ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (file contents), Revision 1731 by gezelter, Thu May 31 12:25:30 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 < #include "integrators/RNEMD.hpp"
42 > #include <cmath>
43 > #include "rnemd/RNEMD.hpp"
44 > #include "math/Vector3.hpp"
45 > #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47 + #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50 + #include "utils/PhysicalConstants.hpp"
51 + #include "utils/Tuple.hpp"
52  
53   #ifndef IS_MPI
54   #include "math/SeqRandNumGen.hpp"
55   #else
56   #include "math/ParallelRandNumGen.hpp"
57 + #include <mpi.h>
58   #endif
59  
60 < /* Remove me after testing*/
54 < /*
55 < #include <cstdio>
56 < #include <iostream>
57 < */
58 < /*End remove me*/
60 > #define HONKING_LARGE_VALUE 1.0e10
61  
62 < namespace oopse {
62 > using namespace std;
63 > namespace OpenMD {
64    
65 <  RNEMD::RNEMD(SimInfo* info) : info_(info) {
66 <    
65 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
66 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
67 >
68 >    failTrialCount_ = 0;
69 >    failRootCount_ = 0;
70 >
71      int seedValue;
72      Globals * simParams = info->getSimParams();
73 +    RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
74  
75 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
75 >    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
76 >    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
77 >    stringToEnumMap_["KineticScaleVAM"] = rnemdKineticScaleVAM;
78 >    stringToEnumMap_["KineticScaleAM"] = rnemdKineticScaleAM;
79 >    stringToEnumMap_["PxScale"] = rnemdPxScale;
80 >    stringToEnumMap_["PyScale"] = rnemdPyScale;
81 >    stringToEnumMap_["PzScale"] = rnemdPzScale;
82      stringToEnumMap_["Px"] = rnemdPx;
83      stringToEnumMap_["Py"] = rnemdPy;
84      stringToEnumMap_["Pz"] = rnemdPz;
85 +    stringToEnumMap_["ShiftScaleV"] = rnemdShiftScaleV;
86 +    stringToEnumMap_["ShiftScaleVAM"] = rnemdShiftScaleVAM;
87      stringToEnumMap_["Unknown"] = rnemdUnknown;
88  
89 <    const std::string st = simParams->getRNEMD_swapType();
89 >    runTime_ = simParams->getRunTime();
90 >    statusTime_ = simParams->getStatusTime();
91  
92 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
93 <    i = stringToEnumMap_.find(st);
94 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
92 >    rnemdObjectSelection_ = rnemdParams->getObjectSelection();
93 >    evaluator_.loadScriptString(rnemdObjectSelection_);
94 >    seleMan_.setSelectionSet(evaluator_.evaluate());
95  
96 +    // do some sanity checking
97  
98 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
99 <    set_RNEMD_nBins(simParams->getRNEMD_nBins());
100 <    exchangeSum_ = 0.0;
98 >    int selectionCount = seleMan_.getSelectionCount();
99 >    int nIntegrable = info->getNGlobalIntegrableObjects();
100 >
101 >    if (selectionCount > nIntegrable) {
102 >      sprintf(painCave.errMsg,
103 >              "RNEMD: The current RNEMD_objectSelection,\n"
104 >              "\t\t%s\n"
105 >              "\thas resulted in %d selected objects.  However,\n"
106 >              "\tthe total number of integrable objects in the system\n"
107 >              "\tis only %d.  This is almost certainly not what you want\n"
108 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
109 >              "\tselector in the selection script!\n",
110 >              rnemdObjectSelection_.c_str(),
111 >              selectionCount, nIntegrable);
112 >      painCave.isFatal = 0;
113 >      painCave.severity = OPENMD_WARNING;
114 >      simError();
115 >    }
116      
117 +    const string st = rnemdParams->getExchangeType();
118 +
119 +    map<string, RNEMDTypeEnum>::iterator i;
120 +    i = stringToEnumMap_.find(st);
121 +    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
122 +    if (rnemdType_ == rnemdUnknown) {
123 +      sprintf(painCave.errMsg,
124 +              "RNEMD: The current RNEMD_exchangeType,\n"
125 +              "\t\t%s\n"
126 +              "\tis not one of the recognized exchange types.\n",
127 +              st.c_str());
128 +      painCave.isFatal = 1;
129 +      painCave.severity = OPENMD_ERROR;
130 +      simError();
131 +    }
132 +    
133 +    outputTemp_ = false;
134 +    if (rnemdParams->haveOutputTemperature()) {
135 +      outputTemp_ = rnemdParams->getOutputTemperature();
136 +    } else if ((rnemdType_ == rnemdKineticSwap) ||
137 +               (rnemdType_ == rnemdKineticScale) ||
138 +               (rnemdType_ == rnemdKineticScaleVAM) ||
139 +               (rnemdType_ == rnemdKineticScaleAM)) {
140 +      outputTemp_ = true;
141 +    }
142 +    outputVx_ = false;
143 +    if (rnemdParams->haveOutputVx()) {
144 +      outputVx_ = rnemdParams->getOutputVx();
145 +    } else if ((rnemdType_ == rnemdPx) || (rnemdType_ == rnemdPxScale)) {
146 +      outputVx_ = true;
147 +    }
148 +    outputVy_ = false;
149 +    if (rnemdParams->haveOutputVy()) {
150 +      outputVy_ = rnemdParams->getOutputVy();
151 +    } else if ((rnemdType_ == rnemdPy) || (rnemdType_ == rnemdPyScale)) {
152 +      outputVy_ = true;
153 +    }
154 +    output3DTemp_ = false;
155 +    if (rnemdParams->haveOutputXyzTemperature()) {
156 +      output3DTemp_ = rnemdParams->getOutputXyzTemperature();
157 +    }
158 +    outputRotTemp_ = false;
159 +    if (rnemdParams->haveOutputRotTemperature()) {
160 +      outputRotTemp_ = rnemdParams->getOutputRotTemperature();
161 +    }
162 +    // James put this in.
163 +    outputDen_ = false;
164 +    if (rnemdParams->haveOutputDen()) {
165 +      outputDen_ = rnemdParams->getOutputDen();
166 +    }
167 +    outputAh_ = false;
168 +    if (rnemdParams->haveOutputAh()) {
169 +      outputAh_ = rnemdParams->getOutputAh();
170 +    }    
171 +    outputVz_ = false;
172 +    if (rnemdParams->haveOutputVz()) {
173 +      outputVz_ = rnemdParams->getOutputVz();
174 +    } else if ((rnemdType_ == rnemdPz) || (rnemdType_ == rnemdPzScale)) {
175 +      outputVz_ = true;
176 +    }
177 +    
178 +
179 + #ifdef IS_MPI
180 +    if (worldRank == 0) {
181 + #endif
182 +
183 +      //may have rnemdWriter separately
184 +      string rnemdFileName;
185 +
186 +      if (outputTemp_) {
187 +        rnemdFileName = "temperature.log";
188 +        tempLog_.open(rnemdFileName.c_str());
189 +      }
190 +      if (outputVx_) {
191 +        rnemdFileName = "velocityX.log";
192 +        vxzLog_.open(rnemdFileName.c_str());
193 +      }
194 +      if (outputVy_) {
195 +        rnemdFileName = "velocityY.log";
196 +        vyzLog_.open(rnemdFileName.c_str());
197 +      }
198 +
199 +      if (output3DTemp_) {
200 +        rnemdFileName = "temperatureX.log";
201 +        xTempLog_.open(rnemdFileName.c_str());
202 +        rnemdFileName = "temperatureY.log";
203 +        yTempLog_.open(rnemdFileName.c_str());
204 +        rnemdFileName = "temperatureZ.log";
205 +        zTempLog_.open(rnemdFileName.c_str());
206 +      }
207 +      if (outputRotTemp_) {
208 +        rnemdFileName = "temperatureR.log";
209 +        rotTempLog_.open(rnemdFileName.c_str());
210 +      }
211 +      
212 +      //James put this in
213 +      if (outputDen_) {
214 +        rnemdFileName = "Density.log";
215 +        denLog_.open(rnemdFileName.c_str());
216 +      }
217 +      if (outputAh_) {
218 +        rnemdFileName = "Ah.log";
219 +        AhLog_.open(rnemdFileName.c_str());
220 +      }
221 +      if (outputVz_) {
222 +        rnemdFileName = "velocityZ.log";
223 +        vzzLog_.open(rnemdFileName.c_str());
224 +      }
225 +      logFrameCount_ = 0;
226 + #ifdef IS_MPI
227 +    }
228 + #endif
229 +
230 +    set_RNEMD_exchange_time(rnemdParams->getExchangeTime());
231 +    set_RNEMD_nBins(rnemdParams->getNbins());
232 +    midBin_ = nBins_ / 2;
233 +    if (rnemdParams->haveBinShift()) {
234 +      if (rnemdParams->getBinShift()) {
235 +        zShift_ = 0.5 / (RealType)(nBins_);
236 +      } else {
237 +        zShift_ = 0.0;
238 +      }
239 +    } else {
240 +      zShift_ = 0.0;
241 +    }
242 +    //cerr << "I shift slabs by " << zShift_ << " Lz\n";
243 +    //shift slabs by half slab width, maybe useful in heterogeneous systems
244 +    //set to 0.0 if not using it; N/A in status output yet
245 +    if (rnemdParams->haveLogWidth()) {
246 +      set_RNEMD_logWidth(rnemdParams->getLogWidth());
247 +      /*arbitary rnemdLogWidth_, no checking;
248 +      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
249 +        cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
250 +        cerr << "Automaically set back to default.\n";
251 +        rnemdLogWidth_ = nBins_;
252 +      }*/
253 +    } else {
254 +      set_RNEMD_logWidth(nBins_);
255 +    }
256 +    tempHist_.resize(rnemdLogWidth_, 0.0);
257 +    tempCount_.resize(rnemdLogWidth_, 0);
258 +    pxzHist_.resize(rnemdLogWidth_, 0.0);
259 +    //vxzCount_.resize(rnemdLogWidth_, 0);
260 +    pyzHist_.resize(rnemdLogWidth_, 0.0);
261 +    //vyzCount_.resize(rnemdLogWidth_, 0);
262 +
263 +    mHist_.resize(rnemdLogWidth_, 0.0);
264 +    xTempHist_.resize(rnemdLogWidth_, 0.0);
265 +    yTempHist_.resize(rnemdLogWidth_, 0.0);
266 +    zTempHist_.resize(rnemdLogWidth_, 0.0);
267 +    xyzTempCount_.resize(rnemdLogWidth_, 0);
268 +    rotTempHist_.resize(rnemdLogWidth_, 0.0);
269 +    rotTempCount_.resize(rnemdLogWidth_, 0);
270 +    // James put this in
271 +    DenHist_.resize(rnemdLogWidth_, 0.0);
272 +    pzzHist_.resize(rnemdLogWidth_, 0.0);
273 +
274 +    set_RNEMD_exchange_total(0.0);
275 +    if (rnemdParams->haveTargetFlux()) {
276 +      set_RNEMD_target_flux(rnemdParams->getTargetFlux());
277 +    } else {
278 +      set_RNEMD_target_flux(0.0);
279 +    }
280 +    if (rnemdParams->haveTargetJzKE()) {
281 +      set_RNEMD_target_JzKE(rnemdParams->getTargetJzKE());
282 +    } else {
283 +      set_RNEMD_target_JzKE(0.0);
284 +    }
285 +    if (rnemdParams->haveTargetJzpx()) {
286 +      set_RNEMD_target_jzpx(rnemdParams->getTargetJzpx());
287 +    } else {
288 +      set_RNEMD_target_jzpx(0.0);
289 +    }
290 +    jzp_.x() = targetJzpx_;
291 +    njzp_.x() = -targetJzpx_;
292 +    if (rnemdParams->haveTargetJzpy()) {
293 +      set_RNEMD_target_jzpy(rnemdParams->getTargetJzpy());
294 +    } else {
295 +      set_RNEMD_target_jzpy(0.0);
296 +    }
297 +    jzp_.y() = targetJzpy_;
298 +    njzp_.y() = -targetJzpy_;
299 +    if (rnemdParams->haveTargetJzpz()) {
300 +      set_RNEMD_target_jzpz(rnemdParams->getTargetJzpz());
301 +    } else {
302 +      set_RNEMD_target_jzpz(0.0);
303 +    }
304 +    jzp_.z() = targetJzpz_;
305 +    njzp_.z() = -targetJzpz_;
306 +
307   #ifndef IS_MPI
308      if (simParams->haveSeed()) {
309        seedValue = simParams->getSeed();
# Line 100 | Line 323 | namespace oopse {
323    
324    RNEMD::~RNEMD() {
325      delete randNumGen_;
326 +    
327 + #ifdef IS_MPI
328 +    if (worldRank == 0) {
329 + #endif
330 +      
331 +      sprintf(painCave.errMsg,
332 +              "RNEMD: total failed trials: %d\n",
333 +              failTrialCount_);
334 +      painCave.isFatal = 0;
335 +      painCave.severity = OPENMD_INFO;
336 +      simError();
337 +      
338 +      if (outputTemp_) tempLog_.close();
339 +      if (outputVx_)   vxzLog_.close();
340 +      if (outputVy_)   vyzLog_.close();
341 +
342 +      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale ||
343 +          rnemdType_ == rnemdPyScale) {
344 +        sprintf(painCave.errMsg,
345 +                "RNEMD: total root-checking warnings: %d\n",
346 +                failRootCount_);
347 +        painCave.isFatal = 0;
348 +        painCave.severity = OPENMD_INFO;
349 +        simError();
350 +      }
351 +      if (output3DTemp_) {
352 +        xTempLog_.close();
353 +        yTempLog_.close();
354 +        zTempLog_.close();
355 +      }
356 +      if (outputRotTemp_) rotTempLog_.close();
357 +      // James put this in
358 +      if (outputDen_) denLog_.close();
359 +      if (outputAh_)  AhLog_.close();
360 +      if (outputVz_)  vzzLog_.close();
361 +      
362 + #ifdef IS_MPI
363 +    }
364 + #endif
365    }
366  
367    void RNEMD::doSwap() {
368 <    std::cerr << "in RNEMD!\n";  
369 <    std::cerr << "nBins = " << nBins_ << "\n";
370 <    std::cerr << "swapTime = " << swapTime_ << "\n";
371 <    std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
372 <    std::cerr << "swapType = " << rnemdType_ << "\n";
373 <  }  
368 >
369 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
370 >    Mat3x3d hmat = currentSnap_->getHmat();
371 >
372 >    seleMan_.setSelectionSet(evaluator_.evaluate());
373 >
374 >    int selei;
375 >    StuntDouble* sd;
376 >    int idx;
377 >
378 >    RealType min_val;
379 >    bool min_found = false;  
380 >    StuntDouble* min_sd;
381 >
382 >    RealType max_val;
383 >    bool max_found = false;
384 >    StuntDouble* max_sd;
385 >
386 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
387 >         sd = seleMan_.nextSelected(selei)) {
388 >
389 >      idx = sd->getLocalIndex();
390 >
391 >      Vector3d pos = sd->getPos();
392 >
393 >      // wrap the stuntdouble's position back into the box:
394 >
395 >      if (usePeriodicBoundaryConditions_)
396 >        currentSnap_->wrapVector(pos);
397 >
398 >      // which bin is this stuntdouble in?
399 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
400 >
401 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
402 >
403 >
404 >      // if we're in bin 0 or the middleBin
405 >      if (binNo == 0 || binNo == midBin_) {
406 >        
407 >        RealType mass = sd->getMass();
408 >        Vector3d vel = sd->getVel();
409 >        RealType value;
410 >
411 >        switch(rnemdType_) {
412 >        case rnemdKineticSwap :
413 >          
414 >          value = mass * vel.lengthSquare();
415 >          
416 >          if (sd->isDirectional()) {
417 >            Vector3d angMom = sd->getJ();
418 >            Mat3x3d I = sd->getI();
419 >            
420 >            if (sd->isLinear()) {
421 >              int i = sd->linearAxis();
422 >              int j = (i + 1) % 3;
423 >              int k = (i + 2) % 3;
424 >              value += angMom[j] * angMom[j] / I(j, j) +
425 >                angMom[k] * angMom[k] / I(k, k);
426 >            } else {                        
427 >              value += angMom[0]*angMom[0]/I(0, 0)
428 >                + angMom[1]*angMom[1]/I(1, 1)
429 >                + angMom[2]*angMom[2]/I(2, 2);
430 >            }
431 >          } //angular momenta exchange enabled
432 >          //energyConvert temporarily disabled
433 >          //make exchangeSum_ comparable between swap & scale
434 >          //value = value * 0.5 / PhysicalConstants::energyConvert;
435 >          value *= 0.5;
436 >          break;
437 >        case rnemdPx :
438 >          value = mass * vel[0];
439 >          break;
440 >        case rnemdPy :
441 >          value = mass * vel[1];
442 >          break;
443 >        case rnemdPz :
444 >          value = mass * vel[2];
445 >          break;
446 >        default :
447 >          break;
448 >        }
449 >        
450 >        if (binNo == 0) {
451 >          if (!min_found) {
452 >            min_val = value;
453 >            min_sd = sd;
454 >            min_found = true;
455 >          } else {
456 >            if (min_val > value) {
457 >              min_val = value;
458 >              min_sd = sd;
459 >            }
460 >          }
461 >        } else { //midBin_
462 >          if (!max_found) {
463 >            max_val = value;
464 >            max_sd = sd;
465 >            max_found = true;
466 >          } else {
467 >            if (max_val < value) {
468 >              max_val = value;
469 >              max_sd = sd;
470 >            }
471 >          }      
472 >        }
473 >      }
474 >    }
475 >
476 > #ifdef IS_MPI
477 >    int nProc, worldRank;
478 >
479 >    nProc = MPI::COMM_WORLD.Get_size();
480 >    worldRank = MPI::COMM_WORLD.Get_rank();
481 >
482 >    bool my_min_found = min_found;
483 >    bool my_max_found = max_found;
484 >
485 >    // Even if we didn't find a minimum, did someone else?
486 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
487 >    // Even if we didn't find a maximum, did someone else?
488 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
489 > #endif
490 >
491 >    if (max_found && min_found) {
492 >
493 > #ifdef IS_MPI
494 >      struct {
495 >        RealType val;
496 >        int rank;
497 >      } max_vals, min_vals;
498 >      
499 >      if (my_min_found) {
500 >        min_vals.val = min_val;
501 >      } else {
502 >        min_vals.val = HONKING_LARGE_VALUE;
503 >      }
504 >      min_vals.rank = worldRank;    
505 >      
506 >      // Who had the minimum?
507 >      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
508 >                                1, MPI::REALTYPE_INT, MPI::MINLOC);
509 >      min_val = min_vals.val;
510 >      
511 >      if (my_max_found) {
512 >        max_vals.val = max_val;
513 >      } else {
514 >        max_vals.val = -HONKING_LARGE_VALUE;
515 >      }
516 >      max_vals.rank = worldRank;    
517 >      
518 >      // Who had the maximum?
519 >      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
520 >                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
521 >      max_val = max_vals.val;
522 > #endif
523 >      
524 >      if (min_val < max_val) {
525 >        
526 > #ifdef IS_MPI      
527 >        if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
528 >          // I have both maximum and minimum, so proceed like a single
529 >          // processor version:
530 > #endif
531 >
532 >          Vector3d min_vel = min_sd->getVel();
533 >          Vector3d max_vel = max_sd->getVel();
534 >          RealType temp_vel;
535 >          
536 >          switch(rnemdType_) {
537 >          case rnemdKineticSwap :
538 >            min_sd->setVel(max_vel);
539 >            max_sd->setVel(min_vel);
540 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
541 >              Vector3d min_angMom = min_sd->getJ();
542 >              Vector3d max_angMom = max_sd->getJ();
543 >              min_sd->setJ(max_angMom);
544 >              max_sd->setJ(min_angMom);
545 >            }//angular momenta exchange enabled
546 >            //assumes same rigid body identity
547 >            break;
548 >          case rnemdPx :
549 >            temp_vel = min_vel.x();
550 >            min_vel.x() = max_vel.x();
551 >            max_vel.x() = temp_vel;
552 >            min_sd->setVel(min_vel);
553 >            max_sd->setVel(max_vel);
554 >            break;
555 >          case rnemdPy :
556 >            temp_vel = min_vel.y();
557 >            min_vel.y() = max_vel.y();
558 >            max_vel.y() = temp_vel;
559 >            min_sd->setVel(min_vel);
560 >            max_sd->setVel(max_vel);
561 >            break;
562 >          case rnemdPz :
563 >            temp_vel = min_vel.z();
564 >            min_vel.z() = max_vel.z();
565 >            max_vel.z() = temp_vel;
566 >            min_sd->setVel(min_vel);
567 >            max_sd->setVel(max_vel);
568 >            break;
569 >          default :
570 >            break;
571 >          }
572 >
573 > #ifdef IS_MPI
574 >          // the rest of the cases only apply in parallel simulations:
575 >        } else if (max_vals.rank == worldRank) {
576 >          // I had the max, but not the minimum
577 >          
578 >          Vector3d min_vel;
579 >          Vector3d max_vel = max_sd->getVel();
580 >          MPI::Status status;
581 >
582 >          // point-to-point swap of the velocity vector
583 >          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
584 >                                   min_vals.rank, 0,
585 >                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
586 >                                   min_vals.rank, 0, status);
587 >          
588 >          switch(rnemdType_) {
589 >          case rnemdKineticSwap :
590 >            max_sd->setVel(min_vel);
591 >            //angular momenta exchange enabled
592 >            if (max_sd->isDirectional()) {
593 >              Vector3d min_angMom;
594 >              Vector3d max_angMom = max_sd->getJ();
595 >              
596 >              // point-to-point swap of the angular momentum vector
597 >              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
598 >                                       MPI::REALTYPE, min_vals.rank, 1,
599 >                                       min_angMom.getArrayPointer(), 3,
600 >                                       MPI::REALTYPE, min_vals.rank, 1,
601 >                                       status);
602 >              
603 >              max_sd->setJ(min_angMom);
604 >            }
605 >            break;
606 >          case rnemdPx :
607 >            max_vel.x() = min_vel.x();
608 >            max_sd->setVel(max_vel);
609 >            break;
610 >          case rnemdPy :
611 >            max_vel.y() = min_vel.y();
612 >            max_sd->setVel(max_vel);
613 >            break;
614 >          case rnemdPz :
615 >            max_vel.z() = min_vel.z();
616 >            max_sd->setVel(max_vel);
617 >            break;
618 >          default :
619 >            break;
620 >          }
621 >        } else if (min_vals.rank == worldRank) {
622 >          // I had the minimum but not the maximum:
623 >          
624 >          Vector3d max_vel;
625 >          Vector3d min_vel = min_sd->getVel();
626 >          MPI::Status status;
627 >          
628 >          // point-to-point swap of the velocity vector
629 >          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
630 >                                   max_vals.rank, 0,
631 >                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
632 >                                   max_vals.rank, 0, status);
633 >          
634 >          switch(rnemdType_) {
635 >          case rnemdKineticSwap :
636 >            min_sd->setVel(max_vel);
637 >            //angular momenta exchange enabled
638 >            if (min_sd->isDirectional()) {
639 >              Vector3d min_angMom = min_sd->getJ();
640 >              Vector3d max_angMom;
641 >              
642 >              // point-to-point swap of the angular momentum vector
643 >              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
644 >                                       MPI::REALTYPE, max_vals.rank, 1,
645 >                                       max_angMom.getArrayPointer(), 3,
646 >                                       MPI::REALTYPE, max_vals.rank, 1,
647 >                                       status);
648 >              
649 >              min_sd->setJ(max_angMom);
650 >            }
651 >            break;
652 >          case rnemdPx :
653 >            min_vel.x() = max_vel.x();
654 >            min_sd->setVel(min_vel);
655 >            break;
656 >          case rnemdPy :
657 >            min_vel.y() = max_vel.y();
658 >            min_sd->setVel(min_vel);
659 >            break;
660 >          case rnemdPz :
661 >            min_vel.z() = max_vel.z();
662 >            min_sd->setVel(min_vel);
663 >            break;
664 >          default :
665 >            break;
666 >          }
667 >        }
668 > #endif
669 >        exchangeSum_ += max_val - min_val;
670 >      } else {        
671 >        sprintf(painCave.errMsg,
672 >                "RNEMD: exchange NOT performed because min_val > max_val\n");
673 >        painCave.isFatal = 0;
674 >        painCave.severity = OPENMD_INFO;
675 >        simError();        
676 >        failTrialCount_++;
677 >      }
678 >    } else {
679 >      sprintf(painCave.errMsg,
680 >              "RNEMD: exchange NOT performed because selected object\n"
681 >              "\tnot present in at least one of the two slabs.\n");
682 >      painCave.isFatal = 0;
683 >      painCave.severity = OPENMD_INFO;
684 >      simError();        
685 >      failTrialCount_++;
686 >    }
687 >    
688 >  }
689 >  
690 >  void RNEMD::doScale() {
691 >
692 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
693 >    Mat3x3d hmat = currentSnap_->getHmat();
694 >
695 >    seleMan_.setSelectionSet(evaluator_.evaluate());
696 >
697 >    int selei;
698 >    StuntDouble* sd;
699 >    int idx;
700 >
701 >    vector<StuntDouble*> hotBin, coldBin;
702 >
703 >    RealType Phx = 0.0;
704 >    RealType Phy = 0.0;
705 >    RealType Phz = 0.0;
706 >    RealType Khx = 0.0;
707 >    RealType Khy = 0.0;
708 >    RealType Khz = 0.0;
709 >    RealType Khw = 0.0;
710 >    RealType Pcx = 0.0;
711 >    RealType Pcy = 0.0;
712 >    RealType Pcz = 0.0;
713 >    RealType Kcx = 0.0;
714 >    RealType Kcy = 0.0;
715 >    RealType Kcz = 0.0;
716 >    RealType Kcw = 0.0;
717 >
718 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
719 >         sd = seleMan_.nextSelected(selei)) {
720 >
721 >      idx = sd->getLocalIndex();
722 >
723 >      Vector3d pos = sd->getPos();
724 >
725 >      // wrap the stuntdouble's position back into the box:
726 >
727 >      if (usePeriodicBoundaryConditions_)
728 >        currentSnap_->wrapVector(pos);
729 >
730 >      // which bin is this stuntdouble in?
731 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
732 >
733 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
734 >
735 >      // if we're in bin 0 or the middleBin
736 >      if (binNo == 0 || binNo == midBin_) {
737 >        
738 >        RealType mass = sd->getMass();
739 >        Vector3d vel = sd->getVel();
740 >      
741 >        if (binNo == 0) {
742 >          hotBin.push_back(sd);
743 >          Phx += mass * vel.x();
744 >          Phy += mass * vel.y();
745 >          Phz += mass * vel.z();
746 >          Khx += mass * vel.x() * vel.x();
747 >          Khy += mass * vel.y() * vel.y();
748 >          Khz += mass * vel.z() * vel.z();
749 >          //if (rnemdType_ == rnemdKineticScaleVAM) {
750 >          if (sd->isDirectional()) {
751 >            Vector3d angMom = sd->getJ();
752 >            Mat3x3d I = sd->getI();
753 >            if (sd->isLinear()) {
754 >              int i = sd->linearAxis();
755 >              int j = (i + 1) % 3;
756 >              int k = (i + 2) % 3;
757 >              Khw += angMom[j] * angMom[j] / I(j, j) +
758 >                angMom[k] * angMom[k] / I(k, k);
759 >            } else {
760 >              Khw += angMom[0]*angMom[0]/I(0, 0)
761 >                + angMom[1]*angMom[1]/I(1, 1)
762 >                + angMom[2]*angMom[2]/I(2, 2);
763 >            }
764 >          }
765 >          //}
766 >        } else { //midBin_
767 >          coldBin.push_back(sd);
768 >          Pcx += mass * vel.x();
769 >          Pcy += mass * vel.y();
770 >          Pcz += mass * vel.z();
771 >          Kcx += mass * vel.x() * vel.x();
772 >          Kcy += mass * vel.y() * vel.y();
773 >          Kcz += mass * vel.z() * vel.z();
774 >          //if (rnemdType_ == rnemdKineticScaleVAM) {
775 >          if (sd->isDirectional()) {
776 >            Vector3d angMom = sd->getJ();
777 >            Mat3x3d I = sd->getI();
778 >            if (sd->isLinear()) {
779 >              int i = sd->linearAxis();
780 >              int j = (i + 1) % 3;
781 >              int k = (i + 2) % 3;
782 >              Kcw += angMom[j] * angMom[j] / I(j, j) +
783 >                angMom[k] * angMom[k] / I(k, k);
784 >            } else {
785 >              Kcw += angMom[0]*angMom[0]/I(0, 0)
786 >                + angMom[1]*angMom[1]/I(1, 1)
787 >                + angMom[2]*angMom[2]/I(2, 2);
788 >            }
789 >          }
790 >          //}
791 >        }
792 >      }
793 >    }
794 >    
795 >    Khx *= 0.5;
796 >    Khy *= 0.5;
797 >    Khz *= 0.5;
798 >    Khw *= 0.5;
799 >    Kcx *= 0.5;
800 >    Kcy *= 0.5;
801 >    Kcz *= 0.5;
802 >    Kcw *= 0.5;
803 >
804 >    // std::cerr << "Khx= " << Khx << "\tKhy= " << Khy << "\tKhz= " << Khz
805 >    //        << "\tKhw= " << Khw << "\tKcx= " << Kcx << "\tKcy= " << Kcy
806 >    //        << "\tKcz= " << Kcz << "\tKcw= " << Kcw << "\n";
807 >    // std::cerr << "Phx= " << Phx << "\tPhy= " << Phy << "\tPhz= " << Phz
808 >    //        << "\tPcx= " << Pcx << "\tPcy= " << Pcy << "\tPcz= " <<Pcz<<"\n";
809 >
810 > #ifdef IS_MPI
811 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
812 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
813 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
814 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
815 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
816 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
817 >
818 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
819 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
820 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
821 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
822 >
823 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
824 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
825 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
826 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
827 > #endif
828 >
829 >    //solve coldBin coeff's first
830 >    RealType px = Pcx / Phx;
831 >    RealType py = Pcy / Phy;
832 >    RealType pz = Pcz / Phz;
833 >    RealType c, x, y, z;
834 >    bool successfulScale = false;
835 >    if ((rnemdType_ == rnemdKineticScaleVAM) ||
836 >        (rnemdType_ == rnemdKineticScaleAM)) {
837 >      //may need sanity check Khw & Kcw > 0
838 >
839 >      if (rnemdType_ == rnemdKineticScaleVAM) {
840 >        c = 1.0 - targetFlux_ / (Kcx + Kcy + Kcz + Kcw);
841 >      } else {
842 >        c = 1.0 - targetFlux_ / Kcw;
843 >      }
844 >
845 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
846 >        c = sqrt(c);
847 >        std::cerr << "cold slab scaling coefficient: " << c << endl;
848 >        //now convert to hotBin coefficient
849 >        RealType w = 0.0;
850 >        if (rnemdType_ ==  rnemdKineticScaleVAM) {
851 >          x = 1.0 + px * (1.0 - c);
852 >          y = 1.0 + py * (1.0 - c);
853 >          z = 1.0 + pz * (1.0 - c);
854 >          /* more complicated way
855 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
856 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
857 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
858 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
859 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
860 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
861 >          */
862 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
863 >              (fabs(z - 1.0) < 0.1)) {
864 >            w = 1.0 + (targetFlux_ + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
865 >                       + Khz * (1.0 - z * z)) / Khw;
866 >          }//no need to calculate w if x, y or z is out of range
867 >        } else {
868 >          w = 1.0 + targetFlux_ / Khw;
869 >        }
870 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
871 >          //if w is in the right range, so should be x, y, z.
872 >          vector<StuntDouble*>::iterator sdi;
873 >          Vector3d vel;
874 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
875 >            if (rnemdType_ == rnemdKineticScaleVAM) {
876 >              vel = (*sdi)->getVel() * c;
877 >              //vel.x() *= c;
878 >              //vel.y() *= c;
879 >              //vel.z() *= c;
880 >              (*sdi)->setVel(vel);
881 >            }
882 >            if ((*sdi)->isDirectional()) {
883 >              Vector3d angMom = (*sdi)->getJ() * c;
884 >              //angMom[0] *= c;
885 >              //angMom[1] *= c;
886 >              //angMom[2] *= c;
887 >              (*sdi)->setJ(angMom);
888 >            }
889 >          }
890 >          w = sqrt(w);
891 >          std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
892 >                    << "\twh= " << w << endl;
893 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
894 >            if (rnemdType_ == rnemdKineticScaleVAM) {
895 >              vel = (*sdi)->getVel();
896 >              vel.x() *= x;
897 >              vel.y() *= y;
898 >              vel.z() *= z;
899 >              (*sdi)->setVel(vel);
900 >            }
901 >            if ((*sdi)->isDirectional()) {
902 >              Vector3d angMom = (*sdi)->getJ() * w;
903 >              //angMom[0] *= w;
904 >              //angMom[1] *= w;
905 >              //angMom[2] *= w;
906 >              (*sdi)->setJ(angMom);
907 >            }
908 >          }
909 >          successfulScale = true;
910 >          exchangeSum_ += targetFlux_;
911 >        }
912 >      }
913 >    } else {
914 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
915 >      switch(rnemdType_) {
916 >      case rnemdKineticScale :
917 >        /* used hotBin coeff's & only scale x & y dimensions
918 >           RealType px = Phx / Pcx;
919 >           RealType py = Phy / Pcy;
920 >           a110 = Khy;
921 >           c0 = - Khx - Khy - targetFlux_;
922 >           a000 = Khx;
923 >           a111 = Kcy * py * py;
924 >           b11 = -2.0 * Kcy * py * (1.0 + py);
925 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
926 >           b01 = -2.0 * Kcx * px * (1.0 + px);
927 >           a001 = Kcx * px * px;
928 >        */
929 >        //scale all three dimensions, let c_x = c_y
930 >        a000 = Kcx + Kcy;
931 >        a110 = Kcz;
932 >        c0 = targetFlux_ - Kcx - Kcy - Kcz;
933 >        a001 = Khx * px * px + Khy * py * py;
934 >        a111 = Khz * pz * pz;
935 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
936 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
937 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
938 >          + Khz * pz * (2.0 + pz) - targetFlux_;
939 >        break;
940 >      case rnemdPxScale :
941 >        c = 1 - targetFlux_ / Pcx;
942 >        a000 = Kcy;
943 >        a110 = Kcz;
944 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
945 >        a001 = py * py * Khy;
946 >        a111 = pz * pz * Khz;
947 >        b01 = -2.0 * Khy * py * (1.0 + py);
948 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
949 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
950 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
951 >        break;
952 >      case rnemdPyScale :
953 >        c = 1 - targetFlux_ / Pcy;
954 >        a000 = Kcx;
955 >        a110 = Kcz;
956 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
957 >        a001 = px * px * Khx;
958 >        a111 = pz * pz * Khz;
959 >        b01 = -2.0 * Khx * px * (1.0 + px);
960 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
961 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
962 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
963 >        break;
964 >      case rnemdPzScale ://we don't really do this, do we?
965 >        c = 1 - targetFlux_ / Pcz;
966 >        a000 = Kcx;
967 >        a110 = Kcy;
968 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
969 >        a001 = px * px * Khx;
970 >        a111 = py * py * Khy;
971 >        b01 = -2.0 * Khx * px * (1.0 + px);
972 >        b11 = -2.0 * Khy * py * (1.0 + py);
973 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
974 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
975 >        break;
976 >      default :
977 >        break;
978 >      }
979 >      
980 >      RealType v1 = a000 * a111 - a001 * a110;
981 >      RealType v2 = a000 * b01;
982 >      RealType v3 = a000 * b11;
983 >      RealType v4 = a000 * c1 - a001 * c0;
984 >      RealType v8 = a110 * b01;
985 >      RealType v10 = - b01 * c0;
986 >      
987 >      RealType u0 = v2 * v10 - v4 * v4;
988 >      RealType u1 = -2.0 * v3 * v4;
989 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
990 >      RealType u3 = -2.0 * v1 * v3;
991 >      RealType u4 = - v1 * v1;
992 >      //rescale coefficients
993 >      RealType maxAbs = fabs(u0);
994 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
995 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
996 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
997 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
998 >      u0 /= maxAbs;
999 >      u1 /= maxAbs;
1000 >      u2 /= maxAbs;
1001 >      u3 /= maxAbs;
1002 >      u4 /= maxAbs;
1003 >      //max_element(start, end) is also available.
1004 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1005 >      poly.setCoefficient(4, u4);
1006 >      poly.setCoefficient(3, u3);
1007 >      poly.setCoefficient(2, u2);
1008 >      poly.setCoefficient(1, u1);
1009 >      poly.setCoefficient(0, u0);
1010 >      vector<RealType> realRoots = poly.FindRealRoots();
1011 >      
1012 >      vector<RealType>::iterator ri;
1013 >      RealType r1, r2, alpha0;
1014 >      vector<pair<RealType,RealType> > rps;
1015 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1016 >        r2 = *ri;
1017 >        //check if FindRealRoots() give the right answer
1018 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1019 >          sprintf(painCave.errMsg,
1020 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1021 >          painCave.isFatal = 0;
1022 >          simError();
1023 >          failRootCount_++;
1024 >        }
1025 >        //might not be useful w/o rescaling coefficients
1026 >        alpha0 = -c0 - a110 * r2 * r2;
1027 >        if (alpha0 >= 0.0) {
1028 >          r1 = sqrt(alpha0 / a000);
1029 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1030 >              < 1e-6)
1031 >            { rps.push_back(make_pair(r1, r2)); }
1032 >          if (r1 > 1e-6) { //r1 non-negative
1033 >            r1 = -r1;
1034 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1035 >                < 1e-6)
1036 >              { rps.push_back(make_pair(r1, r2)); }
1037 >          }
1038 >        }
1039 >      }
1040 >      // Consider combining together the solving pair part w/ the searching
1041 >      // best solution part so that we don't need the pairs vector
1042 >      if (!rps.empty()) {
1043 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1044 >        RealType diff;
1045 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1046 >        vector<pair<RealType,RealType> >::iterator rpi;
1047 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1048 >          r1 = (*rpi).first;
1049 >          r2 = (*rpi).second;
1050 >          switch(rnemdType_) {
1051 >          case rnemdKineticScale :
1052 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1053 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1054 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1055 >            break;
1056 >          case rnemdPxScale :
1057 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1058 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1059 >            break;
1060 >          case rnemdPyScale :
1061 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1062 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1063 >            break;
1064 >          case rnemdPzScale :
1065 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1066 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1067 >          default :
1068 >            break;
1069 >          }
1070 >          if (diff < smallestDiff) {
1071 >            smallestDiff = diff;
1072 >            bestPair = *rpi;
1073 >          }
1074 >        }
1075 > #ifdef IS_MPI
1076 >        if (worldRank == 0) {
1077 > #endif
1078 >          sprintf(painCave.errMsg,
1079 >                  "RNEMD: roots r1= %lf\tr2 = %lf\n",
1080 >                  bestPair.first, bestPair.second);
1081 >          painCave.isFatal = 0;
1082 >          painCave.severity = OPENMD_INFO;
1083 >          simError();
1084 > #ifdef IS_MPI
1085 >        }
1086 > #endif
1087 >        
1088 >        switch(rnemdType_) {
1089 >        case rnemdKineticScale :
1090 >          x = bestPair.first;
1091 >          y = bestPair.first;
1092 >          z = bestPair.second;
1093 >          break;
1094 >        case rnemdPxScale :
1095 >          x = c;
1096 >          y = bestPair.first;
1097 >          z = bestPair.second;
1098 >          break;
1099 >        case rnemdPyScale :
1100 >          x = bestPair.first;
1101 >          y = c;
1102 >          z = bestPair.second;
1103 >          break;
1104 >        case rnemdPzScale :
1105 >          x = bestPair.first;
1106 >          y = bestPair.second;
1107 >          z = c;
1108 >          break;          
1109 >        default :
1110 >          break;
1111 >        }
1112 >        vector<StuntDouble*>::iterator sdi;
1113 >        Vector3d vel;
1114 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1115 >          vel = (*sdi)->getVel();
1116 >          vel.x() *= x;
1117 >          vel.y() *= y;
1118 >          vel.z() *= z;
1119 >          (*sdi)->setVel(vel);
1120 >        }
1121 >        //convert to hotBin coefficient
1122 >        x = 1.0 + px * (1.0 - x);
1123 >        y = 1.0 + py * (1.0 - y);
1124 >        z = 1.0 + pz * (1.0 - z);
1125 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1126 >          vel = (*sdi)->getVel();
1127 >          vel.x() *= x;
1128 >          vel.y() *= y;
1129 >          vel.z() *= z;
1130 >          (*sdi)->setVel(vel);
1131 >        }
1132 >        successfulScale = true;
1133 >        exchangeSum_ += targetFlux_;
1134 >      }
1135 >    }
1136 >    if (successfulScale != true) {
1137 >      sprintf(painCave.errMsg,
1138 >              "RNEMD: exchange NOT performed!\n");
1139 >      painCave.isFatal = 0;
1140 >      painCave.severity = OPENMD_INFO;
1141 >      simError();        
1142 >      failTrialCount_++;
1143 >    }
1144 >  }
1145 >
1146 >  void RNEMD::doShiftScale() {
1147 >
1148 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1149 >    RealType time = currentSnap_->getTime();    
1150 >    Mat3x3d hmat = currentSnap_->getHmat();
1151 >
1152 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1153 >
1154 >    int selei;
1155 >    StuntDouble* sd;
1156 >    int idx;
1157 >
1158 >    vector<StuntDouble*> hotBin, coldBin;
1159 >
1160 >    Vector3d Ph(V3Zero);
1161 >    RealType Mh = 0.0;
1162 >    RealType Kh = 0.0;
1163 >    Vector3d Pc(V3Zero);
1164 >    RealType Mc = 0.0;
1165 >    RealType Kc = 0.0;
1166 >    
1167 >
1168 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1169 >         sd = seleMan_.nextSelected(selei)) {
1170 >
1171 >      idx = sd->getLocalIndex();
1172 >
1173 >      Vector3d pos = sd->getPos();
1174 >
1175 >      // wrap the stuntdouble's position back into the box:
1176 >
1177 >      if (usePeriodicBoundaryConditions_)
1178 >        currentSnap_->wrapVector(pos);
1179 >
1180 >      // which bin is this stuntdouble in?
1181 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1182 >
1183 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1184 >
1185 >      // if we're in bin 0 or the middleBin
1186 >      if (binNo == 0 || binNo == midBin_) {
1187 >        
1188 >        RealType mass = sd->getMass();
1189 >        Vector3d vel = sd->getVel();
1190 >      
1191 >        if (binNo == 0) {
1192 >          hotBin.push_back(sd);
1193 >          //std::cerr << "before, velocity = " << vel << endl;
1194 >          Ph += mass * vel;
1195 >          //std::cerr << "after, velocity = " << vel << endl;
1196 >          Mh += mass;
1197 >          Kh += mass * vel.lengthSquare();
1198 >          if (rnemdType_ == rnemdShiftScaleVAM) {
1199 >            if (sd->isDirectional()) {
1200 >              Vector3d angMom = sd->getJ();
1201 >              Mat3x3d I = sd->getI();
1202 >              if (sd->isLinear()) {
1203 >                int i = sd->linearAxis();
1204 >                int j = (i + 1) % 3;
1205 >                int k = (i + 2) % 3;
1206 >                Kh += angMom[j] * angMom[j] / I(j, j) +
1207 >                  angMom[k] * angMom[k] / I(k, k);
1208 >              } else {
1209 >                Kh += angMom[0] * angMom[0] / I(0, 0) +
1210 >                  angMom[1] * angMom[1] / I(1, 1) +
1211 >                  angMom[2] * angMom[2] / I(2, 2);
1212 >              }
1213 >            }
1214 >          }
1215 >        } else { //midBin_
1216 >          coldBin.push_back(sd);
1217 >          Pc += mass * vel;
1218 >          Mc += mass;
1219 >          Kc += mass * vel.lengthSquare();
1220 >          if (rnemdType_ == rnemdShiftScaleVAM) {
1221 >            if (sd->isDirectional()) {
1222 >              Vector3d angMom = sd->getJ();
1223 >              Mat3x3d I = sd->getI();
1224 >              if (sd->isLinear()) {
1225 >                int i = sd->linearAxis();
1226 >                int j = (i + 1) % 3;
1227 >                int k = (i + 2) % 3;
1228 >                Kc += angMom[j] * angMom[j] / I(j, j) +
1229 >                  angMom[k] * angMom[k] / I(k, k);
1230 >              } else {
1231 >                Kc += angMom[0] * angMom[0] / I(0, 0) +
1232 >                  angMom[1] * angMom[1] / I(1, 1) +
1233 >                  angMom[2] * angMom[2] / I(2, 2);
1234 >              }
1235 >            }
1236 >          }
1237 >        }
1238 >      }
1239 >    }
1240 >    
1241 >    Kh *= 0.5;
1242 >    Kc *= 0.5;
1243 >
1244 >    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1245 >    //        << "\tKc= " << Kc << endl;
1246 >    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1247 >    
1248 > #ifdef IS_MPI
1249 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1250 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1251 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1252 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1253 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1254 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1255 > #endif
1256 >
1257 >    bool successfulExchange = false;
1258 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1259 >      Vector3d vc = Pc / Mc;
1260 >      Vector3d ac = njzp_ / Mc + vc;
1261 >      Vector3d acrec = njzp_ / Mc;
1262 >      RealType cNumerator = Kc - targetJzKE_ - 0.5 * Mc * ac.lengthSquare();
1263 >      if (cNumerator > 0.0) {
1264 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1265 >        if (cDenominator > 0.0) {
1266 >          RealType c = sqrt(cNumerator / cDenominator);
1267 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1268 >            Vector3d vh = Ph / Mh;
1269 >            Vector3d ah = jzp_ / Mh + vh;
1270 >            Vector3d ahrec = jzp_ / Mh;
1271 >            RealType hNumerator = Kh + targetJzKE_
1272 >              - 0.5 * Mh * ah.lengthSquare();
1273 >            if (hNumerator > 0.0) {
1274 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1275 >              if (hDenominator > 0.0) {
1276 >                RealType h = sqrt(hNumerator / hDenominator);
1277 >                if ((h > 0.9) && (h < 1.1)) {
1278 >                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1279 >                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1280 >                  vector<StuntDouble*>::iterator sdi;
1281 >                  Vector3d vel;
1282 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1283 >                    //vel = (*sdi)->getVel();
1284 >                    vel = ((*sdi)->getVel() - vc) * c + ac;
1285 >                    (*sdi)->setVel(vel);
1286 >                    if (rnemdType_ == rnemdShiftScaleVAM) {
1287 >                      if ((*sdi)->isDirectional()) {
1288 >                        Vector3d angMom = (*sdi)->getJ() * c;
1289 >                        (*sdi)->setJ(angMom);
1290 >                      }
1291 >                    }
1292 >                  }
1293 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1294 >                    //vel = (*sdi)->getVel();
1295 >                    vel = ((*sdi)->getVel() - vh) * h + ah;
1296 >                    (*sdi)->setVel(vel);
1297 >                    if (rnemdType_ == rnemdShiftScaleVAM) {
1298 >                      if ((*sdi)->isDirectional()) {
1299 >                        Vector3d angMom = (*sdi)->getJ() * h;
1300 >                        (*sdi)->setJ(angMom);
1301 >                      }
1302 >                    }
1303 >                  }
1304 >                  successfulExchange = true;
1305 >                  exchangeSum_ += targetFlux_;
1306 >                  // this is a redundant variable for doShiftScale() so that
1307 >                  // RNEMD can output one exchange quantity needed in a job.
1308 >                  // need a better way to do this.
1309 >                  //cerr << "acx =" << ac.x() << "ahx =" << ah.x() << '\n';
1310 >                  //cerr << "acy =" << ac.y() << "ahy =" << ah.y() << '\n';
1311 >                  //cerr << "acz =" << ac.z() << "ahz =" << ah.z() << '\n';
1312 >                  Asum_ += (ahrec.z() - acrec.z());
1313 >                  Jsum_ += (jzp_.z()*((1/Mh)+(1/Mc)));
1314 >                  AhCount_ = ahrec.z();
1315 >                  if (outputAh_) {
1316 >                    AhLog_ << time << "   ";
1317 >                    AhLog_ << AhCount_;
1318 >                    AhLog_ << endl;
1319 >                  }              
1320 >                }
1321 >              }
1322 >            }
1323 >          }
1324 >        }
1325 >      }
1326 >    }
1327 >    if (successfulExchange != true) {
1328 >      //   sprintf(painCave.errMsg,
1329 >      //              "RNEMD: exchange NOT performed!\n");
1330 >      //   painCave.isFatal = 0;
1331 >      //   painCave.severity = OPENMD_INFO;
1332 >      //   simError();        
1333 >      failTrialCount_++;
1334 >    }
1335 >  }
1336 >
1337 >  void RNEMD::doRNEMD() {
1338 >
1339 >    switch(rnemdType_) {
1340 >    case rnemdKineticScale :
1341 >    case rnemdKineticScaleVAM :
1342 >    case rnemdKineticScaleAM :
1343 >    case rnemdPxScale :
1344 >    case rnemdPyScale :
1345 >    case rnemdPzScale :
1346 >      doScale();
1347 >      break;
1348 >    case rnemdKineticSwap :
1349 >    case rnemdPx :
1350 >    case rnemdPy :
1351 >    case rnemdPz :
1352 >      doSwap();
1353 >      break;
1354 >    case rnemdShiftScaleV :
1355 >    case rnemdShiftScaleVAM :
1356 >      doShiftScale();
1357 >      break;
1358 >    case rnemdUnknown :
1359 >    default :
1360 >      break;
1361 >    }
1362 >  }
1363 >
1364 >  void RNEMD::collectData() {
1365 >
1366 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1367 >    Mat3x3d hmat = currentSnap_->getHmat();
1368 >
1369 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1370 >
1371 >    int selei;
1372 >    StuntDouble* sd;
1373 >    int idx;
1374 >
1375 >    logFrameCount_++;
1376 >
1377 >    // alternative approach, track all molecules instead of only those
1378 >    // selected for scaling/swapping:
1379 >    /*
1380 >    SimInfo::MoleculeIterator miter;
1381 >    vector<StuntDouble*>::iterator iiter;
1382 >    Molecule* mol;
1383 >    StuntDouble* integrableObject;
1384 >    for (mol = info_->beginMolecule(miter); mol != NULL;
1385 >      mol = info_->nextMolecule(miter))
1386 >      integrableObject is essentially sd
1387 >        for (integrableObject = mol->beginIntegrableObject(iiter);
1388 >             integrableObject != NULL;
1389 >             integrableObject = mol->nextIntegrableObject(iiter))
1390 >    */
1391 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1392 >         sd = seleMan_.nextSelected(selei)) {
1393 >      
1394 >      idx = sd->getLocalIndex();
1395 >      
1396 >      Vector3d pos = sd->getPos();
1397 >
1398 >      // wrap the stuntdouble's position back into the box:
1399 >      
1400 >      if (usePeriodicBoundaryConditions_)
1401 >        currentSnap_->wrapVector(pos);
1402 >      
1403 >      // which bin is this stuntdouble in?
1404 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1405 >      
1406 >      int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
1407 >        rnemdLogWidth_;
1408 >      // no symmetrization allowed due to arbitary rnemdLogWidth_
1409 >      /*
1410 >      if (rnemdLogWidth_ == midBin_ + 1)
1411 >        if (binNo > midBin_)
1412 >          binNo = nBins_ - binNo;
1413 >      */
1414 >      RealType mass = sd->getMass();
1415 >      mHist_[binNo] += mass;
1416 >      Vector3d vel = sd->getVel();
1417 >      RealType value;
1418 >      //RealType xVal, yVal, zVal;
1419 >
1420 >      if (outputTemp_) {
1421 >        value = mass * vel.lengthSquare();
1422 >        tempCount_[binNo] += 3;
1423 >        if (sd->isDirectional()) {
1424 >          Vector3d angMom = sd->getJ();
1425 >          Mat3x3d I = sd->getI();
1426 >          if (sd->isLinear()) {
1427 >            int i = sd->linearAxis();
1428 >            int j = (i + 1) % 3;
1429 >            int k = (i + 2) % 3;
1430 >            value += angMom[j] * angMom[j] / I(j, j) +
1431 >              angMom[k] * angMom[k] / I(k, k);
1432 >            tempCount_[binNo] +=2;
1433 >          } else {
1434 >            value += angMom[0] * angMom[0] / I(0, 0) +
1435 >              angMom[1]*angMom[1]/I(1, 1) +
1436 >              angMom[2]*angMom[2]/I(2, 2);
1437 >            tempCount_[binNo] +=3;
1438 >          }
1439 >        }
1440 >        value = value / PhysicalConstants::energyConvert
1441 >          / PhysicalConstants::kb;//may move to getStatus()
1442 >        tempHist_[binNo] += value;
1443 >      }
1444 >      if (outputVx_) {
1445 >        value = mass * vel[0];
1446 >        //vxzCount_[binNo]++;
1447 >        pxzHist_[binNo] += value;
1448 >      }
1449 >      if (outputVy_) {
1450 >        value = mass * vel[1];
1451 >        //vyzCount_[binNo]++;
1452 >        pyzHist_[binNo] += value;
1453 >      }
1454 >
1455 >      if (output3DTemp_) {
1456 >        value = mass * vel.x() * vel.x();
1457 >        xTempHist_[binNo] += value;
1458 >        value = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1459 >          / PhysicalConstants::kb;
1460 >        yTempHist_[binNo] += value;
1461 >        value = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1462 >          / PhysicalConstants::kb;
1463 >        zTempHist_[binNo] += value;
1464 >        xyzTempCount_[binNo]++;
1465 >      }
1466 >      if (outputRotTemp_) {
1467 >        if (sd->isDirectional()) {
1468 >          Vector3d angMom = sd->getJ();
1469 >          Mat3x3d I = sd->getI();
1470 >          if (sd->isLinear()) {
1471 >            int i = sd->linearAxis();
1472 >            int j = (i + 1) % 3;
1473 >            int k = (i + 2) % 3;
1474 >            value = angMom[j] * angMom[j] / I(j, j) +
1475 >              angMom[k] * angMom[k] / I(k, k);
1476 >            rotTempCount_[binNo] +=2;
1477 >          } else {
1478 >            value = angMom[0] * angMom[0] / I(0, 0) +
1479 >              angMom[1] * angMom[1] / I(1, 1) +
1480 >              angMom[2] * angMom[2] / I(2, 2);
1481 >            rotTempCount_[binNo] +=3;
1482 >          }
1483 >        }
1484 >        value = value / PhysicalConstants::energyConvert
1485 >          / PhysicalConstants::kb;//may move to getStatus()
1486 >        rotTempHist_[binNo] += value;
1487 >      }
1488 >      // James put this in.
1489 >      if (outputDen_) {
1490 >        //value = 1.0;
1491 >        DenHist_[binNo] += 1;
1492 >      }
1493 >      if (outputVz_) {
1494 >        value = mass * vel[2];
1495 >        //vyzCount_[binNo]++;
1496 >        pzzHist_[binNo] += value;
1497 >      }    
1498 >    }
1499 >  }
1500 >
1501 >  void RNEMD::getStarted() {
1502 >    collectData();
1503 >    /*now can output profile in step 0, but might not be useful;
1504 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1505 >    Stats& stat = currentSnap_->statData;
1506 >    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1507 >    */
1508 >    //may output a header for the log file here
1509 >    getStatus();
1510 >  }
1511 >
1512 >  void RNEMD::getStatus() {
1513 >
1514 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1515 >    Stats& stat = currentSnap_->statData;
1516 >    RealType time = currentSnap_->getTime();
1517 >
1518 >    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1519 >    //or to be more meaningful, define another item as exchangeSum_ / time
1520 >    int j;
1521 >
1522 > #ifdef IS_MPI
1523 >
1524 >    // all processors have the same number of bins, and STL vectors pack their
1525 >    // arrays, so in theory, this should be safe:
1526 >
1527 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &mHist_[0],
1528 >                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1529 >    if (outputTemp_) {
1530 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempHist_[0],
1531 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1532 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempCount_[0],
1533 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1534 >    }
1535 >    if (outputVx_) {
1536 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pxzHist_[0],
1537 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1538 >      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vxzCount_[0],
1539 >      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1540 >    }
1541 >    if (outputVy_) {
1542 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pyzHist_[0],
1543 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1544 >      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vyzCount_[0],
1545 >      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1546 >    }
1547 >    if (output3DTemp_) {
1548 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1549 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1550 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1551 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1552 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1553 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1554 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1555 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1556 >    }
1557 >    if (outputRotTemp_) {
1558 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempHist_[0],
1559 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1560 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempCount_[0],
1561 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1562 >    }
1563 >    // James put this in
1564 >    if (outputDen_) {
1565 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &DenHist_[0],
1566 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1567 >    }
1568 >    if (outputAh_) {
1569 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &AhCount_,
1570 >                                1, MPI::REALTYPE, MPI::SUM);
1571 >    }
1572 >    if (outputVz_) {
1573 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pzzHist_[0],
1574 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1575 >    }
1576 >    
1577 >    // If we're the root node, should we print out the results
1578 >    int worldRank = MPI::COMM_WORLD.Get_rank();
1579 >    if (worldRank == 0) {
1580 > #endif
1581 >
1582 >      if (outputTemp_) {
1583 >        tempLog_ << time;
1584 >        for (j = 0; j < rnemdLogWidth_; j++) {
1585 >          tempLog_ << "\t" << tempHist_[j] / (RealType)tempCount_[j];
1586 >        }
1587 >        tempLog_ << endl;
1588 >      }
1589 >      if (outputVx_) {
1590 >        vxzLog_ << time;
1591 >        for (j = 0; j < rnemdLogWidth_; j++) {
1592 >          vxzLog_ << "\t" << pxzHist_[j] / mHist_[j];
1593 >        }
1594 >        vxzLog_ << endl;
1595 >      }
1596 >      if (outputVy_) {
1597 >        vyzLog_ << time;
1598 >        for (j = 0; j < rnemdLogWidth_; j++) {
1599 >          vyzLog_ << "\t" << pyzHist_[j] / mHist_[j];
1600 >        }
1601 >        vyzLog_ << endl;
1602 >      }
1603 >
1604 >      if (output3DTemp_) {
1605 >        RealType temp;
1606 >        xTempLog_ << time;
1607 >        for (j = 0; j < rnemdLogWidth_; j++) {
1608 >          if (outputVx_)
1609 >            xTempHist_[j] -= pxzHist_[j] * pxzHist_[j] / mHist_[j];
1610 >          temp = xTempHist_[j] / (RealType)xyzTempCount_[j]
1611 >            / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1612 >          xTempLog_ << "\t" << temp;
1613 >        }
1614 >        xTempLog_ << endl;
1615 >        yTempLog_ << time;
1616 >        for (j = 0; j < rnemdLogWidth_; j++) {
1617 >          yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1618 >        }
1619 >        yTempLog_ << endl;
1620 >        zTempLog_ << time;
1621 >        for (j = 0; j < rnemdLogWidth_; j++) {
1622 >          zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1623 >        }
1624 >        zTempLog_ << endl;
1625 >      }
1626 >      if (outputRotTemp_) {
1627 >        rotTempLog_ << time;
1628 >        for (j = 0; j < rnemdLogWidth_; j++) {
1629 >          rotTempLog_ << "\t" << rotTempHist_[j] / (RealType)rotTempCount_[j];
1630 >        }
1631 >        rotTempLog_ << endl;
1632 >      }
1633 >      // James put this in.
1634 >      Mat3x3d hmat = currentSnap_->getHmat();
1635 >      if (outputDen_) {
1636 >        denLog_ << time;
1637 >        for (j = 0; j < rnemdLogWidth_; j++) {
1638 >          
1639 >          RealType binVol = hmat(0,0) * hmat(1,1) * (hmat(2,2) / float(nBins_));
1640 >          denLog_ << "\t" << DenHist_[j] / (float(logFrameCount_) * binVol);
1641 >        }
1642 >        denLog_ << endl;
1643 >      }
1644 >      if (outputVz_) {
1645 >        vzzLog_ << time;
1646 >        for (j = 0; j < rnemdLogWidth_; j++) {
1647 >          vzzLog_ << "\t" << pzzHist_[j] / mHist_[j];
1648 >        }
1649 >        vzzLog_ << endl;
1650 >      }      
1651 > #ifdef IS_MPI
1652 >    }
1653 > #endif
1654 >
1655 >    for (j = 0; j < rnemdLogWidth_; j++) {
1656 >      mHist_[j] = 0.0;
1657 >    }
1658 >    if (outputTemp_)
1659 >      for (j = 0; j < rnemdLogWidth_; j++) {
1660 >        tempCount_[j] = 0;
1661 >        tempHist_[j] = 0.0;
1662 >      }
1663 >    if (outputVx_)
1664 >      for (j = 0; j < rnemdLogWidth_; j++) {
1665 >        //pxzCount_[j] = 0;
1666 >        pxzHist_[j] = 0.0;
1667 >      }
1668 >    if (outputVy_)
1669 >      for (j = 0; j < rnemdLogWidth_; j++) {
1670 >        //pyzCount_[j] = 0;
1671 >        pyzHist_[j] = 0.0;
1672 >      }
1673 >
1674 >    if (output3DTemp_)
1675 >      for (j = 0; j < rnemdLogWidth_; j++) {
1676 >        xTempHist_[j] = 0.0;
1677 >        yTempHist_[j] = 0.0;
1678 >        zTempHist_[j] = 0.0;
1679 >        xyzTempCount_[j] = 0;
1680 >      }
1681 >    if (outputRotTemp_)
1682 >      for (j = 0; j < rnemdLogWidth_; j++) {
1683 >        rotTempCount_[j] = 0;
1684 >        rotTempHist_[j] = 0.0;
1685 >      }
1686 >    // James put this in
1687 >    if (outputDen_)
1688 >      for (j = 0; j < rnemdLogWidth_; j++) {
1689 >        //pyzCount_[j] = 0;
1690 >        DenHist_[j] = 0.0;
1691 >      }
1692 >    if (outputVz_)
1693 >      for (j = 0; j < rnemdLogWidth_; j++) {
1694 >        //pyzCount_[j] = 0;
1695 >        pzzHist_[j] = 0.0;
1696 >      }    
1697 >     // reset the counter
1698 >    
1699 >    Numcount_++;
1700 >    if (Numcount_ > int(runTime_/statusTime_))
1701 >      cerr << "time =" << time << "  Asum =" << Asum_ << '\n';
1702 >    if (Numcount_ > int(runTime_/statusTime_))
1703 >      cerr << "time =" << time << "  Jsum =" << Jsum_ << '\n';
1704 >    
1705 >    logFrameCount_ = 0;
1706 >  }
1707   }
1708 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/rnemd/RNEMD.cpp (property svn:keywords), Revision 1731 by gezelter, Thu May 31 12:25:30 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines