ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1728 by jmarr, Wed May 30 16:07:03 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 + #include <cmath>
43   #include "integrators/RNEMD.hpp"
44 + #include "math/Vector3.hpp"
45 + #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47 + #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50 + #include "utils/PhysicalConstants.hpp"
51 + #include "utils/Tuple.hpp"
52  
53   #ifndef IS_MPI
54   #include "math/SeqRandNumGen.hpp"
55   #else
56   #include "math/ParallelRandNumGen.hpp"
57 + #include <mpi.h>
58   #endif
59  
60 < /* Remove me after testing*/
54 < /*
55 < #include <cstdio>
56 < #include <iostream>
57 < */
58 < /*End remove me*/
60 > #define HONKING_LARGE_VALUE 1.0e10
61  
62 < namespace oopse {
62 > using namespace std;
63 > namespace OpenMD {
64    
65 <  RNEMD::RNEMD(SimInfo* info) : info_(info) {
66 <    
65 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
66 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
67 >
68 >    failTrialCount_ = 0;
69 >    failRootCount_ = 0;
70 >
71      int seedValue;
72      Globals * simParams = info->getSimParams();
73  
74 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
74 >    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
75 >    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
76 >    stringToEnumMap_["KineticScaleVAM"] = rnemdKineticScaleVAM;
77 >    stringToEnumMap_["KineticScaleAM"] = rnemdKineticScaleAM;
78 >    stringToEnumMap_["PxScale"] = rnemdPxScale;
79 >    stringToEnumMap_["PyScale"] = rnemdPyScale;
80 >    stringToEnumMap_["PzScale"] = rnemdPzScale;
81      stringToEnumMap_["Px"] = rnemdPx;
82      stringToEnumMap_["Py"] = rnemdPy;
83      stringToEnumMap_["Pz"] = rnemdPz;
84 +    stringToEnumMap_["ShiftScaleV"] = rnemdShiftScaleV;
85 +    stringToEnumMap_["ShiftScaleVAM"] = rnemdShiftScaleVAM;
86      stringToEnumMap_["Unknown"] = rnemdUnknown;
87  
88 <    const std::string st = simParams->getRNEMD_swapType();
88 >    runTime_ = simParams->getRunTime();
89 >    statusTime_ = simParams->getStatusTime();
90  
91 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
91 >    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
92 >    evaluator_.loadScriptString(rnemdObjectSelection_);
93 >    seleMan_.setSelectionSet(evaluator_.evaluate());
94 >
95 >    // do some sanity checking
96 >
97 >    int selectionCount = seleMan_.getSelectionCount();
98 >    int nIntegrable = info->getNGlobalIntegrableObjects();
99 >
100 >    if (selectionCount > nIntegrable) {
101 >      sprintf(painCave.errMsg,
102 >              "RNEMD: The current RNEMD_objectSelection,\n"
103 >              "\t\t%s\n"
104 >              "\thas resulted in %d selected objects.  However,\n"
105 >              "\tthe total number of integrable objects in the system\n"
106 >              "\tis only %d.  This is almost certainly not what you want\n"
107 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
108 >              "\tselector in the selection script!\n",
109 >              rnemdObjectSelection_.c_str(),
110 >              selectionCount, nIntegrable);
111 >      painCave.isFatal = 0;
112 >      painCave.severity = OPENMD_WARNING;
113 >      simError();
114 >    }
115 >    
116 >    const string st = simParams->getRNEMD_exchangeType();
117 >
118 >    map<string, RNEMDTypeEnum>::iterator i;
119      i = stringToEnumMap_.find(st);
120 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
120 >    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
121 >    if (rnemdType_ == rnemdUnknown) {
122 >      sprintf(painCave.errMsg,
123 >              "RNEMD: The current RNEMD_exchangeType,\n"
124 >              "\t\t%s\n"
125 >              "\tis not one of the recognized exchange types.\n",
126 >              st.c_str());
127 >      painCave.isFatal = 1;
128 >      painCave.severity = OPENMD_ERROR;
129 >      simError();
130 >    }
131 >    
132 >    outputTemp_ = false;
133 >    if (simParams->haveRNEMD_outputTemperature()) {
134 >      outputTemp_ = simParams->getRNEMD_outputTemperature();
135 >    } else if ((rnemdType_ == rnemdKineticSwap) ||
136 >               (rnemdType_ == rnemdKineticScale) ||
137 >               (rnemdType_ == rnemdKineticScaleVAM) ||
138 >               (rnemdType_ == rnemdKineticScaleAM)) {
139 >      outputTemp_ = true;
140 >    }
141 >    outputVx_ = false;
142 >    if (simParams->haveRNEMD_outputVx()) {
143 >      outputVx_ = simParams->getRNEMD_outputVx();
144 >    } else if ((rnemdType_ == rnemdPx) || (rnemdType_ == rnemdPxScale)) {
145 >      outputVx_ = true;
146 >    }
147 >    outputVy_ = false;
148 >    if (simParams->haveRNEMD_outputVy()) {
149 >      outputVy_ = simParams->getRNEMD_outputVy();
150 >    } else if ((rnemdType_ == rnemdPy) || (rnemdType_ == rnemdPyScale)) {
151 >      outputVy_ = true;
152 >    }
153 >    output3DTemp_ = false;
154 >    if (simParams->haveRNEMD_outputXyzTemperature()) {
155 >      output3DTemp_ = simParams->getRNEMD_outputXyzTemperature();
156 >    }
157 >    outputRotTemp_ = false;
158 >    if (simParams->haveRNEMD_outputRotTemperature()) {
159 >      outputRotTemp_ = simParams->getRNEMD_outputRotTemperature();
160 >    }
161 >    // James put this in.
162 >    outputDen_ = false;
163 >    if (simParams->haveRNEMD_outputDen()) {
164 >      outputDen_ = simParams->getRNEMD_outputDen();
165 >    }
166 >    outputAh_ = false;
167 >    if (simParams->haveRNEMD_outputAh()) {
168 >      outputAh_ = simParams->getRNEMD_outputAh();
169 >    }    
170 >    outputVz_ = false;
171 >    if (simParams->haveRNEMD_outputVz()) {
172 >      outputVz_ = simParams->getRNEMD_outputVz();
173 >    } else if ((rnemdType_ == rnemdPz) || (rnemdType_ == rnemdPzScale)) {
174 >      outputVz_ = true;
175 >    }
176 >    
177  
178 + #ifdef IS_MPI
179 +    if (worldRank == 0) {
180 + #endif
181  
182 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
182 >      //may have rnemdWriter separately
183 >      string rnemdFileName;
184 >
185 >      if (outputTemp_) {
186 >        rnemdFileName = "temperature.log";
187 >        tempLog_.open(rnemdFileName.c_str());
188 >      }
189 >      if (outputVx_) {
190 >        rnemdFileName = "velocityX.log";
191 >        vxzLog_.open(rnemdFileName.c_str());
192 >      }
193 >      if (outputVy_) {
194 >        rnemdFileName = "velocityY.log";
195 >        vyzLog_.open(rnemdFileName.c_str());
196 >      }
197 >
198 >      if (output3DTemp_) {
199 >        rnemdFileName = "temperatureX.log";
200 >        xTempLog_.open(rnemdFileName.c_str());
201 >        rnemdFileName = "temperatureY.log";
202 >        yTempLog_.open(rnemdFileName.c_str());
203 >        rnemdFileName = "temperatureZ.log";
204 >        zTempLog_.open(rnemdFileName.c_str());
205 >      }
206 >      if (outputRotTemp_) {
207 >        rnemdFileName = "temperatureR.log";
208 >        rotTempLog_.open(rnemdFileName.c_str());
209 >      }
210 >      
211 >      //James put this in
212 >      if (outputDen_) {
213 >        rnemdFileName = "Density.log";
214 >        denLog_.open(rnemdFileName.c_str());
215 >      }
216 >      if (outputAh_) {
217 >        rnemdFileName = "Ah.log";
218 >        AhLog_.open(rnemdFileName.c_str());
219 >      }
220 >      if (outputVz_) {
221 >        rnemdFileName = "velocityZ.log";
222 >        vzzLog_.open(rnemdFileName.c_str());
223 >      }
224 >      logFrameCount_ = 0;
225 > #ifdef IS_MPI
226 >    }
227 > #endif
228 >
229 >    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
230      set_RNEMD_nBins(simParams->getRNEMD_nBins());
231 <    exchangeSum_ = 0.0;
232 <    
231 >    midBin_ = nBins_ / 2;
232 >    if (simParams->haveRNEMD_binShift()) {
233 >      if (simParams->getRNEMD_binShift()) {
234 >        zShift_ = 0.5 / (RealType)(nBins_);
235 >      } else {
236 >        zShift_ = 0.0;
237 >      }
238 >    } else {
239 >      zShift_ = 0.0;
240 >    }
241 >    //cerr << "I shift slabs by " << zShift_ << " Lz\n";
242 >    //shift slabs by half slab width, maybe useful in heterogeneous systems
243 >    //set to 0.0 if not using it; N/A in status output yet
244 >    if (simParams->haveRNEMD_logWidth()) {
245 >      set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
246 >      /*arbitary rnemdLogWidth_, no checking;
247 >      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
248 >        cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
249 >        cerr << "Automaically set back to default.\n";
250 >        rnemdLogWidth_ = nBins_;
251 >      }*/
252 >    } else {
253 >      set_RNEMD_logWidth(nBins_);
254 >    }
255 >    tempHist_.resize(rnemdLogWidth_, 0.0);
256 >    tempCount_.resize(rnemdLogWidth_, 0);
257 >    pxzHist_.resize(rnemdLogWidth_, 0.0);
258 >    //vxzCount_.resize(rnemdLogWidth_, 0);
259 >    pyzHist_.resize(rnemdLogWidth_, 0.0);
260 >    //vyzCount_.resize(rnemdLogWidth_, 0);
261 >
262 >    mHist_.resize(rnemdLogWidth_, 0.0);
263 >    xTempHist_.resize(rnemdLogWidth_, 0.0);
264 >    yTempHist_.resize(rnemdLogWidth_, 0.0);
265 >    zTempHist_.resize(rnemdLogWidth_, 0.0);
266 >    xyzTempCount_.resize(rnemdLogWidth_, 0);
267 >    rotTempHist_.resize(rnemdLogWidth_, 0.0);
268 >    rotTempCount_.resize(rnemdLogWidth_, 0);
269 >    // James put this in
270 >    DenHist_.resize(rnemdLogWidth_, 0.0);
271 >    pzzHist_.resize(rnemdLogWidth_, 0.0);
272 >
273 >    set_RNEMD_exchange_total(0.0);
274 >    if (simParams->haveRNEMD_targetFlux()) {
275 >      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
276 >    } else {
277 >      set_RNEMD_target_flux(0.0);
278 >    }
279 >    if (simParams->haveRNEMD_targetJzKE()) {
280 >      set_RNEMD_target_JzKE(simParams->getRNEMD_targetJzKE());
281 >    } else {
282 >      set_RNEMD_target_JzKE(0.0);
283 >    }
284 >    if (simParams->haveRNEMD_targetJzpx()) {
285 >      set_RNEMD_target_jzpx(simParams->getRNEMD_targetJzpx());
286 >    } else {
287 >      set_RNEMD_target_jzpx(0.0);
288 >    }
289 >    jzp_.x() = targetJzpx_;
290 >    njzp_.x() = -targetJzpx_;
291 >    if (simParams->haveRNEMD_targetJzpy()) {
292 >      set_RNEMD_target_jzpy(simParams->getRNEMD_targetJzpy());
293 >    } else {
294 >      set_RNEMD_target_jzpy(0.0);
295 >    }
296 >    jzp_.y() = targetJzpy_;
297 >    njzp_.y() = -targetJzpy_;
298 >    if (simParams->haveRNEMD_targetJzpz()) {
299 >      set_RNEMD_target_jzpz(simParams->getRNEMD_targetJzpz());
300 >    } else {
301 >      set_RNEMD_target_jzpz(0.0);
302 >    }
303 >    jzp_.z() = targetJzpz_;
304 >    njzp_.z() = -targetJzpz_;
305 >
306   #ifndef IS_MPI
307      if (simParams->haveSeed()) {
308        seedValue = simParams->getSeed();
# Line 100 | Line 322 | namespace oopse {
322    
323    RNEMD::~RNEMD() {
324      delete randNumGen_;
325 +    
326 + #ifdef IS_MPI
327 +    if (worldRank == 0) {
328 + #endif
329 +      
330 +      sprintf(painCave.errMsg,
331 +              "RNEMD: total failed trials: %d\n",
332 +              failTrialCount_);
333 +      painCave.isFatal = 0;
334 +      painCave.severity = OPENMD_INFO;
335 +      simError();
336 +      
337 +      if (outputTemp_) tempLog_.close();
338 +      if (outputVx_)   vxzLog_.close();
339 +      if (outputVy_)   vyzLog_.close();
340 +
341 +      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale ||
342 +          rnemdType_ == rnemdPyScale) {
343 +        sprintf(painCave.errMsg,
344 +                "RNEMD: total root-checking warnings: %d\n",
345 +                failRootCount_);
346 +        painCave.isFatal = 0;
347 +        painCave.severity = OPENMD_INFO;
348 +        simError();
349 +      }
350 +      if (output3DTemp_) {
351 +        xTempLog_.close();
352 +        yTempLog_.close();
353 +        zTempLog_.close();
354 +      }
355 +      if (outputRotTemp_) rotTempLog_.close();
356 +      // James put this in
357 +      if (outputDen_) denLog_.close();
358 +      if (outputAh_)  AhLog_.close();
359 +      if (outputVz_)  vzzLog_.close();
360 +      
361 + #ifdef IS_MPI
362 +    }
363 + #endif
364    }
365  
366    void RNEMD::doSwap() {
367 <    std::cerr << "in RNEMD!\n";  
368 <    std::cerr << "nBins = " << nBins_ << "\n";
369 <    std::cerr << "swapTime = " << swapTime_ << "\n";
370 <    std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
371 <    std::cerr << "swapType = " << rnemdType_ << "\n";
372 <  }  
367 >
368 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
369 >    Mat3x3d hmat = currentSnap_->getHmat();
370 >
371 >    seleMan_.setSelectionSet(evaluator_.evaluate());
372 >
373 >    int selei;
374 >    StuntDouble* sd;
375 >    int idx;
376 >
377 >    RealType min_val;
378 >    bool min_found = false;  
379 >    StuntDouble* min_sd;
380 >
381 >    RealType max_val;
382 >    bool max_found = false;
383 >    StuntDouble* max_sd;
384 >
385 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
386 >         sd = seleMan_.nextSelected(selei)) {
387 >
388 >      idx = sd->getLocalIndex();
389 >
390 >      Vector3d pos = sd->getPos();
391 >
392 >      // wrap the stuntdouble's position back into the box:
393 >
394 >      if (usePeriodicBoundaryConditions_)
395 >        currentSnap_->wrapVector(pos);
396 >
397 >      // which bin is this stuntdouble in?
398 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
399 >
400 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
401 >
402 >
403 >      // if we're in bin 0 or the middleBin
404 >      if (binNo == 0 || binNo == midBin_) {
405 >        
406 >        RealType mass = sd->getMass();
407 >        Vector3d vel = sd->getVel();
408 >        RealType value;
409 >
410 >        switch(rnemdType_) {
411 >        case rnemdKineticSwap :
412 >          
413 >          value = mass * vel.lengthSquare();
414 >          
415 >          if (sd->isDirectional()) {
416 >            Vector3d angMom = sd->getJ();
417 >            Mat3x3d I = sd->getI();
418 >            
419 >            if (sd->isLinear()) {
420 >              int i = sd->linearAxis();
421 >              int j = (i + 1) % 3;
422 >              int k = (i + 2) % 3;
423 >              value += angMom[j] * angMom[j] / I(j, j) +
424 >                angMom[k] * angMom[k] / I(k, k);
425 >            } else {                        
426 >              value += angMom[0]*angMom[0]/I(0, 0)
427 >                + angMom[1]*angMom[1]/I(1, 1)
428 >                + angMom[2]*angMom[2]/I(2, 2);
429 >            }
430 >          } //angular momenta exchange enabled
431 >          //energyConvert temporarily disabled
432 >          //make exchangeSum_ comparable between swap & scale
433 >          //value = value * 0.5 / PhysicalConstants::energyConvert;
434 >          value *= 0.5;
435 >          break;
436 >        case rnemdPx :
437 >          value = mass * vel[0];
438 >          break;
439 >        case rnemdPy :
440 >          value = mass * vel[1];
441 >          break;
442 >        case rnemdPz :
443 >          value = mass * vel[2];
444 >          break;
445 >        default :
446 >          break;
447 >        }
448 >        
449 >        if (binNo == 0) {
450 >          if (!min_found) {
451 >            min_val = value;
452 >            min_sd = sd;
453 >            min_found = true;
454 >          } else {
455 >            if (min_val > value) {
456 >              min_val = value;
457 >              min_sd = sd;
458 >            }
459 >          }
460 >        } else { //midBin_
461 >          if (!max_found) {
462 >            max_val = value;
463 >            max_sd = sd;
464 >            max_found = true;
465 >          } else {
466 >            if (max_val < value) {
467 >              max_val = value;
468 >              max_sd = sd;
469 >            }
470 >          }      
471 >        }
472 >      }
473 >    }
474 >
475 > #ifdef IS_MPI
476 >    int nProc, worldRank;
477 >
478 >    nProc = MPI::COMM_WORLD.Get_size();
479 >    worldRank = MPI::COMM_WORLD.Get_rank();
480 >
481 >    bool my_min_found = min_found;
482 >    bool my_max_found = max_found;
483 >
484 >    // Even if we didn't find a minimum, did someone else?
485 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
486 >    // Even if we didn't find a maximum, did someone else?
487 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
488 > #endif
489 >
490 >    if (max_found && min_found) {
491 >
492 > #ifdef IS_MPI
493 >      struct {
494 >        RealType val;
495 >        int rank;
496 >      } max_vals, min_vals;
497 >      
498 >      if (my_min_found) {
499 >        min_vals.val = min_val;
500 >      } else {
501 >        min_vals.val = HONKING_LARGE_VALUE;
502 >      }
503 >      min_vals.rank = worldRank;    
504 >      
505 >      // Who had the minimum?
506 >      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
507 >                                1, MPI::REALTYPE_INT, MPI::MINLOC);
508 >      min_val = min_vals.val;
509 >      
510 >      if (my_max_found) {
511 >        max_vals.val = max_val;
512 >      } else {
513 >        max_vals.val = -HONKING_LARGE_VALUE;
514 >      }
515 >      max_vals.rank = worldRank;    
516 >      
517 >      // Who had the maximum?
518 >      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
519 >                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
520 >      max_val = max_vals.val;
521 > #endif
522 >      
523 >      if (min_val < max_val) {
524 >        
525 > #ifdef IS_MPI      
526 >        if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
527 >          // I have both maximum and minimum, so proceed like a single
528 >          // processor version:
529 > #endif
530 >
531 >          Vector3d min_vel = min_sd->getVel();
532 >          Vector3d max_vel = max_sd->getVel();
533 >          RealType temp_vel;
534 >          
535 >          switch(rnemdType_) {
536 >          case rnemdKineticSwap :
537 >            min_sd->setVel(max_vel);
538 >            max_sd->setVel(min_vel);
539 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
540 >              Vector3d min_angMom = min_sd->getJ();
541 >              Vector3d max_angMom = max_sd->getJ();
542 >              min_sd->setJ(max_angMom);
543 >              max_sd->setJ(min_angMom);
544 >            }//angular momenta exchange enabled
545 >            //assumes same rigid body identity
546 >            break;
547 >          case rnemdPx :
548 >            temp_vel = min_vel.x();
549 >            min_vel.x() = max_vel.x();
550 >            max_vel.x() = temp_vel;
551 >            min_sd->setVel(min_vel);
552 >            max_sd->setVel(max_vel);
553 >            break;
554 >          case rnemdPy :
555 >            temp_vel = min_vel.y();
556 >            min_vel.y() = max_vel.y();
557 >            max_vel.y() = temp_vel;
558 >            min_sd->setVel(min_vel);
559 >            max_sd->setVel(max_vel);
560 >            break;
561 >          case rnemdPz :
562 >            temp_vel = min_vel.z();
563 >            min_vel.z() = max_vel.z();
564 >            max_vel.z() = temp_vel;
565 >            min_sd->setVel(min_vel);
566 >            max_sd->setVel(max_vel);
567 >            break;
568 >          default :
569 >            break;
570 >          }
571 >
572 > #ifdef IS_MPI
573 >          // the rest of the cases only apply in parallel simulations:
574 >        } else if (max_vals.rank == worldRank) {
575 >          // I had the max, but not the minimum
576 >          
577 >          Vector3d min_vel;
578 >          Vector3d max_vel = max_sd->getVel();
579 >          MPI::Status status;
580 >
581 >          // point-to-point swap of the velocity vector
582 >          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
583 >                                   min_vals.rank, 0,
584 >                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
585 >                                   min_vals.rank, 0, status);
586 >          
587 >          switch(rnemdType_) {
588 >          case rnemdKineticSwap :
589 >            max_sd->setVel(min_vel);
590 >            //angular momenta exchange enabled
591 >            if (max_sd->isDirectional()) {
592 >              Vector3d min_angMom;
593 >              Vector3d max_angMom = max_sd->getJ();
594 >              
595 >              // point-to-point swap of the angular momentum vector
596 >              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
597 >                                       MPI::REALTYPE, min_vals.rank, 1,
598 >                                       min_angMom.getArrayPointer(), 3,
599 >                                       MPI::REALTYPE, min_vals.rank, 1,
600 >                                       status);
601 >              
602 >              max_sd->setJ(min_angMom);
603 >            }
604 >            break;
605 >          case rnemdPx :
606 >            max_vel.x() = min_vel.x();
607 >            max_sd->setVel(max_vel);
608 >            break;
609 >          case rnemdPy :
610 >            max_vel.y() = min_vel.y();
611 >            max_sd->setVel(max_vel);
612 >            break;
613 >          case rnemdPz :
614 >            max_vel.z() = min_vel.z();
615 >            max_sd->setVel(max_vel);
616 >            break;
617 >          default :
618 >            break;
619 >          }
620 >        } else if (min_vals.rank == worldRank) {
621 >          // I had the minimum but not the maximum:
622 >          
623 >          Vector3d max_vel;
624 >          Vector3d min_vel = min_sd->getVel();
625 >          MPI::Status status;
626 >          
627 >          // point-to-point swap of the velocity vector
628 >          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
629 >                                   max_vals.rank, 0,
630 >                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
631 >                                   max_vals.rank, 0, status);
632 >          
633 >          switch(rnemdType_) {
634 >          case rnemdKineticSwap :
635 >            min_sd->setVel(max_vel);
636 >            //angular momenta exchange enabled
637 >            if (min_sd->isDirectional()) {
638 >              Vector3d min_angMom = min_sd->getJ();
639 >              Vector3d max_angMom;
640 >              
641 >              // point-to-point swap of the angular momentum vector
642 >              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
643 >                                       MPI::REALTYPE, max_vals.rank, 1,
644 >                                       max_angMom.getArrayPointer(), 3,
645 >                                       MPI::REALTYPE, max_vals.rank, 1,
646 >                                       status);
647 >              
648 >              min_sd->setJ(max_angMom);
649 >            }
650 >            break;
651 >          case rnemdPx :
652 >            min_vel.x() = max_vel.x();
653 >            min_sd->setVel(min_vel);
654 >            break;
655 >          case rnemdPy :
656 >            min_vel.y() = max_vel.y();
657 >            min_sd->setVel(min_vel);
658 >            break;
659 >          case rnemdPz :
660 >            min_vel.z() = max_vel.z();
661 >            min_sd->setVel(min_vel);
662 >            break;
663 >          default :
664 >            break;
665 >          }
666 >        }
667 > #endif
668 >        exchangeSum_ += max_val - min_val;
669 >      } else {        
670 >        sprintf(painCave.errMsg,
671 >                "RNEMD: exchange NOT performed because min_val > max_val\n");
672 >        painCave.isFatal = 0;
673 >        painCave.severity = OPENMD_INFO;
674 >        simError();        
675 >        failTrialCount_++;
676 >      }
677 >    } else {
678 >      sprintf(painCave.errMsg,
679 >              "RNEMD: exchange NOT performed because selected object\n"
680 >              "\tnot present in at least one of the two slabs.\n");
681 >      painCave.isFatal = 0;
682 >      painCave.severity = OPENMD_INFO;
683 >      simError();        
684 >      failTrialCount_++;
685 >    }
686 >    
687 >  }
688 >  
689 >  void RNEMD::doScale() {
690 >
691 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
692 >    Mat3x3d hmat = currentSnap_->getHmat();
693 >
694 >    seleMan_.setSelectionSet(evaluator_.evaluate());
695 >
696 >    int selei;
697 >    StuntDouble* sd;
698 >    int idx;
699 >
700 >    vector<StuntDouble*> hotBin, coldBin;
701 >
702 >    RealType Phx = 0.0;
703 >    RealType Phy = 0.0;
704 >    RealType Phz = 0.0;
705 >    RealType Khx = 0.0;
706 >    RealType Khy = 0.0;
707 >    RealType Khz = 0.0;
708 >    RealType Khw = 0.0;
709 >    RealType Pcx = 0.0;
710 >    RealType Pcy = 0.0;
711 >    RealType Pcz = 0.0;
712 >    RealType Kcx = 0.0;
713 >    RealType Kcy = 0.0;
714 >    RealType Kcz = 0.0;
715 >    RealType Kcw = 0.0;
716 >
717 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
718 >         sd = seleMan_.nextSelected(selei)) {
719 >
720 >      idx = sd->getLocalIndex();
721 >
722 >      Vector3d pos = sd->getPos();
723 >
724 >      // wrap the stuntdouble's position back into the box:
725 >
726 >      if (usePeriodicBoundaryConditions_)
727 >        currentSnap_->wrapVector(pos);
728 >
729 >      // which bin is this stuntdouble in?
730 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
731 >
732 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
733 >
734 >      // if we're in bin 0 or the middleBin
735 >      if (binNo == 0 || binNo == midBin_) {
736 >        
737 >        RealType mass = sd->getMass();
738 >        Vector3d vel = sd->getVel();
739 >      
740 >        if (binNo == 0) {
741 >          hotBin.push_back(sd);
742 >          Phx += mass * vel.x();
743 >          Phy += mass * vel.y();
744 >          Phz += mass * vel.z();
745 >          Khx += mass * vel.x() * vel.x();
746 >          Khy += mass * vel.y() * vel.y();
747 >          Khz += mass * vel.z() * vel.z();
748 >          //if (rnemdType_ == rnemdKineticScaleVAM) {
749 >          if (sd->isDirectional()) {
750 >            Vector3d angMom = sd->getJ();
751 >            Mat3x3d I = sd->getI();
752 >            if (sd->isLinear()) {
753 >              int i = sd->linearAxis();
754 >              int j = (i + 1) % 3;
755 >              int k = (i + 2) % 3;
756 >              Khw += angMom[j] * angMom[j] / I(j, j) +
757 >                angMom[k] * angMom[k] / I(k, k);
758 >            } else {
759 >              Khw += angMom[0]*angMom[0]/I(0, 0)
760 >                + angMom[1]*angMom[1]/I(1, 1)
761 >                + angMom[2]*angMom[2]/I(2, 2);
762 >            }
763 >          }
764 >          //}
765 >        } else { //midBin_
766 >          coldBin.push_back(sd);
767 >          Pcx += mass * vel.x();
768 >          Pcy += mass * vel.y();
769 >          Pcz += mass * vel.z();
770 >          Kcx += mass * vel.x() * vel.x();
771 >          Kcy += mass * vel.y() * vel.y();
772 >          Kcz += mass * vel.z() * vel.z();
773 >          //if (rnemdType_ == rnemdKineticScaleVAM) {
774 >          if (sd->isDirectional()) {
775 >            Vector3d angMom = sd->getJ();
776 >            Mat3x3d I = sd->getI();
777 >            if (sd->isLinear()) {
778 >              int i = sd->linearAxis();
779 >              int j = (i + 1) % 3;
780 >              int k = (i + 2) % 3;
781 >              Kcw += angMom[j] * angMom[j] / I(j, j) +
782 >                angMom[k] * angMom[k] / I(k, k);
783 >            } else {
784 >              Kcw += angMom[0]*angMom[0]/I(0, 0)
785 >                + angMom[1]*angMom[1]/I(1, 1)
786 >                + angMom[2]*angMom[2]/I(2, 2);
787 >            }
788 >          }
789 >          //}
790 >        }
791 >      }
792 >    }
793 >    
794 >    Khx *= 0.5;
795 >    Khy *= 0.5;
796 >    Khz *= 0.5;
797 >    Khw *= 0.5;
798 >    Kcx *= 0.5;
799 >    Kcy *= 0.5;
800 >    Kcz *= 0.5;
801 >    Kcw *= 0.5;
802 >
803 >    // std::cerr << "Khx= " << Khx << "\tKhy= " << Khy << "\tKhz= " << Khz
804 >    //        << "\tKhw= " << Khw << "\tKcx= " << Kcx << "\tKcy= " << Kcy
805 >    //        << "\tKcz= " << Kcz << "\tKcw= " << Kcw << "\n";
806 >    // std::cerr << "Phx= " << Phx << "\tPhy= " << Phy << "\tPhz= " << Phz
807 >    //        << "\tPcx= " << Pcx << "\tPcy= " << Pcy << "\tPcz= " <<Pcz<<"\n";
808 >
809 > #ifdef IS_MPI
810 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
811 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
812 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
813 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
814 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
815 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
816 >
817 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
818 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
819 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
820 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
821 >
822 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
823 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
824 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
825 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
826 > #endif
827 >
828 >    //solve coldBin coeff's first
829 >    RealType px = Pcx / Phx;
830 >    RealType py = Pcy / Phy;
831 >    RealType pz = Pcz / Phz;
832 >    RealType c, x, y, z;
833 >    bool successfulScale = false;
834 >    if ((rnemdType_ == rnemdKineticScaleVAM) ||
835 >        (rnemdType_ == rnemdKineticScaleAM)) {
836 >      //may need sanity check Khw & Kcw > 0
837 >
838 >      if (rnemdType_ == rnemdKineticScaleVAM) {
839 >        c = 1.0 - targetFlux_ / (Kcx + Kcy + Kcz + Kcw);
840 >      } else {
841 >        c = 1.0 - targetFlux_ / Kcw;
842 >      }
843 >
844 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
845 >        c = sqrt(c);
846 >        std::cerr << "cold slab scaling coefficient: " << c << endl;
847 >        //now convert to hotBin coefficient
848 >        RealType w = 0.0;
849 >        if (rnemdType_ ==  rnemdKineticScaleVAM) {
850 >          x = 1.0 + px * (1.0 - c);
851 >          y = 1.0 + py * (1.0 - c);
852 >          z = 1.0 + pz * (1.0 - c);
853 >          /* more complicated way
854 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
855 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
856 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
857 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
858 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
859 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
860 >          */
861 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
862 >              (fabs(z - 1.0) < 0.1)) {
863 >            w = 1.0 + (targetFlux_ + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
864 >                       + Khz * (1.0 - z * z)) / Khw;
865 >          }//no need to calculate w if x, y or z is out of range
866 >        } else {
867 >          w = 1.0 + targetFlux_ / Khw;
868 >        }
869 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
870 >          //if w is in the right range, so should be x, y, z.
871 >          vector<StuntDouble*>::iterator sdi;
872 >          Vector3d vel;
873 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
874 >            if (rnemdType_ == rnemdKineticScaleVAM) {
875 >              vel = (*sdi)->getVel() * c;
876 >              //vel.x() *= c;
877 >              //vel.y() *= c;
878 >              //vel.z() *= c;
879 >              (*sdi)->setVel(vel);
880 >            }
881 >            if ((*sdi)->isDirectional()) {
882 >              Vector3d angMom = (*sdi)->getJ() * c;
883 >              //angMom[0] *= c;
884 >              //angMom[1] *= c;
885 >              //angMom[2] *= c;
886 >              (*sdi)->setJ(angMom);
887 >            }
888 >          }
889 >          w = sqrt(w);
890 >          std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
891 >                    << "\twh= " << w << endl;
892 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
893 >            if (rnemdType_ == rnemdKineticScaleVAM) {
894 >              vel = (*sdi)->getVel();
895 >              vel.x() *= x;
896 >              vel.y() *= y;
897 >              vel.z() *= z;
898 >              (*sdi)->setVel(vel);
899 >            }
900 >            if ((*sdi)->isDirectional()) {
901 >              Vector3d angMom = (*sdi)->getJ() * w;
902 >              //angMom[0] *= w;
903 >              //angMom[1] *= w;
904 >              //angMom[2] *= w;
905 >              (*sdi)->setJ(angMom);
906 >            }
907 >          }
908 >          successfulScale = true;
909 >          exchangeSum_ += targetFlux_;
910 >        }
911 >      }
912 >    } else {
913 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
914 >      switch(rnemdType_) {
915 >      case rnemdKineticScale :
916 >        /* used hotBin coeff's & only scale x & y dimensions
917 >           RealType px = Phx / Pcx;
918 >           RealType py = Phy / Pcy;
919 >           a110 = Khy;
920 >           c0 = - Khx - Khy - targetFlux_;
921 >           a000 = Khx;
922 >           a111 = Kcy * py * py;
923 >           b11 = -2.0 * Kcy * py * (1.0 + py);
924 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
925 >           b01 = -2.0 * Kcx * px * (1.0 + px);
926 >           a001 = Kcx * px * px;
927 >        */
928 >        //scale all three dimensions, let c_x = c_y
929 >        a000 = Kcx + Kcy;
930 >        a110 = Kcz;
931 >        c0 = targetFlux_ - Kcx - Kcy - Kcz;
932 >        a001 = Khx * px * px + Khy * py * py;
933 >        a111 = Khz * pz * pz;
934 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
935 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
936 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
937 >          + Khz * pz * (2.0 + pz) - targetFlux_;
938 >        break;
939 >      case rnemdPxScale :
940 >        c = 1 - targetFlux_ / Pcx;
941 >        a000 = Kcy;
942 >        a110 = Kcz;
943 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
944 >        a001 = py * py * Khy;
945 >        a111 = pz * pz * Khz;
946 >        b01 = -2.0 * Khy * py * (1.0 + py);
947 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
948 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
949 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
950 >        break;
951 >      case rnemdPyScale :
952 >        c = 1 - targetFlux_ / Pcy;
953 >        a000 = Kcx;
954 >        a110 = Kcz;
955 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
956 >        a001 = px * px * Khx;
957 >        a111 = pz * pz * Khz;
958 >        b01 = -2.0 * Khx * px * (1.0 + px);
959 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
960 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
961 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
962 >        break;
963 >      case rnemdPzScale ://we don't really do this, do we?
964 >        c = 1 - targetFlux_ / Pcz;
965 >        a000 = Kcx;
966 >        a110 = Kcy;
967 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
968 >        a001 = px * px * Khx;
969 >        a111 = py * py * Khy;
970 >        b01 = -2.0 * Khx * px * (1.0 + px);
971 >        b11 = -2.0 * Khy * py * (1.0 + py);
972 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
973 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
974 >        break;
975 >      default :
976 >        break;
977 >      }
978 >      
979 >      RealType v1 = a000 * a111 - a001 * a110;
980 >      RealType v2 = a000 * b01;
981 >      RealType v3 = a000 * b11;
982 >      RealType v4 = a000 * c1 - a001 * c0;
983 >      RealType v8 = a110 * b01;
984 >      RealType v10 = - b01 * c0;
985 >      
986 >      RealType u0 = v2 * v10 - v4 * v4;
987 >      RealType u1 = -2.0 * v3 * v4;
988 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
989 >      RealType u3 = -2.0 * v1 * v3;
990 >      RealType u4 = - v1 * v1;
991 >      //rescale coefficients
992 >      RealType maxAbs = fabs(u0);
993 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
994 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
995 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
996 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
997 >      u0 /= maxAbs;
998 >      u1 /= maxAbs;
999 >      u2 /= maxAbs;
1000 >      u3 /= maxAbs;
1001 >      u4 /= maxAbs;
1002 >      //max_element(start, end) is also available.
1003 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
1004 >      poly.setCoefficient(4, u4);
1005 >      poly.setCoefficient(3, u3);
1006 >      poly.setCoefficient(2, u2);
1007 >      poly.setCoefficient(1, u1);
1008 >      poly.setCoefficient(0, u0);
1009 >      vector<RealType> realRoots = poly.FindRealRoots();
1010 >      
1011 >      vector<RealType>::iterator ri;
1012 >      RealType r1, r2, alpha0;
1013 >      vector<pair<RealType,RealType> > rps;
1014 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1015 >        r2 = *ri;
1016 >        //check if FindRealRoots() give the right answer
1017 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1018 >          sprintf(painCave.errMsg,
1019 >                  "RNEMD Warning: polynomial solve seems to have an error!");
1020 >          painCave.isFatal = 0;
1021 >          simError();
1022 >          failRootCount_++;
1023 >        }
1024 >        //might not be useful w/o rescaling coefficients
1025 >        alpha0 = -c0 - a110 * r2 * r2;
1026 >        if (alpha0 >= 0.0) {
1027 >          r1 = sqrt(alpha0 / a000);
1028 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1029 >              < 1e-6)
1030 >            { rps.push_back(make_pair(r1, r2)); }
1031 >          if (r1 > 1e-6) { //r1 non-negative
1032 >            r1 = -r1;
1033 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1034 >                < 1e-6)
1035 >              { rps.push_back(make_pair(r1, r2)); }
1036 >          }
1037 >        }
1038 >      }
1039 >      // Consider combining together the solving pair part w/ the searching
1040 >      // best solution part so that we don't need the pairs vector
1041 >      if (!rps.empty()) {
1042 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1043 >        RealType diff;
1044 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1045 >        vector<pair<RealType,RealType> >::iterator rpi;
1046 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1047 >          r1 = (*rpi).first;
1048 >          r2 = (*rpi).second;
1049 >          switch(rnemdType_) {
1050 >          case rnemdKineticScale :
1051 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1052 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1053 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1054 >            break;
1055 >          case rnemdPxScale :
1056 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1057 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1058 >            break;
1059 >          case rnemdPyScale :
1060 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1061 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1062 >            break;
1063 >          case rnemdPzScale :
1064 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1065 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1066 >          default :
1067 >            break;
1068 >          }
1069 >          if (diff < smallestDiff) {
1070 >            smallestDiff = diff;
1071 >            bestPair = *rpi;
1072 >          }
1073 >        }
1074 > #ifdef IS_MPI
1075 >        if (worldRank == 0) {
1076 > #endif
1077 >          sprintf(painCave.errMsg,
1078 >                  "RNEMD: roots r1= %lf\tr2 = %lf\n",
1079 >                  bestPair.first, bestPair.second);
1080 >          painCave.isFatal = 0;
1081 >          painCave.severity = OPENMD_INFO;
1082 >          simError();
1083 > #ifdef IS_MPI
1084 >        }
1085 > #endif
1086 >        
1087 >        switch(rnemdType_) {
1088 >        case rnemdKineticScale :
1089 >          x = bestPair.first;
1090 >          y = bestPair.first;
1091 >          z = bestPair.second;
1092 >          break;
1093 >        case rnemdPxScale :
1094 >          x = c;
1095 >          y = bestPair.first;
1096 >          z = bestPair.second;
1097 >          break;
1098 >        case rnemdPyScale :
1099 >          x = bestPair.first;
1100 >          y = c;
1101 >          z = bestPair.second;
1102 >          break;
1103 >        case rnemdPzScale :
1104 >          x = bestPair.first;
1105 >          y = bestPair.second;
1106 >          z = c;
1107 >          break;          
1108 >        default :
1109 >          break;
1110 >        }
1111 >        vector<StuntDouble*>::iterator sdi;
1112 >        Vector3d vel;
1113 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1114 >          vel = (*sdi)->getVel();
1115 >          vel.x() *= x;
1116 >          vel.y() *= y;
1117 >          vel.z() *= z;
1118 >          (*sdi)->setVel(vel);
1119 >        }
1120 >        //convert to hotBin coefficient
1121 >        x = 1.0 + px * (1.0 - x);
1122 >        y = 1.0 + py * (1.0 - y);
1123 >        z = 1.0 + pz * (1.0 - z);
1124 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1125 >          vel = (*sdi)->getVel();
1126 >          vel.x() *= x;
1127 >          vel.y() *= y;
1128 >          vel.z() *= z;
1129 >          (*sdi)->setVel(vel);
1130 >        }
1131 >        successfulScale = true;
1132 >        exchangeSum_ += targetFlux_;
1133 >      }
1134 >    }
1135 >    if (successfulScale != true) {
1136 >      sprintf(painCave.errMsg,
1137 >              "RNEMD: exchange NOT performed!\n");
1138 >      painCave.isFatal = 0;
1139 >      painCave.severity = OPENMD_INFO;
1140 >      simError();        
1141 >      failTrialCount_++;
1142 >    }
1143 >  }
1144 >
1145 >  void RNEMD::doShiftScale() {
1146 >
1147 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1148 >    RealType time = currentSnap_->getTime();    
1149 >    Mat3x3d hmat = currentSnap_->getHmat();
1150 >
1151 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1152 >
1153 >    int selei;
1154 >    StuntDouble* sd;
1155 >    int idx;
1156 >
1157 >    vector<StuntDouble*> hotBin, coldBin;
1158 >
1159 >    Vector3d Ph(V3Zero);
1160 >    RealType Mh = 0.0;
1161 >    RealType Kh = 0.0;
1162 >    Vector3d Pc(V3Zero);
1163 >    RealType Mc = 0.0;
1164 >    RealType Kc = 0.0;
1165 >    
1166 >
1167 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1168 >         sd = seleMan_.nextSelected(selei)) {
1169 >
1170 >      idx = sd->getLocalIndex();
1171 >
1172 >      Vector3d pos = sd->getPos();
1173 >
1174 >      // wrap the stuntdouble's position back into the box:
1175 >
1176 >      if (usePeriodicBoundaryConditions_)
1177 >        currentSnap_->wrapVector(pos);
1178 >
1179 >      // which bin is this stuntdouble in?
1180 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1181 >
1182 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1183 >
1184 >      // if we're in bin 0 or the middleBin
1185 >      if (binNo == 0 || binNo == midBin_) {
1186 >        
1187 >        RealType mass = sd->getMass();
1188 >        Vector3d vel = sd->getVel();
1189 >      
1190 >        if (binNo == 0) {
1191 >          hotBin.push_back(sd);
1192 >          //std::cerr << "before, velocity = " << vel << endl;
1193 >          Ph += mass * vel;
1194 >          //std::cerr << "after, velocity = " << vel << endl;
1195 >          Mh += mass;
1196 >          Kh += mass * vel.lengthSquare();
1197 >          if (rnemdType_ == rnemdShiftScaleVAM) {
1198 >            if (sd->isDirectional()) {
1199 >              Vector3d angMom = sd->getJ();
1200 >              Mat3x3d I = sd->getI();
1201 >              if (sd->isLinear()) {
1202 >                int i = sd->linearAxis();
1203 >                int j = (i + 1) % 3;
1204 >                int k = (i + 2) % 3;
1205 >                Kh += angMom[j] * angMom[j] / I(j, j) +
1206 >                  angMom[k] * angMom[k] / I(k, k);
1207 >              } else {
1208 >                Kh += angMom[0] * angMom[0] / I(0, 0) +
1209 >                  angMom[1] * angMom[1] / I(1, 1) +
1210 >                  angMom[2] * angMom[2] / I(2, 2);
1211 >              }
1212 >            }
1213 >          }
1214 >        } else { //midBin_
1215 >          coldBin.push_back(sd);
1216 >          Pc += mass * vel;
1217 >          Mc += mass;
1218 >          Kc += mass * vel.lengthSquare();
1219 >          if (rnemdType_ == rnemdShiftScaleVAM) {
1220 >            if (sd->isDirectional()) {
1221 >              Vector3d angMom = sd->getJ();
1222 >              Mat3x3d I = sd->getI();
1223 >              if (sd->isLinear()) {
1224 >                int i = sd->linearAxis();
1225 >                int j = (i + 1) % 3;
1226 >                int k = (i + 2) % 3;
1227 >                Kc += angMom[j] * angMom[j] / I(j, j) +
1228 >                  angMom[k] * angMom[k] / I(k, k);
1229 >              } else {
1230 >                Kc += angMom[0] * angMom[0] / I(0, 0) +
1231 >                  angMom[1] * angMom[1] / I(1, 1) +
1232 >                  angMom[2] * angMom[2] / I(2, 2);
1233 >              }
1234 >            }
1235 >          }
1236 >        }
1237 >      }
1238 >    }
1239 >    
1240 >    Kh *= 0.5;
1241 >    Kc *= 0.5;
1242 >
1243 >    // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1244 >    //        << "\tKc= " << Kc << endl;
1245 >    // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1246 >    
1247 > #ifdef IS_MPI
1248 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1249 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1250 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1251 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1252 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1253 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1254 > #endif
1255 >
1256 >    bool successfulExchange = false;
1257 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1258 >      Vector3d vc = Pc / Mc;
1259 >      Vector3d ac = njzp_ / Mc + vc;
1260 >      Vector3d acrec = njzp_ / Mc;
1261 >      RealType cNumerator = Kc - targetJzKE_ - 0.5 * Mc * ac.lengthSquare();
1262 >      if (cNumerator > 0.0) {
1263 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1264 >        if (cDenominator > 0.0) {
1265 >          RealType c = sqrt(cNumerator / cDenominator);
1266 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1267 >            Vector3d vh = Ph / Mh;
1268 >            Vector3d ah = jzp_ / Mh + vh;
1269 >            Vector3d ahrec = jzp_ / Mh;
1270 >            RealType hNumerator = Kh + targetJzKE_
1271 >              - 0.5 * Mh * ah.lengthSquare();
1272 >            if (hNumerator > 0.0) {
1273 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1274 >              if (hDenominator > 0.0) {
1275 >                RealType h = sqrt(hNumerator / hDenominator);
1276 >                if ((h > 0.9) && (h < 1.1)) {
1277 >                  // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1278 >                  // std::cerr << "hot slab scaling coefficient: " << h <<  "\n";
1279 >                  vector<StuntDouble*>::iterator sdi;
1280 >                  Vector3d vel;
1281 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1282 >                    //vel = (*sdi)->getVel();
1283 >                    vel = ((*sdi)->getVel() - vc) * c + ac;
1284 >                    (*sdi)->setVel(vel);
1285 >                    if (rnemdType_ == rnemdShiftScaleVAM) {
1286 >                      if ((*sdi)->isDirectional()) {
1287 >                        Vector3d angMom = (*sdi)->getJ() * c;
1288 >                        (*sdi)->setJ(angMom);
1289 >                      }
1290 >                    }
1291 >                  }
1292 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1293 >                    //vel = (*sdi)->getVel();
1294 >                    vel = ((*sdi)->getVel() - vh) * h + ah;
1295 >                    (*sdi)->setVel(vel);
1296 >                    if (rnemdType_ == rnemdShiftScaleVAM) {
1297 >                      if ((*sdi)->isDirectional()) {
1298 >                        Vector3d angMom = (*sdi)->getJ() * h;
1299 >                        (*sdi)->setJ(angMom);
1300 >                      }
1301 >                    }
1302 >                  }
1303 >                  successfulExchange = true;
1304 >                  exchangeSum_ += targetFlux_;
1305 >                  // this is a redundant variable for doShiftScale() so that
1306 >                  // RNEMD can output one exchange quantity needed in a job.
1307 >                  // need a better way to do this.
1308 >                  //cerr << "acx =" << ac.x() << "ahx =" << ah.x() << '\n';
1309 >                  //cerr << "acy =" << ac.y() << "ahy =" << ah.y() << '\n';
1310 >                  //cerr << "acz =" << ac.z() << "ahz =" << ah.z() << '\n';
1311 >                  Asum_ += (ahrec.z() - acrec.z());
1312 >                  Jsum_ += (jzp_.z()*((1/Mh)+(1/Mc)));
1313 >                  AhCount_ = ahrec.z();
1314 >                  if (outputAh_) {
1315 >                    AhLog_ << time << "   ";
1316 >                    AhLog_ << AhCount_;
1317 >                    AhLog_ << endl;
1318 >                  }              
1319 >                }
1320 >              }
1321 >            }
1322 >          }
1323 >        }
1324 >      }
1325 >    }
1326 >    if (successfulExchange != true) {
1327 >      //   sprintf(painCave.errMsg,
1328 >      //              "RNEMD: exchange NOT performed!\n");
1329 >      //   painCave.isFatal = 0;
1330 >      //   painCave.severity = OPENMD_INFO;
1331 >      //   simError();        
1332 >      failTrialCount_++;
1333 >    }
1334 >  }
1335 >
1336 >  void RNEMD::doRNEMD() {
1337 >
1338 >    switch(rnemdType_) {
1339 >    case rnemdKineticScale :
1340 >    case rnemdKineticScaleVAM :
1341 >    case rnemdKineticScaleAM :
1342 >    case rnemdPxScale :
1343 >    case rnemdPyScale :
1344 >    case rnemdPzScale :
1345 >      doScale();
1346 >      break;
1347 >    case rnemdKineticSwap :
1348 >    case rnemdPx :
1349 >    case rnemdPy :
1350 >    case rnemdPz :
1351 >      doSwap();
1352 >      break;
1353 >    case rnemdShiftScaleV :
1354 >    case rnemdShiftScaleVAM :
1355 >      doShiftScale();
1356 >      break;
1357 >    case rnemdUnknown :
1358 >    default :
1359 >      break;
1360 >    }
1361 >  }
1362 >
1363 >  void RNEMD::collectData() {
1364 >
1365 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1366 >    Mat3x3d hmat = currentSnap_->getHmat();
1367 >
1368 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1369 >
1370 >    int selei;
1371 >    StuntDouble* sd;
1372 >    int idx;
1373 >
1374 >    logFrameCount_++;
1375 >
1376 >    // alternative approach, track all molecules instead of only those
1377 >    // selected for scaling/swapping:
1378 >    /*
1379 >    SimInfo::MoleculeIterator miter;
1380 >    vector<StuntDouble*>::iterator iiter;
1381 >    Molecule* mol;
1382 >    StuntDouble* integrableObject;
1383 >    for (mol = info_->beginMolecule(miter); mol != NULL;
1384 >      mol = info_->nextMolecule(miter))
1385 >      integrableObject is essentially sd
1386 >        for (integrableObject = mol->beginIntegrableObject(iiter);
1387 >             integrableObject != NULL;
1388 >             integrableObject = mol->nextIntegrableObject(iiter))
1389 >    */
1390 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1391 >         sd = seleMan_.nextSelected(selei)) {
1392 >      
1393 >      idx = sd->getLocalIndex();
1394 >      
1395 >      Vector3d pos = sd->getPos();
1396 >
1397 >      // wrap the stuntdouble's position back into the box:
1398 >      
1399 >      if (usePeriodicBoundaryConditions_)
1400 >        currentSnap_->wrapVector(pos);
1401 >      
1402 >      // which bin is this stuntdouble in?
1403 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1404 >      
1405 >      int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
1406 >        rnemdLogWidth_;
1407 >      // no symmetrization allowed due to arbitary rnemdLogWidth_
1408 >      /*
1409 >      if (rnemdLogWidth_ == midBin_ + 1)
1410 >        if (binNo > midBin_)
1411 >          binNo = nBins_ - binNo;
1412 >      */
1413 >      RealType mass = sd->getMass();
1414 >      mHist_[binNo] += mass;
1415 >      Vector3d vel = sd->getVel();
1416 >      RealType value;
1417 >      //RealType xVal, yVal, zVal;
1418 >
1419 >      if (outputTemp_) {
1420 >        value = mass * vel.lengthSquare();
1421 >        tempCount_[binNo] += 3;
1422 >        if (sd->isDirectional()) {
1423 >          Vector3d angMom = sd->getJ();
1424 >          Mat3x3d I = sd->getI();
1425 >          if (sd->isLinear()) {
1426 >            int i = sd->linearAxis();
1427 >            int j = (i + 1) % 3;
1428 >            int k = (i + 2) % 3;
1429 >            value += angMom[j] * angMom[j] / I(j, j) +
1430 >              angMom[k] * angMom[k] / I(k, k);
1431 >            tempCount_[binNo] +=2;
1432 >          } else {
1433 >            value += angMom[0] * angMom[0] / I(0, 0) +
1434 >              angMom[1]*angMom[1]/I(1, 1) +
1435 >              angMom[2]*angMom[2]/I(2, 2);
1436 >            tempCount_[binNo] +=3;
1437 >          }
1438 >        }
1439 >        value = value / PhysicalConstants::energyConvert
1440 >          / PhysicalConstants::kb;//may move to getStatus()
1441 >        tempHist_[binNo] += value;
1442 >      }
1443 >      if (outputVx_) {
1444 >        value = mass * vel[0];
1445 >        //vxzCount_[binNo]++;
1446 >        pxzHist_[binNo] += value;
1447 >      }
1448 >      if (outputVy_) {
1449 >        value = mass * vel[1];
1450 >        //vyzCount_[binNo]++;
1451 >        pyzHist_[binNo] += value;
1452 >      }
1453 >
1454 >      if (output3DTemp_) {
1455 >        value = mass * vel.x() * vel.x();
1456 >        xTempHist_[binNo] += value;
1457 >        value = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1458 >          / PhysicalConstants::kb;
1459 >        yTempHist_[binNo] += value;
1460 >        value = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1461 >          / PhysicalConstants::kb;
1462 >        zTempHist_[binNo] += value;
1463 >        xyzTempCount_[binNo]++;
1464 >      }
1465 >      if (outputRotTemp_) {
1466 >        if (sd->isDirectional()) {
1467 >          Vector3d angMom = sd->getJ();
1468 >          Mat3x3d I = sd->getI();
1469 >          if (sd->isLinear()) {
1470 >            int i = sd->linearAxis();
1471 >            int j = (i + 1) % 3;
1472 >            int k = (i + 2) % 3;
1473 >            value = angMom[j] * angMom[j] / I(j, j) +
1474 >              angMom[k] * angMom[k] / I(k, k);
1475 >            rotTempCount_[binNo] +=2;
1476 >          } else {
1477 >            value = angMom[0] * angMom[0] / I(0, 0) +
1478 >              angMom[1] * angMom[1] / I(1, 1) +
1479 >              angMom[2] * angMom[2] / I(2, 2);
1480 >            rotTempCount_[binNo] +=3;
1481 >          }
1482 >        }
1483 >        value = value / PhysicalConstants::energyConvert
1484 >          / PhysicalConstants::kb;//may move to getStatus()
1485 >        rotTempHist_[binNo] += value;
1486 >      }
1487 >      // James put this in.
1488 >      if (outputDen_) {
1489 >        //value = 1.0;
1490 >        DenHist_[binNo] += 1;
1491 >      }
1492 >      if (outputVz_) {
1493 >        value = mass * vel[2];
1494 >        //vyzCount_[binNo]++;
1495 >        pzzHist_[binNo] += value;
1496 >      }    
1497 >    }
1498 >  }
1499 >
1500 >  void RNEMD::getStarted() {
1501 >    collectData();
1502 >    /*now can output profile in step 0, but might not be useful;
1503 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1504 >    Stats& stat = currentSnap_->statData;
1505 >    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1506 >    */
1507 >    //may output a header for the log file here
1508 >    getStatus();
1509 >  }
1510 >
1511 >  void RNEMD::getStatus() {
1512 >
1513 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1514 >    Stats& stat = currentSnap_->statData;
1515 >    RealType time = currentSnap_->getTime();
1516 >
1517 >    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1518 >    //or to be more meaningful, define another item as exchangeSum_ / time
1519 >    int j;
1520 >
1521 > #ifdef IS_MPI
1522 >
1523 >    // all processors have the same number of bins, and STL vectors pack their
1524 >    // arrays, so in theory, this should be safe:
1525 >
1526 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &mHist_[0],
1527 >                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1528 >    if (outputTemp_) {
1529 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempHist_[0],
1530 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1531 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempCount_[0],
1532 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1533 >    }
1534 >    if (outputVx_) {
1535 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pxzHist_[0],
1536 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1537 >      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vxzCount_[0],
1538 >      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1539 >    }
1540 >    if (outputVy_) {
1541 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pyzHist_[0],
1542 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1543 >      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vyzCount_[0],
1544 >      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1545 >    }
1546 >    if (output3DTemp_) {
1547 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1548 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1549 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1550 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1551 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1552 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1553 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1554 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1555 >    }
1556 >    if (outputRotTemp_) {
1557 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempHist_[0],
1558 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1559 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempCount_[0],
1560 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1561 >    }
1562 >    // James put this in
1563 >    if (outputDen_) {
1564 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &DenHist_[0],
1565 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1566 >    }
1567 >    if (outputAh_) {
1568 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &AhCount_,
1569 >                                1, MPI::REALTYPE, MPI::SUM);
1570 >    }
1571 >    if (outputVz_) {
1572 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pzzHist_[0],
1573 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1574 >    }
1575 >    
1576 >    // If we're the root node, should we print out the results
1577 >    int worldRank = MPI::COMM_WORLD.Get_rank();
1578 >    if (worldRank == 0) {
1579 > #endif
1580 >
1581 >      if (outputTemp_) {
1582 >        tempLog_ << time;
1583 >        for (j = 0; j < rnemdLogWidth_; j++) {
1584 >          tempLog_ << "\t" << tempHist_[j] / (RealType)tempCount_[j];
1585 >        }
1586 >        tempLog_ << endl;
1587 >      }
1588 >      if (outputVx_) {
1589 >        vxzLog_ << time;
1590 >        for (j = 0; j < rnemdLogWidth_; j++) {
1591 >          vxzLog_ << "\t" << pxzHist_[j] / mHist_[j];
1592 >        }
1593 >        vxzLog_ << endl;
1594 >      }
1595 >      if (outputVy_) {
1596 >        vyzLog_ << time;
1597 >        for (j = 0; j < rnemdLogWidth_; j++) {
1598 >          vyzLog_ << "\t" << pyzHist_[j] / mHist_[j];
1599 >        }
1600 >        vyzLog_ << endl;
1601 >      }
1602 >
1603 >      if (output3DTemp_) {
1604 >        RealType temp;
1605 >        xTempLog_ << time;
1606 >        for (j = 0; j < rnemdLogWidth_; j++) {
1607 >          if (outputVx_)
1608 >            xTempHist_[j] -= pxzHist_[j] * pxzHist_[j] / mHist_[j];
1609 >          temp = xTempHist_[j] / (RealType)xyzTempCount_[j]
1610 >            / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1611 >          xTempLog_ << "\t" << temp;
1612 >        }
1613 >        xTempLog_ << endl;
1614 >        yTempLog_ << time;
1615 >        for (j = 0; j < rnemdLogWidth_; j++) {
1616 >          yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1617 >        }
1618 >        yTempLog_ << endl;
1619 >        zTempLog_ << time;
1620 >        for (j = 0; j < rnemdLogWidth_; j++) {
1621 >          zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1622 >        }
1623 >        zTempLog_ << endl;
1624 >      }
1625 >      if (outputRotTemp_) {
1626 >        rotTempLog_ << time;
1627 >        for (j = 0; j < rnemdLogWidth_; j++) {
1628 >          rotTempLog_ << "\t" << rotTempHist_[j] / (RealType)rotTempCount_[j];
1629 >        }
1630 >        rotTempLog_ << endl;
1631 >      }
1632 >      // James put this in.
1633 >      Mat3x3d hmat = currentSnap_->getHmat();
1634 >      if (outputDen_) {
1635 >        denLog_ << time;
1636 >        for (j = 0; j < rnemdLogWidth_; j++) {
1637 >          
1638 >          RealType binVol = hmat(0,0) * hmat(1,1) * (hmat(2,2) / float(nBins_));
1639 >          denLog_ << "\t" << DenHist_[j] / (float(logFrameCount_) * binVol);
1640 >        }
1641 >        denLog_ << endl;
1642 >      }
1643 >      if (outputVz_) {
1644 >        vzzLog_ << time;
1645 >        for (j = 0; j < rnemdLogWidth_; j++) {
1646 >          vzzLog_ << "\t" << pzzHist_[j] / mHist_[j];
1647 >        }
1648 >        vzzLog_ << endl;
1649 >      }      
1650 > #ifdef IS_MPI
1651 >    }
1652 > #endif
1653 >
1654 >    for (j = 0; j < rnemdLogWidth_; j++) {
1655 >      mHist_[j] = 0.0;
1656 >    }
1657 >    if (outputTemp_)
1658 >      for (j = 0; j < rnemdLogWidth_; j++) {
1659 >        tempCount_[j] = 0;
1660 >        tempHist_[j] = 0.0;
1661 >      }
1662 >    if (outputVx_)
1663 >      for (j = 0; j < rnemdLogWidth_; j++) {
1664 >        //pxzCount_[j] = 0;
1665 >        pxzHist_[j] = 0.0;
1666 >      }
1667 >    if (outputVy_)
1668 >      for (j = 0; j < rnemdLogWidth_; j++) {
1669 >        //pyzCount_[j] = 0;
1670 >        pyzHist_[j] = 0.0;
1671 >      }
1672 >
1673 >    if (output3DTemp_)
1674 >      for (j = 0; j < rnemdLogWidth_; j++) {
1675 >        xTempHist_[j] = 0.0;
1676 >        yTempHist_[j] = 0.0;
1677 >        zTempHist_[j] = 0.0;
1678 >        xyzTempCount_[j] = 0;
1679 >      }
1680 >    if (outputRotTemp_)
1681 >      for (j = 0; j < rnemdLogWidth_; j++) {
1682 >        rotTempCount_[j] = 0;
1683 >        rotTempHist_[j] = 0.0;
1684 >      }
1685 >    // James put this in
1686 >    if (outputDen_)
1687 >      for (j = 0; j < rnemdLogWidth_; j++) {
1688 >        //pyzCount_[j] = 0;
1689 >        DenHist_[j] = 0.0;
1690 >      }
1691 >    if (outputVz_)
1692 >      for (j = 0; j < rnemdLogWidth_; j++) {
1693 >        //pyzCount_[j] = 0;
1694 >        pzzHist_[j] = 0.0;
1695 >      }    
1696 >     // reset the counter
1697 >    
1698 >    Numcount_++;
1699 >    if (Numcount_ > int(runTime_/statusTime_))
1700 >      cerr << "time =" << time << "  Asum =" << Asum_ << '\n';
1701 >    if (Numcount_ > int(runTime_/statusTime_))
1702 >      cerr << "time =" << time << "  Jsum =" << Jsum_ << '\n';
1703 >    
1704 >    logFrameCount_ = 0;
1705 >  }
1706   }
1707 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1728 by jmarr, Wed May 30 16:07:03 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines