ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 + #include <cmath>
43   #include "integrators/RNEMD.hpp"
44 + #include "math/Vector3.hpp"
45 + #include "math/Vector.hpp"
46   #include "math/SquareMatrix3.hpp"
47 + #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50 + #include "utils/PhysicalConstants.hpp"
51 + #include "utils/Tuple.hpp"
52  
53   #ifndef IS_MPI
54   #include "math/SeqRandNumGen.hpp"
55   #else
56   #include "math/ParallelRandNumGen.hpp"
57 + #include <mpi.h>
58   #endif
59  
60 < /* Remove me after testing*/
54 < /*
55 < #include <cstdio>
56 < #include <iostream>
57 < */
58 < /*End remove me*/
60 > #define HONKING_LARGE_VALUE 1.0e10
61  
62 < namespace oopse {
62 > using namespace std;
63 > namespace OpenMD {
64    
65 <  RNEMD::RNEMD(SimInfo* info) : info_(info) {
66 <    
65 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
66 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
67 >
68 >    failTrialCount_ = 0;
69 >    failRootCount_ = 0;
70 >
71      int seedValue;
72      Globals * simParams = info->getSimParams();
73  
74 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
74 >    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
75 >    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
76 >    stringToEnumMap_["KineticScaleVAM"] = rnemdKineticScaleVAM;
77 >    stringToEnumMap_["KineticScaleAM"] = rnemdKineticScaleAM;
78 >    stringToEnumMap_["PxScale"] = rnemdPxScale;
79 >    stringToEnumMap_["PyScale"] = rnemdPyScale;
80 >    stringToEnumMap_["PzScale"] = rnemdPzScale;
81      stringToEnumMap_["Px"] = rnemdPx;
82      stringToEnumMap_["Py"] = rnemdPy;
83      stringToEnumMap_["Pz"] = rnemdPz;
84 +    stringToEnumMap_["ShiftScaleV"] = rnemdShiftScaleV;
85 +    stringToEnumMap_["ShiftScaleVAM"] = rnemdShiftScaleVAM;
86      stringToEnumMap_["Unknown"] = rnemdUnknown;
87  
88 <    const std::string st = simParams->getRNEMD_swapType();
88 >    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
89 >    evaluator_.loadScriptString(rnemdObjectSelection_);
90 >    seleMan_.setSelectionSet(evaluator_.evaluate());
91  
92 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
92 >    // do some sanity checking
93 >
94 >    int selectionCount = seleMan_.getSelectionCount();
95 >    int nIntegrable = info->getNGlobalIntegrableObjects();
96 >
97 >    if (selectionCount > nIntegrable) {
98 >      sprintf(painCave.errMsg,
99 >              "RNEMD: The current RNEMD_objectSelection,\n"
100 >              "\t\t%s\n"
101 >              "\thas resulted in %d selected objects.  However,\n"
102 >              "\tthe total number of integrable objects in the system\n"
103 >              "\tis only %d.  This is almost certainly not what you want\n"
104 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
105 >              "\tselector in the selection script!\n",
106 >              rnemdObjectSelection_.c_str(),
107 >              selectionCount, nIntegrable);
108 >      painCave.isFatal = 0;
109 >      painCave.severity = OPENMD_WARNING;
110 >      simError();
111 >    }
112 >    
113 >    const string st = simParams->getRNEMD_exchangeType();
114 >
115 >    map<string, RNEMDTypeEnum>::iterator i;
116      i = stringToEnumMap_.find(st);
117 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
117 >    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
118 >    if (rnemdType_ == rnemdUnknown) {
119 >      sprintf(painCave.errMsg,
120 >              "RNEMD: The current RNEMD_exchangeType,\n"
121 >              "\t\t%s\n"
122 >              "\tis not one of the recognized exchange types.\n",
123 >              st.c_str());
124 >      painCave.isFatal = 1;
125 >      painCave.severity = OPENMD_ERROR;
126 >      simError();
127 >    }
128 >    
129 >    outputTemp_ = false;
130 >    if (simParams->haveRNEMD_outputTemperature()) {
131 >      outputTemp_ = simParams->getRNEMD_outputTemperature();
132 >    } else if ((rnemdType_ == rnemdKineticSwap) ||
133 >               (rnemdType_ == rnemdKineticScale) ||
134 >               (rnemdType_ == rnemdKineticScaleVAM) ||
135 >               (rnemdType_ == rnemdKineticScaleAM)) {
136 >      outputTemp_ = true;
137 >    }
138 >    outputVx_ = false;
139 >    if (simParams->haveRNEMD_outputVx()) {
140 >      outputVx_ = simParams->getRNEMD_outputVx();
141 >    } else if ((rnemdType_ == rnemdPx) || (rnemdType_ == rnemdPxScale)) {
142 >      outputVx_ = true;
143 >    }
144 >    outputVy_ = false;
145 >    if (simParams->haveRNEMD_outputVy()) {
146 >      outputVy_ = simParams->getRNEMD_outputVy();
147 >    } else if ((rnemdType_ == rnemdPy) || (rnemdType_ == rnemdPyScale)) {
148 >      outputVy_ = true;
149 >    }
150 >    output3DTemp_ = false;
151 >    if (simParams->haveRNEMD_outputXyzTemperature()) {
152 >      output3DTemp_ = simParams->getRNEMD_outputXyzTemperature();
153 >    }
154 >    outputRotTemp_ = false;
155 >    if (simParams->haveRNEMD_outputRotTemperature()) {
156 >      outputRotTemp_ = simParams->getRNEMD_outputRotTemperature();
157 >    }
158  
159 + #ifdef IS_MPI
160 +    if (worldRank == 0) {
161 + #endif
162  
163 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
163 >      //may have rnemdWriter separately
164 >      string rnemdFileName;
165 >
166 >      if (outputTemp_) {
167 >        rnemdFileName = "temperature.log";
168 >        tempLog_.open(rnemdFileName.c_str());
169 >      }
170 >      if (outputVx_) {
171 >        rnemdFileName = "velocityX.log";
172 >        vxzLog_.open(rnemdFileName.c_str());
173 >      }
174 >      if (outputVy_) {
175 >        rnemdFileName = "velocityY.log";
176 >        vyzLog_.open(rnemdFileName.c_str());
177 >      }
178 >
179 >      if (output3DTemp_) {
180 >        rnemdFileName = "temperatureX.log";
181 >        xTempLog_.open(rnemdFileName.c_str());
182 >        rnemdFileName = "temperatureY.log";
183 >        yTempLog_.open(rnemdFileName.c_str());
184 >        rnemdFileName = "temperatureZ.log";
185 >        zTempLog_.open(rnemdFileName.c_str());
186 >      }
187 >      if (outputRotTemp_) {
188 >        rnemdFileName = "temperatureR.log";
189 >        rotTempLog_.open(rnemdFileName.c_str());
190 >      }
191 >
192 > #ifdef IS_MPI
193 >    }
194 > #endif
195 >
196 >    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
197      set_RNEMD_nBins(simParams->getRNEMD_nBins());
198 <    exchangeSum_ = 0.0;
199 <    
198 >    midBin_ = nBins_ / 2;
199 >    if (simParams->haveRNEMD_binShift()) {
200 >      if (simParams->getRNEMD_binShift()) {
201 >        zShift_ = 0.5 / (RealType)(nBins_);
202 >      } else {
203 >        zShift_ = 0.0;
204 >      }
205 >    } else {
206 >      zShift_ = 0.0;
207 >    }
208 >    //cerr << "I shift slabs by " << zShift_ << " Lz\n";
209 >    //shift slabs by half slab width, maybe useful in heterogeneous systems
210 >    //set to 0.0 if not using it; N/A in status output yet
211 >    if (simParams->haveRNEMD_logWidth()) {
212 >      set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
213 >      /*arbitary rnemdLogWidth_, no checking;
214 >      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
215 >        cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
216 >        cerr << "Automaically set back to default.\n";
217 >        rnemdLogWidth_ = nBins_;
218 >      }*/
219 >    } else {
220 >      set_RNEMD_logWidth(nBins_);
221 >    }
222 >    tempHist_.resize(rnemdLogWidth_, 0.0);
223 >    tempCount_.resize(rnemdLogWidth_, 0);
224 >    pxzHist_.resize(rnemdLogWidth_, 0.0);
225 >    //vxzCount_.resize(rnemdLogWidth_, 0);
226 >    pyzHist_.resize(rnemdLogWidth_, 0.0);
227 >    //vyzCount_.resize(rnemdLogWidth_, 0);
228 >
229 >    mHist_.resize(rnemdLogWidth_, 0.0);
230 >    xTempHist_.resize(rnemdLogWidth_, 0.0);
231 >    yTempHist_.resize(rnemdLogWidth_, 0.0);
232 >    zTempHist_.resize(rnemdLogWidth_, 0.0);
233 >    xyzTempCount_.resize(rnemdLogWidth_, 0);
234 >    rotTempHist_.resize(rnemdLogWidth_, 0.0);
235 >    rotTempCount_.resize(rnemdLogWidth_, 0);
236 >
237 >    set_RNEMD_exchange_total(0.0);
238 >    if (simParams->haveRNEMD_targetFlux()) {
239 >      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
240 >    } else {
241 >      set_RNEMD_target_flux(0.0);
242 >    }
243 >    if (simParams->haveRNEMD_targetJzKE()) {
244 >      set_RNEMD_target_JzKE(simParams->getRNEMD_targetJzKE());
245 >    } else {
246 >      set_RNEMD_target_JzKE(0.0);
247 >    }
248 >    if (simParams->haveRNEMD_targetJzpx()) {
249 >      set_RNEMD_target_jzpx(simParams->getRNEMD_targetJzpx());
250 >    } else {
251 >      set_RNEMD_target_jzpx(0.0);
252 >    }
253 >    jzp_.x() = targetJzpx_;
254 >    njzp_.x() = -targetJzpx_;
255 >    if (simParams->haveRNEMD_targetJzpy()) {
256 >      set_RNEMD_target_jzpy(simParams->getRNEMD_targetJzpy());
257 >    } else {
258 >      set_RNEMD_target_jzpy(0.0);
259 >    }
260 >    jzp_.y() = targetJzpy_;
261 >    njzp_.y() = -targetJzpy_;
262 >    if (simParams->haveRNEMD_targetJzpz()) {
263 >      set_RNEMD_target_jzpz(simParams->getRNEMD_targetJzpz());
264 >    } else {
265 >      set_RNEMD_target_jzpz(0.0);
266 >    }
267 >    jzp_.z() = targetJzpz_;
268 >    njzp_.z() = -targetJzpz_;
269 >
270   #ifndef IS_MPI
271      if (simParams->haveSeed()) {
272        seedValue = simParams->getSeed();
# Line 100 | Line 286 | namespace oopse {
286    
287    RNEMD::~RNEMD() {
288      delete randNumGen_;
289 +    
290 + #ifdef IS_MPI
291 +    if (worldRank == 0) {
292 + #endif
293 +      
294 +      sprintf(painCave.errMsg,
295 +              "RNEMD: total failed trials: %d\n",
296 +              failTrialCount_);
297 +      painCave.isFatal = 0;
298 +      painCave.severity = OPENMD_INFO;
299 +      simError();
300 +
301 +      if (outputTemp_) tempLog_.close();
302 +      if (outputVx_)   vxzLog_.close();
303 +      if (outputVy_)   vyzLog_.close();
304 +
305 +      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale ||
306 +          rnemdType_ == rnemdPyScale) {
307 +        sprintf(painCave.errMsg,
308 +                "RNEMD: total root-checking warnings: %d\n",
309 +                failRootCount_);
310 +        painCave.isFatal = 0;
311 +        painCave.severity = OPENMD_INFO;
312 +        simError();
313 +      }
314 +      if (output3DTemp_) {
315 +        xTempLog_.close();
316 +        yTempLog_.close();
317 +        zTempLog_.close();
318 +      }
319 +      if (outputRotTemp_) rotTempLog_.close();
320 +
321 + #ifdef IS_MPI
322 +    }
323 + #endif
324    }
325  
326    void RNEMD::doSwap() {
327 <    std::cerr << "in RNEMD!\n";  
328 <    std::cerr << "nBins = " << nBins_ << "\n";
329 <    std::cerr << "swapTime = " << swapTime_ << "\n";
330 <    std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
331 <    std::cerr << "swapType = " << rnemdType_ << "\n";
332 <  }  
327 >
328 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
329 >    Mat3x3d hmat = currentSnap_->getHmat();
330 >
331 >    seleMan_.setSelectionSet(evaluator_.evaluate());
332 >
333 >    int selei;
334 >    StuntDouble* sd;
335 >    int idx;
336 >
337 >    RealType min_val;
338 >    bool min_found = false;  
339 >    StuntDouble* min_sd;
340 >
341 >    RealType max_val;
342 >    bool max_found = false;
343 >    StuntDouble* max_sd;
344 >
345 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
346 >         sd = seleMan_.nextSelected(selei)) {
347 >
348 >      idx = sd->getLocalIndex();
349 >
350 >      Vector3d pos = sd->getPos();
351 >
352 >      // wrap the stuntdouble's position back into the box:
353 >
354 >      if (usePeriodicBoundaryConditions_)
355 >        currentSnap_->wrapVector(pos);
356 >
357 >      // which bin is this stuntdouble in?
358 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
359 >
360 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
361 >
362 >
363 >      // if we're in bin 0 or the middleBin
364 >      if (binNo == 0 || binNo == midBin_) {
365 >        
366 >        RealType mass = sd->getMass();
367 >        Vector3d vel = sd->getVel();
368 >        RealType value;
369 >
370 >        switch(rnemdType_) {
371 >        case rnemdKineticSwap :
372 >          
373 >          value = mass * vel.lengthSquare();
374 >          
375 >          if (sd->isDirectional()) {
376 >            Vector3d angMom = sd->getJ();
377 >            Mat3x3d I = sd->getI();
378 >            
379 >            if (sd->isLinear()) {
380 >              int i = sd->linearAxis();
381 >              int j = (i + 1) % 3;
382 >              int k = (i + 2) % 3;
383 >              value += angMom[j] * angMom[j] / I(j, j) +
384 >                angMom[k] * angMom[k] / I(k, k);
385 >            } else {                        
386 >              value += angMom[0]*angMom[0]/I(0, 0)
387 >                + angMom[1]*angMom[1]/I(1, 1)
388 >                + angMom[2]*angMom[2]/I(2, 2);
389 >            }
390 >          } //angular momenta exchange enabled
391 >          //energyConvert temporarily disabled
392 >          //make exchangeSum_ comparable between swap & scale
393 >          //value = value * 0.5 / PhysicalConstants::energyConvert;
394 >          value *= 0.5;
395 >          break;
396 >        case rnemdPx :
397 >          value = mass * vel[0];
398 >          break;
399 >        case rnemdPy :
400 >          value = mass * vel[1];
401 >          break;
402 >        case rnemdPz :
403 >          value = mass * vel[2];
404 >          break;
405 >        default :
406 >          break;
407 >        }
408 >        
409 >        if (binNo == 0) {
410 >          if (!min_found) {
411 >            min_val = value;
412 >            min_sd = sd;
413 >            min_found = true;
414 >          } else {
415 >            if (min_val > value) {
416 >              min_val = value;
417 >              min_sd = sd;
418 >            }
419 >          }
420 >        } else { //midBin_
421 >          if (!max_found) {
422 >            max_val = value;
423 >            max_sd = sd;
424 >            max_found = true;
425 >          } else {
426 >            if (max_val < value) {
427 >              max_val = value;
428 >              max_sd = sd;
429 >            }
430 >          }      
431 >        }
432 >      }
433 >    }
434 >
435 > #ifdef IS_MPI
436 >    int nProc, worldRank;
437 >
438 >    nProc = MPI::COMM_WORLD.Get_size();
439 >    worldRank = MPI::COMM_WORLD.Get_rank();
440 >
441 >    bool my_min_found = min_found;
442 >    bool my_max_found = max_found;
443 >
444 >    // Even if we didn't find a minimum, did someone else?
445 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
446 >    // Even if we didn't find a maximum, did someone else?
447 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
448 > #endif
449 >
450 >    if (max_found && min_found) {
451 >
452 > #ifdef IS_MPI
453 >      struct {
454 >        RealType val;
455 >        int rank;
456 >      } max_vals, min_vals;
457 >    
458 >      if (my_min_found) {
459 >        min_vals.val = min_val;
460 >      } else {
461 >        min_vals.val = HONKING_LARGE_VALUE;
462 >      }
463 >      min_vals.rank = worldRank;    
464 >      
465 >      // Who had the minimum?
466 >      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
467 >                                1, MPI::REALTYPE_INT, MPI::MINLOC);
468 >      min_val = min_vals.val;
469 >      
470 >      if (my_max_found) {
471 >        max_vals.val = max_val;
472 >      } else {
473 >        max_vals.val = -HONKING_LARGE_VALUE;
474 >      }
475 >      max_vals.rank = worldRank;    
476 >      
477 >      // Who had the maximum?
478 >      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
479 >                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
480 >      max_val = max_vals.val;
481 > #endif
482 >      
483 >      if (min_val < max_val) {
484 >        
485 > #ifdef IS_MPI      
486 >        if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
487 >          // I have both maximum and minimum, so proceed like a single
488 >          // processor version:
489 > #endif
490 >
491 >          Vector3d min_vel = min_sd->getVel();
492 >          Vector3d max_vel = max_sd->getVel();
493 >          RealType temp_vel;
494 >          
495 >          switch(rnemdType_) {
496 >          case rnemdKineticSwap :
497 >            min_sd->setVel(max_vel);
498 >            max_sd->setVel(min_vel);
499 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
500 >              Vector3d min_angMom = min_sd->getJ();
501 >              Vector3d max_angMom = max_sd->getJ();
502 >              min_sd->setJ(max_angMom);
503 >              max_sd->setJ(min_angMom);
504 >            }//angular momenta exchange enabled
505 >            //assumes same rigid body identity
506 >            break;
507 >          case rnemdPx :
508 >            temp_vel = min_vel.x();
509 >            min_vel.x() = max_vel.x();
510 >            max_vel.x() = temp_vel;
511 >            min_sd->setVel(min_vel);
512 >            max_sd->setVel(max_vel);
513 >            break;
514 >          case rnemdPy :
515 >            temp_vel = min_vel.y();
516 >            min_vel.y() = max_vel.y();
517 >            max_vel.y() = temp_vel;
518 >            min_sd->setVel(min_vel);
519 >            max_sd->setVel(max_vel);
520 >            break;
521 >          case rnemdPz :
522 >            temp_vel = min_vel.z();
523 >            min_vel.z() = max_vel.z();
524 >            max_vel.z() = temp_vel;
525 >            min_sd->setVel(min_vel);
526 >            max_sd->setVel(max_vel);
527 >            break;
528 >          default :
529 >            break;
530 >          }
531 >
532 > #ifdef IS_MPI
533 >          // the rest of the cases only apply in parallel simulations:
534 >        } else if (max_vals.rank == worldRank) {
535 >          // I had the max, but not the minimum
536 >          
537 >          Vector3d min_vel;
538 >          Vector3d max_vel = max_sd->getVel();
539 >          MPI::Status status;
540 >
541 >          // point-to-point swap of the velocity vector
542 >          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
543 >                                   min_vals.rank, 0,
544 >                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
545 >                                   min_vals.rank, 0, status);
546 >          
547 >          switch(rnemdType_) {
548 >          case rnemdKineticSwap :
549 >            max_sd->setVel(min_vel);
550 >            //angular momenta exchange enabled
551 >            if (max_sd->isDirectional()) {
552 >              Vector3d min_angMom;
553 >              Vector3d max_angMom = max_sd->getJ();
554 >              
555 >              // point-to-point swap of the angular momentum vector
556 >              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
557 >                                       MPI::REALTYPE, min_vals.rank, 1,
558 >                                       min_angMom.getArrayPointer(), 3,
559 >                                       MPI::REALTYPE, min_vals.rank, 1,
560 >                                       status);
561 >              
562 >              max_sd->setJ(min_angMom);
563 >            }
564 >            break;
565 >          case rnemdPx :
566 >            max_vel.x() = min_vel.x();
567 >            max_sd->setVel(max_vel);
568 >            break;
569 >          case rnemdPy :
570 >            max_vel.y() = min_vel.y();
571 >            max_sd->setVel(max_vel);
572 >            break;
573 >          case rnemdPz :
574 >            max_vel.z() = min_vel.z();
575 >            max_sd->setVel(max_vel);
576 >            break;
577 >          default :
578 >            break;
579 >          }
580 >        } else if (min_vals.rank == worldRank) {
581 >          // I had the minimum but not the maximum:
582 >          
583 >          Vector3d max_vel;
584 >          Vector3d min_vel = min_sd->getVel();
585 >          MPI::Status status;
586 >          
587 >          // point-to-point swap of the velocity vector
588 >          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
589 >                                   max_vals.rank, 0,
590 >                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
591 >                                   max_vals.rank, 0, status);
592 >          
593 >          switch(rnemdType_) {
594 >          case rnemdKineticSwap :
595 >            min_sd->setVel(max_vel);
596 >            //angular momenta exchange enabled
597 >            if (min_sd->isDirectional()) {
598 >              Vector3d min_angMom = min_sd->getJ();
599 >              Vector3d max_angMom;
600 >              
601 >              // point-to-point swap of the angular momentum vector
602 >              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
603 >                                       MPI::REALTYPE, max_vals.rank, 1,
604 >                                       max_angMom.getArrayPointer(), 3,
605 >                                       MPI::REALTYPE, max_vals.rank, 1,
606 >                                       status);
607 >              
608 >              min_sd->setJ(max_angMom);
609 >            }
610 >            break;
611 >          case rnemdPx :
612 >            min_vel.x() = max_vel.x();
613 >            min_sd->setVel(min_vel);
614 >            break;
615 >          case rnemdPy :
616 >            min_vel.y() = max_vel.y();
617 >            min_sd->setVel(min_vel);
618 >            break;
619 >          case rnemdPz :
620 >            min_vel.z() = max_vel.z();
621 >            min_sd->setVel(min_vel);
622 >            break;
623 >          default :
624 >            break;
625 >          }
626 >        }
627 > #endif
628 >        exchangeSum_ += max_val - min_val;
629 >      } else {        
630 >        sprintf(painCave.errMsg,
631 >                "RNEMD: exchange NOT performed because min_val > max_val\n");
632 >        painCave.isFatal = 0;
633 >        painCave.severity = OPENMD_INFO;
634 >        simError();        
635 >        failTrialCount_++;
636 >      }
637 >    } else {
638 >      sprintf(painCave.errMsg,
639 >              "RNEMD: exchange NOT performed because selected object\n"
640 >              "\tnot present in at least one of the two slabs.\n");
641 >      painCave.isFatal = 0;
642 >      painCave.severity = OPENMD_INFO;
643 >      simError();        
644 >      failTrialCount_++;
645 >    }
646 >    
647 >  }
648 >  
649 >  void RNEMD::doScale() {
650 >
651 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
652 >    Mat3x3d hmat = currentSnap_->getHmat();
653 >
654 >    seleMan_.setSelectionSet(evaluator_.evaluate());
655 >
656 >    int selei;
657 >    StuntDouble* sd;
658 >    int idx;
659 >
660 >    vector<StuntDouble*> hotBin, coldBin;
661 >
662 >    RealType Phx = 0.0;
663 >    RealType Phy = 0.0;
664 >    RealType Phz = 0.0;
665 >    RealType Khx = 0.0;
666 >    RealType Khy = 0.0;
667 >    RealType Khz = 0.0;
668 >    RealType Khw = 0.0;
669 >    RealType Pcx = 0.0;
670 >    RealType Pcy = 0.0;
671 >    RealType Pcz = 0.0;
672 >    RealType Kcx = 0.0;
673 >    RealType Kcy = 0.0;
674 >    RealType Kcz = 0.0;
675 >    RealType Kcw = 0.0;
676 >
677 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
678 >         sd = seleMan_.nextSelected(selei)) {
679 >
680 >      idx = sd->getLocalIndex();
681 >
682 >      Vector3d pos = sd->getPos();
683 >
684 >      // wrap the stuntdouble's position back into the box:
685 >
686 >      if (usePeriodicBoundaryConditions_)
687 >        currentSnap_->wrapVector(pos);
688 >
689 >      // which bin is this stuntdouble in?
690 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
691 >
692 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
693 >
694 >      // if we're in bin 0 or the middleBin
695 >      if (binNo == 0 || binNo == midBin_) {
696 >        
697 >        RealType mass = sd->getMass();
698 >        Vector3d vel = sd->getVel();
699 >      
700 >        if (binNo == 0) {
701 >          hotBin.push_back(sd);
702 >          Phx += mass * vel.x();
703 >          Phy += mass * vel.y();
704 >          Phz += mass * vel.z();
705 >          Khx += mass * vel.x() * vel.x();
706 >          Khy += mass * vel.y() * vel.y();
707 >          Khz += mass * vel.z() * vel.z();
708 >          //if (rnemdType_ == rnemdKineticScaleVAM) {
709 >          if (sd->isDirectional()) {
710 >            Vector3d angMom = sd->getJ();
711 >            Mat3x3d I = sd->getI();
712 >            if (sd->isLinear()) {
713 >              int i = sd->linearAxis();
714 >              int j = (i + 1) % 3;
715 >              int k = (i + 2) % 3;
716 >              Khw += angMom[j] * angMom[j] / I(j, j) +
717 >                angMom[k] * angMom[k] / I(k, k);
718 >            } else {
719 >              Khw += angMom[0]*angMom[0]/I(0, 0)
720 >                + angMom[1]*angMom[1]/I(1, 1)
721 >                + angMom[2]*angMom[2]/I(2, 2);
722 >            }
723 >          }
724 >          //}
725 >        } else { //midBin_
726 >          coldBin.push_back(sd);
727 >          Pcx += mass * vel.x();
728 >          Pcy += mass * vel.y();
729 >          Pcz += mass * vel.z();
730 >          Kcx += mass * vel.x() * vel.x();
731 >          Kcy += mass * vel.y() * vel.y();
732 >          Kcz += mass * vel.z() * vel.z();
733 >          //if (rnemdType_ == rnemdKineticScaleVAM) {
734 >          if (sd->isDirectional()) {
735 >            Vector3d angMom = sd->getJ();
736 >            Mat3x3d I = sd->getI();
737 >            if (sd->isLinear()) {
738 >              int i = sd->linearAxis();
739 >              int j = (i + 1) % 3;
740 >              int k = (i + 2) % 3;
741 >              Kcw += angMom[j] * angMom[j] / I(j, j) +
742 >                angMom[k] * angMom[k] / I(k, k);
743 >            } else {
744 >              Kcw += angMom[0]*angMom[0]/I(0, 0)
745 >                + angMom[1]*angMom[1]/I(1, 1)
746 >                + angMom[2]*angMom[2]/I(2, 2);
747 >            }
748 >          }
749 >          //}
750 >        }
751 >      }
752 >    }
753 >    
754 >    Khx *= 0.5;
755 >    Khy *= 0.5;
756 >    Khz *= 0.5;
757 >    Khw *= 0.5;
758 >    Kcx *= 0.5;
759 >    Kcy *= 0.5;
760 >    Kcz *= 0.5;
761 >    Kcw *= 0.5;
762 >
763 >    std::cerr << "Khx= " << Khx << "\tKhy= " << Khy << "\tKhz= " << Khz
764 >              << "\tKhw= " << Khw << "\tKcx= " << Kcx << "\tKcy= " << Kcy
765 >              << "\tKcz= " << Kcz << "\tKcw= " << Kcw << "\n";
766 >    std::cerr << "Phx= " << Phx << "\tPhy= " << Phy << "\tPhz= " << Phz
767 >              << "\tPcx= " << Pcx << "\tPcy= " << Pcy << "\tPcz= " <<Pcz<<"\n";
768 >
769 > #ifdef IS_MPI
770 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
771 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
772 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
773 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
774 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
775 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
776 >
777 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
778 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
779 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
780 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
781 >
782 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
783 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
784 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
785 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
786 > #endif
787 >
788 >    //solve coldBin coeff's first
789 >    RealType px = Pcx / Phx;
790 >    RealType py = Pcy / Phy;
791 >    RealType pz = Pcz / Phz;
792 >    RealType c, x, y, z;
793 >    bool successfulScale = false;
794 >    if ((rnemdType_ == rnemdKineticScaleVAM) ||
795 >        (rnemdType_ == rnemdKineticScaleAM)) {
796 >      //may need sanity check Khw & Kcw > 0
797 >
798 >      if (rnemdType_ == rnemdKineticScaleVAM) {
799 >        c = 1.0 - targetFlux_ / (Kcx + Kcy + Kcz + Kcw);
800 >      } else {
801 >        c = 1.0 - targetFlux_ / Kcw;
802 >      }
803 >
804 >      if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
805 >        c = sqrt(c);
806 >        std::cerr << "cold slab scaling coefficient: " << c << endl;
807 >        //now convert to hotBin coefficient
808 >        RealType w = 0.0;
809 >        if (rnemdType_ ==  rnemdKineticScaleVAM) {
810 >          x = 1.0 + px * (1.0 - c);
811 >          y = 1.0 + py * (1.0 - c);
812 >          z = 1.0 + pz * (1.0 - c);
813 >          /* more complicated way
814 >             w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
815 >             + Khx * px * px + Khy * py * py + Khz * pz * pz)
816 >             - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
817 >             + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
818 >             + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
819 >             - Kcx - Kcy - Kcz)) / Khw; the following is simpler
820 >          */
821 >          if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
822 >              (fabs(z - 1.0) < 0.1)) {
823 >            w = 1.0 + (targetFlux_ + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
824 >                       + Khz * (1.0 - z * z)) / Khw;
825 >          }//no need to calculate w if x, y or z is out of range
826 >        } else {
827 >          w = 1.0 + targetFlux_ / Khw;
828 >        }
829 >        if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
830 >          //if w is in the right range, so should be x, y, z.
831 >          vector<StuntDouble*>::iterator sdi;
832 >          Vector3d vel;
833 >          for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
834 >            if (rnemdType_ == rnemdKineticScaleVAM) {
835 >              vel = (*sdi)->getVel() * c;
836 >              //vel.x() *= c;
837 >              //vel.y() *= c;
838 >              //vel.z() *= c;
839 >              (*sdi)->setVel(vel);
840 >            }
841 >            if ((*sdi)->isDirectional()) {
842 >              Vector3d angMom = (*sdi)->getJ() * c;
843 >              //angMom[0] *= c;
844 >              //angMom[1] *= c;
845 >              //angMom[2] *= c;
846 >              (*sdi)->setJ(angMom);
847 >            }
848 >          }
849 >          w = sqrt(w);
850 >          std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
851 >                    << "\twh= " << w << endl;
852 >          for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
853 >            if (rnemdType_ == rnemdKineticScaleVAM) {
854 >              vel = (*sdi)->getVel();
855 >              vel.x() *= x;
856 >              vel.y() *= y;
857 >              vel.z() *= z;
858 >              (*sdi)->setVel(vel);
859 >            }
860 >            if ((*sdi)->isDirectional()) {
861 >              Vector3d angMom = (*sdi)->getJ() * w;
862 >              //angMom[0] *= w;
863 >              //angMom[1] *= w;
864 >              //angMom[2] *= w;
865 >              (*sdi)->setJ(angMom);
866 >            }
867 >          }
868 >          successfulScale = true;
869 >          exchangeSum_ += targetFlux_;
870 >        }
871 >      }
872 >    } else {
873 >      RealType a000, a110, c0, a001, a111, b01, b11, c1;
874 >      switch(rnemdType_) {
875 >      case rnemdKineticScale :
876 >        /* used hotBin coeff's & only scale x & y dimensions
877 >           RealType px = Phx / Pcx;
878 >           RealType py = Phy / Pcy;
879 >           a110 = Khy;
880 >           c0 = - Khx - Khy - targetFlux_;
881 >           a000 = Khx;
882 >           a111 = Kcy * py * py;
883 >           b11 = -2.0 * Kcy * py * (1.0 + py);
884 >           c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
885 >           b01 = -2.0 * Kcx * px * (1.0 + px);
886 >           a001 = Kcx * px * px;
887 >        */
888 >        //scale all three dimensions, let c_x = c_y
889 >        a000 = Kcx + Kcy;
890 >        a110 = Kcz;
891 >        c0 = targetFlux_ - Kcx - Kcy - Kcz;
892 >        a001 = Khx * px * px + Khy * py * py;
893 >        a111 = Khz * pz * pz;
894 >        b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
895 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
896 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
897 >          + Khz * pz * (2.0 + pz) - targetFlux_;
898 >        break;
899 >      case rnemdPxScale :
900 >        c = 1 - targetFlux_ / Pcx;
901 >        a000 = Kcy;
902 >        a110 = Kcz;
903 >        c0 = Kcx * c * c - Kcx - Kcy - Kcz;
904 >        a001 = py * py * Khy;
905 >        a111 = pz * pz * Khz;
906 >        b01 = -2.0 * Khy * py * (1.0 + py);
907 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
908 >        c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
909 >          + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
910 >        break;
911 >      case rnemdPyScale :
912 >        c = 1 - targetFlux_ / Pcy;
913 >        a000 = Kcx;
914 >        a110 = Kcz;
915 >        c0 = Kcy * c * c - Kcx - Kcy - Kcz;
916 >        a001 = px * px * Khx;
917 >        a111 = pz * pz * Khz;
918 >        b01 = -2.0 * Khx * px * (1.0 + px);
919 >        b11 = -2.0 * Khz * pz * (1.0 + pz);
920 >        c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
921 >          + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
922 >        break;
923 >      case rnemdPzScale ://we don't really do this, do we?
924 >        c = 1 - targetFlux_ / Pcz;
925 >        a000 = Kcx;
926 >        a110 = Kcy;
927 >        c0 = Kcz * c * c - Kcx - Kcy - Kcz;
928 >        a001 = px * px * Khx;
929 >        a111 = py * py * Khy;
930 >        b01 = -2.0 * Khx * px * (1.0 + px);
931 >        b11 = -2.0 * Khy * py * (1.0 + py);
932 >        c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
933 >          + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
934 >        break;
935 >      default :
936 >        break;
937 >      }
938 >      
939 >      RealType v1 = a000 * a111 - a001 * a110;
940 >      RealType v2 = a000 * b01;
941 >      RealType v3 = a000 * b11;
942 >      RealType v4 = a000 * c1 - a001 * c0;
943 >      RealType v8 = a110 * b01;
944 >      RealType v10 = - b01 * c0;
945 >      
946 >      RealType u0 = v2 * v10 - v4 * v4;
947 >      RealType u1 = -2.0 * v3 * v4;
948 >      RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
949 >      RealType u3 = -2.0 * v1 * v3;
950 >      RealType u4 = - v1 * v1;
951 >      //rescale coefficients
952 >      RealType maxAbs = fabs(u0);
953 >      if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
954 >      if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
955 >      if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
956 >      if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
957 >      u0 /= maxAbs;
958 >      u1 /= maxAbs;
959 >      u2 /= maxAbs;
960 >      u3 /= maxAbs;
961 >      u4 /= maxAbs;
962 >      //max_element(start, end) is also available.
963 >      Polynomial<RealType> poly; //same as DoublePolynomial poly;
964 >      poly.setCoefficient(4, u4);
965 >      poly.setCoefficient(3, u3);
966 >      poly.setCoefficient(2, u2);
967 >      poly.setCoefficient(1, u1);
968 >      poly.setCoefficient(0, u0);
969 >      vector<RealType> realRoots = poly.FindRealRoots();
970 >      
971 >      vector<RealType>::iterator ri;
972 >      RealType r1, r2, alpha0;
973 >      vector<pair<RealType,RealType> > rps;
974 >      for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
975 >        r2 = *ri;
976 >        //check if FindRealRoots() give the right answer
977 >        if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
978 >          sprintf(painCave.errMsg,
979 >                  "RNEMD Warning: polynomial solve seems to have an error!");
980 >          painCave.isFatal = 0;
981 >          simError();
982 >          failRootCount_++;
983 >        }
984 >        //might not be useful w/o rescaling coefficients
985 >        alpha0 = -c0 - a110 * r2 * r2;
986 >        if (alpha0 >= 0.0) {
987 >          r1 = sqrt(alpha0 / a000);
988 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
989 >              < 1e-6)
990 >            { rps.push_back(make_pair(r1, r2)); }
991 >          if (r1 > 1e-6) { //r1 non-negative
992 >            r1 = -r1;
993 >            if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
994 >                < 1e-6)
995 >              { rps.push_back(make_pair(r1, r2)); }
996 >          }
997 >        }
998 >      }
999 >      // Consider combining together the solving pair part w/ the searching
1000 >      // best solution part so that we don't need the pairs vector
1001 >      if (!rps.empty()) {
1002 >        RealType smallestDiff = HONKING_LARGE_VALUE;
1003 >        RealType diff;
1004 >        pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1005 >        vector<pair<RealType,RealType> >::iterator rpi;
1006 >        for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1007 >          r1 = (*rpi).first;
1008 >          r2 = (*rpi).second;
1009 >          switch(rnemdType_) {
1010 >          case rnemdKineticScale :
1011 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1012 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1013 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1014 >            break;
1015 >          case rnemdPxScale :
1016 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1017 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1018 >            break;
1019 >          case rnemdPyScale :
1020 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1021 >              + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1022 >            break;
1023 >          case rnemdPzScale :
1024 >            diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1025 >              + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1026 >          default :
1027 >            break;
1028 >          }
1029 >          if (diff < smallestDiff) {
1030 >            smallestDiff = diff;
1031 >            bestPair = *rpi;
1032 >          }
1033 >        }
1034 > #ifdef IS_MPI
1035 >        if (worldRank == 0) {
1036 > #endif
1037 >          sprintf(painCave.errMsg,
1038 >                  "RNEMD: roots r1= %lf\tr2 = %lf\n",
1039 >                  bestPair.first, bestPair.second);
1040 >          painCave.isFatal = 0;
1041 >          painCave.severity = OPENMD_INFO;
1042 >          simError();
1043 > #ifdef IS_MPI
1044 >        }
1045 > #endif
1046 >        
1047 >        switch(rnemdType_) {
1048 >        case rnemdKineticScale :
1049 >          x = bestPair.first;
1050 >          y = bestPair.first;
1051 >          z = bestPair.second;
1052 >          break;
1053 >        case rnemdPxScale :
1054 >          x = c;
1055 >          y = bestPair.first;
1056 >          z = bestPair.second;
1057 >          break;
1058 >        case rnemdPyScale :
1059 >          x = bestPair.first;
1060 >          y = c;
1061 >          z = bestPair.second;
1062 >          break;
1063 >        case rnemdPzScale :
1064 >          x = bestPair.first;
1065 >          y = bestPair.second;
1066 >          z = c;
1067 >          break;          
1068 >        default :
1069 >          break;
1070 >        }
1071 >        vector<StuntDouble*>::iterator sdi;
1072 >        Vector3d vel;
1073 >        for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1074 >          vel = (*sdi)->getVel();
1075 >          vel.x() *= x;
1076 >          vel.y() *= y;
1077 >          vel.z() *= z;
1078 >          (*sdi)->setVel(vel);
1079 >        }
1080 >        //convert to hotBin coefficient
1081 >        x = 1.0 + px * (1.0 - x);
1082 >        y = 1.0 + py * (1.0 - y);
1083 >        z = 1.0 + pz * (1.0 - z);
1084 >        for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1085 >          vel = (*sdi)->getVel();
1086 >          vel.x() *= x;
1087 >          vel.y() *= y;
1088 >          vel.z() *= z;
1089 >          (*sdi)->setVel(vel);
1090 >        }
1091 >        successfulScale = true;
1092 >        exchangeSum_ += targetFlux_;
1093 >      }
1094 >    }
1095 >    if (successfulScale != true) {
1096 >      sprintf(painCave.errMsg,
1097 >              "RNEMD: exchange NOT performed!\n");
1098 >      painCave.isFatal = 0;
1099 >      painCave.severity = OPENMD_INFO;
1100 >      simError();        
1101 >      failTrialCount_++;
1102 >    }
1103 >  }
1104 >
1105 >  void RNEMD::doShiftScale() {
1106 >
1107 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1108 >    Mat3x3d hmat = currentSnap_->getHmat();
1109 >
1110 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1111 >
1112 >    int selei;
1113 >    StuntDouble* sd;
1114 >    int idx;
1115 >
1116 >    vector<StuntDouble*> hotBin, coldBin;
1117 >
1118 >    Vector3d Ph(V3Zero);
1119 >    RealType Mh = 0.0;
1120 >    RealType Kh = 0.0;
1121 >    Vector3d Pc(V3Zero);
1122 >    RealType Mc = 0.0;
1123 >    RealType Kc = 0.0;
1124 >
1125 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1126 >         sd = seleMan_.nextSelected(selei)) {
1127 >
1128 >      idx = sd->getLocalIndex();
1129 >
1130 >      Vector3d pos = sd->getPos();
1131 >
1132 >      // wrap the stuntdouble's position back into the box:
1133 >
1134 >      if (usePeriodicBoundaryConditions_)
1135 >        currentSnap_->wrapVector(pos);
1136 >
1137 >      // which bin is this stuntdouble in?
1138 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1139 >
1140 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1141 >
1142 >      // if we're in bin 0 or the middleBin
1143 >      if (binNo == 0 || binNo == midBin_) {
1144 >        
1145 >        RealType mass = sd->getMass();
1146 >        Vector3d vel = sd->getVel();
1147 >      
1148 >        if (binNo == 0) {
1149 >          hotBin.push_back(sd);
1150 >          //std::cerr << "before, velocity = " << vel << endl;
1151 >          Ph += mass * vel;
1152 >          //std::cerr << "after, velocity = " << vel << endl;
1153 >          Mh += mass;
1154 >          Kh += mass * vel.lengthSquare();
1155 >          if (rnemdType_ == rnemdShiftScaleVAM) {
1156 >            if (sd->isDirectional()) {
1157 >              Vector3d angMom = sd->getJ();
1158 >              Mat3x3d I = sd->getI();
1159 >              if (sd->isLinear()) {
1160 >                int i = sd->linearAxis();
1161 >                int j = (i + 1) % 3;
1162 >                int k = (i + 2) % 3;
1163 >                Kh += angMom[j] * angMom[j] / I(j, j) +
1164 >                  angMom[k] * angMom[k] / I(k, k);
1165 >              } else {
1166 >                Kh += angMom[0] * angMom[0] / I(0, 0) +
1167 >                  angMom[1] * angMom[1] / I(1, 1) +
1168 >                  angMom[2] * angMom[2] / I(2, 2);
1169 >              }
1170 >            }
1171 >          }
1172 >        } else { //midBin_
1173 >          coldBin.push_back(sd);
1174 >          Pc += mass * vel;
1175 >          Mc += mass;
1176 >          Kc += mass * vel.lengthSquare();
1177 >          if (rnemdType_ == rnemdShiftScaleVAM) {
1178 >            if (sd->isDirectional()) {
1179 >              Vector3d angMom = sd->getJ();
1180 >              Mat3x3d I = sd->getI();
1181 >              if (sd->isLinear()) {
1182 >                int i = sd->linearAxis();
1183 >                int j = (i + 1) % 3;
1184 >                int k = (i + 2) % 3;
1185 >                Kc += angMom[j] * angMom[j] / I(j, j) +
1186 >                  angMom[k] * angMom[k] / I(k, k);
1187 >              } else {
1188 >                Kc += angMom[0] * angMom[0] / I(0, 0) +
1189 >                  angMom[1] * angMom[1] / I(1, 1) +
1190 >                  angMom[2] * angMom[2] / I(2, 2);
1191 >              }
1192 >            }
1193 >          }
1194 >        }
1195 >      }
1196 >    }
1197 >    
1198 >    Kh *= 0.5;
1199 >    Kc *= 0.5;
1200 >
1201 >    std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1202 >              << "\tKc= " << Kc << endl;
1203 >    std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1204 >
1205 > #ifdef IS_MPI
1206 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1207 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1208 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1209 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1210 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1211 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1212 > #endif
1213 >
1214 >    bool successfulExchange = false;
1215 >    if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1216 >      Vector3d vc = Pc / Mc;
1217 >      Vector3d ac = njzp_ / Mc + vc;
1218 >      RealType cNumerator = Kc - targetJzKE_ - 0.5 * Mc * ac.lengthSquare();
1219 >      if (cNumerator > 0.0) {
1220 >        RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1221 >        if (cDenominator > 0.0) {
1222 >          RealType c = sqrt(cNumerator / cDenominator);
1223 >          if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1224 >            Vector3d vh = Ph / Mh;
1225 >            Vector3d ah = jzp_ / Mh + vh;
1226 >            RealType hNumerator = Kh + targetJzKE_
1227 >              - 0.5 * Mh * ah.lengthSquare();
1228 >            if (hNumerator > 0.0) {
1229 >              RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1230 >              if (hDenominator > 0.0) {
1231 >                RealType h = sqrt(hNumerator / hDenominator);
1232 >                if ((h > 0.9) && (h < 1.1)) {
1233 >                  std::cerr << "cold slab scaling coefficient: " << c << "\n";
1234 >                  std::cerr << "hot slab scaling coefficient: " << h << "\n";
1235 >                  vector<StuntDouble*>::iterator sdi;
1236 >                  Vector3d vel;
1237 >                  for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1238 >                    //vel = (*sdi)->getVel();
1239 >                    vel = ((*sdi)->getVel() - vc) * c + ac;
1240 >                    (*sdi)->setVel(vel);
1241 >                    if (rnemdType_ == rnemdShiftScaleVAM) {
1242 >                      if ((*sdi)->isDirectional()) {
1243 >                        Vector3d angMom = (*sdi)->getJ() * c;
1244 >                        (*sdi)->setJ(angMom);
1245 >                      }
1246 >                    }
1247 >                  }
1248 >                  for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1249 >                    //vel = (*sdi)->getVel();
1250 >                    vel = ((*sdi)->getVel() - vh) * h + ah;
1251 >                    (*sdi)->setVel(vel);
1252 >                    if (rnemdType_ == rnemdShiftScaleVAM) {
1253 >                      if ((*sdi)->isDirectional()) {
1254 >                        Vector3d angMom = (*sdi)->getJ() * h;
1255 >                        (*sdi)->setJ(angMom);
1256 >                      }
1257 >                    }
1258 >                  }
1259 >                  successfulExchange = true;
1260 >                  exchangeSum_ += targetFlux_;
1261 >                  // this is a redundant variable for doShiftScale() so that
1262 >                  // RNEMD can output one exchange quantity needed in a job.
1263 >                  // need a better way to do this.
1264 >                }
1265 >              }
1266 >            }
1267 >          }
1268 >        }
1269 >      }
1270 >    }
1271 >    if (successfulExchange != true) {
1272 >      sprintf(painCave.errMsg,
1273 >              "RNEMD: exchange NOT performed!\n");
1274 >      painCave.isFatal = 0;
1275 >      painCave.severity = OPENMD_INFO;
1276 >      simError();        
1277 >      failTrialCount_++;
1278 >    }
1279 >  }
1280 >
1281 >  void RNEMD::doRNEMD() {
1282 >
1283 >    switch(rnemdType_) {
1284 >    case rnemdKineticScale :
1285 >    case rnemdKineticScaleVAM :
1286 >    case rnemdKineticScaleAM :
1287 >    case rnemdPxScale :
1288 >    case rnemdPyScale :
1289 >    case rnemdPzScale :
1290 >      doScale();
1291 >      break;
1292 >    case rnemdKineticSwap :
1293 >    case rnemdPx :
1294 >    case rnemdPy :
1295 >    case rnemdPz :
1296 >      doSwap();
1297 >      break;
1298 >    case rnemdShiftScaleV :
1299 >    case rnemdShiftScaleVAM :
1300 >      doShiftScale();
1301 >      break;
1302 >    case rnemdUnknown :
1303 >    default :
1304 >      break;
1305 >    }
1306 >  }
1307 >
1308 >  void RNEMD::collectData() {
1309 >
1310 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1311 >    Mat3x3d hmat = currentSnap_->getHmat();
1312 >
1313 >    seleMan_.setSelectionSet(evaluator_.evaluate());
1314 >
1315 >    int selei;
1316 >    StuntDouble* sd;
1317 >    int idx;
1318 >
1319 >    // alternative approach, track all molecules instead of only those
1320 >    // selected for scaling/swapping:
1321 >    /*
1322 >    SimInfo::MoleculeIterator miter;
1323 >    vector<StuntDouble*>::iterator iiter;
1324 >    Molecule* mol;
1325 >    StuntDouble* integrableObject;
1326 >    for (mol = info_->beginMolecule(miter); mol != NULL;
1327 >         mol = info_->nextMolecule(miter))
1328 >      integrableObject is essentially sd
1329 >        for (integrableObject = mol->beginIntegrableObject(iiter);
1330 >             integrableObject != NULL;
1331 >             integrableObject = mol->nextIntegrableObject(iiter))
1332 >    */
1333 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
1334 >         sd = seleMan_.nextSelected(selei)) {
1335 >      
1336 >      idx = sd->getLocalIndex();
1337 >      
1338 >      Vector3d pos = sd->getPos();
1339 >
1340 >      // wrap the stuntdouble's position back into the box:
1341 >      
1342 >      if (usePeriodicBoundaryConditions_)
1343 >        currentSnap_->wrapVector(pos);
1344 >      
1345 >      // which bin is this stuntdouble in?
1346 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1347 >      
1348 >      int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
1349 >        rnemdLogWidth_;
1350 >      // no symmetrization allowed due to arbitary rnemdLogWidth_
1351 >      /*
1352 >      if (rnemdLogWidth_ == midBin_ + 1)
1353 >        if (binNo > midBin_)
1354 >          binNo = nBins_ - binNo;
1355 >      */
1356 >      RealType mass = sd->getMass();
1357 >      mHist_[binNo] += mass;
1358 >      Vector3d vel = sd->getVel();
1359 >      RealType value;
1360 >      //RealType xVal, yVal, zVal;
1361 >
1362 >      if (outputTemp_) {
1363 >        value = mass * vel.lengthSquare();
1364 >        tempCount_[binNo] += 3;
1365 >        if (sd->isDirectional()) {
1366 >          Vector3d angMom = sd->getJ();
1367 >          Mat3x3d I = sd->getI();
1368 >          if (sd->isLinear()) {
1369 >            int i = sd->linearAxis();
1370 >            int j = (i + 1) % 3;
1371 >            int k = (i + 2) % 3;
1372 >            value += angMom[j] * angMom[j] / I(j, j) +
1373 >              angMom[k] * angMom[k] / I(k, k);
1374 >            tempCount_[binNo] +=2;
1375 >          } else {
1376 >            value += angMom[0] * angMom[0] / I(0, 0) +
1377 >              angMom[1]*angMom[1]/I(1, 1) +
1378 >              angMom[2]*angMom[2]/I(2, 2);
1379 >            tempCount_[binNo] +=3;
1380 >          }
1381 >        }
1382 >        value = value / PhysicalConstants::energyConvert
1383 >          / PhysicalConstants::kb;//may move to getStatus()
1384 >        tempHist_[binNo] += value;
1385 >      }
1386 >      if (outputVx_) {
1387 >        value = mass * vel[0];
1388 >        //vxzCount_[binNo]++;
1389 >        pxzHist_[binNo] += value;
1390 >      }
1391 >      if (outputVy_) {
1392 >        value = mass * vel[1];
1393 >        //vyzCount_[binNo]++;
1394 >        pyzHist_[binNo] += value;
1395 >      }
1396 >
1397 >      if (output3DTemp_) {
1398 >        value = mass * vel.x() * vel.x();
1399 >        xTempHist_[binNo] += value;
1400 >        value = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1401 >          / PhysicalConstants::kb;
1402 >        yTempHist_[binNo] += value;
1403 >        value = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1404 >          / PhysicalConstants::kb;
1405 >        zTempHist_[binNo] += value;
1406 >        xyzTempCount_[binNo]++;
1407 >      }
1408 >      if (outputRotTemp_) {
1409 >        if (sd->isDirectional()) {
1410 >          Vector3d angMom = sd->getJ();
1411 >          Mat3x3d I = sd->getI();
1412 >          if (sd->isLinear()) {
1413 >            int i = sd->linearAxis();
1414 >            int j = (i + 1) % 3;
1415 >            int k = (i + 2) % 3;
1416 >            value = angMom[j] * angMom[j] / I(j, j) +
1417 >              angMom[k] * angMom[k] / I(k, k);
1418 >            rotTempCount_[binNo] +=2;
1419 >          } else {
1420 >            value = angMom[0] * angMom[0] / I(0, 0) +
1421 >              angMom[1] * angMom[1] / I(1, 1) +
1422 >              angMom[2] * angMom[2] / I(2, 2);
1423 >            rotTempCount_[binNo] +=3;
1424 >          }
1425 >        }
1426 >        value = value / PhysicalConstants::energyConvert
1427 >          / PhysicalConstants::kb;//may move to getStatus()
1428 >        rotTempHist_[binNo] += value;
1429 >      }
1430 >
1431 >    }
1432 >  }
1433 >
1434 >  void RNEMD::getStarted() {
1435 >    collectData();
1436 >    /*now can output profile in step 0, but might not be useful;
1437 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1438 >    Stats& stat = currentSnap_->statData;
1439 >    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1440 >    */
1441 >    //may output a header for the log file here
1442 >    getStatus();
1443 >  }
1444 >
1445 >  void RNEMD::getStatus() {
1446 >
1447 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1448 >    Stats& stat = currentSnap_->statData;
1449 >    RealType time = currentSnap_->getTime();
1450 >
1451 >    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1452 >    //or to be more meaningful, define another item as exchangeSum_ / time
1453 >    int j;
1454 >
1455 > #ifdef IS_MPI
1456 >
1457 >    // all processors have the same number of bins, and STL vectors pack their
1458 >    // arrays, so in theory, this should be safe:
1459 >
1460 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &mHist_[0],
1461 >                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1462 >    if (outputTemp_) {
1463 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempHist_[0],
1464 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1465 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempCount_[0],
1466 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1467 >    }
1468 >    if (outputVx_) {
1469 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pxzHist_[0],
1470 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1471 >      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vxzCount_[0],
1472 >      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1473 >    }
1474 >    if (outputVy_) {
1475 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pyzHist_[0],
1476 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1477 >      //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vyzCount_[0],
1478 >      //                        rnemdLogWidth_, MPI::INT, MPI::SUM);
1479 >    }
1480 >    if (output3DTemp_) {
1481 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1482 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1483 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1484 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1485 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1486 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1487 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1488 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1489 >    }
1490 >    if (outputRotTemp_) {
1491 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempHist_[0],
1492 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1493 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempCount_[0],
1494 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1495 >    }
1496 >
1497 >    // If we're the root node, should we print out the results
1498 >    int worldRank = MPI::COMM_WORLD.Get_rank();
1499 >    if (worldRank == 0) {
1500 > #endif
1501 >
1502 >      if (outputTemp_) {
1503 >        tempLog_ << time;
1504 >        for (j = 0; j < rnemdLogWidth_; j++) {
1505 >          tempLog_ << "\t" << tempHist_[j] / (RealType)tempCount_[j];
1506 >        }
1507 >        tempLog_ << endl;
1508 >      }
1509 >      if (outputVx_) {
1510 >        vxzLog_ << time;
1511 >        for (j = 0; j < rnemdLogWidth_; j++) {
1512 >          vxzLog_ << "\t" << pxzHist_[j] / mHist_[j];
1513 >        }
1514 >        vxzLog_ << endl;
1515 >      }
1516 >      if (outputVy_) {
1517 >        vyzLog_ << time;
1518 >        for (j = 0; j < rnemdLogWidth_; j++) {
1519 >          vyzLog_ << "\t" << pyzHist_[j] / mHist_[j];
1520 >        }
1521 >        vyzLog_ << endl;
1522 >      }
1523 >
1524 >      if (output3DTemp_) {
1525 >        RealType temp;
1526 >        xTempLog_ << time;
1527 >        for (j = 0; j < rnemdLogWidth_; j++) {
1528 >          if (outputVx_)
1529 >            xTempHist_[j] -= pxzHist_[j] * pxzHist_[j] / mHist_[j];
1530 >          temp = xTempHist_[j] / (RealType)xyzTempCount_[j]
1531 >            / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1532 >          xTempLog_ << "\t" << temp;
1533 >        }
1534 >        xTempLog_ << endl;
1535 >        yTempLog_ << time;
1536 >        for (j = 0; j < rnemdLogWidth_; j++) {
1537 >          yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1538 >        }
1539 >        yTempLog_ << endl;
1540 >        zTempLog_ << time;
1541 >        for (j = 0; j < rnemdLogWidth_; j++) {
1542 >          zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1543 >        }
1544 >        zTempLog_ << endl;
1545 >      }
1546 >      if (outputRotTemp_) {
1547 >        rotTempLog_ << time;
1548 >        for (j = 0; j < rnemdLogWidth_; j++) {
1549 >          rotTempLog_ << "\t" << rotTempHist_[j] / (RealType)rotTempCount_[j];
1550 >        }
1551 >        rotTempLog_ << endl;
1552 >      }
1553 >
1554 > #ifdef IS_MPI
1555 >    }
1556 > #endif
1557 >
1558 >    for (j = 0; j < rnemdLogWidth_; j++) {
1559 >      mHist_[j] = 0.0;
1560 >    }
1561 >    if (outputTemp_)
1562 >      for (j = 0; j < rnemdLogWidth_; j++) {
1563 >        tempCount_[j] = 0;
1564 >        tempHist_[j] = 0.0;
1565 >      }
1566 >    if (outputVx_)
1567 >      for (j = 0; j < rnemdLogWidth_; j++) {
1568 >        //pxzCount_[j] = 0;
1569 >        pxzHist_[j] = 0.0;
1570 >      }
1571 >    if (outputVy_)
1572 >      for (j = 0; j < rnemdLogWidth_; j++) {
1573 >        //pyzCount_[j] = 0;
1574 >        pyzHist_[j] = 0.0;
1575 >      }
1576 >
1577 >    if (output3DTemp_)
1578 >      for (j = 0; j < rnemdLogWidth_; j++) {
1579 >        xTempHist_[j] = 0.0;
1580 >        yTempHist_[j] = 0.0;
1581 >        zTempHist_[j] = 0.0;
1582 >        xyzTempCount_[j] = 0;
1583 >      }
1584 >    if (outputRotTemp_)
1585 >      for (j = 0; j < rnemdLogWidth_; j++) {
1586 >        rotTempCount_[j] = 0;
1587 >        rotTempHist_[j] = 0.0;
1588 >      }
1589 >  }
1590   }
1591 +

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines