ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
(Generate patch)

Comparing:
trunk/src/integrators/RNEMD.cpp (file contents), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/integrators/RNEMD.cpp (file contents), Revision 1629 by gezelter, Wed Sep 14 21:15:17 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 + #include <cmath>
43   #include "integrators/RNEMD.hpp"
44 + #include "math/Vector3.hpp"
45   #include "math/SquareMatrix3.hpp"
46 + #include "math/Polynomial.hpp"
47   #include "primitives/Molecule.hpp"
48   #include "primitives/StuntDouble.hpp"
49 + #include "utils/PhysicalConstants.hpp"
50 + #include "utils/Tuple.hpp"
51  
52   #ifndef IS_MPI
53   #include "math/SeqRandNumGen.hpp"
54   #else
55 + #include <mpi.h>
56   #include "math/ParallelRandNumGen.hpp"
57   #endif
58  
59 < /* Remove me after testing*/
54 < /*
55 < #include <cstdio>
56 < #include <iostream>
57 < */
58 < /*End remove me*/
59 > #define HONKING_LARGE_VALUE 1.0e10
60  
61 < namespace oopse {
61 > using namespace std;
62 > namespace OpenMD {
63    
64 <  RNEMD::RNEMD(SimInfo* info) : info_(info) {
65 <    
64 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
65 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
66 >
67 >    failTrialCount_ = 0;
68 >    failRootCount_ = 0;
69 >
70      int seedValue;
71      Globals * simParams = info->getSimParams();
72  
73 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
73 >    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
74 >    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
75 >    stringToEnumMap_["PxScale"] = rnemdPxScale;
76 >    stringToEnumMap_["PyScale"] = rnemdPyScale;
77 >    stringToEnumMap_["PzScale"] = rnemdPzScale;
78      stringToEnumMap_["Px"] = rnemdPx;
79      stringToEnumMap_["Py"] = rnemdPy;
80      stringToEnumMap_["Pz"] = rnemdPz;
81      stringToEnumMap_["Unknown"] = rnemdUnknown;
82  
83 <    const std::string st = simParams->getRNEMD_swapType();
83 >    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
84 >    evaluator_.loadScriptString(rnemdObjectSelection_);
85 >    seleMan_.setSelectionSet(evaluator_.evaluate());
86  
87 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
87 >    // do some sanity checking
88 >
89 >    int selectionCount = seleMan_.getSelectionCount();
90 >    int nIntegrable = info->getNGlobalIntegrableObjects();
91 >
92 >    if (selectionCount > nIntegrable) {
93 >      sprintf(painCave.errMsg,
94 >              "RNEMD: The current RNEMD_objectSelection,\n"
95 >              "\t\t%s\n"
96 >              "\thas resulted in %d selected objects.  However,\n"
97 >              "\tthe total number of integrable objects in the system\n"
98 >              "\tis only %d.  This is almost certainly not what you want\n"
99 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
100 >              "\tselector in the selection script!\n",
101 >              rnemdObjectSelection_.c_str(),
102 >              selectionCount, nIntegrable);
103 >      painCave.isFatal = 0;
104 >      painCave.severity = OPENMD_WARNING;
105 >      simError();
106 >    }
107 >    
108 >    const string st = simParams->getRNEMD_exchangeType();
109 >
110 >    map<string, RNEMDTypeEnum>::iterator i;
111      i = stringToEnumMap_.find(st);
112 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
112 >    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
113 >    if (rnemdType_ == rnemdUnknown) {
114 >      sprintf(painCave.errMsg,
115 >              "RNEMD: The current RNEMD_exchangeType,\n"
116 >              "\t\t%s\n"
117 >              "\tis not one of the recognized exchange types.\n",
118 >              st.c_str());
119 >      painCave.isFatal = 1;
120 >      painCave.severity = OPENMD_ERROR;
121 >      simError();
122 >    }
123 >    
124 >    output3DTemp_ = false;
125 >    if (simParams->haveRNEMD_outputDimensionalTemperature()) {
126 >      output3DTemp_ = simParams->getRNEMD_outputDimensionalTemperature();
127 >    }
128  
129 + #ifdef IS_MPI
130 +    if (worldRank == 0) {
131 + #endif
132  
133 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
133 >      string rnemdFileName;
134 >      switch(rnemdType_) {
135 >      case rnemdKineticSwap :
136 >      case rnemdKineticScale :
137 >        rnemdFileName = "temperature.log";
138 >        break;
139 >      case rnemdPx :
140 >      case rnemdPxScale :
141 >      case rnemdPy :
142 >      case rnemdPyScale :
143 >        rnemdFileName = "momemtum.log";
144 >        break;
145 >      case rnemdPz :
146 >      case rnemdPzScale :
147 >      case rnemdUnknown :
148 >      default :
149 >        rnemdFileName = "rnemd.log";
150 >        break;
151 >      }
152 >      rnemdLog_.open(rnemdFileName.c_str());
153 >
154 >      string xTempFileName;
155 >      string yTempFileName;
156 >      string zTempFileName;
157 >      if (output3DTemp_) {
158 >        xTempFileName = "temperatureX.log";
159 >        yTempFileName = "temperatureY.log";
160 >        zTempFileName = "temperatureZ.log";
161 >        xTempLog_.open(xTempFileName.c_str());
162 >        yTempLog_.open(yTempFileName.c_str());
163 >        zTempLog_.open(zTempFileName.c_str());
164 >      }
165 >
166 > #ifdef IS_MPI
167 >    }
168 > #endif
169 >
170 >    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
171      set_RNEMD_nBins(simParams->getRNEMD_nBins());
172 <    exchangeSum_ = 0.0;
173 <    
172 >    midBin_ = nBins_ / 2;
173 >    if (simParams->haveRNEMD_binShift()) {
174 >      if (simParams->getRNEMD_binShift()) {
175 >        zShift_ = 0.5 / (RealType)(nBins_);
176 >      } else {
177 >        zShift_ = 0.0;
178 >      }
179 >    } else {
180 >      zShift_ = 0.0;
181 >    }
182 >    //cerr << "we have zShift_ = " << zShift_ << "\n";
183 >    //shift slabs by half slab width, might be useful in heterogeneous systems
184 >    //set to 0.0 if not using it; can NOT be used in status output yet
185 >    if (simParams->haveRNEMD_logWidth()) {
186 >      set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
187 >      /*arbitary rnemdLogWidth_ no checking
188 >        if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
189 >        cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
190 >        cerr << "Automaically set back to default.\n";
191 >        rnemdLogWidth_ = nBins_;
192 >        }*/
193 >    } else {
194 >      set_RNEMD_logWidth(nBins_);
195 >    }
196 >    valueHist_.resize(rnemdLogWidth_, 0.0);
197 >    valueCount_.resize(rnemdLogWidth_, 0);
198 >    xTempHist_.resize(rnemdLogWidth_, 0.0);
199 >    yTempHist_.resize(rnemdLogWidth_, 0.0);
200 >    zTempHist_.resize(rnemdLogWidth_, 0.0);
201 >    xyzTempCount_.resize(rnemdLogWidth_, 0);
202 >
203 >    set_RNEMD_exchange_total(0.0);
204 >    if (simParams->haveRNEMD_targetFlux()) {
205 >      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
206 >    } else {
207 >      set_RNEMD_target_flux(0.0);
208 >    }
209 >
210   #ifndef IS_MPI
211      if (simParams->haveSeed()) {
212        seedValue = simParams->getSeed();
# Line 100 | Line 226 | namespace oopse {
226    
227    RNEMD::~RNEMD() {
228      delete randNumGen_;
229 +    
230 + #ifdef IS_MPI
231 +    if (worldRank == 0) {
232 + #endif
233 +      
234 +      sprintf(painCave.errMsg,
235 +              "RNEMD: total failed trials: %d\n",
236 +              failTrialCount_);
237 +      painCave.isFatal = 0;
238 +      painCave.severity = OPENMD_INFO;
239 +      simError();
240 +
241 +      rnemdLog_.close();
242 +      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale) {
243 +        sprintf(painCave.errMsg,
244 +                "RNEMD: total root-checking warnings: %d\n",
245 +                failRootCount_);
246 +        painCave.isFatal = 0;
247 +        painCave.severity = OPENMD_INFO;
248 +        simError();
249 +      }
250 +      if (output3DTemp_) {
251 +        xTempLog_.close();
252 +        yTempLog_.close();
253 +        zTempLog_.close();
254 +      }
255 + #ifdef IS_MPI
256 +    }
257 + #endif
258    }
259  
260    void RNEMD::doSwap() {
261 <    std::cerr << "in RNEMD!\n";  
262 <    std::cerr << "nBins = " << nBins_ << "\n";
263 <    std::cerr << "swapTime = " << swapTime_ << "\n";
264 <    std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
265 <    std::cerr << "swapType = " << rnemdType_ << "\n";
266 <  }  
261 >
262 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
263 >    Mat3x3d hmat = currentSnap_->getHmat();
264 >
265 >    seleMan_.setSelectionSet(evaluator_.evaluate());
266 >
267 >    int selei;
268 >    StuntDouble* sd;
269 >    int idx;
270 >
271 >    RealType min_val;
272 >    bool min_found = false;  
273 >    StuntDouble* min_sd;
274 >
275 >    RealType max_val;
276 >    bool max_found = false;
277 >    StuntDouble* max_sd;
278 >
279 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
280 >         sd = seleMan_.nextSelected(selei)) {
281 >
282 >      idx = sd->getLocalIndex();
283 >
284 >      Vector3d pos = sd->getPos();
285 >
286 >      // wrap the stuntdouble's position back into the box:
287 >
288 >      if (usePeriodicBoundaryConditions_)
289 >        currentSnap_->wrapVector(pos);
290 >
291 >      // which bin is this stuntdouble in?
292 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
293 >
294 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
295 >
296 >
297 >      // if we're in bin 0 or the middleBin
298 >      if (binNo == 0 || binNo == midBin_) {
299 >        
300 >        RealType mass = sd->getMass();
301 >        Vector3d vel = sd->getVel();
302 >        RealType value;
303 >
304 >        switch(rnemdType_) {
305 >        case rnemdKineticSwap :
306 >          
307 >          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
308 >                          vel[2]*vel[2]);
309 >          /*
310 >            if (sd->isDirectional()) {
311 >            Vector3d angMom = sd->getJ();
312 >            Mat3x3d I = sd->getI();
313 >            
314 >            if (sd->isLinear()) {
315 >            int i = sd->linearAxis();
316 >            int j = (i + 1) % 3;
317 >            int k = (i + 2) % 3;
318 >            value += angMom[j] * angMom[j] / I(j, j) +
319 >            angMom[k] * angMom[k] / I(k, k);
320 >            } else {                        
321 >            value += angMom[0]*angMom[0]/I(0, 0)
322 >            + angMom[1]*angMom[1]/I(1, 1)
323 >            + angMom[2]*angMom[2]/I(2, 2);
324 >            }
325 >            } no exchange of angular momenta
326 >          */
327 >          //make exchangeSum_ comparable between swap & scale
328 >          //temporarily without using energyConvert
329 >          //value = value * 0.5 / PhysicalConstants::energyConvert;
330 >          value *= 0.5;
331 >          break;
332 >        case rnemdPx :
333 >          value = mass * vel[0];
334 >          break;
335 >        case rnemdPy :
336 >          value = mass * vel[1];
337 >          break;
338 >        case rnemdPz :
339 >          value = mass * vel[2];
340 >          break;
341 >        default :
342 >          break;
343 >        }
344 >        
345 >        if (binNo == 0) {
346 >          if (!min_found) {
347 >            min_val = value;
348 >            min_sd = sd;
349 >            min_found = true;
350 >          } else {
351 >            if (min_val > value) {
352 >              min_val = value;
353 >              min_sd = sd;
354 >            }
355 >          }
356 >        } else { //midBin_
357 >          if (!max_found) {
358 >            max_val = value;
359 >            max_sd = sd;
360 >            max_found = true;
361 >          } else {
362 >            if (max_val < value) {
363 >              max_val = value;
364 >              max_sd = sd;
365 >            }
366 >          }      
367 >        }
368 >      }
369 >    }
370 >
371 > #ifdef IS_MPI
372 >    int nProc, worldRank;
373 >
374 >    nProc = MPI::COMM_WORLD.Get_size();
375 >    worldRank = MPI::COMM_WORLD.Get_rank();
376 >
377 >    bool my_min_found = min_found;
378 >    bool my_max_found = max_found;
379 >
380 >    // Even if we didn't find a minimum, did someone else?
381 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
382 >    // Even if we didn't find a maximum, did someone else?
383 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
384 >    struct {
385 >      RealType val;
386 >      int rank;
387 >    } max_vals, min_vals;
388 >    
389 >    if (min_found) {
390 >      if (my_min_found)
391 >        min_vals.val = min_val;
392 >      else
393 >        min_vals.val = HONKING_LARGE_VALUE;
394 >      
395 >      min_vals.rank = worldRank;    
396 >      
397 >      // Who had the minimum?
398 >      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
399 >                                1, MPI::REALTYPE_INT, MPI::MINLOC);
400 >      min_val = min_vals.val;
401 >    }
402 >      
403 >    if (max_found) {
404 >      if (my_max_found)
405 >        max_vals.val = max_val;
406 >      else
407 >        max_vals.val = -HONKING_LARGE_VALUE;
408 >      
409 >      max_vals.rank = worldRank;    
410 >      
411 >      // Who had the maximum?
412 >      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
413 >                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
414 >      max_val = max_vals.val;
415 >    }
416 > #endif
417 >
418 >    if (max_found && min_found) {
419 >      if (min_val < max_val) {
420 >
421 > #ifdef IS_MPI      
422 >        if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
423 >          // I have both maximum and minimum, so proceed like a single
424 >          // processor version:
425 > #endif
426 >          // objects to be swapped: velocity ONLY
427 >          Vector3d min_vel = min_sd->getVel();
428 >          Vector3d max_vel = max_sd->getVel();
429 >          RealType temp_vel;
430 >          
431 >          switch(rnemdType_) {
432 >          case rnemdKineticSwap :
433 >            min_sd->setVel(max_vel);
434 >            max_sd->setVel(min_vel);
435 >            /*
436 >              if (min_sd->isDirectional() && max_sd->isDirectional()) {
437 >              Vector3d min_angMom = min_sd->getJ();
438 >              Vector3d max_angMom = max_sd->getJ();
439 >              min_sd->setJ(max_angMom);
440 >              max_sd->setJ(min_angMom);
441 >              } no angular momentum exchange
442 >            */
443 >            break;
444 >          case rnemdPx :
445 >            temp_vel = min_vel.x();
446 >            min_vel.x() = max_vel.x();
447 >            max_vel.x() = temp_vel;
448 >            min_sd->setVel(min_vel);
449 >            max_sd->setVel(max_vel);
450 >            break;
451 >          case rnemdPy :
452 >            temp_vel = min_vel.y();
453 >            min_vel.y() = max_vel.y();
454 >            max_vel.y() = temp_vel;
455 >            min_sd->setVel(min_vel);
456 >            max_sd->setVel(max_vel);
457 >            break;
458 >          case rnemdPz :
459 >            temp_vel = min_vel.z();
460 >            min_vel.z() = max_vel.z();
461 >            max_vel.z() = temp_vel;
462 >            min_sd->setVel(min_vel);
463 >            max_sd->setVel(max_vel);
464 >            break;
465 >          default :
466 >            break;
467 >          }
468 > #ifdef IS_MPI
469 >          // the rest of the cases only apply in parallel simulations:
470 >        } else if (max_vals.rank == worldRank) {
471 >          // I had the max, but not the minimum
472 >          
473 >          Vector3d min_vel;
474 >          Vector3d max_vel = max_sd->getVel();
475 >          MPI::Status status;
476 >
477 >          // point-to-point swap of the velocity vector
478 >          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
479 >                                   min_vals.rank, 0,
480 >                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
481 >                                   min_vals.rank, 0, status);
482 >          
483 >          switch(rnemdType_) {
484 >          case rnemdKineticSwap :
485 >            max_sd->setVel(min_vel);
486 >            //no angular momentum exchange for now
487 >            /*
488 >            if (max_sd->isDirectional()) {
489 >              Vector3d min_angMom;
490 >              Vector3d max_angMom = max_sd->getJ();
491 >              
492 >              // point-to-point swap of the angular momentum vector
493 >              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
494 >                                       MPI::REALTYPE, min_vals.rank, 1,
495 >                                       min_angMom.getArrayPointer(), 3,
496 >                                       MPI::REALTYPE, min_vals.rank, 1,
497 >                                       status);
498 >              
499 >              max_sd->setJ(min_angMom);
500 >             }
501 >             */            
502 >            break;
503 >          case rnemdPx :
504 >            max_vel.x() = min_vel.x();
505 >            max_sd->setVel(max_vel);
506 >            break;
507 >          case rnemdPy :
508 >            max_vel.y() = min_vel.y();
509 >            max_sd->setVel(max_vel);
510 >            break;
511 >          case rnemdPz :
512 >            max_vel.z() = min_vel.z();
513 >            max_sd->setVel(max_vel);
514 >            break;
515 >          default :
516 >            break;
517 >          }
518 >        } else if (min_vals.rank == worldRank) {
519 >          // I had the minimum but not the maximum:
520 >          
521 >          Vector3d max_vel;
522 >          Vector3d min_vel = min_sd->getVel();
523 >          MPI::Status status;
524 >          
525 >          // point-to-point swap of the velocity vector
526 >          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
527 >                                   max_vals.rank, 0,
528 >                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
529 >                                   max_vals.rank, 0, status);
530 >          
531 >          switch(rnemdType_) {
532 >          case rnemdKineticSwap :
533 >            min_sd->setVel(max_vel);
534 >            // no angular momentum exchange for now
535 >            /*
536 >            if (min_sd->isDirectional()) {
537 >              Vector3d min_angMom = min_sd->getJ();
538 >              Vector3d max_angMom;
539 >              
540 >              // point-to-point swap of the angular momentum vector
541 >              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
542 >                                       MPI::REALTYPE, max_vals.rank, 1,
543 >                                       max_angMom.getArrayPointer(), 3,
544 >                                       MPI::REALTYPE, max_vals.rank, 1,
545 >                                       status);
546 >              
547 >              min_sd->setJ(max_angMom);
548 >            }
549 >            */
550 >            break;
551 >          case rnemdPx :
552 >            min_vel.x() = max_vel.x();
553 >            min_sd->setVel(min_vel);
554 >            break;
555 >          case rnemdPy :
556 >            min_vel.y() = max_vel.y();
557 >            min_sd->setVel(min_vel);
558 >            break;
559 >          case rnemdPz :
560 >            min_vel.z() = max_vel.z();
561 >            min_sd->setVel(min_vel);
562 >            break;
563 >          default :
564 >            break;
565 >          }
566 >        }
567 > #endif
568 >        exchangeSum_ += max_val - min_val;
569 >      } else {        
570 >        sprintf(painCave.errMsg,
571 >                "RNEMD: exchange NOT performed because min_val > max_val\n");
572 >        painCave.isFatal = 0;
573 >        painCave.severity = OPENMD_INFO;
574 >        simError();        
575 >        failTrialCount_++;
576 >      }
577 >    } else {
578 >      sprintf(painCave.errMsg,
579 >              "RNEMD: exchange NOT performed because at least one\n"
580 >              "\tof the two slabs is empty\n");
581 >      painCave.isFatal = 0;
582 >      painCave.severity = OPENMD_INFO;
583 >      simError();        
584 >      failTrialCount_++;
585 >    }
586 >    
587 >  }
588 >  
589 >  void RNEMD::doScale() {
590 >
591 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
592 >    Mat3x3d hmat = currentSnap_->getHmat();
593 >
594 >    seleMan_.setSelectionSet(evaluator_.evaluate());
595 >
596 >    int selei;
597 >    StuntDouble* sd;
598 >    int idx;
599 >
600 >    vector<StuntDouble*> hotBin, coldBin;
601 >
602 >    RealType Phx = 0.0;
603 >    RealType Phy = 0.0;
604 >    RealType Phz = 0.0;
605 >    RealType Khx = 0.0;
606 >    RealType Khy = 0.0;
607 >    RealType Khz = 0.0;
608 >    RealType Pcx = 0.0;
609 >    RealType Pcy = 0.0;
610 >    RealType Pcz = 0.0;
611 >    RealType Kcx = 0.0;
612 >    RealType Kcy = 0.0;
613 >    RealType Kcz = 0.0;
614 >
615 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
616 >         sd = seleMan_.nextSelected(selei)) {
617 >
618 >      idx = sd->getLocalIndex();
619 >
620 >      Vector3d pos = sd->getPos();
621 >
622 >      // wrap the stuntdouble's position back into the box:
623 >
624 >      if (usePeriodicBoundaryConditions_)
625 >        currentSnap_->wrapVector(pos);
626 >
627 >      // which bin is this stuntdouble in?
628 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
629 >
630 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
631 >
632 >      // if we're in bin 0 or the middleBin
633 >      if (binNo == 0 || binNo == midBin_) {
634 >        
635 >        RealType mass = sd->getMass();
636 >        Vector3d vel = sd->getVel();
637 >      
638 >        if (binNo == 0) {
639 >          hotBin.push_back(sd);
640 >          Phx += mass * vel.x();
641 >          Phy += mass * vel.y();
642 >          Phz += mass * vel.z();
643 >          Khx += mass * vel.x() * vel.x();
644 >          Khy += mass * vel.y() * vel.y();
645 >          Khz += mass * vel.z() * vel.z();
646 >        } else { //midBin_
647 >          coldBin.push_back(sd);
648 >          Pcx += mass * vel.x();
649 >          Pcy += mass * vel.y();
650 >          Pcz += mass * vel.z();
651 >          Kcx += mass * vel.x() * vel.x();
652 >          Kcy += mass * vel.y() * vel.y();
653 >          Kcz += mass * vel.z() * vel.z();
654 >        }
655 >      }
656 >    }
657 >
658 >    Khx *= 0.5;
659 >    Khy *= 0.5;
660 >    Khz *= 0.5;
661 >    Kcx *= 0.5;
662 >    Kcy *= 0.5;
663 >    Kcz *= 0.5;
664 >
665 > #ifdef IS_MPI
666 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
667 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
668 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
669 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
670 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
671 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
672 >
673 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
674 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
675 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
676 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
677 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
678 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
679 > #endif
680 >
681 >    //use coldBin coeff's
682 >    RealType px = Pcx / Phx;
683 >    RealType py = Pcy / Phy;
684 >    RealType pz = Pcz / Phz;
685 >
686 >    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
687 >    switch(rnemdType_) {
688 >    case rnemdKineticScale :
689 >      // used hotBin coeff's & only scale x & y dimensions
690 >      /*
691 >      RealType px = Phx / Pcx;
692 >      RealType py = Phy / Pcy;
693 >      a110 = Khy;
694 >      c0 = - Khx - Khy - targetFlux_;
695 >      a000 = Khx;
696 >      a111 = Kcy * py * py;
697 >      b11 = -2.0 * Kcy * py * (1.0 + py);
698 >      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
699 >      b01 = -2.0 * Kcx * px * (1.0 + px);
700 >      a001 = Kcx * px * px;
701 >      */
702 >      //scale all three dimensions, let c_x = c_y
703 >      a000 = Kcx + Kcy;
704 >      a110 = Kcz;
705 >      c0 = targetFlux_ - Kcx - Kcy - Kcz;
706 >      a001 = Khx * px * px + Khy * py * py;
707 >      a111 = Khz * pz * pz;
708 >      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
709 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
710 >      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
711 >        + Khz * pz * (2.0 + pz) - targetFlux_;
712 >      break;
713 >    case rnemdPxScale :
714 >      c = 1 - targetFlux_ / Pcx;
715 >      a000 = Kcy;
716 >      a110 = Kcz;
717 >      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
718 >      a001 = py * py * Khy;
719 >      a111 = pz * pz * Khz;
720 >      b01 = -2.0 * Khy * py * (1.0 + py);
721 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
722 >      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
723 >        + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
724 >      break;
725 >    case rnemdPyScale :
726 >      c = 1 - targetFlux_ / Pcy;
727 >      a000 = Kcx;
728 >      a110 = Kcz;
729 >      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
730 >      a001 = px * px * Khx;
731 >      a111 = pz * pz * Khz;
732 >      b01 = -2.0 * Khx * px * (1.0 + px);
733 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
734 >      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
735 >        + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
736 >      break;
737 >    case rnemdPzScale ://we don't really do this, do we?
738 >      c = 1 - targetFlux_ / Pcz;
739 >      a000 = Kcx;
740 >      a110 = Kcy;
741 >      c0 = Kcz * c * c - Kcx - Kcy - Kcz;
742 >      a001 = px * px * Khx;
743 >      a111 = py * py * Khy;
744 >      b01 = -2.0 * Khx * px * (1.0 + px);
745 >      b11 = -2.0 * Khy * py * (1.0 + py);
746 >      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
747 >        + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
748 >      break;      
749 >    default :
750 >      break;
751 >    }
752 >
753 >    RealType v1 = a000 * a111 - a001 * a110;
754 >    RealType v2 = a000 * b01;
755 >    RealType v3 = a000 * b11;
756 >    RealType v4 = a000 * c1 - a001 * c0;
757 >    RealType v8 = a110 * b01;
758 >    RealType v10 = - b01 * c0;
759 >
760 >    RealType u0 = v2 * v10 - v4 * v4;
761 >    RealType u1 = -2.0 * v3 * v4;
762 >    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
763 >    RealType u3 = -2.0 * v1 * v3;
764 >    RealType u4 = - v1 * v1;
765 >    //rescale coefficients
766 >    RealType maxAbs = fabs(u0);
767 >    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
768 >    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
769 >    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
770 >    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
771 >    u0 /= maxAbs;
772 >    u1 /= maxAbs;
773 >    u2 /= maxAbs;
774 >    u3 /= maxAbs;
775 >    u4 /= maxAbs;
776 >    //max_element(start, end) is also available.
777 >    Polynomial<RealType> poly; //same as DoublePolynomial poly;
778 >    poly.setCoefficient(4, u4);
779 >    poly.setCoefficient(3, u3);
780 >    poly.setCoefficient(2, u2);
781 >    poly.setCoefficient(1, u1);
782 >    poly.setCoefficient(0, u0);
783 >    vector<RealType> realRoots = poly.FindRealRoots();
784 >
785 >    vector<RealType>::iterator ri;
786 >    RealType r1, r2, alpha0;
787 >    vector<pair<RealType,RealType> > rps;
788 >    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
789 >      r2 = *ri;
790 >      //check if FindRealRoots() give the right answer
791 >      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
792 >        sprintf(painCave.errMsg,
793 >                "RNEMD Warning: polynomial solve seems to have an error!");
794 >        painCave.isFatal = 0;
795 >        simError();
796 >        failRootCount_++;
797 >      }
798 >      //might not be useful w/o rescaling coefficients
799 >      alpha0 = -c0 - a110 * r2 * r2;
800 >      if (alpha0 >= 0.0) {
801 >        r1 = sqrt(alpha0 / a000);
802 >        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
803 >          { rps.push_back(make_pair(r1, r2)); }
804 >        if (r1 > 1e-6) { //r1 non-negative
805 >          r1 = -r1;
806 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
807 >            { rps.push_back(make_pair(r1, r2)); }
808 >        }
809 >      }
810 >    }
811 >    // Consider combining together the solving pair part w/ the searching
812 >    // best solution part so that we don't need the pairs vector
813 >    if (!rps.empty()) {
814 >      RealType smallestDiff = HONKING_LARGE_VALUE;
815 >      RealType diff;
816 >      pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
817 >      vector<pair<RealType,RealType> >::iterator rpi;
818 >      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
819 >        r1 = (*rpi).first;
820 >        r2 = (*rpi).second;
821 >        switch(rnemdType_) {
822 >        case rnemdKineticScale :
823 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
824 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
825 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
826 >          break;
827 >        case rnemdPxScale :
828 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
829 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
830 >          break;
831 >        case rnemdPyScale :
832 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
833 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
834 >          break;
835 >        case rnemdPzScale :
836 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
837 >            + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
838 >        default :
839 >          break;
840 >        }
841 >        if (diff < smallestDiff) {
842 >          smallestDiff = diff;
843 >          bestPair = *rpi;
844 >        }
845 >      }
846 > #ifdef IS_MPI
847 >      if (worldRank == 0) {
848 > #endif
849 >        sprintf(painCave.errMsg,
850 >                "RNEMD: roots r1= %lf\tr2 = %lf\n",
851 >                bestPair.first, bestPair.second);
852 >        painCave.isFatal = 0;
853 >        painCave.severity = OPENMD_INFO;
854 >        simError();
855 > #ifdef IS_MPI
856 >      }
857 > #endif
858 >      
859 >      RealType x, y, z;
860 >      switch(rnemdType_) {
861 >      case rnemdKineticScale :
862 >        x = bestPair.first;
863 >        y = bestPair.first;
864 >        z = bestPair.second;
865 >        break;
866 >      case rnemdPxScale :
867 >        x = c;
868 >        y = bestPair.first;
869 >        z = bestPair.second;
870 >        break;
871 >      case rnemdPyScale :
872 >        x = bestPair.first;
873 >        y = c;
874 >        z = bestPair.second;
875 >        break;
876 >      case rnemdPzScale :
877 >        x = bestPair.first;
878 >        y = bestPair.second;
879 >        z = c;
880 >        break;          
881 >      default :
882 >        break;
883 >      }
884 >      vector<StuntDouble*>::iterator sdi;
885 >      Vector3d vel;
886 >      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
887 >        vel = (*sdi)->getVel();
888 >        vel.x() *= x;
889 >        vel.y() *= y;
890 >        vel.z() *= z;
891 >        (*sdi)->setVel(vel);
892 >      }
893 >      //convert to hotBin coefficient
894 >      x = 1.0 + px * (1.0 - x);
895 >      y = 1.0 + py * (1.0 - y);
896 >      z = 1.0 + pz * (1.0 - z);
897 >      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
898 >        vel = (*sdi)->getVel();
899 >        vel.x() *= x;
900 >        vel.y() *= y;
901 >        vel.z() *= z;
902 >        (*sdi)->setVel(vel);
903 >      }
904 >      exchangeSum_ += targetFlux_;
905 >      //we may want to check whether the exchange has been successful
906 >    } else {
907 >      sprintf(painCave.errMsg,
908 >              "RNEMD: exchange NOT performed!\n");
909 >      painCave.isFatal = 0;
910 >      painCave.severity = OPENMD_INFO;
911 >      simError();        
912 >      failTrialCount_++;
913 >    }
914 >
915 >  }
916 >
917 >  void RNEMD::doRNEMD() {
918 >
919 >    switch(rnemdType_) {
920 >    case rnemdKineticScale :
921 >    case rnemdPxScale :
922 >    case rnemdPyScale :
923 >    case rnemdPzScale :
924 >      doScale();
925 >      break;
926 >    case rnemdKineticSwap :
927 >    case rnemdPx :
928 >    case rnemdPy :
929 >    case rnemdPz :
930 >      doSwap();
931 >      break;
932 >    case rnemdUnknown :
933 >    default :
934 >      break;
935 >    }
936 >  }
937 >
938 >  void RNEMD::collectData() {
939 >
940 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
941 >    Mat3x3d hmat = currentSnap_->getHmat();
942 >
943 >    seleMan_.setSelectionSet(evaluator_.evaluate());
944 >
945 >    int selei;
946 >    StuntDouble* sd;
947 >    int idx;
948 >
949 >    // alternative approach, track all molecules instead of only those
950 >    // selected for scaling/swapping:
951 >    /*
952 >    SimInfo::MoleculeIterator miter;
953 >    vector<StuntDouble*>::iterator iiter;
954 >    Molecule* mol;
955 >    StuntDouble* integrableObject;
956 >    for (mol = info_->beginMolecule(miter); mol != NULL;
957 >         mol = info_->nextMolecule(miter))
958 >      integrableObject is essentially sd
959 >        for (integrableObject = mol->beginIntegrableObject(iiter);
960 >             integrableObject != NULL;
961 >             integrableObject = mol->nextIntegrableObject(iiter))
962 >    */
963 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
964 >         sd = seleMan_.nextSelected(selei)) {
965 >      
966 >      idx = sd->getLocalIndex();
967 >      
968 >      Vector3d pos = sd->getPos();
969 >
970 >      // wrap the stuntdouble's position back into the box:
971 >      
972 >      if (usePeriodicBoundaryConditions_)
973 >        currentSnap_->wrapVector(pos);
974 >      
975 >      // which bin is this stuntdouble in?
976 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
977 >      
978 >      int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
979 >        rnemdLogWidth_;
980 >      // no symmetrization allowed due to arbitary rnemdLogWidth_ value
981 >      /*
982 >      if (rnemdLogWidth_ == midBin_ + 1)
983 >        if (binNo > midBin_)
984 >          binNo = nBins_ - binNo;
985 >      */
986 >      RealType mass = sd->getMass();
987 >      Vector3d vel = sd->getVel();
988 >      RealType value;
989 >      RealType xVal, yVal, zVal;
990 >
991 >      switch(rnemdType_) {
992 >      case rnemdKineticSwap :
993 >      case rnemdKineticScale :
994 >        
995 >        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
996 >        
997 >        valueCount_[binNo] += 3;
998 >        if (sd->isDirectional()) {
999 >          Vector3d angMom = sd->getJ();
1000 >          Mat3x3d I = sd->getI();
1001 >          
1002 >          if (sd->isLinear()) {
1003 >            int i = sd->linearAxis();
1004 >            int j = (i + 1) % 3;
1005 >            int k = (i + 2) % 3;
1006 >            value += angMom[j] * angMom[j] / I(j, j) +
1007 >              angMom[k] * angMom[k] / I(k, k);
1008 >            
1009 >            valueCount_[binNo] +=2;
1010 >            
1011 >          } else {
1012 >            value += angMom[0]*angMom[0]/I(0, 0)
1013 >              + angMom[1]*angMom[1]/I(1, 1)
1014 >              + angMom[2]*angMom[2]/I(2, 2);
1015 >            valueCount_[binNo] +=3;
1016 >          }
1017 >        }
1018 >        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1019 >        
1020 >        break;
1021 >      case rnemdPx :
1022 >      case rnemdPxScale :
1023 >        value = mass * vel[0];
1024 >        valueCount_[binNo]++;
1025 >        break;
1026 >      case rnemdPy :
1027 >      case rnemdPyScale :
1028 >        value = mass * vel[1];
1029 >        valueCount_[binNo]++;
1030 >        break;
1031 >      case rnemdPz :
1032 >      case rnemdPzScale :
1033 >        value = pos.z(); //temporarily for homogeneous systems ONLY
1034 >        valueCount_[binNo]++;
1035 >        break;
1036 >      case rnemdUnknown :
1037 >      default :
1038 >        value = 1.0;
1039 >        valueCount_[binNo]++;
1040 >        break;
1041 >      }
1042 >      valueHist_[binNo] += value;
1043 >
1044 >      if (output3DTemp_) {
1045 >        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
1046 >          / PhysicalConstants::kb;
1047 >        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1048 >          / PhysicalConstants::kb;
1049 >        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1050 >          / PhysicalConstants::kb;
1051 >        xTempHist_[binNo] += xVal;
1052 >        yTempHist_[binNo] += yVal;
1053 >        zTempHist_[binNo] += zVal;
1054 >        xyzTempCount_[binNo]++;
1055 >      }
1056 >    }
1057 >  }
1058 >
1059 >  void RNEMD::getStarted() {
1060 >    collectData();
1061 >    /* now should be able to output profile in step 0, but might not be useful
1062 >       Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1063 >       Stats& stat = currentSnap_->statData;
1064 >       stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1065 >    */
1066 >    getStatus();
1067 >  }
1068 >
1069 >  void RNEMD::getStatus() {
1070 >
1071 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1072 >    Stats& stat = currentSnap_->statData;
1073 >    RealType time = currentSnap_->getTime();
1074 >
1075 >    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1076 >    //or to be more meaningful, define another item as exchangeSum_ / time
1077 >    int j;
1078 >
1079 > #ifdef IS_MPI
1080 >
1081 >    // all processors have the same number of bins, and STL vectors pack their
1082 >    // arrays, so in theory, this should be safe:
1083 >
1084 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
1085 >                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1086 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
1087 >                              rnemdLogWidth_, MPI::INT, MPI::SUM);
1088 >    if (output3DTemp_) {
1089 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1090 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1091 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1092 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1093 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1094 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1095 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1096 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1097 >    }
1098 >    // If we're the root node, should we print out the results
1099 >    int worldRank = MPI::COMM_WORLD.Get_rank();
1100 >    if (worldRank == 0) {
1101 > #endif
1102 >      rnemdLog_ << time;
1103 >      for (j = 0; j < rnemdLogWidth_; j++) {
1104 >        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
1105 >      }
1106 >      rnemdLog_ << "\n";
1107 >      if (output3DTemp_) {
1108 >        xTempLog_ << time;      
1109 >        for (j = 0; j < rnemdLogWidth_; j++) {
1110 >          xTempLog_ << "\t" << xTempHist_[j] / (RealType)xyzTempCount_[j];
1111 >        }
1112 >        xTempLog_ << "\n";
1113 >        yTempLog_ << time;
1114 >        for (j = 0; j < rnemdLogWidth_; j++) {
1115 >          yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1116 >        }
1117 >        yTempLog_ << "\n";
1118 >        zTempLog_ << time;
1119 >        for (j = 0; j < rnemdLogWidth_; j++) {
1120 >          zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1121 >        }
1122 >        zTempLog_ << "\n";
1123 >      }
1124 > #ifdef IS_MPI
1125 >    }
1126 > #endif
1127 >    for (j = 0; j < rnemdLogWidth_; j++) {
1128 >      valueCount_[j] = 0;
1129 >      valueHist_[j] = 0.0;
1130 >    }
1131 >    if (output3DTemp_)
1132 >      for (j = 0; j < rnemdLogWidth_; j++) {
1133 >        xTempHist_[j] = 0.0;
1134 >        yTempHist_[j] = 0.0;
1135 >        zTempHist_[j] = 0.0;
1136 >        xyzTempCount_[j] = 0;
1137 >      }
1138 >  }
1139   }

Comparing:
trunk/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
branches/development/src/integrators/RNEMD.cpp (property svn:keywords), Revision 1629 by gezelter, Wed Sep 14 21:15:17 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines