
712 +              int i = sd->linearAxis();
713 +              int j = (i + 1) % 3;
714 +              int k = (i + 2) % 3;
715 +              Khw += angMom[j] * angMom[j] / I(j, j) +
716 +                angMom[k] * angMom[k] / I(k, k);
717 +            } else {
718 +              Khw += angMom[0]*angMom[0]/I(0, 0)
719 +                + angMom[1]*angMom[1]/I(1, 1)
720 +                + angMom[2]*angMom[2]/I(2, 2);
721 +            }
722 +          }
723 +          //}
724 +        } else { //midBin_
725 +          coldBin.push_back(sd);
726 +          Pcx += mass * vel.x();
727 +          Pcy += mass * vel.y();
728 +          Pcz += mass * vel.z();
729 +          Kcx += mass * vel.x() * vel.x();
730 +          Kcy += mass * vel.y() * vel.y();
731 +          Kcz += mass * vel.z() * vel.z();
732 +          //if (rnemdType_ == rnemdKineticScaleVAM) {
733 +          if (sd->isDirectional()) {
734 +            Vector3d angMom = sd->getJ();
735 +            Mat3x3d I = sd->getI();
736 +            if (sd->isLinear()) {
737 +              int i = sd->linearAxis();
738 +              int j = (i + 1) % 3;
739 +              int k = (i + 2) % 3;
740 +              Kcw += angMom[j] * angMom[j] / I(j, j) +
741 +                angMom[k] * angMom[k] / I(k, k);
742 +            } else {
743 +              Kcw += angMom[0]*angMom[0]/I(0, 0)
744 +                + angMom[1]*angMom[1]/I(1, 1)
745 +                + angMom[2]*angMom[2]/I(2, 2);
746 +            }
747 +          }
748 +          //}
749 +        }
750 +      }
751 +    }
752 +    
753 +    Khx *= 0.5;
754 +    Khy *= 0.5;
755 +    Khz *= 0.5;
756 +    Khw *= 0.5;
757 +    Kcx *= 0.5;
758 +    Kcy *= 0.5;
759 +    Kcz *= 0.5;
760 +    Kcw *= 0.5;
761 +
762 +    std::cerr << "Khx= " << Khx << "\tKhy= " << Khy << "\tKhz= " << Khz
763 +              << "\tKhw= " << Khw << "\tKcx= " << Kcx << "\tKcy= " << Kcy
764 +              << "\tKcz= " << Kcz << "\tKcw= " << Kcw << "\n";
765 +    std::cerr << "Phx= " << Phx << "\tPhy= " << Phy << "\tPhz= " << Phz
766 +              << "\tPcx= " << Pcx << "\tPcy= " << Pcy << "\tPcz= " <<Pcz<<"\n";
767 +
768 + #ifdef IS_MPI
769 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
770 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
771 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
772 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
773 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
774 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
775 +
776 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
777 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
778 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
779 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
780 +
781 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
782 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
783 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
784 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
785 + #endif
786 +
787 +    //solve coldBin coeff's first
788 +    RealType px = Pcx / Phx;
789 +    RealType py = Pcy / Phy;
790 +    RealType pz = Pcz / Phz;
791 +    RealType c, x, y, z;
792 +    bool successfulScale = false;
793 +    if ((rnemdType_ == rnemdKineticScaleVAM) ||
794 +        (rnemdType_ == rnemdKineticScaleAM)) {
795 +      //may need sanity check Khw & Kcw > 0
796 +
797 +      if (rnemdType_ == rnemdKineticScaleVAM) {
798 +        c = 1.0 - targetFlux_ / (Kcx + Kcy + Kcz + Kcw);
799 +      } else {
800 +        c = 1.0 - targetFlux_ / Kcw;
801 +      }
802 +
803 +      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
804 +        c = sqrt(c);
805 +        std::cerr << "cold slab scaling coefficient: " << c << endl;
806 +        //now convert to hotBin coefficient
807 +        RealType w = 0.0;
808 +        if (rnemdType_ ==  rnemdKineticScaleVAM) {
809 +          x = 1.0 + px * (1.0 - c);
810 +          y = 1.0 + py * (1.0 - c);
811 +          z = 1.0 + pz * (1.0 - c);
812 +          /* more complicated way
813 +             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
814 +             + Khx * px * px + Khy * py * py + Khz * pz * pz)
815 +             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
816 +             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
817 +             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
818 +             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
819 +          */
820 +          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
821 +              (fabs(z - 1.0) < 0.1)) {
822 +            w = 1.0 + (targetFlux_ + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
823 +                       + Khz * (1.0 - z * z)) / Khw;
824 +          }//no need to calculate w if x, y or z is out of range
825 +        } else {
826 +          w = 1.0 + targetFlux_ / Khw;
827 +        }
828 +        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
829 +          //if w is in the right range, so should be x, y, z.
830 +          vector<StuntDouble*>::iterator sdi;
831 +          Vector3d vel;
832 +          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
833 +            if (rnemdType_ == rnemdKineticScaleVAM) {
834 +              vel = (*sdi)->getVel() * c;
835 +              //vel.x() *= c;
836 +              //vel.y() *= c;
837 +              //vel.z() *= c;
838 +              (*sdi)->setVel(vel);
839 +            }
840 +            if ((*sdi)->isDirectional()) {
841 +              Vector3d angMom = (*sdi)->getJ() * c;
842 +              //angMom[0] *= c;
843 +              //angMom[1] *= c;
844 +              //angMom[2] *= c;
845 +              (*sdi)->setJ(angMom);
846 +            }
847 +          }
848 +          w = sqrt(w);
849 +          std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
850 +                    << "\twh= " << w << endl;
851 +          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
852 +            if (rnemdType_ == rnemdKineticScaleVAM) {
853 +              vel = (*sdi)->getVel();
854 +              vel.x() *= x;
855 +              vel.y() *= y;
856 +              vel.z() *= z;
857 +              (*sdi)->setVel(vel);
858 +            }
859 +            if ((*sdi)->isDirectional()) {
860 +              Vector3d angMom = (*sdi)->getJ() * w;
861 +              //angMom[0] *= w;
862 +              //angMom[1] *= w;
863 +              //angMom[2] *= w;
864 +              (*sdi)->setJ(angMom);
865 +            }
866 +          }
867 +          successfulScale = true;
868 +          exchangeSum_ += targetFlux_;
869 +        }
870 +      }
871 +    } else {
872 +      RealType a000, a110, c0, a001, a111, b01, b11, c1;
873 +      switch(rnemdType_) {
874 +      case rnemdKineticScale :
875 +        /* used hotBin coeff's & only scale x & y dimensions
876 +           RealType px = Phx / Pcx;
877 +           RealType py = Phy / Pcy;
878 +           a110 = Khy;
879 +           c0 = - Khx - Khy - targetFlux_;
880 +           a000 = Khx;
881 +           a111 = Kcy * py * py;
882 +           b11 = -2.0 * Kcy * py * (1.0 + py);
883 +           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
884 +           b01 = -2.0 * Kcx * px * (1.0 + px);
885 +           a001 = Kcx * px * px;
886 +        */
887 +        //scale all three dimensions, let c_x = c_y
888 +        a000 = Kcx + Kcy;
889 +        a110 = Kcz;
890 +        c0 = targetFlux_ - Kcx - Kcy - Kcz;
891 +        a001 = Khx * px * px + Khy * py * py;
892 +        a111 = Khz * pz * pz;
893 +        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
894 +        b11 = -2.0 * Khz * pz * (1.0 + pz);
895 +        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
896 +          + Khz * pz * (2.0 + pz) - targetFlux_;
897 +        break;
898 +      case rnemdPxScale :
899 +        c = 1 - targetFlux_ / Pcx;
900 +        a000 = Kcy;
901 +        a110 = Kcz;
902 +        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
903 +        a001 = py * py * Khy;
904 +        a111 = pz * pz * Khz;
905 +        b01 = -2.0 * Khy * py * (1.0 + py);
906 +        b11 = -2.0 * Khz * pz * (1.0 + pz);
907 +        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
908 +          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
909 +        break;
910 +      case rnemdPyScale :
911 +        c = 1 - targetFlux_ / Pcy;
912 +        a000 = Kcx;
913 +        a110 = Kcz;
914 +        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
915 +        a001 = px * px * Khx;
916 +        a111 = pz * pz * Khz;
917 +        b01 = -2.0 * Khx * px * (1.0 + px);
918 +        b11 = -2.0 * Khz * pz * (1.0 + pz);
919 +        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
920 +          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
921 +        break;
922 +      case rnemdPzScale ://we don't really do this, do we?
923 +        c = 1 - targetFlux_ / Pcz;
924 +        a000 = Kcx;
925 +        a110 = Kcy;
926 +        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
927 +        a001 = px * px * Khx;
928 +        a111 = py * py * Khy;
929 +        b01 = -2.0 * Khx * px * (1.0 + px);
930 +        b11 = -2.0 * Khy * py * (1.0 + py);
931 +        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
932 +          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
933 +        break;
934 +      default :
935 +        break;
936 +      }
937 +      
938 +      RealType v1 = a000 * a111 - a001 * a110;
939 +      RealType v2 = a000 * b01;
940 +      RealType v3 = a000 * b11;
941 +      RealType v4 = a000 * c1 - a001 * c0;
942 +      RealType v8 = a110 * b01;
943 +      RealType v10 = - b01 * c0;
944 +      
945 +      RealType u0 = v2 * v10 - v4 * v4;
946 +      RealType u1 = -2.0 * v3 * v4;
947 +      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
948 +      RealType u3 = -2.0 * v1 * v3;
949 +      RealType u4 = - v1 * v1;
950 +      //rescale coefficients
951 +      RealType maxAbs = fabs(u0);
952 +      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
953 +      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
954 +      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
955 +      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
956 +      u0 /= maxAbs;
957 +      u1 /= maxAbs;
958 +      u2 /= maxAbs;
959 +      u3 /= maxAbs;
960 +      u4 /= maxAbs;
961 +      //max_element(start, end) is also available.
962 +      Polynomial<RealType> poly; //same as DoublePolynomial poly;
963 +      poly.setCoefficient(4, u4);
964 +      poly.setCoefficient(3, u3);
965 +      poly.setCoefficient(2, u2);
966 +      poly.setCoefficient(1, u1);
967 +      poly.setCoefficient(0, u0);
968 +      vector<RealType> realRoots = poly.FindRealRoots();
969 +      
970 +      vector<RealType>::iterator ri;
971 +      RealType r1, r2, alpha0;
972 +      vector<pair<RealType,RealType> > rps;
973 +      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
974 +        r2 = *ri;
975 +        //check if FindRealRoots() give the right answer
976 +        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
977 +          sprintf(painCave.errMsg,
978 +                  "RNEMD Warning: polynomial solve seems to have an error!");
979 +          painCave.isFatal = 0;
980 +          simError();
981 +          failRootCount_++;
982 +        }
983 +        //might not be useful w/o rescaling coefficients
984 +        alpha0 = -c0 - a110 * r2 * r2;
985 +        if (alpha0 >= 0.0) {
986 +          r1 = sqrt(alpha0 / a000);
987 +          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
988 +              < 1e-6)
989 +            { rps.push_back(make_pair(r1, r2)); }
990 +          if (r1 > 1e-6) { //r1 non-negative
991 +            r1 = -r1;
992 +            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
993 +                < 1e-6)
994 +              { rps.push_back(make_pair(r1, r2)); }
995 +          }
996 +        }
997 +      }
998 +      // Consider combining together the solving pair part w/ the searching
999 +      // best solution part so that we don't need the pairs vector
1000 +      if (!rps.empty()) {
1001 +        RealType smallestDiff = HONKING_LARGE_VALUE;
1002 +        RealType diff;
1003 +        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1004 +        vector<pair<RealType,RealType> >::iterator rpi;
1005 +        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1006 +          r1 = (*rpi).first;
1007 +          r2 = (*rpi).second;
1008 +          switch(rnemdType_) {
1009 +          case rnemdKineticScale :
1010 +            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1011 +              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1012 +              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1013 +            break;
1014 +          case rnemdPxScale :
1015 +            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1016 +              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1017 +            break;
1018 +          case rnemdPyScale :
1019 +            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1020 +              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1021 +            break;
1022 +          case rnemdPzScale :
1023 +            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1024 +              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1025 +          default :
1026 +            break;
1027 +          }
1028 +          if (diff < smallestDiff) {
1029 +            smallestDiff = diff;
1030 +            bestPair = *rpi;
1031 +          }
1032 +        }
1033 + #ifdef IS_MPI
1034 +        if (worldRank == 0) {
1035 + #endif
1036 +          sprintf(painCave.errMsg,
1037 +                  "RNEMD: roots r1= %lf\tr2 = %lf\n",
1038 +                  bestPair.first, bestPair.second);
1039 +          painCave.isFatal = 0;
1040 +          painCave.severity = OPENMD_INFO;
1041 +          simError();
1042 + #ifdef IS_MPI
1043 +        }
1044 + #endif
1045 +        
1046 +        switch(rnemdType_) {
1047 +        case rnemdKineticScale :
1048 +          x = bestPair.first;
1049 +          y = bestPair.first;
1050 +          z = bestPair.second;
1051 +          break;
1052 +        case rnemdPxScale :
1053 +          x = c;
1054 +          y = bestPair.first;
1055 +          z = bestPair.second;
1056 +          break;
1057 +        case rnemdPyScale :
1058 +          x = bestPair.first;
1059 +          y = c;
1060 +          z = bestPair.second;
1061 +          break;
1062 +        case rnemdPzScale :
1063 +          x = bestPair.first;
1064 +          y = bestPair.second;
1065 +          z = c;
1066 +          break;          
1067 +        default :
1068 +          break;
1069 +        }
1070 +        vector<StuntDouble*>::iterator sdi;
1071 +        Vector3d vel;
1072 +        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1073 +          vel = (*sdi)->getVel();
1074 +          vel.x() *= x;
1075 +          vel.y() *= y;
1076 +          vel.z() *= z;
1077 +          (*sdi)->setVel(vel);
1078 +        }
1079 +        //convert to hotBin coefficient
1080 +        x = 1.0 + px * (1.0 - x);
1081 +        y = 1.0 + py * (1.0 - y);
1082 +        z = 1.0 + pz * (1.0 - z);
1083 +        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1084 +          vel = (*sdi)->getVel();
1085 +          vel.x() *= x;
1086 +          vel.y() *= y;
1087 +          vel.z() *= z;
1088 +          (*sdi)->setVel(vel);
1089 +        }
1090 +        successfulScale = true;
1091 +        exchangeSum_ += targetFlux_;
1092 +      }
1093 +    }
1094 +    if (successfulScale != true) {
1095 +      sprintf(painCave.errMsg,
1096 +              "RNEMD: exchange NOT performed!\n");
1097 +      painCave.isFatal = 0;
1098 +      painCave.severity = OPENMD_INFO;
1099 +      simError();        
1100 +      failTrialCount_++;
1101 +    }
1102 +  }
1103 +
1104 +  void RNEMD::doShiftScale() {
1105 +
1106 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1107 +    Mat3x3d hmat = currentSnap_->getHmat();
1108 +
1109 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1110 +
1111 +    int selei;
1112 +    StuntDouble* sd;
1113 +    int idx;
1114 +
1115 +    vector<StuntDouble*> hotBin, coldBin;
1116 +
1117 +    Vector3d Ph(V3Zero);
1118 +    RealType Mh = 0.0;
1119 +    RealType Kh = 0.0;
1120 +    Vector3d Pc(V3Zero);
1121 +    RealType Mc = 0.0;
1122 +    RealType Kc = 0.0;
1123 +
1124 +    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1125 +         sd = seleMan_.nextSelected(selei)) {
1126 +
1127 +      idx = sd->getLocalIndex();
1128 +
1129 +      Vector3d pos = sd->getPos();
1130 +
1131 +      // wrap the stuntdouble's position back into the box:
1132 +
1133 +      if (usePeriodicBoundaryConditions_)
1134 +        currentSnap_->wrapVector(pos);
1135 +
1136 +      // which bin is this stuntdouble in?
1137 +      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1138 +
1139 +      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1140 +
1141 +      // if we're in bin 0 or the middleBin
1142 +      if (binNo == 0 || binNo == midBin_) {
1143 +        
1144 +        RealType mass = sd->getMass();
1145 +        Vector3d vel = sd->getVel();
1146 +      
1147 +        if (binNo == 0) {
1148 +          hotBin.push_back(sd);
1149 +          //std::cerr << "before, velocity = " << vel << endl;
1150 +          Ph += mass * vel;
1151 +          //std::cerr << "after, velocity = " << vel << endl;
1152 +          Mh += mass;
1153 +          Kh += mass * vel.lengthSquare();
1154 +          if (rnemdType_ == rnemdShiftScaleVAM) {
1155 +            if (sd->isDirectional()) {
1156 +              Vector3d angMom = sd->getJ();
1157 +              Mat3x3d I = sd->getI();
1158 +              if (sd->isLinear()) {
1159 +                int i = sd->linearAxis();
1160 +                int j = (i + 1) % 3;
1161 +                int k = (i + 2) % 3;
1162 +                Kh += angMom[j] * angMom[j] / I(j, j) +
1163 +                  angMom[k] * angMom[k] / I(k, k);
1164 +              } else {
1165 +                Kh += angMom[0] * angMom[0] / I(0, 0) +
1166 +                  angMom[1] * angMom[1] / I(1, 1) +
1167 +                  angMom[2] * angMom[2] / I(2, 2);
1168 +              }
1169 +            }
1170 +          }
1171 +        } else { //midBin_
1172 +          coldBin.push_back(sd);
1173 +          Pc += mass * vel;
1174 +          Mc += mass;
1175 +          Kc += mass * vel.lengthSquare();
1176 +          if (rnemdType_ == rnemdShiftScaleVAM) {
1177 +            if (sd->isDirectional()) {
1178 +              Vector3d angMom = sd->getJ();
1179 +              Mat3x3d I = sd->getI();
1180 +              if (sd->isLinear()) {
1181 +                int i = sd->linearAxis();
1182 +                int j = (i + 1) % 3;
1183 +                int k = (i + 2) % 3;
1184 +                Kc += angMom[j] * angMom[j] / I(j, j) +
1185 +                  angMom[k] * angMom[k] / I(k, k);
1186 +              } else {
1187 +                Kc += angMom[0] * angMom[0] / I(0, 0) +
1188 +                  angMom[1] * angMom[1] / I(1, 1) +
1189 +                  angMom[2] * angMom[2] / I(2, 2);
1190 +              }
1191 +            }
1192 +          }
1193 +        }
1194 +      }
1195 +    }
1196 +    
1197 +    Kh *= 0.5;
1198 +    Kc *= 0.5;
1199 +
1200 +    std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1201 +              << "\tKc= " << Kc << endl;
1202 +    std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1203 +
1204 + #ifdef IS_MPI
1205 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1206 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1207 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1208 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1209 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1210 +    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1211 + #endif
1212 +
1213 +    bool successfulExchange = false;
1214 +    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1215 +      Vector3d vc = Pc / Mc;
1216 +      Vector3d ac = njzp_ / Mc + vc;
1217 +      RealType cNumerator = Kc - targetJzKE_ - 0.5 * Mc * ac.lengthSquare();
1218 +      if (cNumerator > 0.0) {
1219 +        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1220 +        if (cDenominator > 0.0) {
1221 +          RealType c = sqrt(cNumerator / cDenominator);
1222 +          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1223 +            Vector3d vh = Ph / Mh;
1224 +            Vector3d ah = jzp_ / Mh + vh;
1225 +            RealType hNumerator = Kh + targetJzKE_
1226 +              - 0.5 * Mh * ah.lengthSquare();
1227 +            if (hNumerator > 0.0) {
1228 +              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1229 +              if (hDenominator > 0.0) {
1230 +                RealType h = sqrt(hNumerator / hDenominator);
1231 +                if ((h > 0.9) && (h < 1.1)) {
1232 +                  std::cerr << "cold slab scaling coefficient: " << c << "\n";
1233 +                  std::cerr << "hot slab scaling coefficient: " << h << "\n";
1234 +                  vector<StuntDouble*>::iterator sdi;
1235 +                  Vector3d vel;
1236 +                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1237 +                    //vel = (*sdi)->getVel();
1238 +                    vel = ((*sdi)->getVel() - vc) * c + ac;
1239 +                    (*sdi)->setVel(vel);
1240 +                    if (rnemdType_ == rnemdShiftScaleVAM) {
1241 +                      if ((*sdi)->isDirectional()) {
1242 +                        Vector3d angMom = (*sdi)->getJ() * c;
1243 +                        (*sdi)->setJ(angMom);
1244 +                      }
1245 +                    }
1246 +                  }
1247 +                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1248 +                    //vel = (*sdi)->getVel();
1249 +                    vel = ((*sdi)->getVel() - vh) * h + ah;
1250 +                    (*sdi)->setVel(vel);
1251 +                    if (rnemdType_ == rnemdShiftScaleVAM) {
1252 +                      if ((*sdi)->isDirectional()) {
1253 +                        Vector3d angMom = (*sdi)->getJ() * h;
1254 +                        (*sdi)->setJ(angMom);
1255 +                      }
1256 +                    }
1257 +                  }
1258 +                  successfulExchange = true;
1259 +                  exchangeSum_ += targetFlux_;
1260 +                  // this is a redundant variable for doShiftScale() so that
1261 +                  // RNEMD can output one exchange quantity needed in a job.
1262 +                  // need a better way to do this.
1263 +                }
1264 +              }
1265 +            }
1266 +          }
1267 +        }
1268 +      }
1269 +    }
1270 +    if (successfulExchange != true) {
1271 +      sprintf(painCave.errMsg,
1272 +              "RNEMD: exchange NOT performed!\n");
1273 +      painCave.isFatal = 0;
1274 +      painCave.severity = OPENMD_INFO;
1275 +      simError();        
1276 +      failTrialCount_++;
1277 +    }
1278 +  }
1279 +
1280 +  void RNEMD::doRNEMD() {
1281 +
1282 +    switch(rnemdType_) {
1283 +    case rnemdKineticScale :
1284 +    case rnemdKineticScaleVAM :
1285 +    case rnemdKineticScaleAM :
1286 +    case rnemdPxScale :
1287 +    case rnemdPyScale :
1288 +    case rnemdPzScale :
1289 +      doScale();
1290 +      break;
1291 +    case rnemdKineticSwap :
1292 +    case rnemdPx :
1293 +    case rnemdPy :
1294 +    case rnemdPz :
1295 +      doSwap();
1296 +      break;
1297 +    case rnemdShiftScaleV :
1298 +    case rnemdShiftScaleVAM :
1299 +      doShiftScale();
1300 +      break;
1301 +    case rnemdUnknown :
1302 +    default :
1303 +      break;
1304 +    }
1305 +  }
1306 +
1307 +  void RNEMD::collectData() {
1308 +
1309 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1310 +    Mat3x3d hmat = currentSnap_->getHmat();
1311 +
1312 +    seleMan_.setSelectionSet(evaluator_.evaluate());
1313 +
1314 +    int selei;
1315 +    StuntDouble* sd;
1316 +    int idx;
1317 +
1318 +    // alternative approach, track all molecules instead of only those
1319 +    // selected for scaling/swapping:
1320 +    /*
1321 +    SimInfo::MoleculeIterator miter;
1322 +    vector<StuntDouble*>::iterator iiter;
1323 +    Molecule* mol;
1324 +    StuntDouble* integrableObject;
1325 +    for (mol = info_->beginMolecule(miter); mol != NULL;
1326 +         mol = info_->nextMolecule(miter))
1327 +      integrableObject is essentially sd
1328 +        for (integrableObject = mol->beginIntegrableObject(iiter);
1329 +             integrableObject != NULL;
1330 +             integrableObject = mol->nextIntegrableObject(iiter))
1331 +    */
1332 +    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1333 +         sd = seleMan_.nextSelected(selei)) {
1334        
1335        idx = sd->getLocalIndex();
1336        
# Line 477 | Line 1344 | namespace oopse {
1344        // which bin is this stuntdouble in?
1345        // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1346        
1347 <      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;    
1348 <      
1347 >      int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
1348 >        rnemdLogWidth_;
1349 >      // no symmetrization allowed due to arbitary rnemdLogWidth_
1350 >      /*
1351 >      if (rnemdLogWidth_ == midBin_ + 1)
1352 >        if (binNo > midBin_)
1353 >          binNo = nBins_ - binNo;
1354 >      */
1355        RealType mass = sd->getMass();
1356 +      mHist_[binNo] += mass;
1357        Vector3d vel = sd->getVel();
1358        RealType value;
1359 +      //RealType xVal, yVal, zVal;
1360  
1361 <      switch(rnemdType_) {
1362 <      case rnemdKinetic :
1363 <        
489 <        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
490 <                        vel[2]*vel[2]);
491 <        
492 <        valueCount[binNo] += 3;
1361 >      if (outputTemp_) {
1362 >        value = mass * vel.lengthSquare();
1363 >        tempCount_[binNo] += 3;
1364          if (sd->isDirectional()) {
1365            Vector3d angMom = sd->getJ();
1366            Mat3x3d I = sd->getI();
496          
1367            if (sd->isLinear()) {
1368              int i = sd->linearAxis();
1369              int j = (i + 1) % 3;
1370              int k = (i + 2) % 3;
1371              value += angMom[j] * angMom[j] / I(j, j) +
1372                angMom[k] * angMom[k] / I(k, k);
1373 <
504 <            valueCount[binNo] +=2;
505 <
1373 >            tempCount_[binNo] +=2;
1374            } else {
1375 <            value += angMom[0]*angMom[0]/I(0, 0)
1376 <              + angMom[1]*angMom[1]/I(1, 1)
1377 <              + angMom[2]*angMom[2]/I(2, 2);
1378 <            valueCount[binNo] +=3;
1375 >            value += angMom[0] * angMom[0] / I(0, 0) +
1376 >              angMom[1]*angMom[1]/I(1, 1) +
1377 >              angMom[2]*angMom[2]/I(2, 2);
1378 >            tempCount_[binNo] +=3;
1379            }
1380          }
1381 <        value = value / OOPSEConstant::energyConvert / OOPSEConstant::kb;
1382 <
1383 <        break;
1384 <      case rnemdPx :
1381 >        value = value / PhysicalConstants::energyConvert
1382 >          / PhysicalConstants::kb;//may move to getStatus()
1383 >        tempHist_[binNo] += value;
1384 >      }
1385 >      if (outputVx_) {
1386          value = mass * vel[0];
1387 <        valueCount[binNo]++;
1388 <        break;
1389 <      case rnemdPy :
1387 >        //vxzCount_[binNo]++;
1388 >        pxzHist_[binNo] += value;
1389 >      }
1390 >      if (outputVy_) {
1391          value = mass * vel[1];
1392 <        valueCount[binNo]++;
1393 <        break;
524 <      case rnemdPz :
525 <        value = mass * vel[2];
526 <        valueCount[binNo]++;
527 <        break;
528 <      case rnemdUnknown :
529 <      default :
530 <        break;
1392 >        //vyzCount_[binNo]++;
1393 >        pyzHist_[binNo] += value;
1394        }
1395 <      valueHist[binNo] += value;
1395 >
1396 >      if (output3DTemp_) {
1397 >        value = mass * vel.x() * vel.x();
1398 >        xTempHist_[binNo] += value;
1399 >        value = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1400 >          / PhysicalConstants::kb;
1401 >        yTempHist_[binNo] += value;
1402 >        value = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1403 >          / PhysicalConstants::kb;
1404 >        zTempHist_[binNo] += value;
1405 >        xyzTempCount_[binNo]++;
1406 >      }
1407 >      if (outputRotTemp_) {
1408 >        if (sd->isDirectional()) {
1409 >          Vector3d angMom = sd->getJ();
1410 >          Mat3x3d I = sd->getI();
1411 >          if (sd->isLinear()) {
1412 >            int i = sd->linearAxis();
1413 >            int j = (i + 1) % 3;
1414 >            int k = (i + 2) % 3;
1415 >            value = angMom[j] * angMom[j] / I(j, j) +
1416 >              angMom[k] * angMom[k] / I(k, k);
1417 >            rotTempCount_[binNo] +=2;
1418 >          } else {
1419 >            value = angMom[0] * angMom[0] / I(0, 0) +
1420 >              angMom[1] * angMom[1] / I(1, 1) +
1421 >              angMom[2] * angMom[2] / I(2, 2);
1422 >            rotTempCount_[binNo] +=3;
1423 >          }
1424 >        }
1425 >        value = value / PhysicalConstants::energyConvert
1426 >          / PhysicalConstants::kb;//may move to getStatus()
1427 >        rotTempHist_[binNo] += value;
1428 >      }
1429 >
1430      }
1431 +  }
1432  
1433 +  void RNEMD::getStarted() {
1434 +    collectData();
1435 +    /*now can output profile in step 0, but might not be useful;
1436 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1437 +    Stats& stat = currentSnap_->statData;
1438 +    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1439 +    */
1440 +    //may output a header for the log file here
1441 +    getStatus();
1442 +  }
1443 +
1444 +  void RNEMD::getStatus() {
1445 +
1446 +    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1447 +    Stats& stat = currentSnap_->statData;
1448 +    RealType time = currentSnap_->getTime();
1449 +
1450 +    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1451 +    //or to be more meaningful, define another item as exchangeSum_ / time
1452 +    int j;
1453 +
1454   #ifdef IS_MPI
1455  
1456      // all processors have the same number of bins, and STL vectors pack their
1457      // arrays, so in theory, this should be safe:
1458  
1459 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist[0],
1460 <                              nBins_, MPI::REALTYPE, MPI::SUM);
1461 <    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount[0],
1462 <                              nBins_, MPI::INT, MPI::SUM);
1459 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &mHist_[0],
1460 >                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1461 >    if (outputTemp_) {
1462 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempHist_[0],
1463 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1464 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempCount_[0],
1465 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1466 >    }
1467 >    if (outputVx_) {
1468 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pxzHist_[0],
1469 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1470 >      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vxzCount_[0],
1471 >      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1472 >    }
1473 >    if (outputVy_) {
1474 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pyzHist_[0],
1475 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1476 >      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vyzCount_[0],
1477 >      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1478 >    }
1479 >    if (output3DTemp_) {
1480 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1481 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1482 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1483 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1484 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1485 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1486 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1487 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1488 >    }
1489 >    if (outputRotTemp_) {
1490 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempHist_[0],
1491 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1492 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempCount_[0],
1493 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1494 >    }
1495  
1496      // If we're the root node, should we print out the results
1497      int worldRank = MPI::COMM_WORLD.Get_rank();
1498      if (worldRank == 0) {
1499   #endif
1500 <      
1501 <      std::cout << time;
1502 <      for (int j = 0; j < nBins_; j++)
1503 <        std::cout << "\t" << valueHist[j] / (RealType)valueCount[j];
1504 <      std::cout << "\n";
1505 <      
1500 >
1501 >      if (outputTemp_) {
1502 >        tempLog_ << time;
1503 >        for (j = 0; j < rnemdLogWidth_; j++) {
1504 >          tempLog_ << "\t" << tempHist_[j] / (RealType)tempCount_[j];
1505 >        }
1506 >        tempLog_ << endl;
1507 >      }
1508 >      if (outputVx_) {
1509 >        vxzLog_ << time;
1510 >        for (j = 0; j < rnemdLogWidth_; j++) {
1511 >          vxzLog_ << "\t" << pxzHist_[j] / mHist_[j];
1512 >        }
1513 >        vxzLog_ << endl;
1514 >      }
1515 >      if (outputVy_) {
1516 >        vyzLog_ << time;
1517 >        for (j = 0; j < rnemdLogWidth_; j++) {
1518 >          vyzLog_ << "\t" << pyzHist_[j] / mHist_[j];
1519 >        }
1520 >        vyzLog_ << endl;
1521 >      }
1522 >
1523 >      if (output3DTemp_) {
1524 >        RealType temp;
1525 >        xTempLog_ << time;
1526 >        for (j = 0; j < rnemdLogWidth_; j++) {
1527 >          if (outputVx_)
1528 >            xTempHist_[j] -= pxzHist_[j] * pxzHist_[j] / mHist_[j];
1529 >          temp = xTempHist_[j] / (RealType)xyzTempCount_[j]
1530 >            / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1531 >          xTempLog_ << "\t" << temp;
1532 >        }
1533 >        xTempLog_ << endl;
1534 >        yTempLog_ << time;
1535 >        for (j = 0; j < rnemdLogWidth_; j++) {
1536 >          yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1537 >        }
1538 >        yTempLog_ << endl;
1539 >        zTempLog_ << time;
1540 >        for (j = 0; j < rnemdLogWidth_; j++) {
1541 >          zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1542 >        }
1543 >        zTempLog_ << endl;
1544 >      }
1545 >      if (outputRotTemp_) {
1546 >        rotTempLog_ << time;
1547 >        for (j = 0; j < rnemdLogWidth_; j++) {
1548 >          rotTempLog_ << "\t" << rotTempHist_[j] / (RealType)rotTempCount_[j];
1549 >        }
1550 >        rotTempLog_ << endl;
1551 >      }
1552 >
1553   #ifdef IS_MPI
1554      }
1555   #endif
1556 +
1557 +    for (j = 0; j < rnemdLogWidth_; j++) {
1558 +      mHist_[j] = 0.0;
1559 +    }
1560 +    if (outputTemp_)
1561 +      for (j = 0; j < rnemdLogWidth_; j++) {
1562 +        tempCount_[j] = 0;
1563 +        tempHist_[j] = 0.0;
1564 +      }
1565 +    if (outputVx_)
1566 +      for (j = 0; j < rnemdLogWidth_; j++) {
1567 +        //pxzCount_[j] = 0;
1568 +        pxzHist_[j] = 0.0;
1569 +      }
1570 +    if (outputVy_)
1571 +      for (j = 0; j < rnemdLogWidth_; j++) {
1572 +        //pyzCount_[j] = 0;
1573 +        pyzHist_[j] = 0.0;
1574 +      }
1575 +
1576 +    if (output3DTemp_)
1577 +      for (j = 0; j < rnemdLogWidth_; j++) {
1578 +        xTempHist_[j] = 0.0;
1579 +        yTempHist_[j] = 0.0;
1580 +        zTempHist_[j] = 0.0;
1581 +        xyzTempCount_[j] = 0;
1582 +      }
1583 +    if (outputRotTemp_)
1584 +      for (j = 0; j < rnemdLogWidth_; j++) {
1585 +        rotTempCount_[j] = 0;
1586 +        rotTempHist_[j] = 0.0;
1587 +      }
1588    }
1589   }
1590 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1350 by gezelter, Thu May 21 18:56:45 2009 UTC vs.
branches/development/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1722 by gezelter, Thu May 24 14:23:40 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines