ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43 + #include <cmath>
44   #include "integrators/RNEMD.hpp"
45 + #include "math/Vector3.hpp"
46   #include "math/SquareMatrix3.hpp"
47 + #include "math/Polynomial.hpp"
48   #include "primitives/Molecule.hpp"
49   #include "primitives/StuntDouble.hpp"
50 + #include "utils/PhysicalConstants.hpp"
51 + #include "utils/Tuple.hpp"
52  
53   #ifndef IS_MPI
54   #include "math/SeqRandNumGen.hpp"
55   #else
56 + #include <mpi.h>
57   #include "math/ParallelRandNumGen.hpp"
58   #endif
59  
60 < /* Remove me after testing*/
54 < /*
55 < #include <cstdio>
56 < #include <iostream>
57 < */
58 < /*End remove me*/
60 > #define HONKING_LARGE_VALUE 1.0e10
61  
62 < namespace oopse {
62 > using namespace std;
63 > namespace OpenMD {
64    
65 <  RNEMD::RNEMD(SimInfo* info) : info_(info) {
66 <    
65 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
66 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
67 >
68 >    failTrialCount_ = 0;
69 >    failRootCount_ = 0;
70 >
71      int seedValue;
72      Globals * simParams = info->getSimParams();
73  
74 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
74 >    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
75 >    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
76 >    stringToEnumMap_["PxScale"] = rnemdPxScale;
77 >    stringToEnumMap_["PyScale"] = rnemdPyScale;
78 >    stringToEnumMap_["PzScale"] = rnemdPzScale;
79      stringToEnumMap_["Px"] = rnemdPx;
80      stringToEnumMap_["Py"] = rnemdPy;
81      stringToEnumMap_["Pz"] = rnemdPz;
82      stringToEnumMap_["Unknown"] = rnemdUnknown;
83  
84 <    const std::string st = simParams->getRNEMD_swapType();
84 >    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
85 >    evaluator_.loadScriptString(rnemdObjectSelection_);
86 >    seleMan_.setSelectionSet(evaluator_.evaluate());
87  
88 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
88 >    // do some sanity checking
89 >
90 >    int selectionCount = seleMan_.getSelectionCount();
91 >    int nIntegrable = info->getNGlobalIntegrableObjects();
92 >
93 >    if (selectionCount > nIntegrable) {
94 >      sprintf(painCave.errMsg,
95 >              "RNEMD: The current RNEMD_objectSelection,\n"
96 >              "\t\t%s\n"
97 >              "\thas resulted in %d selected objects.  However,\n"
98 >              "\tthe total number of integrable objects in the system\n"
99 >              "\tis only %d.  This is almost certainly not what you want\n"
100 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
101 >              "\tselector in the selection script!\n",
102 >              rnemdObjectSelection_.c_str(),
103 >              selectionCount, nIntegrable);
104 >      painCave.isFatal = 0;
105 >      painCave.severity = OPENMD_WARNING;
106 >      simError();
107 >    }
108 >    
109 >    const string st = simParams->getRNEMD_exchangeType();
110 >
111 >    map<string, RNEMDTypeEnum>::iterator i;
112      i = stringToEnumMap_.find(st);
113 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
113 >    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
114 >    if (rnemdType_ == rnemdUnknown) {
115 >      sprintf(painCave.errMsg,
116 >              "RNEMD: The current RNEMD_exchangeType,\n"
117 >              "\t\t%s\n"
118 >              "\tis not one of the recognized exchange types.\n",
119 >              st.c_str());
120 >      painCave.isFatal = 1;
121 >      painCave.severity = OPENMD_ERROR;
122 >      simError();
123 >    }
124 >    
125 >    output3DTemp_ = false;
126 >    if (simParams->haveRNEMD_outputDimensionalTemperature()) {
127 >      output3DTemp_ = simParams->getRNEMD_outputDimensionalTemperature();
128 >    }
129  
130 + #ifdef IS_MPI
131 +    if (worldRank == 0) {
132 + #endif
133  
134 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
134 >      string rnemdFileName;
135 >      switch(rnemdType_) {
136 >      case rnemdKineticSwap :
137 >      case rnemdKineticScale :
138 >        rnemdFileName = "temperature.log";
139 >        break;
140 >      case rnemdPx :
141 >      case rnemdPxScale :
142 >      case rnemdPy :
143 >      case rnemdPyScale :
144 >        rnemdFileName = "momemtum.log";
145 >        break;
146 >      case rnemdPz :
147 >      case rnemdPzScale :
148 >      case rnemdUnknown :
149 >      default :
150 >        rnemdFileName = "rnemd.log";
151 >        break;
152 >      }
153 >      rnemdLog_.open(rnemdFileName.c_str());
154 >
155 >      string xTempFileName;
156 >      string yTempFileName;
157 >      string zTempFileName;
158 >      if (output3DTemp_) {
159 >        xTempFileName = "temperatureX.log";
160 >        yTempFileName = "temperatureY.log";
161 >        zTempFileName = "temperatureZ.log";
162 >        xTempLog_.open(xTempFileName.c_str());
163 >        yTempLog_.open(yTempFileName.c_str());
164 >        zTempLog_.open(zTempFileName.c_str());
165 >      }
166 >
167 > #ifdef IS_MPI
168 >    }
169 > #endif
170 >
171 >    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
172      set_RNEMD_nBins(simParams->getRNEMD_nBins());
173 <    exchangeSum_ = 0.0;
174 <    
173 >    midBin_ = nBins_ / 2;
174 >    if (simParams->haveRNEMD_binShift()) {
175 >      if (simParams->getRNEMD_binShift()) {
176 >        zShift_ = 0.5 / (RealType)(nBins_);
177 >      } else {
178 >        zShift_ = 0.0;
179 >      }
180 >    } else {
181 >      zShift_ = 0.0;
182 >    }
183 >    //cerr << "we have zShift_ = " << zShift_ << "\n";
184 >    //shift slabs by half slab width, might be useful in heterogeneous systems
185 >    //set to 0.0 if not using it; can NOT be used in status output yet
186 >    if (simParams->haveRNEMD_logWidth()) {
187 >      set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
188 >      /*arbitary rnemdLogWidth_ no checking
189 >        if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
190 >        cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
191 >        cerr << "Automaically set back to default.\n";
192 >        rnemdLogWidth_ = nBins_;
193 >        }*/
194 >    } else {
195 >      set_RNEMD_logWidth(nBins_);
196 >    }
197 >    valueHist_.resize(rnemdLogWidth_, 0.0);
198 >    valueCount_.resize(rnemdLogWidth_, 0);
199 >    xTempHist_.resize(rnemdLogWidth_, 0.0);
200 >    yTempHist_.resize(rnemdLogWidth_, 0.0);
201 >    zTempHist_.resize(rnemdLogWidth_, 0.0);
202 >    xyzTempCount_.resize(rnemdLogWidth_, 0);
203 >
204 >    set_RNEMD_exchange_total(0.0);
205 >    if (simParams->haveRNEMD_targetFlux()) {
206 >      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
207 >    } else {
208 >      set_RNEMD_target_flux(0.0);
209 >    }
210 >
211   #ifndef IS_MPI
212      if (simParams->haveSeed()) {
213        seedValue = simParams->getSeed();
# Line 100 | Line 227 | namespace oopse {
227    
228    RNEMD::~RNEMD() {
229      delete randNumGen_;
230 +    
231 + #ifdef IS_MPI
232 +    if (worldRank == 0) {
233 + #endif
234 +      
235 +      sprintf(painCave.errMsg,
236 +              "RNEMD: total failed trials: %d\n",
237 +              failTrialCount_);
238 +      painCave.isFatal = 0;
239 +      painCave.severity = OPENMD_INFO;
240 +      simError();
241 +
242 +      rnemdLog_.close();
243 +      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale) {
244 +        sprintf(painCave.errMsg,
245 +                "RNEMD: total root-checking warnings: %d\n",
246 +                failRootCount_);
247 +        painCave.isFatal = 0;
248 +        painCave.severity = OPENMD_INFO;
249 +        simError();
250 +      }
251 +      if (output3DTemp_) {
252 +        xTempLog_.close();
253 +        yTempLog_.close();
254 +        zTempLog_.close();
255 +      }
256 + #ifdef IS_MPI
257 +    }
258 + #endif
259    }
260  
261    void RNEMD::doSwap() {
262 <    std::cerr << "in RNEMD!\n";  
263 <    std::cerr << "nBins = " << nBins_ << "\n";
264 <    std::cerr << "swapTime = " << swapTime_ << "\n";
265 <    std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
266 <    std::cerr << "swapType = " << rnemdType_ << "\n";
267 <  }  
262 >
263 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
264 >    Mat3x3d hmat = currentSnap_->getHmat();
265 >
266 >    seleMan_.setSelectionSet(evaluator_.evaluate());
267 >
268 >    int selei;
269 >    StuntDouble* sd;
270 >    int idx;
271 >
272 >    RealType min_val;
273 >    bool min_found = false;  
274 >    StuntDouble* min_sd;
275 >
276 >    RealType max_val;
277 >    bool max_found = false;
278 >    StuntDouble* max_sd;
279 >
280 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
281 >         sd = seleMan_.nextSelected(selei)) {
282 >
283 >      idx = sd->getLocalIndex();
284 >
285 >      Vector3d pos = sd->getPos();
286 >
287 >      // wrap the stuntdouble's position back into the box:
288 >
289 >      if (usePeriodicBoundaryConditions_)
290 >        currentSnap_->wrapVector(pos);
291 >
292 >      // which bin is this stuntdouble in?
293 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
294 >
295 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
296 >
297 >
298 >      // if we're in bin 0 or the middleBin
299 >      if (binNo == 0 || binNo == midBin_) {
300 >        
301 >        RealType mass = sd->getMass();
302 >        Vector3d vel = sd->getVel();
303 >        RealType value;
304 >
305 >        switch(rnemdType_) {
306 >        case rnemdKineticSwap :
307 >          
308 >          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
309 >                          vel[2]*vel[2]);
310 >          /*
311 >            if (sd->isDirectional()) {
312 >            Vector3d angMom = sd->getJ();
313 >            Mat3x3d I = sd->getI();
314 >            
315 >            if (sd->isLinear()) {
316 >            int i = sd->linearAxis();
317 >            int j = (i + 1) % 3;
318 >            int k = (i + 2) % 3;
319 >            value += angMom[j] * angMom[j] / I(j, j) +
320 >            angMom[k] * angMom[k] / I(k, k);
321 >            } else {                        
322 >            value += angMom[0]*angMom[0]/I(0, 0)
323 >            + angMom[1]*angMom[1]/I(1, 1)
324 >            + angMom[2]*angMom[2]/I(2, 2);
325 >            }
326 >            } no exchange of angular momenta
327 >          */
328 >          //make exchangeSum_ comparable between swap & scale
329 >          //temporarily without using energyConvert
330 >          //value = value * 0.5 / PhysicalConstants::energyConvert;
331 >          value *= 0.5;
332 >          break;
333 >        case rnemdPx :
334 >          value = mass * vel[0];
335 >          break;
336 >        case rnemdPy :
337 >          value = mass * vel[1];
338 >          break;
339 >        case rnemdPz :
340 >          value = mass * vel[2];
341 >          break;
342 >        default :
343 >          break;
344 >        }
345 >        
346 >        if (binNo == 0) {
347 >          if (!min_found) {
348 >            min_val = value;
349 >            min_sd = sd;
350 >            min_found = true;
351 >          } else {
352 >            if (min_val > value) {
353 >              min_val = value;
354 >              min_sd = sd;
355 >            }
356 >          }
357 >        } else { //midBin_
358 >          if (!max_found) {
359 >            max_val = value;
360 >            max_sd = sd;
361 >            max_found = true;
362 >          } else {
363 >            if (max_val < value) {
364 >              max_val = value;
365 >              max_sd = sd;
366 >            }
367 >          }      
368 >        }
369 >      }
370 >    }
371 >
372 > #ifdef IS_MPI
373 >    int nProc, worldRank;
374 >
375 >    nProc = MPI::COMM_WORLD.Get_size();
376 >    worldRank = MPI::COMM_WORLD.Get_rank();
377 >
378 >    bool my_min_found = min_found;
379 >    bool my_max_found = max_found;
380 >
381 >    // Even if we didn't find a minimum, did someone else?
382 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
383 >    // Even if we didn't find a maximum, did someone else?
384 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
385 >    struct {
386 >      RealType val;
387 >      int rank;
388 >    } max_vals, min_vals;
389 >    
390 >    if (min_found) {
391 >      if (my_min_found)
392 >        min_vals.val = min_val;
393 >      else
394 >        min_vals.val = HONKING_LARGE_VALUE;
395 >      
396 >      min_vals.rank = worldRank;    
397 >      
398 >      // Who had the minimum?
399 >      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
400 >                                1, MPI::REALTYPE_INT, MPI::MINLOC);
401 >      min_val = min_vals.val;
402 >    }
403 >      
404 >    if (max_found) {
405 >      if (my_max_found)
406 >        max_vals.val = max_val;
407 >      else
408 >        max_vals.val = -HONKING_LARGE_VALUE;
409 >      
410 >      max_vals.rank = worldRank;    
411 >      
412 >      // Who had the maximum?
413 >      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
414 >                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
415 >      max_val = max_vals.val;
416 >    }
417 > #endif
418 >
419 >    if (max_found && min_found) {
420 >      if (min_val < max_val) {
421 >
422 > #ifdef IS_MPI      
423 >        if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
424 >          // I have both maximum and minimum, so proceed like a single
425 >          // processor version:
426 > #endif
427 >          // objects to be swapped: velocity ONLY
428 >          Vector3d min_vel = min_sd->getVel();
429 >          Vector3d max_vel = max_sd->getVel();
430 >          RealType temp_vel;
431 >          
432 >          switch(rnemdType_) {
433 >          case rnemdKineticSwap :
434 >            min_sd->setVel(max_vel);
435 >            max_sd->setVel(min_vel);
436 >            /*
437 >              if (min_sd->isDirectional() && max_sd->isDirectional()) {
438 >              Vector3d min_angMom = min_sd->getJ();
439 >              Vector3d max_angMom = max_sd->getJ();
440 >              min_sd->setJ(max_angMom);
441 >              max_sd->setJ(min_angMom);
442 >              } no angular momentum exchange
443 >            */
444 >            break;
445 >          case rnemdPx :
446 >            temp_vel = min_vel.x();
447 >            min_vel.x() = max_vel.x();
448 >            max_vel.x() = temp_vel;
449 >            min_sd->setVel(min_vel);
450 >            max_sd->setVel(max_vel);
451 >            break;
452 >          case rnemdPy :
453 >            temp_vel = min_vel.y();
454 >            min_vel.y() = max_vel.y();
455 >            max_vel.y() = temp_vel;
456 >            min_sd->setVel(min_vel);
457 >            max_sd->setVel(max_vel);
458 >            break;
459 >          case rnemdPz :
460 >            temp_vel = min_vel.z();
461 >            min_vel.z() = max_vel.z();
462 >            max_vel.z() = temp_vel;
463 >            min_sd->setVel(min_vel);
464 >            max_sd->setVel(max_vel);
465 >            break;
466 >          default :
467 >            break;
468 >          }
469 > #ifdef IS_MPI
470 >          // the rest of the cases only apply in parallel simulations:
471 >        } else if (max_vals.rank == worldRank) {
472 >          // I had the max, but not the minimum
473 >          
474 >          Vector3d min_vel;
475 >          Vector3d max_vel = max_sd->getVel();
476 >          MPI::Status status;
477 >
478 >          // point-to-point swap of the velocity vector
479 >          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
480 >                                   min_vals.rank, 0,
481 >                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
482 >                                   min_vals.rank, 0, status);
483 >          
484 >          switch(rnemdType_) {
485 >          case rnemdKineticSwap :
486 >            max_sd->setVel(min_vel);
487 >            //no angular momentum exchange for now
488 >            /*
489 >            if (max_sd->isDirectional()) {
490 >              Vector3d min_angMom;
491 >              Vector3d max_angMom = max_sd->getJ();
492 >              
493 >              // point-to-point swap of the angular momentum vector
494 >              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
495 >                                       MPI::REALTYPE, min_vals.rank, 1,
496 >                                       min_angMom.getArrayPointer(), 3,
497 >                                       MPI::REALTYPE, min_vals.rank, 1,
498 >                                       status);
499 >              
500 >              max_sd->setJ(min_angMom);
501 >             }
502 >             */            
503 >            break;
504 >          case rnemdPx :
505 >            max_vel.x() = min_vel.x();
506 >            max_sd->setVel(max_vel);
507 >            break;
508 >          case rnemdPy :
509 >            max_vel.y() = min_vel.y();
510 >            max_sd->setVel(max_vel);
511 >            break;
512 >          case rnemdPz :
513 >            max_vel.z() = min_vel.z();
514 >            max_sd->setVel(max_vel);
515 >            break;
516 >          default :
517 >            break;
518 >          }
519 >        } else if (min_vals.rank == worldRank) {
520 >          // I had the minimum but not the maximum:
521 >          
522 >          Vector3d max_vel;
523 >          Vector3d min_vel = min_sd->getVel();
524 >          MPI::Status status;
525 >          
526 >          // point-to-point swap of the velocity vector
527 >          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
528 >                                   max_vals.rank, 0,
529 >                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
530 >                                   max_vals.rank, 0, status);
531 >          
532 >          switch(rnemdType_) {
533 >          case rnemdKineticSwap :
534 >            min_sd->setVel(max_vel);
535 >            // no angular momentum exchange for now
536 >            /*
537 >            if (min_sd->isDirectional()) {
538 >              Vector3d min_angMom = min_sd->getJ();
539 >              Vector3d max_angMom;
540 >              
541 >              // point-to-point swap of the angular momentum vector
542 >              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
543 >                                       MPI::REALTYPE, max_vals.rank, 1,
544 >                                       max_angMom.getArrayPointer(), 3,
545 >                                       MPI::REALTYPE, max_vals.rank, 1,
546 >                                       status);
547 >              
548 >              min_sd->setJ(max_angMom);
549 >            }
550 >            */
551 >            break;
552 >          case rnemdPx :
553 >            min_vel.x() = max_vel.x();
554 >            min_sd->setVel(min_vel);
555 >            break;
556 >          case rnemdPy :
557 >            min_vel.y() = max_vel.y();
558 >            min_sd->setVel(min_vel);
559 >            break;
560 >          case rnemdPz :
561 >            min_vel.z() = max_vel.z();
562 >            min_sd->setVel(min_vel);
563 >            break;
564 >          default :
565 >            break;
566 >          }
567 >        }
568 > #endif
569 >        exchangeSum_ += max_val - min_val;
570 >      } else {        
571 >        sprintf(painCave.errMsg,
572 >                "RNEMD: exchange NOT performed because min_val > max_val\n");
573 >        painCave.isFatal = 0;
574 >        painCave.severity = OPENMD_INFO;
575 >        simError();        
576 >        failTrialCount_++;
577 >      }
578 >    } else {
579 >      sprintf(painCave.errMsg,
580 >              "RNEMD: exchange NOT performed because at least one\n"
581 >              "\tof the two slabs is empty\n");
582 >      painCave.isFatal = 0;
583 >      painCave.severity = OPENMD_INFO;
584 >      simError();        
585 >      failTrialCount_++;
586 >    }
587 >    
588 >  }
589 >  
590 >  void RNEMD::doScale() {
591 >
592 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
593 >    Mat3x3d hmat = currentSnap_->getHmat();
594 >
595 >    seleMan_.setSelectionSet(evaluator_.evaluate());
596 >
597 >    int selei;
598 >    StuntDouble* sd;
599 >    int idx;
600 >
601 >    vector<StuntDouble*> hotBin, coldBin;
602 >
603 >    RealType Phx = 0.0;
604 >    RealType Phy = 0.0;
605 >    RealType Phz = 0.0;
606 >    RealType Khx = 0.0;
607 >    RealType Khy = 0.0;
608 >    RealType Khz = 0.0;
609 >    RealType Pcx = 0.0;
610 >    RealType Pcy = 0.0;
611 >    RealType Pcz = 0.0;
612 >    RealType Kcx = 0.0;
613 >    RealType Kcy = 0.0;
614 >    RealType Kcz = 0.0;
615 >
616 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
617 >         sd = seleMan_.nextSelected(selei)) {
618 >
619 >      idx = sd->getLocalIndex();
620 >
621 >      Vector3d pos = sd->getPos();
622 >
623 >      // wrap the stuntdouble's position back into the box:
624 >
625 >      if (usePeriodicBoundaryConditions_)
626 >        currentSnap_->wrapVector(pos);
627 >
628 >      // which bin is this stuntdouble in?
629 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
630 >
631 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
632 >
633 >      // if we're in bin 0 or the middleBin
634 >      if (binNo == 0 || binNo == midBin_) {
635 >        
636 >        RealType mass = sd->getMass();
637 >        Vector3d vel = sd->getVel();
638 >      
639 >        if (binNo == 0) {
640 >          hotBin.push_back(sd);
641 >          Phx += mass * vel.x();
642 >          Phy += mass * vel.y();
643 >          Phz += mass * vel.z();
644 >          Khx += mass * vel.x() * vel.x();
645 >          Khy += mass * vel.y() * vel.y();
646 >          Khz += mass * vel.z() * vel.z();
647 >        } else { //midBin_
648 >          coldBin.push_back(sd);
649 >          Pcx += mass * vel.x();
650 >          Pcy += mass * vel.y();
651 >          Pcz += mass * vel.z();
652 >          Kcx += mass * vel.x() * vel.x();
653 >          Kcy += mass * vel.y() * vel.y();
654 >          Kcz += mass * vel.z() * vel.z();
655 >        }
656 >      }
657 >    }
658 >
659 >    Khx *= 0.5;
660 >    Khy *= 0.5;
661 >    Khz *= 0.5;
662 >    Kcx *= 0.5;
663 >    Kcy *= 0.5;
664 >    Kcz *= 0.5;
665 >
666 > #ifdef IS_MPI
667 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
668 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
669 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
670 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
671 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
672 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
673 >
674 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
675 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
676 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
677 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
678 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
679 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
680 > #endif
681 >
682 >    //use coldBin coeff's
683 >    RealType px = Pcx / Phx;
684 >    RealType py = Pcy / Phy;
685 >    RealType pz = Pcz / Phz;
686 >
687 >    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
688 >    switch(rnemdType_) {
689 >    case rnemdKineticScale :
690 >      // used hotBin coeff's & only scale x & y dimensions
691 >      /*
692 >      RealType px = Phx / Pcx;
693 >      RealType py = Phy / Pcy;
694 >      a110 = Khy;
695 >      c0 = - Khx - Khy - targetFlux_;
696 >      a000 = Khx;
697 >      a111 = Kcy * py * py;
698 >      b11 = -2.0 * Kcy * py * (1.0 + py);
699 >      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
700 >      b01 = -2.0 * Kcx * px * (1.0 + px);
701 >      a001 = Kcx * px * px;
702 >      */
703 >      //scale all three dimensions, let c_x = c_y
704 >      a000 = Kcx + Kcy;
705 >      a110 = Kcz;
706 >      c0 = targetFlux_ - Kcx - Kcy - Kcz;
707 >      a001 = Khx * px * px + Khy * py * py;
708 >      a111 = Khz * pz * pz;
709 >      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
710 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
711 >      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
712 >        + Khz * pz * (2.0 + pz) - targetFlux_;
713 >      break;
714 >    case rnemdPxScale :
715 >      c = 1 - targetFlux_ / Pcx;
716 >      a000 = Kcy;
717 >      a110 = Kcz;
718 >      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
719 >      a001 = py * py * Khy;
720 >      a111 = pz * pz * Khz;
721 >      b01 = -2.0 * Khy * py * (1.0 + py);
722 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
723 >      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
724 >        + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
725 >      break;
726 >    case rnemdPyScale :
727 >      c = 1 - targetFlux_ / Pcy;
728 >      a000 = Kcx;
729 >      a110 = Kcz;
730 >      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
731 >      a001 = px * px * Khx;
732 >      a111 = pz * pz * Khz;
733 >      b01 = -2.0 * Khx * px * (1.0 + px);
734 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
735 >      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
736 >        + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
737 >      break;
738 >    case rnemdPzScale ://we don't really do this, do we?
739 >      c = 1 - targetFlux_ / Pcz;
740 >      a000 = Kcx;
741 >      a110 = Kcy;
742 >      c0 = Kcz * c * c - Kcx - Kcy - Kcz;
743 >      a001 = px * px * Khx;
744 >      a111 = py * py * Khy;
745 >      b01 = -2.0 * Khx * px * (1.0 + px);
746 >      b11 = -2.0 * Khy * py * (1.0 + py);
747 >      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
748 >        + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
749 >      break;      
750 >    default :
751 >      break;
752 >    }
753 >
754 >    RealType v1 = a000 * a111 - a001 * a110;
755 >    RealType v2 = a000 * b01;
756 >    RealType v3 = a000 * b11;
757 >    RealType v4 = a000 * c1 - a001 * c0;
758 >    RealType v8 = a110 * b01;
759 >    RealType v10 = - b01 * c0;
760 >
761 >    RealType u0 = v2 * v10 - v4 * v4;
762 >    RealType u1 = -2.0 * v3 * v4;
763 >    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
764 >    RealType u3 = -2.0 * v1 * v3;
765 >    RealType u4 = - v1 * v1;
766 >    //rescale coefficients
767 >    RealType maxAbs = fabs(u0);
768 >    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
769 >    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
770 >    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
771 >    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
772 >    u0 /= maxAbs;
773 >    u1 /= maxAbs;
774 >    u2 /= maxAbs;
775 >    u3 /= maxAbs;
776 >    u4 /= maxAbs;
777 >    //max_element(start, end) is also available.
778 >    Polynomial<RealType> poly; //same as DoublePolynomial poly;
779 >    poly.setCoefficient(4, u4);
780 >    poly.setCoefficient(3, u3);
781 >    poly.setCoefficient(2, u2);
782 >    poly.setCoefficient(1, u1);
783 >    poly.setCoefficient(0, u0);
784 >    vector<RealType> realRoots = poly.FindRealRoots();
785 >
786 >    vector<RealType>::iterator ri;
787 >    RealType r1, r2, alpha0;
788 >    vector<pair<RealType,RealType> > rps;
789 >    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
790 >      r2 = *ri;
791 >      //check if FindRealRoots() give the right answer
792 >      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
793 >        sprintf(painCave.errMsg,
794 >                "RNEMD Warning: polynomial solve seems to have an error!");
795 >        painCave.isFatal = 0;
796 >        simError();
797 >        failRootCount_++;
798 >      }
799 >      //might not be useful w/o rescaling coefficients
800 >      alpha0 = -c0 - a110 * r2 * r2;
801 >      if (alpha0 >= 0.0) {
802 >        r1 = sqrt(alpha0 / a000);
803 >        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
804 >          { rps.push_back(make_pair(r1, r2)); }
805 >        if (r1 > 1e-6) { //r1 non-negative
806 >          r1 = -r1;
807 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
808 >            { rps.push_back(make_pair(r1, r2)); }
809 >        }
810 >      }
811 >    }
812 >    // Consider combining together the solving pair part w/ the searching
813 >    // best solution part so that we don't need the pairs vector
814 >    if (!rps.empty()) {
815 >      RealType smallestDiff = HONKING_LARGE_VALUE;
816 >      RealType diff;
817 >      pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
818 >      vector<pair<RealType,RealType> >::iterator rpi;
819 >      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
820 >        r1 = (*rpi).first;
821 >        r2 = (*rpi).second;
822 >        switch(rnemdType_) {
823 >        case rnemdKineticScale :
824 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
825 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
826 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
827 >          break;
828 >        case rnemdPxScale :
829 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
830 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
831 >          break;
832 >        case rnemdPyScale :
833 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
834 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
835 >          break;
836 >        case rnemdPzScale :
837 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
838 >            + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
839 >        default :
840 >          break;
841 >        }
842 >        if (diff < smallestDiff) {
843 >          smallestDiff = diff;
844 >          bestPair = *rpi;
845 >        }
846 >      }
847 > #ifdef IS_MPI
848 >      if (worldRank == 0) {
849 > #endif
850 >        sprintf(painCave.errMsg,
851 >                "RNEMD: roots r1= %lf\tr2 = %lf\n",
852 >                bestPair.first, bestPair.second);
853 >        painCave.isFatal = 0;
854 >        painCave.severity = OPENMD_INFO;
855 >        simError();
856 > #ifdef IS_MPI
857 >      }
858 > #endif
859 >      
860 >      RealType x, y, z;
861 >      switch(rnemdType_) {
862 >      case rnemdKineticScale :
863 >        x = bestPair.first;
864 >        y = bestPair.first;
865 >        z = bestPair.second;
866 >        break;
867 >      case rnemdPxScale :
868 >        x = c;
869 >        y = bestPair.first;
870 >        z = bestPair.second;
871 >        break;
872 >      case rnemdPyScale :
873 >        x = bestPair.first;
874 >        y = c;
875 >        z = bestPair.second;
876 >        break;
877 >      case rnemdPzScale :
878 >        x = bestPair.first;
879 >        y = bestPair.second;
880 >        z = c;
881 >        break;          
882 >      default :
883 >        break;
884 >      }
885 >      vector<StuntDouble*>::iterator sdi;
886 >      Vector3d vel;
887 >      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
888 >        vel = (*sdi)->getVel();
889 >        vel.x() *= x;
890 >        vel.y() *= y;
891 >        vel.z() *= z;
892 >        (*sdi)->setVel(vel);
893 >      }
894 >      //convert to hotBin coefficient
895 >      x = 1.0 + px * (1.0 - x);
896 >      y = 1.0 + py * (1.0 - y);
897 >      z = 1.0 + pz * (1.0 - z);
898 >      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
899 >        vel = (*sdi)->getVel();
900 >        vel.x() *= x;
901 >        vel.y() *= y;
902 >        vel.z() *= z;
903 >        (*sdi)->setVel(vel);
904 >      }
905 >      exchangeSum_ += targetFlux_;
906 >      //we may want to check whether the exchange has been successful
907 >    } else {
908 >      sprintf(painCave.errMsg,
909 >              "RNEMD: exchange NOT performed!\n");
910 >      painCave.isFatal = 0;
911 >      painCave.severity = OPENMD_INFO;
912 >      simError();        
913 >      failTrialCount_++;
914 >    }
915 >
916 >  }
917 >
918 >  void RNEMD::doRNEMD() {
919 >
920 >    switch(rnemdType_) {
921 >    case rnemdKineticScale :
922 >    case rnemdPxScale :
923 >    case rnemdPyScale :
924 >    case rnemdPzScale :
925 >      doScale();
926 >      break;
927 >    case rnemdKineticSwap :
928 >    case rnemdPx :
929 >    case rnemdPy :
930 >    case rnemdPz :
931 >      doSwap();
932 >      break;
933 >    case rnemdUnknown :
934 >    default :
935 >      break;
936 >    }
937 >  }
938 >
939 >  void RNEMD::collectData() {
940 >
941 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
942 >    Mat3x3d hmat = currentSnap_->getHmat();
943 >
944 >    seleMan_.setSelectionSet(evaluator_.evaluate());
945 >
946 >    int selei;
947 >    StuntDouble* sd;
948 >    int idx;
949 >
950 >    // alternative approach, track all molecules instead of only those
951 >    // selected for scaling/swapping:
952 >    /*
953 >    SimInfo::MoleculeIterator miter;
954 >    vector<StuntDouble*>::iterator iiter;
955 >    Molecule* mol;
956 >    StuntDouble* integrableObject;
957 >    for (mol = info_->beginMolecule(miter); mol != NULL;
958 >         mol = info_->nextMolecule(miter))
959 >      integrableObject is essentially sd
960 >        for (integrableObject = mol->beginIntegrableObject(iiter);
961 >             integrableObject != NULL;
962 >             integrableObject = mol->nextIntegrableObject(iiter))
963 >    */
964 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
965 >         sd = seleMan_.nextSelected(selei)) {
966 >      
967 >      idx = sd->getLocalIndex();
968 >      
969 >      Vector3d pos = sd->getPos();
970 >
971 >      // wrap the stuntdouble's position back into the box:
972 >      
973 >      if (usePeriodicBoundaryConditions_)
974 >        currentSnap_->wrapVector(pos);
975 >      
976 >      // which bin is this stuntdouble in?
977 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
978 >      
979 >      int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
980 >        rnemdLogWidth_;
981 >      // no symmetrization allowed due to arbitary rnemdLogWidth_ value
982 >      /*
983 >      if (rnemdLogWidth_ == midBin_ + 1)
984 >        if (binNo > midBin_)
985 >          binNo = nBins_ - binNo;
986 >      */
987 >      RealType mass = sd->getMass();
988 >      Vector3d vel = sd->getVel();
989 >      RealType value;
990 >      RealType xVal, yVal, zVal;
991 >
992 >      switch(rnemdType_) {
993 >      case rnemdKineticSwap :
994 >      case rnemdKineticScale :
995 >        
996 >        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
997 >        
998 >        valueCount_[binNo] += 3;
999 >        if (sd->isDirectional()) {
1000 >          Vector3d angMom = sd->getJ();
1001 >          Mat3x3d I = sd->getI();
1002 >          
1003 >          if (sd->isLinear()) {
1004 >            int i = sd->linearAxis();
1005 >            int j = (i + 1) % 3;
1006 >            int k = (i + 2) % 3;
1007 >            value += angMom[j] * angMom[j] / I(j, j) +
1008 >              angMom[k] * angMom[k] / I(k, k);
1009 >            
1010 >            valueCount_[binNo] +=2;
1011 >            
1012 >          } else {
1013 >            value += angMom[0]*angMom[0]/I(0, 0)
1014 >              + angMom[1]*angMom[1]/I(1, 1)
1015 >              + angMom[2]*angMom[2]/I(2, 2);
1016 >            valueCount_[binNo] +=3;
1017 >          }
1018 >        }
1019 >        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1020 >        
1021 >        break;
1022 >      case rnemdPx :
1023 >      case rnemdPxScale :
1024 >        value = mass * vel[0];
1025 >        valueCount_[binNo]++;
1026 >        break;
1027 >      case rnemdPy :
1028 >      case rnemdPyScale :
1029 >        value = mass * vel[1];
1030 >        valueCount_[binNo]++;
1031 >        break;
1032 >      case rnemdPz :
1033 >      case rnemdPzScale :
1034 >        value = pos.z(); //temporarily for homogeneous systems ONLY
1035 >        valueCount_[binNo]++;
1036 >        break;
1037 >      case rnemdUnknown :
1038 >      default :
1039 >        value = 1.0;
1040 >        valueCount_[binNo]++;
1041 >        break;
1042 >      }
1043 >      valueHist_[binNo] += value;
1044 >
1045 >      if (output3DTemp_) {
1046 >        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
1047 >          / PhysicalConstants::kb;
1048 >        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1049 >          / PhysicalConstants::kb;
1050 >        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1051 >          / PhysicalConstants::kb;
1052 >        xTempHist_[binNo] += xVal;
1053 >        yTempHist_[binNo] += yVal;
1054 >        zTempHist_[binNo] += zVal;
1055 >        xyzTempCount_[binNo]++;
1056 >      }
1057 >    }
1058 >  }
1059 >
1060 >  void RNEMD::getStarted() {
1061 >    collectData();
1062 >    /* now should be able to output profile in step 0, but might not be useful
1063 >       Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1064 >       Stats& stat = currentSnap_->statData;
1065 >       stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1066 >    */
1067 >    getStatus();
1068 >  }
1069 >
1070 >  void RNEMD::getStatus() {
1071 >
1072 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1073 >    Stats& stat = currentSnap_->statData;
1074 >    RealType time = currentSnap_->getTime();
1075 >
1076 >    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1077 >    //or to be more meaningful, define another item as exchangeSum_ / time
1078 >    int j;
1079 >
1080 > #ifdef IS_MPI
1081 >
1082 >    // all processors have the same number of bins, and STL vectors pack their
1083 >    // arrays, so in theory, this should be safe:
1084 >
1085 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
1086 >                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1087 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
1088 >                              rnemdLogWidth_, MPI::INT, MPI::SUM);
1089 >    if (output3DTemp_) {
1090 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1091 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1092 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1093 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1094 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1095 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1096 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1097 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1098 >    }
1099 >    // If we're the root node, should we print out the results
1100 >    int worldRank = MPI::COMM_WORLD.Get_rank();
1101 >    if (worldRank == 0) {
1102 > #endif
1103 >      rnemdLog_ << time;
1104 >      for (j = 0; j < rnemdLogWidth_; j++) {
1105 >        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
1106 >      }
1107 >      rnemdLog_ << "\n";
1108 >      if (output3DTemp_) {
1109 >        xTempLog_ << time;      
1110 >        for (j = 0; j < rnemdLogWidth_; j++) {
1111 >          xTempLog_ << "\t" << xTempHist_[j] / (RealType)xyzTempCount_[j];
1112 >        }
1113 >        xTempLog_ << "\n";
1114 >        yTempLog_ << time;
1115 >        for (j = 0; j < rnemdLogWidth_; j++) {
1116 >          yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1117 >        }
1118 >        yTempLog_ << "\n";
1119 >        zTempLog_ << time;
1120 >        for (j = 0; j < rnemdLogWidth_; j++) {
1121 >          zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1122 >        }
1123 >        zTempLog_ << "\n";
1124 >      }
1125 > #ifdef IS_MPI
1126 >    }
1127 > #endif
1128 >    for (j = 0; j < rnemdLogWidth_; j++) {
1129 >      valueCount_[j] = 0;
1130 >      valueHist_[j] = 0.0;
1131 >    }
1132 >    if (output3DTemp_)
1133 >      for (j = 0; j < rnemdLogWidth_; j++) {
1134 >        xTempHist_[j] = 0.0;
1135 >        yTempHist_[j] = 0.0;
1136 >        zTempHist_[j] = 0.0;
1137 >        xyzTempCount_[j] = 0;
1138 >      }
1139 >  }
1140   }

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines