ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
Revision: 1777
Committed: Thu Aug 9 18:35:09 2012 UTC (12 years, 8 months ago) by gezelter
File size: 57097 byte(s)
Log Message:
Various fixes for the RNEMD output.

File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1722 * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41    
42 skuang 1368 #include <cmath>
43 gezelter 1731 #include "rnemd/RNEMD.hpp"
44 gezelter 1332 #include "math/Vector3.hpp"
45 gezelter 1722 #include "math/Vector.hpp"
46 gezelter 1329 #include "math/SquareMatrix3.hpp"
47 skuang 1368 #include "math/Polynomial.hpp"
48 gezelter 1329 #include "primitives/Molecule.hpp"
49     #include "primitives/StuntDouble.hpp"
50 gezelter 1390 #include "utils/PhysicalConstants.hpp"
51 gezelter 1332 #include "utils/Tuple.hpp"
52 gezelter 1773 #ifdef IS_MPI
53 gezelter 1723 #include <mpi.h>
54 gezelter 1329 #endif
55    
56 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
57 gezelter 1329
58 gezelter 1629 using namespace std;
59 gezelter 1390 namespace OpenMD {
60 gezelter 1329
61 gezelter 1629 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
62     usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63 skuang 1368
64 gezelter 1773 trialCount_ = 0;
65 skuang 1368 failTrialCount_ = 0;
66     failRootCount_ = 0;
67    
68 gezelter 1329 int seedValue;
69     Globals * simParams = info->getSimParams();
70 gezelter 1731 RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
71 skuang 1330
72 gezelter 1776 doRNEMD_ = rnemdParams->getUseRNEMD();
73     if (!doRNEMD_) return;
74    
75 gezelter 1773 stringToMethod_["Swap"] = rnemdSwap;
76     stringToMethod_["NIVS"] = rnemdNIVS;
77     stringToMethod_["VSS"] = rnemdVSS;
78 skuang 1330
79 gezelter 1773 stringToFluxType_["KE"] = rnemdKE;
80     stringToFluxType_["Px"] = rnemdPx;
81     stringToFluxType_["Py"] = rnemdPy;
82     stringToFluxType_["Pz"] = rnemdPz;
83 gezelter 1777 stringToFluxType_["Pvector"] = rnemdPvector;
84 gezelter 1773 stringToFluxType_["KE+Px"] = rnemdKePx;
85     stringToFluxType_["KE+Py"] = rnemdKePy;
86     stringToFluxType_["KE+Pvector"] = rnemdKePvector;
87    
88 jmarr 1728 runTime_ = simParams->getRunTime();
89     statusTime_ = simParams->getStatusTime();
90    
91 gezelter 1731 rnemdObjectSelection_ = rnemdParams->getObjectSelection();
92 skuang 1341 evaluator_.loadScriptString(rnemdObjectSelection_);
93     seleMan_.setSelectionSet(evaluator_.evaluate());
94 gezelter 1331
95 gezelter 1773 const string methStr = rnemdParams->getMethod();
96     bool hasFluxType = rnemdParams->haveFluxType();
97    
98     string fluxStr;
99     if (hasFluxType) {
100     fluxStr = rnemdParams->getFluxType();
101     } else {
102     sprintf(painCave.errMsg,
103     "RNEMD: No fluxType was set in the md file. This parameter,\n"
104     "\twhich must be one of the following values:\n"
105 gezelter 1777 "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n"
106     "\tmust be set to use RNEMD\n");
107 gezelter 1773 painCave.isFatal = 1;
108     painCave.severity = OPENMD_ERROR;
109     simError();
110     }
111    
112     bool hasKineticFlux = rnemdParams->haveKineticFlux();
113     bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
114     bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
115     bool hasSlabWidth = rnemdParams->haveSlabWidth();
116     bool hasSlabACenter = rnemdParams->haveSlabACenter();
117     bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
118     bool hasOutputFileName = rnemdParams->haveOutputFileName();
119     bool hasOutputFields = rnemdParams->haveOutputFields();
120    
121     map<string, RNEMDMethod>::iterator i;
122     i = stringToMethod_.find(methStr);
123     if (i != stringToMethod_.end())
124     rnemdMethod_ = i->second;
125     else {
126     sprintf(painCave.errMsg,
127     "RNEMD: The current method,\n"
128     "\t\t%s is not one of the recognized\n"
129     "\texchange methods: Swap, NIVS, or VSS\n",
130     methStr.c_str());
131     painCave.isFatal = 1;
132     painCave.severity = OPENMD_ERROR;
133     simError();
134     }
135    
136     map<string, RNEMDFluxType>::iterator j;
137     j = stringToFluxType_.find(fluxStr);
138     if (j != stringToFluxType_.end())
139     rnemdFluxType_ = j->second;
140     else {
141     sprintf(painCave.errMsg,
142     "RNEMD: The current fluxType,\n"
143     "\t\t%s\n"
144     "\tis not one of the recognized flux types.\n",
145     fluxStr.c_str());
146     painCave.isFatal = 1;
147     painCave.severity = OPENMD_ERROR;
148     simError();
149     }
150    
151     bool methodFluxMismatch = false;
152     bool hasCorrectFlux = false;
153     switch(rnemdMethod_) {
154     case rnemdSwap:
155     switch (rnemdFluxType_) {
156     case rnemdKE:
157     hasCorrectFlux = hasKineticFlux;
158     break;
159     case rnemdPx:
160     case rnemdPy:
161     case rnemdPz:
162     hasCorrectFlux = hasMomentumFlux;
163     break;
164     default :
165     methodFluxMismatch = true;
166     break;
167     }
168     break;
169     case rnemdNIVS:
170     switch (rnemdFluxType_) {
171     case rnemdKE:
172     case rnemdRotKE:
173     case rnemdFullKE:
174     hasCorrectFlux = hasKineticFlux;
175     break;
176     case rnemdPx:
177     case rnemdPy:
178     case rnemdPz:
179     hasCorrectFlux = hasMomentumFlux;
180     break;
181     case rnemdKePx:
182     case rnemdKePy:
183     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
184     break;
185     default:
186     methodFluxMismatch = true;
187     break;
188     }
189     break;
190     case rnemdVSS:
191     switch (rnemdFluxType_) {
192     case rnemdKE:
193     case rnemdRotKE:
194     case rnemdFullKE:
195     hasCorrectFlux = hasKineticFlux;
196     break;
197     case rnemdPx:
198     case rnemdPy:
199     case rnemdPz:
200     hasCorrectFlux = hasMomentumFlux;
201     break;
202     case rnemdPvector:
203     hasCorrectFlux = hasMomentumFluxVector;
204 gezelter 1777 break;
205 gezelter 1773 case rnemdKePx:
206     case rnemdKePy:
207     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
208     break;
209     case rnemdKePvector:
210     hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
211     break;
212     default:
213     methodFluxMismatch = true;
214     break;
215     }
216     default:
217     break;
218     }
219    
220     if (methodFluxMismatch) {
221     sprintf(painCave.errMsg,
222     "RNEMD: The current method,\n"
223     "\t\t%s\n"
224     "\tcannot be used with the current flux type, %s\n",
225     methStr.c_str(), fluxStr.c_str());
226     painCave.isFatal = 1;
227     painCave.severity = OPENMD_ERROR;
228     simError();
229     }
230     if (!hasCorrectFlux) {
231     sprintf(painCave.errMsg,
232 gezelter 1777 "RNEMD: The current method, %s, and flux type, %s,\n"
233 gezelter 1773 "\tdid not have the correct flux value specified. Options\n"
234     "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
235     methStr.c_str(), fluxStr.c_str());
236     painCave.isFatal = 1;
237     painCave.severity = OPENMD_ERROR;
238     simError();
239     }
240    
241     if (hasKineticFlux) {
242 gezelter 1777 // convert the kcal / mol / Angstroms^2 / fs values in the md file
243     // into amu / fs^3:
244     kineticFlux_ = rnemdParams->getKineticFlux()
245     * PhysicalConstants::energyConvert;
246 gezelter 1773 } else {
247     kineticFlux_ = 0.0;
248     }
249     if (hasMomentumFluxVector) {
250     momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
251     } else {
252     momentumFluxVector_ = V3Zero;
253     if (hasMomentumFlux) {
254     RealType momentumFlux = rnemdParams->getMomentumFlux();
255     switch (rnemdFluxType_) {
256     case rnemdPx:
257     momentumFluxVector_.x() = momentumFlux;
258     break;
259     case rnemdPy:
260     momentumFluxVector_.y() = momentumFlux;
261     break;
262     case rnemdPz:
263     momentumFluxVector_.z() = momentumFlux;
264     break;
265     case rnemdKePx:
266     momentumFluxVector_.x() = momentumFlux;
267     break;
268     case rnemdKePy:
269     momentumFluxVector_.y() = momentumFlux;
270     break;
271     default:
272     break;
273     }
274     }
275     }
276    
277 skuang 1341 // do some sanity checking
278    
279     int selectionCount = seleMan_.getSelectionCount();
280     int nIntegrable = info->getNGlobalIntegrableObjects();
281    
282     if (selectionCount > nIntegrable) {
283     sprintf(painCave.errMsg,
284 gezelter 1773 "RNEMD: The current objectSelection,\n"
285 skuang 1341 "\t\t%s\n"
286     "\thas resulted in %d selected objects. However,\n"
287     "\tthe total number of integrable objects in the system\n"
288     "\tis only %d. This is almost certainly not what you want\n"
289     "\tto do. A likely cause of this is forgetting the _RB_0\n"
290     "\tselector in the selection script!\n",
291     rnemdObjectSelection_.c_str(),
292     selectionCount, nIntegrable);
293     painCave.isFatal = 0;
294 gezelter 1629 painCave.severity = OPENMD_WARNING;
295 skuang 1341 simError();
296     }
297 skuang 1330
298 gezelter 1774 areaAccumulator_ = new Accumulator();
299    
300 gezelter 1773 nBins_ = rnemdParams->getOutputBins();
301 skuang 1330
302 gezelter 1773 data_.resize(RNEMD::ENDINDEX);
303     OutputData z;
304     z.units = "Angstroms";
305     z.title = "Z";
306     z.dataType = "RealType";
307     z.accumulator.reserve(nBins_);
308     for (unsigned int i = 0; i < nBins_; i++)
309     z.accumulator.push_back( new Accumulator() );
310     data_[Z] = z;
311     outputMap_["Z"] = Z;
312 skuang 1368
313 gezelter 1773 OutputData temperature;
314     temperature.units = "K";
315     temperature.title = "Temperature";
316     temperature.dataType = "RealType";
317     temperature.accumulator.reserve(nBins_);
318     for (unsigned int i = 0; i < nBins_; i++)
319     temperature.accumulator.push_back( new Accumulator() );
320     data_[TEMPERATURE] = temperature;
321     outputMap_["TEMPERATURE"] = TEMPERATURE;
322 gezelter 1722
323 gezelter 1773 OutputData velocity;
324 gezelter 1777 velocity.units = "angstroms/fs";
325 gezelter 1773 velocity.title = "Velocity";
326     velocity.dataType = "Vector3d";
327     velocity.accumulator.reserve(nBins_);
328     for (unsigned int i = 0; i < nBins_; i++)
329     velocity.accumulator.push_back( new VectorAccumulator() );
330     data_[VELOCITY] = velocity;
331     outputMap_["VELOCITY"] = VELOCITY;
332 skuang 1368
333 gezelter 1773 OutputData density;
334     density.units = "g cm^-3";
335     density.title = "Density";
336     density.dataType = "RealType";
337     density.accumulator.reserve(nBins_);
338     for (unsigned int i = 0; i < nBins_; i++)
339     density.accumulator.push_back( new Accumulator() );
340     data_[DENSITY] = density;
341     outputMap_["DENSITY"] = DENSITY;
342 skuang 1368
343 gezelter 1773 if (hasOutputFields) {
344     parseOutputFileFormat(rnemdParams->getOutputFields());
345     } else {
346     outputMask_.set(Z);
347     switch (rnemdFluxType_) {
348     case rnemdKE:
349     case rnemdRotKE:
350     case rnemdFullKE:
351     outputMask_.set(TEMPERATURE);
352     break;
353     case rnemdPx:
354     case rnemdPy:
355     outputMask_.set(VELOCITY);
356     break;
357     case rnemdPz:
358     case rnemdPvector:
359     outputMask_.set(VELOCITY);
360     outputMask_.set(DENSITY);
361     break;
362     case rnemdKePx:
363     case rnemdKePy:
364     outputMask_.set(TEMPERATURE);
365     outputMask_.set(VELOCITY);
366     break;
367     case rnemdKePvector:
368     outputMask_.set(TEMPERATURE);
369     outputMask_.set(VELOCITY);
370     outputMask_.set(DENSITY);
371     break;
372     default:
373     break;
374 gezelter 1629 }
375     }
376 gezelter 1773
377     if (hasOutputFileName) {
378     rnemdFileName_ = rnemdParams->getOutputFileName();
379 skuang 1368 } else {
380 gezelter 1773 rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
381     }
382 gezelter 1722
383 gezelter 1773 exchangeTime_ = rnemdParams->getExchangeTime();
384 skuang 1338
385 gezelter 1773 Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
386     Mat3x3d hmat = currentSnap_->getHmat();
387    
388     // Target exchange quantities (in each exchange) = 2 Lx Ly dt flux
389     // Lx, Ly = box dimensions in x & y
390     // dt = exchange time interval
391     // flux = target flux
392 skuang 1368
393 gezelter 1774 RealType area = currentSnap_->getXYarea();
394     kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
395     momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
396 gezelter 1773
397     // total exchange sums are zeroed out at the beginning:
398    
399     kineticExchange_ = 0.0;
400     momentumExchange_ = V3Zero;
401    
402     if (hasSlabWidth)
403     slabWidth_ = rnemdParams->getSlabWidth();
404     else
405     slabWidth_ = hmat(2,2) / 10.0;
406    
407     if (hasSlabACenter)
408     slabACenter_ = rnemdParams->getSlabACenter();
409     else
410     slabACenter_ = 0.0;
411    
412     if (hasSlabBCenter)
413     slabBCenter_ = rnemdParams->getSlabBCenter();
414     else
415     slabBCenter_ = hmat(2,2) / 2.0;
416    
417 gezelter 1329 }
418 gezelter 1773
419 gezelter 1329 RNEMD::~RNEMD() {
420 gezelter 1776 if (!doRNEMD_) return;
421 skuang 1368 #ifdef IS_MPI
422     if (worldRank == 0) {
423     #endif
424 gezelter 1722
425 gezelter 1773 writeOutputFile();
426    
427     rnemdFile_.close();
428 jmarr 1728
429 skuang 1368 #ifdef IS_MPI
430     }
431     #endif
432 gezelter 1329 }
433 gezelter 1773
434     bool RNEMD::inSlabA(Vector3d pos) {
435     return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
436     }
437     bool RNEMD::inSlabB(Vector3d pos) {
438     return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
439     }
440 skuang 1330
441 gezelter 1329 void RNEMD::doSwap() {
442 gezelter 1776 if (!doRNEMD_) return;
443 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
444     Mat3x3d hmat = currentSnap_->getHmat();
445    
446 gezelter 1331 seleMan_.setSelectionSet(evaluator_.evaluate());
447    
448 gezelter 1333 int selei;
449 gezelter 1331 StuntDouble* sd;
450 gezelter 1333 int idx;
451 gezelter 1331
452 skuang 1338 RealType min_val;
453     bool min_found = false;
454     StuntDouble* min_sd;
455    
456     RealType max_val;
457     bool max_found = false;
458     StuntDouble* max_sd;
459    
460 gezelter 1333 for (sd = seleMan_.beginSelected(selei); sd != NULL;
461     sd = seleMan_.nextSelected(selei)) {
462 gezelter 1332
463 gezelter 1333 idx = sd->getLocalIndex();
464    
465 gezelter 1331 Vector3d pos = sd->getPos();
466 gezelter 1332
467     // wrap the stuntdouble's position back into the box:
468    
469 gezelter 1331 if (usePeriodicBoundaryConditions_)
470 gezelter 1332 currentSnap_->wrapVector(pos);
471 gezelter 1773 bool inA = inSlabA(pos);
472     bool inB = inSlabB(pos);
473 gezelter 1332
474 gezelter 1773 if (inA || inB) {
475 gezelter 1332
476     RealType mass = sd->getMass();
477     Vector3d vel = sd->getVel();
478     RealType value;
479 gezelter 1773
480     switch(rnemdFluxType_) {
481     case rnemdKE :
482 gezelter 1332
483 gezelter 1722 value = mass * vel.lengthSquare();
484    
485     if (sd->isDirectional()) {
486 gezelter 1332 Vector3d angMom = sd->getJ();
487     Mat3x3d I = sd->getI();
488    
489     if (sd->isLinear()) {
490 gezelter 1722 int i = sd->linearAxis();
491     int j = (i + 1) % 3;
492     int k = (i + 2) % 3;
493     value += angMom[j] * angMom[j] / I(j, j) +
494     angMom[k] * angMom[k] / I(k, k);
495 gezelter 1332 } else {
496 gezelter 1722 value += angMom[0]*angMom[0]/I(0, 0)
497     + angMom[1]*angMom[1]/I(1, 1)
498     + angMom[2]*angMom[2]/I(2, 2);
499 gezelter 1332 }
500 gezelter 1722 } //angular momenta exchange enabled
501 skuang 1368 value *= 0.5;
502 gezelter 1332 break;
503     case rnemdPx :
504     value = mass * vel[0];
505     break;
506     case rnemdPy :
507     value = mass * vel[1];
508     break;
509     case rnemdPz :
510     value = mass * vel[2];
511     break;
512     default :
513     break;
514     }
515    
516 gezelter 1773 if (inA == 0) {
517 skuang 1338 if (!min_found) {
518     min_val = value;
519     min_sd = sd;
520     min_found = true;
521     } else {
522     if (min_val > value) {
523     min_val = value;
524     min_sd = sd;
525     }
526     }
527 gezelter 1773 } else {
528 skuang 1338 if (!max_found) {
529     max_val = value;
530     max_sd = sd;
531     max_found = true;
532     } else {
533     if (max_val < value) {
534     max_val = value;
535     max_sd = sd;
536     }
537     }
538     }
539 gezelter 1332 }
540 gezelter 1331 }
541 gezelter 1773
542 gezelter 1350 #ifdef IS_MPI
543     int nProc, worldRank;
544 gezelter 1773
545 gezelter 1350 nProc = MPI::COMM_WORLD.Get_size();
546     worldRank = MPI::COMM_WORLD.Get_rank();
547    
548     bool my_min_found = min_found;
549     bool my_max_found = max_found;
550    
551     // Even if we didn't find a minimum, did someone else?
552 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
553 gezelter 1350 // Even if we didn't find a maximum, did someone else?
554 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
555 gezelter 1722 #endif
556    
557     if (max_found && min_found) {
558    
559     #ifdef IS_MPI
560     struct {
561     RealType val;
562     int rank;
563     } max_vals, min_vals;
564 jmarr 1728
565 gezelter 1722 if (my_min_found) {
566 gezelter 1350 min_vals.val = min_val;
567 gezelter 1722 } else {
568 gezelter 1350 min_vals.val = HONKING_LARGE_VALUE;
569 gezelter 1722 }
570 gezelter 1350 min_vals.rank = worldRank;
571    
572     // Who had the minimum?
573     MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
574     1, MPI::REALTYPE_INT, MPI::MINLOC);
575     min_val = min_vals.val;
576    
577 gezelter 1722 if (my_max_found) {
578 gezelter 1350 max_vals.val = max_val;
579 gezelter 1722 } else {
580 gezelter 1350 max_vals.val = -HONKING_LARGE_VALUE;
581 gezelter 1722 }
582 gezelter 1350 max_vals.rank = worldRank;
583    
584     // Who had the maximum?
585     MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
586     1, MPI::REALTYPE_INT, MPI::MAXLOC);
587     max_val = max_vals.val;
588     #endif
589 gezelter 1722
590 gezelter 1629 if (min_val < max_val) {
591 gezelter 1722
592 gezelter 1350 #ifdef IS_MPI
593     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
594     // I have both maximum and minimum, so proceed like a single
595     // processor version:
596     #endif
597 gezelter 1722
598 gezelter 1350 Vector3d min_vel = min_sd->getVel();
599     Vector3d max_vel = max_sd->getVel();
600     RealType temp_vel;
601    
602 gezelter 1773 switch(rnemdFluxType_) {
603     case rnemdKE :
604 gezelter 1350 min_sd->setVel(max_vel);
605     max_sd->setVel(min_vel);
606 gezelter 1722 if (min_sd->isDirectional() && max_sd->isDirectional()) {
607 gezelter 1350 Vector3d min_angMom = min_sd->getJ();
608     Vector3d max_angMom = max_sd->getJ();
609     min_sd->setJ(max_angMom);
610     max_sd->setJ(min_angMom);
611 gezelter 1722 }//angular momenta exchange enabled
612     //assumes same rigid body identity
613 gezelter 1350 break;
614     case rnemdPx :
615     temp_vel = min_vel.x();
616     min_vel.x() = max_vel.x();
617     max_vel.x() = temp_vel;
618     min_sd->setVel(min_vel);
619     max_sd->setVel(max_vel);
620     break;
621     case rnemdPy :
622     temp_vel = min_vel.y();
623     min_vel.y() = max_vel.y();
624     max_vel.y() = temp_vel;
625     min_sd->setVel(min_vel);
626     max_sd->setVel(max_vel);
627     break;
628     case rnemdPz :
629     temp_vel = min_vel.z();
630     min_vel.z() = max_vel.z();
631     max_vel.z() = temp_vel;
632     min_sd->setVel(min_vel);
633     max_sd->setVel(max_vel);
634     break;
635     default :
636     break;
637     }
638 gezelter 1722
639 gezelter 1350 #ifdef IS_MPI
640     // the rest of the cases only apply in parallel simulations:
641     } else if (max_vals.rank == worldRank) {
642     // I had the max, but not the minimum
643    
644     Vector3d min_vel;
645     Vector3d max_vel = max_sd->getVel();
646     MPI::Status status;
647 skuang 1341
648 gezelter 1350 // point-to-point swap of the velocity vector
649     MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
650     min_vals.rank, 0,
651     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
652     min_vals.rank, 0, status);
653    
654 gezelter 1773 switch(rnemdFluxType_) {
655     case rnemdKE :
656 gezelter 1350 max_sd->setVel(min_vel);
657 gezelter 1722 //angular momenta exchange enabled
658 gezelter 1350 if (max_sd->isDirectional()) {
659     Vector3d min_angMom;
660     Vector3d max_angMom = max_sd->getJ();
661 gezelter 1629
662 gezelter 1350 // point-to-point swap of the angular momentum vector
663     MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
664     MPI::REALTYPE, min_vals.rank, 1,
665     min_angMom.getArrayPointer(), 3,
666     MPI::REALTYPE, min_vals.rank, 1,
667     status);
668 gezelter 1629
669 gezelter 1350 max_sd->setJ(min_angMom);
670 gezelter 1722 }
671 gezelter 1350 break;
672     case rnemdPx :
673     max_vel.x() = min_vel.x();
674     max_sd->setVel(max_vel);
675     break;
676     case rnemdPy :
677     max_vel.y() = min_vel.y();
678     max_sd->setVel(max_vel);
679     break;
680     case rnemdPz :
681     max_vel.z() = min_vel.z();
682     max_sd->setVel(max_vel);
683     break;
684     default :
685     break;
686 skuang 1341 }
687 gezelter 1350 } else if (min_vals.rank == worldRank) {
688     // I had the minimum but not the maximum:
689    
690     Vector3d max_vel;
691     Vector3d min_vel = min_sd->getVel();
692     MPI::Status status;
693    
694     // point-to-point swap of the velocity vector
695     MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
696     max_vals.rank, 0,
697     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
698     max_vals.rank, 0, status);
699    
700 gezelter 1773 switch(rnemdFluxType_) {
701     case rnemdKE :
702 gezelter 1350 min_sd->setVel(max_vel);
703 gezelter 1722 //angular momenta exchange enabled
704 gezelter 1350 if (min_sd->isDirectional()) {
705     Vector3d min_angMom = min_sd->getJ();
706     Vector3d max_angMom;
707 gezelter 1629
708 gezelter 1350 // point-to-point swap of the angular momentum vector
709     MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
710     MPI::REALTYPE, max_vals.rank, 1,
711     max_angMom.getArrayPointer(), 3,
712     MPI::REALTYPE, max_vals.rank, 1,
713     status);
714 gezelter 1629
715 gezelter 1350 min_sd->setJ(max_angMom);
716     }
717     break;
718     case rnemdPx :
719     min_vel.x() = max_vel.x();
720     min_sd->setVel(min_vel);
721     break;
722     case rnemdPy :
723     min_vel.y() = max_vel.y();
724     min_sd->setVel(min_vel);
725     break;
726     case rnemdPz :
727     min_vel.z() = max_vel.z();
728     min_sd->setVel(min_vel);
729     break;
730     default :
731     break;
732     }
733     }
734     #endif
735 gezelter 1773
736     switch(rnemdFluxType_) {
737     case rnemdKE:
738     kineticExchange_ += max_val - min_val;
739     break;
740     case rnemdPx:
741     momentumExchange_.x() += max_val - min_val;
742     break;
743     case rnemdPy:
744     momentumExchange_.y() += max_val - min_val;
745     break;
746     case rnemdPz:
747     momentumExchange_.z() += max_val - min_val;
748     break;
749     default:
750     break;
751     }
752 gezelter 1629 } else {
753     sprintf(painCave.errMsg,
754 gezelter 1773 "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
755 gezelter 1629 painCave.isFatal = 0;
756     painCave.severity = OPENMD_INFO;
757     simError();
758 skuang 1368 failTrialCount_++;
759 skuang 1338 }
760     } else {
761 gezelter 1629 sprintf(painCave.errMsg,
762 gezelter 1773 "RNEMD::doSwap exchange NOT performed because selected object\n"
763     "\twas not present in at least one of the two slabs.\n");
764 gezelter 1629 painCave.isFatal = 0;
765     painCave.severity = OPENMD_INFO;
766     simError();
767 skuang 1368 failTrialCount_++;
768 gezelter 1773 }
769 skuang 1338 }
770 gezelter 1350
771 gezelter 1773 void RNEMD::doNIVS() {
772 gezelter 1776 if (!doRNEMD_) return;
773 skuang 1338 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
774     Mat3x3d hmat = currentSnap_->getHmat();
775    
776     seleMan_.setSelectionSet(evaluator_.evaluate());
777    
778     int selei;
779     StuntDouble* sd;
780     int idx;
781    
782 gezelter 1629 vector<StuntDouble*> hotBin, coldBin;
783 gezelter 1350
784 skuang 1368 RealType Phx = 0.0;
785     RealType Phy = 0.0;
786     RealType Phz = 0.0;
787     RealType Khx = 0.0;
788     RealType Khy = 0.0;
789     RealType Khz = 0.0;
790 gezelter 1722 RealType Khw = 0.0;
791 skuang 1368 RealType Pcx = 0.0;
792     RealType Pcy = 0.0;
793     RealType Pcz = 0.0;
794     RealType Kcx = 0.0;
795     RealType Kcy = 0.0;
796     RealType Kcz = 0.0;
797 gezelter 1722 RealType Kcw = 0.0;
798 skuang 1368
799 skuang 1338 for (sd = seleMan_.beginSelected(selei); sd != NULL;
800     sd = seleMan_.nextSelected(selei)) {
801 skuang 1368
802     idx = sd->getLocalIndex();
803    
804     Vector3d pos = sd->getPos();
805    
806     // wrap the stuntdouble's position back into the box:
807    
808     if (usePeriodicBoundaryConditions_)
809     currentSnap_->wrapVector(pos);
810    
811     // which bin is this stuntdouble in?
812 gezelter 1773 bool inA = inSlabA(pos);
813     bool inB = inSlabB(pos);
814 skuang 1368
815 gezelter 1773 if (inA || inB) {
816    
817 skuang 1368 RealType mass = sd->getMass();
818     Vector3d vel = sd->getVel();
819    
820 gezelter 1773 if (inA) {
821 skuang 1368 hotBin.push_back(sd);
822     Phx += mass * vel.x();
823     Phy += mass * vel.y();
824     Phz += mass * vel.z();
825     Khx += mass * vel.x() * vel.x();
826     Khy += mass * vel.y() * vel.y();
827     Khz += mass * vel.z() * vel.z();
828 gezelter 1722 if (sd->isDirectional()) {
829     Vector3d angMom = sd->getJ();
830     Mat3x3d I = sd->getI();
831     if (sd->isLinear()) {
832     int i = sd->linearAxis();
833     int j = (i + 1) % 3;
834     int k = (i + 2) % 3;
835     Khw += angMom[j] * angMom[j] / I(j, j) +
836     angMom[k] * angMom[k] / I(k, k);
837     } else {
838     Khw += angMom[0]*angMom[0]/I(0, 0)
839     + angMom[1]*angMom[1]/I(1, 1)
840     + angMom[2]*angMom[2]/I(2, 2);
841     }
842     }
843 gezelter 1773 } else {
844 skuang 1368 coldBin.push_back(sd);
845     Pcx += mass * vel.x();
846     Pcy += mass * vel.y();
847     Pcz += mass * vel.z();
848     Kcx += mass * vel.x() * vel.x();
849     Kcy += mass * vel.y() * vel.y();
850     Kcz += mass * vel.z() * vel.z();
851 gezelter 1722 if (sd->isDirectional()) {
852     Vector3d angMom = sd->getJ();
853     Mat3x3d I = sd->getI();
854     if (sd->isLinear()) {
855     int i = sd->linearAxis();
856     int j = (i + 1) % 3;
857     int k = (i + 2) % 3;
858     Kcw += angMom[j] * angMom[j] / I(j, j) +
859     angMom[k] * angMom[k] / I(k, k);
860     } else {
861     Kcw += angMom[0]*angMom[0]/I(0, 0)
862     + angMom[1]*angMom[1]/I(1, 1)
863     + angMom[2]*angMom[2]/I(2, 2);
864     }
865     }
866 skuang 1368 }
867     }
868     }
869 gezelter 1722
870 skuang 1368 Khx *= 0.5;
871     Khy *= 0.5;
872     Khz *= 0.5;
873 gezelter 1722 Khw *= 0.5;
874 skuang 1368 Kcx *= 0.5;
875     Kcy *= 0.5;
876     Kcz *= 0.5;
877 gezelter 1722 Kcw *= 0.5;
878 skuang 1368
879     #ifdef IS_MPI
880     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
881     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
882     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
883     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
884     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
885     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
886    
887     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
888     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
889     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
890 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
891    
892 skuang 1368 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
893     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
894     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
895 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
896 skuang 1368 #endif
897    
898 gezelter 1722 //solve coldBin coeff's first
899 skuang 1368 RealType px = Pcx / Phx;
900     RealType py = Pcy / Phy;
901     RealType pz = Pcz / Phz;
902 gezelter 1722 RealType c, x, y, z;
903     bool successfulScale = false;
904 gezelter 1773 if ((rnemdFluxType_ == rnemdFullKE) ||
905     (rnemdFluxType_ == rnemdRotKE)) {
906 gezelter 1722 //may need sanity check Khw & Kcw > 0
907 skuang 1368
908 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
909     c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
910 gezelter 1722 } else {
911 gezelter 1773 c = 1.0 - kineticTarget_ / Kcw;
912 gezelter 1722 }
913 skuang 1368
914 gezelter 1722 if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
915     c = sqrt(c);
916 gezelter 1773 //std::cerr << "cold slab scaling coefficient: " << c << endl;
917 gezelter 1722 //now convert to hotBin coefficient
918     RealType w = 0.0;
919 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
920 gezelter 1722 x = 1.0 + px * (1.0 - c);
921     y = 1.0 + py * (1.0 - c);
922     z = 1.0 + pz * (1.0 - c);
923     /* more complicated way
924     w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
925     + Khx * px * px + Khy * py * py + Khz * pz * pz)
926     - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
927     + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
928     + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
929     - Kcx - Kcy - Kcz)) / Khw; the following is simpler
930     */
931     if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
932     (fabs(z - 1.0) < 0.1)) {
933 gezelter 1773 w = 1.0 + (kineticTarget_
934     + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
935 gezelter 1722 + Khz * (1.0 - z * z)) / Khw;
936     }//no need to calculate w if x, y or z is out of range
937     } else {
938 gezelter 1773 w = 1.0 + kineticTarget_ / Khw;
939 gezelter 1722 }
940     if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
941     //if w is in the right range, so should be x, y, z.
942     vector<StuntDouble*>::iterator sdi;
943     Vector3d vel;
944     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
945 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
946 gezelter 1722 vel = (*sdi)->getVel() * c;
947     (*sdi)->setVel(vel);
948     }
949     if ((*sdi)->isDirectional()) {
950     Vector3d angMom = (*sdi)->getJ() * c;
951     (*sdi)->setJ(angMom);
952     }
953     }
954     w = sqrt(w);
955 gezelter 1773 // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
956     // << "\twh= " << w << endl;
957 gezelter 1722 for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
958 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
959 gezelter 1722 vel = (*sdi)->getVel();
960     vel.x() *= x;
961     vel.y() *= y;
962     vel.z() *= z;
963     (*sdi)->setVel(vel);
964     }
965     if ((*sdi)->isDirectional()) {
966     Vector3d angMom = (*sdi)->getJ() * w;
967     (*sdi)->setJ(angMom);
968     }
969     }
970     successfulScale = true;
971 gezelter 1773 kineticExchange_ += kineticTarget_;
972 gezelter 1722 }
973 skuang 1368 }
974 gezelter 1722 } else {
975     RealType a000, a110, c0, a001, a111, b01, b11, c1;
976 gezelter 1773 switch(rnemdFluxType_) {
977     case rnemdKE :
978 gezelter 1722 /* used hotBin coeff's & only scale x & y dimensions
979     RealType px = Phx / Pcx;
980     RealType py = Phy / Pcy;
981     a110 = Khy;
982 gezelter 1773 c0 = - Khx - Khy - kineticTarget_;
983 gezelter 1722 a000 = Khx;
984     a111 = Kcy * py * py;
985     b11 = -2.0 * Kcy * py * (1.0 + py);
986 gezelter 1773 c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
987 gezelter 1722 b01 = -2.0 * Kcx * px * (1.0 + px);
988     a001 = Kcx * px * px;
989     */
990     //scale all three dimensions, let c_x = c_y
991     a000 = Kcx + Kcy;
992     a110 = Kcz;
993 gezelter 1773 c0 = kineticTarget_ - Kcx - Kcy - Kcz;
994 gezelter 1722 a001 = Khx * px * px + Khy * py * py;
995     a111 = Khz * pz * pz;
996     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
997     b11 = -2.0 * Khz * pz * (1.0 + pz);
998     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
999 gezelter 1773 + Khz * pz * (2.0 + pz) - kineticTarget_;
1000 gezelter 1722 break;
1001 gezelter 1773 case rnemdPx :
1002     c = 1 - momentumTarget_.x() / Pcx;
1003 gezelter 1722 a000 = Kcy;
1004     a110 = Kcz;
1005     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1006     a001 = py * py * Khy;
1007     a111 = pz * pz * Khz;
1008     b01 = -2.0 * Khy * py * (1.0 + py);
1009     b11 = -2.0 * Khz * pz * (1.0 + pz);
1010     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1011     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1012     break;
1013 gezelter 1773 case rnemdPy :
1014     c = 1 - momentumTarget_.y() / Pcy;
1015 gezelter 1722 a000 = Kcx;
1016     a110 = Kcz;
1017     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1018     a001 = px * px * Khx;
1019     a111 = pz * pz * Khz;
1020     b01 = -2.0 * Khx * px * (1.0 + px);
1021     b11 = -2.0 * Khz * pz * (1.0 + pz);
1022     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1023     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1024     break;
1025 gezelter 1773 case rnemdPz ://we don't really do this, do we?
1026     c = 1 - momentumTarget_.z() / Pcz;
1027 gezelter 1722 a000 = Kcx;
1028     a110 = Kcy;
1029     c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1030     a001 = px * px * Khx;
1031     a111 = py * py * Khy;
1032     b01 = -2.0 * Khx * px * (1.0 + px);
1033     b11 = -2.0 * Khy * py * (1.0 + py);
1034     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1035     + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1036     break;
1037     default :
1038     break;
1039 skuang 1368 }
1040 gezelter 1722
1041     RealType v1 = a000 * a111 - a001 * a110;
1042     RealType v2 = a000 * b01;
1043     RealType v3 = a000 * b11;
1044     RealType v4 = a000 * c1 - a001 * c0;
1045     RealType v8 = a110 * b01;
1046     RealType v10 = - b01 * c0;
1047    
1048     RealType u0 = v2 * v10 - v4 * v4;
1049     RealType u1 = -2.0 * v3 * v4;
1050     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1051     RealType u3 = -2.0 * v1 * v3;
1052     RealType u4 = - v1 * v1;
1053     //rescale coefficients
1054     RealType maxAbs = fabs(u0);
1055     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1056     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1057     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1058     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1059     u0 /= maxAbs;
1060     u1 /= maxAbs;
1061     u2 /= maxAbs;
1062     u3 /= maxAbs;
1063     u4 /= maxAbs;
1064     //max_element(start, end) is also available.
1065     Polynomial<RealType> poly; //same as DoublePolynomial poly;
1066     poly.setCoefficient(4, u4);
1067     poly.setCoefficient(3, u3);
1068     poly.setCoefficient(2, u2);
1069     poly.setCoefficient(1, u1);
1070     poly.setCoefficient(0, u0);
1071     vector<RealType> realRoots = poly.FindRealRoots();
1072    
1073     vector<RealType>::iterator ri;
1074     RealType r1, r2, alpha0;
1075     vector<pair<RealType,RealType> > rps;
1076     for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1077     r2 = *ri;
1078     //check if FindRealRoots() give the right answer
1079     if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1080     sprintf(painCave.errMsg,
1081     "RNEMD Warning: polynomial solve seems to have an error!");
1082     painCave.isFatal = 0;
1083     simError();
1084     failRootCount_++;
1085     }
1086     //might not be useful w/o rescaling coefficients
1087     alpha0 = -c0 - a110 * r2 * r2;
1088     if (alpha0 >= 0.0) {
1089     r1 = sqrt(alpha0 / a000);
1090     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1091     < 1e-6)
1092     { rps.push_back(make_pair(r1, r2)); }
1093     if (r1 > 1e-6) { //r1 non-negative
1094     r1 = -r1;
1095     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1096     < 1e-6)
1097     { rps.push_back(make_pair(r1, r2)); }
1098     }
1099     }
1100 skuang 1368 }
1101 gezelter 1722 // Consider combining together the solving pair part w/ the searching
1102     // best solution part so that we don't need the pairs vector
1103     if (!rps.empty()) {
1104     RealType smallestDiff = HONKING_LARGE_VALUE;
1105     RealType diff;
1106     pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1107     vector<pair<RealType,RealType> >::iterator rpi;
1108     for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1109     r1 = (*rpi).first;
1110     r2 = (*rpi).second;
1111 gezelter 1773 switch(rnemdFluxType_) {
1112     case rnemdKE :
1113 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1114     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1115     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1116     break;
1117 gezelter 1773 case rnemdPx :
1118 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1119     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1120     break;
1121 gezelter 1773 case rnemdPy :
1122 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1123     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1124     break;
1125 gezelter 1773 case rnemdPz :
1126 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1127     + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1128     default :
1129     break;
1130     }
1131     if (diff < smallestDiff) {
1132     smallestDiff = diff;
1133     bestPair = *rpi;
1134     }
1135     }
1136 skuang 1368 #ifdef IS_MPI
1137 gezelter 1722 if (worldRank == 0) {
1138 skuang 1368 #endif
1139 gezelter 1773 // sprintf(painCave.errMsg,
1140     // "RNEMD: roots r1= %lf\tr2 = %lf\n",
1141     // bestPair.first, bestPair.second);
1142     // painCave.isFatal = 0;
1143     // painCave.severity = OPENMD_INFO;
1144     // simError();
1145 skuang 1368 #ifdef IS_MPI
1146 gezelter 1722 }
1147 skuang 1368 #endif
1148 gezelter 1722
1149 gezelter 1773 switch(rnemdFluxType_) {
1150     case rnemdKE :
1151 gezelter 1722 x = bestPair.first;
1152     y = bestPair.first;
1153     z = bestPair.second;
1154     break;
1155 gezelter 1773 case rnemdPx :
1156 gezelter 1722 x = c;
1157     y = bestPair.first;
1158     z = bestPair.second;
1159     break;
1160 gezelter 1773 case rnemdPy :
1161 gezelter 1722 x = bestPair.first;
1162     y = c;
1163     z = bestPair.second;
1164     break;
1165 gezelter 1773 case rnemdPz :
1166 gezelter 1722 x = bestPair.first;
1167     y = bestPair.second;
1168     z = c;
1169     break;
1170     default :
1171     break;
1172     }
1173     vector<StuntDouble*>::iterator sdi;
1174     Vector3d vel;
1175     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1176     vel = (*sdi)->getVel();
1177     vel.x() *= x;
1178     vel.y() *= y;
1179     vel.z() *= z;
1180     (*sdi)->setVel(vel);
1181     }
1182     //convert to hotBin coefficient
1183     x = 1.0 + px * (1.0 - x);
1184     y = 1.0 + py * (1.0 - y);
1185     z = 1.0 + pz * (1.0 - z);
1186     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1187     vel = (*sdi)->getVel();
1188     vel.x() *= x;
1189     vel.y() *= y;
1190     vel.z() *= z;
1191     (*sdi)->setVel(vel);
1192     }
1193     successfulScale = true;
1194 gezelter 1773 switch(rnemdFluxType_) {
1195     case rnemdKE :
1196     kineticExchange_ += kineticTarget_;
1197     break;
1198     case rnemdPx :
1199     case rnemdPy :
1200     case rnemdPz :
1201     momentumExchange_ += momentumTarget_;
1202     break;
1203     default :
1204     break;
1205     }
1206 gezelter 1629 }
1207 gezelter 1722 }
1208     if (successfulScale != true) {
1209     sprintf(painCave.errMsg,
1210 gezelter 1773 "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1211     "\tthe constraint equations may not exist or there may be\n"
1212     "\tno selected objects in one or both slabs.\n");
1213 gezelter 1722 painCave.isFatal = 0;
1214     painCave.severity = OPENMD_INFO;
1215     simError();
1216     failTrialCount_++;
1217     }
1218     }
1219    
1220 gezelter 1773 void RNEMD::doVSS() {
1221 gezelter 1776 if (!doRNEMD_) return;
1222 gezelter 1722 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1223 jmarr 1728 RealType time = currentSnap_->getTime();
1224 gezelter 1722 Mat3x3d hmat = currentSnap_->getHmat();
1225    
1226     seleMan_.setSelectionSet(evaluator_.evaluate());
1227    
1228     int selei;
1229     StuntDouble* sd;
1230     int idx;
1231    
1232     vector<StuntDouble*> hotBin, coldBin;
1233    
1234     Vector3d Ph(V3Zero);
1235     RealType Mh = 0.0;
1236     RealType Kh = 0.0;
1237     Vector3d Pc(V3Zero);
1238     RealType Mc = 0.0;
1239     RealType Kc = 0.0;
1240 jmarr 1728
1241 gezelter 1722
1242     for (sd = seleMan_.beginSelected(selei); sd != NULL;
1243     sd = seleMan_.nextSelected(selei)) {
1244    
1245     idx = sd->getLocalIndex();
1246    
1247     Vector3d pos = sd->getPos();
1248    
1249     // wrap the stuntdouble's position back into the box:
1250    
1251     if (usePeriodicBoundaryConditions_)
1252     currentSnap_->wrapVector(pos);
1253    
1254     // which bin is this stuntdouble in?
1255 gezelter 1773 bool inA = inSlabA(pos);
1256     bool inB = inSlabB(pos);
1257    
1258     if (inA || inB) {
1259 gezelter 1722
1260     RealType mass = sd->getMass();
1261     Vector3d vel = sd->getVel();
1262    
1263 gezelter 1773 if (inA) {
1264 gezelter 1722 hotBin.push_back(sd);
1265     //std::cerr << "before, velocity = " << vel << endl;
1266     Ph += mass * vel;
1267     //std::cerr << "after, velocity = " << vel << endl;
1268     Mh += mass;
1269     Kh += mass * vel.lengthSquare();
1270 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1271 gezelter 1722 if (sd->isDirectional()) {
1272     Vector3d angMom = sd->getJ();
1273     Mat3x3d I = sd->getI();
1274     if (sd->isLinear()) {
1275     int i = sd->linearAxis();
1276     int j = (i + 1) % 3;
1277     int k = (i + 2) % 3;
1278     Kh += angMom[j] * angMom[j] / I(j, j) +
1279     angMom[k] * angMom[k] / I(k, k);
1280     } else {
1281     Kh += angMom[0] * angMom[0] / I(0, 0) +
1282     angMom[1] * angMom[1] / I(1, 1) +
1283     angMom[2] * angMom[2] / I(2, 2);
1284     }
1285     }
1286     }
1287     } else { //midBin_
1288     coldBin.push_back(sd);
1289     Pc += mass * vel;
1290     Mc += mass;
1291     Kc += mass * vel.lengthSquare();
1292 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1293 gezelter 1722 if (sd->isDirectional()) {
1294     Vector3d angMom = sd->getJ();
1295     Mat3x3d I = sd->getI();
1296     if (sd->isLinear()) {
1297     int i = sd->linearAxis();
1298     int j = (i + 1) % 3;
1299     int k = (i + 2) % 3;
1300     Kc += angMom[j] * angMom[j] / I(j, j) +
1301     angMom[k] * angMom[k] / I(k, k);
1302     } else {
1303     Kc += angMom[0] * angMom[0] / I(0, 0) +
1304     angMom[1] * angMom[1] / I(1, 1) +
1305     angMom[2] * angMom[2] / I(2, 2);
1306     }
1307     }
1308     }
1309     }
1310 skuang 1368 }
1311 gezelter 1722 }
1312    
1313     Kh *= 0.5;
1314     Kc *= 0.5;
1315    
1316 jmarr 1728 // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1317     // << "\tKc= " << Kc << endl;
1318     // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1319    
1320 gezelter 1722 #ifdef IS_MPI
1321     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1322     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1323     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1324     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1325     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1326     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1327     #endif
1328    
1329     bool successfulExchange = false;
1330     if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1331     Vector3d vc = Pc / Mc;
1332 gezelter 1773 Vector3d ac = -momentumTarget_ / Mc + vc;
1333     Vector3d acrec = -momentumTarget_ / Mc;
1334     RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1335 gezelter 1722 if (cNumerator > 0.0) {
1336     RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1337     if (cDenominator > 0.0) {
1338     RealType c = sqrt(cNumerator / cDenominator);
1339     if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1340     Vector3d vh = Ph / Mh;
1341 gezelter 1773 Vector3d ah = momentumTarget_ / Mh + vh;
1342     Vector3d ahrec = momentumTarget_ / Mh;
1343     RealType hNumerator = Kh + kineticTarget_
1344 gezelter 1722 - 0.5 * Mh * ah.lengthSquare();
1345     if (hNumerator > 0.0) {
1346     RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1347     if (hDenominator > 0.0) {
1348     RealType h = sqrt(hNumerator / hDenominator);
1349     if ((h > 0.9) && (h < 1.1)) {
1350 jmarr 1728 // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1351     // std::cerr << "hot slab scaling coefficient: " << h << "\n";
1352 gezelter 1722 vector<StuntDouble*>::iterator sdi;
1353     Vector3d vel;
1354     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1355     //vel = (*sdi)->getVel();
1356     vel = ((*sdi)->getVel() - vc) * c + ac;
1357     (*sdi)->setVel(vel);
1358 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1359 gezelter 1722 if ((*sdi)->isDirectional()) {
1360     Vector3d angMom = (*sdi)->getJ() * c;
1361     (*sdi)->setJ(angMom);
1362     }
1363     }
1364     }
1365     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1366     //vel = (*sdi)->getVel();
1367     vel = ((*sdi)->getVel() - vh) * h + ah;
1368     (*sdi)->setVel(vel);
1369 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1370 gezelter 1722 if ((*sdi)->isDirectional()) {
1371     Vector3d angMom = (*sdi)->getJ() * h;
1372     (*sdi)->setJ(angMom);
1373     }
1374     }
1375     }
1376     successfulExchange = true;
1377 gezelter 1773 kineticExchange_ += kineticTarget_;
1378     momentumExchange_ += momentumTarget_;
1379 gezelter 1722 }
1380     }
1381     }
1382     }
1383     }
1384 skuang 1368 }
1385 gezelter 1722 }
1386     if (successfulExchange != true) {
1387 gezelter 1773 sprintf(painCave.errMsg,
1388     "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1389     "\tthe constraint equations may not exist or there may be\n"
1390     "\tno selected objects in one or both slabs.\n");
1391     painCave.isFatal = 0;
1392     painCave.severity = OPENMD_INFO;
1393     simError();
1394 skuang 1368 failTrialCount_++;
1395     }
1396     }
1397    
1398     void RNEMD::doRNEMD() {
1399 gezelter 1776 if (!doRNEMD_) return;
1400 gezelter 1773 trialCount_++;
1401     switch(rnemdMethod_) {
1402     case rnemdSwap:
1403 skuang 1368 doSwap();
1404     break;
1405 gezelter 1773 case rnemdNIVS:
1406     doNIVS();
1407 gezelter 1722 break;
1408 gezelter 1773 case rnemdVSS:
1409     doVSS();
1410     break;
1411     case rnemdUnkownMethod:
1412 skuang 1368 default :
1413     break;
1414     }
1415     }
1416    
1417     void RNEMD::collectData() {
1418 gezelter 1776 if (!doRNEMD_) return;
1419 skuang 1368 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1420     Mat3x3d hmat = currentSnap_->getHmat();
1421    
1422 gezelter 1774 areaAccumulator_->add(currentSnap_->getXYarea());
1423    
1424 skuang 1368 seleMan_.setSelectionSet(evaluator_.evaluate());
1425    
1426     int selei;
1427     StuntDouble* sd;
1428     int idx;
1429    
1430 gezelter 1773 vector<RealType> binMass(nBins_, 0.0);
1431     vector<RealType> binPx(nBins_, 0.0);
1432     vector<RealType> binPy(nBins_, 0.0);
1433     vector<RealType> binPz(nBins_, 0.0);
1434     vector<RealType> binKE(nBins_, 0.0);
1435     vector<int> binDOF(nBins_, 0);
1436     vector<int> binCount(nBins_, 0);
1437 jmarr 1728
1438 gezelter 1629 // alternative approach, track all molecules instead of only those
1439     // selected for scaling/swapping:
1440     /*
1441     SimInfo::MoleculeIterator miter;
1442     vector<StuntDouble*>::iterator iiter;
1443     Molecule* mol;
1444 gezelter 1769 StuntDouble* sd;
1445 gezelter 1629 for (mol = info_->beginMolecule(miter); mol != NULL;
1446 jmarr 1728 mol = info_->nextMolecule(miter))
1447 gezelter 1769 sd is essentially sd
1448     for (sd = mol->beginIntegrableObject(iiter);
1449     sd != NULL;
1450     sd = mol->nextIntegrableObject(iiter))
1451 gezelter 1629 */
1452 skuang 1368 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1453     sd = seleMan_.nextSelected(selei)) {
1454 skuang 1338
1455     idx = sd->getLocalIndex();
1456    
1457     Vector3d pos = sd->getPos();
1458    
1459     // wrap the stuntdouble's position back into the box:
1460    
1461     if (usePeriodicBoundaryConditions_)
1462     currentSnap_->wrapVector(pos);
1463 gezelter 1773
1464 gezelter 1774
1465 skuang 1338 // which bin is this stuntdouble in?
1466     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1467 gezelter 1773 // Shift molecules by half a box to have bins start at 0
1468     // The modulo operator is used to wrap the case when we are
1469     // beyond the end of the bins back to the beginning.
1470     int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1471    
1472 skuang 1338 RealType mass = sd->getMass();
1473     Vector3d vel = sd->getVel();
1474    
1475 gezelter 1773 binCount[binNo]++;
1476     binMass[binNo] += mass;
1477     binPx[binNo] += mass*vel.x();
1478     binPy[binNo] += mass*vel.y();
1479     binPz[binNo] += mass*vel.z();
1480     binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1481     binDOF[binNo] += 3;
1482    
1483     if (sd->isDirectional()) {
1484     Vector3d angMom = sd->getJ();
1485     Mat3x3d I = sd->getI();
1486     if (sd->isLinear()) {
1487     int i = sd->linearAxis();
1488     int j = (i + 1) % 3;
1489     int k = (i + 2) % 3;
1490     binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1491     angMom[k] * angMom[k] / I(k, k));
1492     binDOF[binNo] += 2;
1493     } else {
1494     binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1495     angMom[1] * angMom[1] / I(1, 1) +
1496     angMom[2] * angMom[2] / I(2, 2));
1497     binDOF[binNo] += 3;
1498     }
1499 gezelter 1722 }
1500 gezelter 1773 }
1501    
1502 gezelter 1629
1503 gezelter 1773 #ifdef IS_MPI
1504     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1505     nBins_, MPI::INT, MPI::SUM);
1506     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1507     nBins_, MPI::REALTYPE, MPI::SUM);
1508     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1509     nBins_, MPI::REALTYPE, MPI::SUM);
1510     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1511     nBins_, MPI::REALTYPE, MPI::SUM);
1512     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1513     nBins_, MPI::REALTYPE, MPI::SUM);
1514     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1515     nBins_, MPI::REALTYPE, MPI::SUM);
1516     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1517     nBins_, MPI::INT, MPI::SUM);
1518     #endif
1519    
1520     Vector3d vel;
1521     RealType den;
1522     RealType temp;
1523     RealType z;
1524     for (int i = 0; i < nBins_; i++) {
1525     z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1526     vel.x() = binPx[i] / binMass[i];
1527     vel.y() = binPy[i] / binMass[i];
1528     vel.z() = binPz[i] / binMass[i];
1529 gezelter 1777
1530     den = binMass[i] * nBins_ * PhysicalConstants::densityConvert
1531     / currentSnap_->getVolume() ;
1532    
1533 gezelter 1773 temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1534     PhysicalConstants::energyConvert);
1535    
1536     for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1537     if(outputMask_[j]) {
1538     switch(j) {
1539     case Z:
1540     (data_[j].accumulator[i])->add(z);
1541     break;
1542     case TEMPERATURE:
1543     data_[j].accumulator[i]->add(temp);
1544     break;
1545     case VELOCITY:
1546     dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1547     break;
1548     case DENSITY:
1549     data_[j].accumulator[i]->add(den);
1550     break;
1551     }
1552     }
1553 gezelter 1629 }
1554 skuang 1338 }
1555 skuang 1368 }
1556    
1557     void RNEMD::getStarted() {
1558 gezelter 1776 if (!doRNEMD_) return;
1559 gezelter 1629 collectData();
1560 gezelter 1773 writeOutputFile();
1561 skuang 1368 }
1562    
1563 gezelter 1773 void RNEMD::parseOutputFileFormat(const std::string& format) {
1564 gezelter 1776 if (!doRNEMD_) return;
1565 gezelter 1773 StringTokenizer tokenizer(format, " ,;|\t\n\r");
1566    
1567     while(tokenizer.hasMoreTokens()) {
1568     std::string token(tokenizer.nextToken());
1569     toUpper(token);
1570     OutputMapType::iterator i = outputMap_.find(token);
1571     if (i != outputMap_.end()) {
1572     outputMask_.set(i->second);
1573     } else {
1574     sprintf( painCave.errMsg,
1575     "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1576     "\toutputFileFormat keyword.\n", token.c_str() );
1577     painCave.isFatal = 0;
1578     painCave.severity = OPENMD_ERROR;
1579     simError();
1580     }
1581     }
1582     }
1583    
1584     void RNEMD::writeOutputFile() {
1585 gezelter 1776 if (!doRNEMD_) return;
1586 gezelter 1773
1587 gezelter 1350 #ifdef IS_MPI
1588     // If we're the root node, should we print out the results
1589     int worldRank = MPI::COMM_WORLD.Get_rank();
1590     if (worldRank == 0) {
1591     #endif
1592 gezelter 1773 rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1593    
1594     if( !rnemdFile_ ){
1595     sprintf( painCave.errMsg,
1596     "Could not open \"%s\" for RNEMD output.\n",
1597     rnemdFileName_.c_str());
1598     painCave.isFatal = 1;
1599     simError();
1600     }
1601 gezelter 1722
1602 gezelter 1773 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1603    
1604     RealType time = currentSnap_->getTime();
1605 gezelter 1774 RealType avgArea;
1606     areaAccumulator_->getAverage(avgArea);
1607 gezelter 1777 RealType Jz = kineticExchange_ / (2.0 * time * avgArea)
1608     / PhysicalConstants::energyConvert;
1609 gezelter 1774 Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);
1610    
1611 gezelter 1773 rnemdFile_ << "#######################################################\n";
1612     rnemdFile_ << "# RNEMD {\n";
1613    
1614     map<string, RNEMDMethod>::iterator mi;
1615     for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1616     if ( (*mi).second == rnemdMethod_)
1617 gezelter 1774 rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n";
1618 skuang 1368 }
1619 gezelter 1773 map<string, RNEMDFluxType>::iterator fi;
1620     for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1621     if ( (*fi).second == rnemdFluxType_)
1622 gezelter 1774 rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n";
1623 gezelter 1722 }
1624 gezelter 1773
1625 gezelter 1775 rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n";
1626 gezelter 1773
1627     rnemdFile_ << "# objectSelection = \""
1628 gezelter 1774 << rnemdObjectSelection_ << "\";\n";
1629     rnemdFile_ << "# slabWidth = " << slabWidth_ << ";\n";
1630     rnemdFile_ << "# slabAcenter = " << slabACenter_ << ";\n";
1631     rnemdFile_ << "# slabBcenter = " << slabBCenter_ << ";\n";
1632 gezelter 1773 rnemdFile_ << "# }\n";
1633     rnemdFile_ << "#######################################################\n";
1634 gezelter 1774 rnemdFile_ << "# RNEMD report:\n";
1635     rnemdFile_ << "# running time = " << time << " fs\n";
1636     rnemdFile_ << "# target flux:\n";
1637 gezelter 1777 rnemdFile_ << "# kinetic = "
1638     << kineticFlux_ / PhysicalConstants::energyConvert
1639     << " (kcal/mol/A^2/fs)\n";
1640     rnemdFile_ << "# momentum = " << momentumFluxVector_
1641     << " (amu/A/fs^2)\n";
1642 gezelter 1774 rnemdFile_ << "# target one-time exchanges:\n";
1643 gezelter 1777 rnemdFile_ << "# kinetic = "
1644     << kineticTarget_ / PhysicalConstants::energyConvert
1645     << " (kcal/mol)\n";
1646     rnemdFile_ << "# momentum = " << momentumTarget_
1647     << " (amu*A/fs)\n";
1648 gezelter 1774 rnemdFile_ << "# actual exchange totals:\n";
1649 gezelter 1777 rnemdFile_ << "# kinetic = "
1650     << kineticExchange_ / PhysicalConstants::energyConvert
1651     << " (kcal/mol)\n";
1652     rnemdFile_ << "# momentum = " << momentumExchange_
1653     << " (amu*A/fs)\n";
1654 gezelter 1774 rnemdFile_ << "# actual flux:\n";
1655 gezelter 1777 rnemdFile_ << "# kinetic = " << Jz
1656     << " (kcal/mol/A^2/fs)\n";
1657     rnemdFile_ << "# momentum = " << JzP
1658     << " (amu/A/fs^2)\n";
1659 gezelter 1774 rnemdFile_ << "# exchange statistics:\n";
1660     rnemdFile_ << "# attempted = " << trialCount_ << "\n";
1661     rnemdFile_ << "# failed = " << failTrialCount_ << "\n";
1662 gezelter 1773 if (rnemdMethod_ == rnemdNIVS) {
1663 gezelter 1774 rnemdFile_ << "# NIVS root-check errors = "
1664     << failRootCount_ << "\n";
1665 gezelter 1722 }
1666 gezelter 1773 rnemdFile_ << "#######################################################\n";
1667    
1668    
1669    
1670     //write title
1671     rnemdFile_ << "#";
1672     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1673     if (outputMask_[i]) {
1674     rnemdFile_ << "\t" << data_[i].title <<
1675     "(" << data_[i].units << ")";
1676 gezelter 1777 // add some extra tabs for column alignment
1677     if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t";
1678 skuang 1368 }
1679 gezelter 1773 }
1680     rnemdFile_ << std::endl;
1681    
1682     rnemdFile_.precision(8);
1683    
1684     for (unsigned int j = 0; j < nBins_; j++) {
1685    
1686     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1687     if (outputMask_[i]) {
1688     if (data_[i].dataType == "RealType")
1689     writeReal(i,j);
1690     else if (data_[i].dataType == "Vector3d")
1691     writeVector(i,j);
1692     else {
1693     sprintf( painCave.errMsg,
1694     "RNEMD found an unknown data type for: %s ",
1695     data_[i].title.c_str());
1696     painCave.isFatal = 1;
1697     simError();
1698     }
1699     }
1700 skuang 1368 }
1701 gezelter 1773 rnemdFile_ << std::endl;
1702    
1703     }
1704 gezelter 1774
1705     rnemdFile_ << "#######################################################\n";
1706     rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1707     rnemdFile_ << "#######################################################\n";
1708    
1709    
1710     for (unsigned int j = 0; j < nBins_; j++) {
1711     rnemdFile_ << "#";
1712     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1713     if (outputMask_[i]) {
1714     if (data_[i].dataType == "RealType")
1715     writeRealStdDev(i,j);
1716     else if (data_[i].dataType == "Vector3d")
1717     writeVectorStdDev(i,j);
1718     else {
1719     sprintf( painCave.errMsg,
1720     "RNEMD found an unknown data type for: %s ",
1721     data_[i].title.c_str());
1722     painCave.isFatal = 1;
1723     simError();
1724     }
1725     }
1726     }
1727     rnemdFile_ << std::endl;
1728    
1729     }
1730 gezelter 1773
1731     rnemdFile_.flush();
1732     rnemdFile_.close();
1733    
1734 gezelter 1350 #ifdef IS_MPI
1735 gezelter 1396 }
1736 gezelter 1350 #endif
1737 jmarr 1728
1738 gezelter 1334 }
1739 gezelter 1773
1740     void RNEMD::writeReal(int index, unsigned int bin) {
1741 gezelter 1776 if (!doRNEMD_) return;
1742 gezelter 1773 assert(index >=0 && index < ENDINDEX);
1743 gezelter 1774 assert(bin < nBins_);
1744 gezelter 1773 RealType s;
1745    
1746     data_[index].accumulator[bin]->getAverage(s);
1747    
1748     if (! isinf(s) && ! isnan(s)) {
1749     rnemdFile_ << "\t" << s;
1750     } else{
1751     sprintf( painCave.errMsg,
1752     "RNEMD detected a numerical error writing: %s for bin %d",
1753     data_[index].title.c_str(), bin);
1754     painCave.isFatal = 1;
1755     simError();
1756     }
1757     }
1758    
1759     void RNEMD::writeVector(int index, unsigned int bin) {
1760 gezelter 1776 if (!doRNEMD_) return;
1761 gezelter 1773 assert(index >=0 && index < ENDINDEX);
1762 gezelter 1774 assert(bin < nBins_);
1763 gezelter 1773 Vector3d s;
1764     dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1765     if (isinf(s[0]) || isnan(s[0]) ||
1766     isinf(s[1]) || isnan(s[1]) ||
1767     isinf(s[2]) || isnan(s[2]) ) {
1768     sprintf( painCave.errMsg,
1769     "RNEMD detected a numerical error writing: %s for bin %d",
1770     data_[index].title.c_str(), bin);
1771     painCave.isFatal = 1;
1772     simError();
1773     } else {
1774     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1775     }
1776     }
1777 gezelter 1774
1778     void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1779 gezelter 1776 if (!doRNEMD_) return;
1780 gezelter 1774 assert(index >=0 && index < ENDINDEX);
1781     assert(bin < nBins_);
1782     RealType s;
1783    
1784     data_[index].accumulator[bin]->getStdDev(s);
1785    
1786     if (! isinf(s) && ! isnan(s)) {
1787     rnemdFile_ << "\t" << s;
1788     } else{
1789     sprintf( painCave.errMsg,
1790     "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1791     data_[index].title.c_str(), bin);
1792     painCave.isFatal = 1;
1793     simError();
1794     }
1795     }
1796    
1797     void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1798 gezelter 1776 if (!doRNEMD_) return;
1799 gezelter 1774 assert(index >=0 && index < ENDINDEX);
1800     assert(bin < nBins_);
1801     Vector3d s;
1802     dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1803     if (isinf(s[0]) || isnan(s[0]) ||
1804     isinf(s[1]) || isnan(s[1]) ||
1805     isinf(s[2]) || isnan(s[2]) ) {
1806     sprintf( painCave.errMsg,
1807     "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1808     data_[index].title.c_str(), bin);
1809     painCave.isFatal = 1;
1810     simError();
1811     } else {
1812     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1813     }
1814     }
1815 skuang 1338 }
1816 gezelter 1722

Properties

Name Value
svn:keywords Author Id Revision Date