ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
Revision: 1776
Committed: Thu Aug 9 15:52:59 2012 UTC (12 years, 8 months ago) by gezelter
File size: 56503 byte(s)
Log Message:
Fixes to mdParser to handle vector assignments, fixes for VelocityVerletIntegrator deleting rnemd_ when it doesn't exist yet.

File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1722 * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41    
42 skuang 1368 #include <cmath>
43 gezelter 1731 #include "rnemd/RNEMD.hpp"
44 gezelter 1332 #include "math/Vector3.hpp"
45 gezelter 1722 #include "math/Vector.hpp"
46 gezelter 1329 #include "math/SquareMatrix3.hpp"
47 skuang 1368 #include "math/Polynomial.hpp"
48 gezelter 1329 #include "primitives/Molecule.hpp"
49     #include "primitives/StuntDouble.hpp"
50 gezelter 1390 #include "utils/PhysicalConstants.hpp"
51 gezelter 1332 #include "utils/Tuple.hpp"
52 gezelter 1773 #ifdef IS_MPI
53 gezelter 1723 #include <mpi.h>
54 gezelter 1329 #endif
55    
56 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
57 gezelter 1329
58 gezelter 1629 using namespace std;
59 gezelter 1390 namespace OpenMD {
60 gezelter 1329
61 gezelter 1629 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
62     usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63 skuang 1368
64 gezelter 1773 trialCount_ = 0;
65 skuang 1368 failTrialCount_ = 0;
66     failRootCount_ = 0;
67    
68 gezelter 1329 int seedValue;
69     Globals * simParams = info->getSimParams();
70 gezelter 1731 RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
71 skuang 1330
72 gezelter 1776 doRNEMD_ = rnemdParams->getUseRNEMD();
73     if (!doRNEMD_) return;
74    
75 gezelter 1773 stringToMethod_["Swap"] = rnemdSwap;
76     stringToMethod_["NIVS"] = rnemdNIVS;
77     stringToMethod_["VSS"] = rnemdVSS;
78 skuang 1330
79 gezelter 1773 stringToFluxType_["KE"] = rnemdKE;
80     stringToFluxType_["Px"] = rnemdPx;
81     stringToFluxType_["Py"] = rnemdPy;
82     stringToFluxType_["Pz"] = rnemdPz;
83     stringToFluxType_["KE+Px"] = rnemdKePx;
84     stringToFluxType_["KE+Py"] = rnemdKePy;
85     stringToFluxType_["KE+Pvector"] = rnemdKePvector;
86    
87 jmarr 1728 runTime_ = simParams->getRunTime();
88     statusTime_ = simParams->getStatusTime();
89    
90 gezelter 1731 rnemdObjectSelection_ = rnemdParams->getObjectSelection();
91 skuang 1341 evaluator_.loadScriptString(rnemdObjectSelection_);
92     seleMan_.setSelectionSet(evaluator_.evaluate());
93 gezelter 1331
94 gezelter 1773 const string methStr = rnemdParams->getMethod();
95     bool hasFluxType = rnemdParams->haveFluxType();
96    
97     string fluxStr;
98     if (hasFluxType) {
99     fluxStr = rnemdParams->getFluxType();
100     } else {
101     sprintf(painCave.errMsg,
102     "RNEMD: No fluxType was set in the md file. This parameter,\n"
103     "\twhich must be one of the following values:\n"
104     "\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n"
105     "\tuse RNEMD\n");
106     painCave.isFatal = 1;
107     painCave.severity = OPENMD_ERROR;
108     simError();
109     }
110    
111     bool hasKineticFlux = rnemdParams->haveKineticFlux();
112     bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
113     bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
114     bool hasSlabWidth = rnemdParams->haveSlabWidth();
115     bool hasSlabACenter = rnemdParams->haveSlabACenter();
116     bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
117     bool hasOutputFileName = rnemdParams->haveOutputFileName();
118     bool hasOutputFields = rnemdParams->haveOutputFields();
119    
120     map<string, RNEMDMethod>::iterator i;
121     i = stringToMethod_.find(methStr);
122     if (i != stringToMethod_.end())
123     rnemdMethod_ = i->second;
124     else {
125     sprintf(painCave.errMsg,
126     "RNEMD: The current method,\n"
127     "\t\t%s is not one of the recognized\n"
128     "\texchange methods: Swap, NIVS, or VSS\n",
129     methStr.c_str());
130     painCave.isFatal = 1;
131     painCave.severity = OPENMD_ERROR;
132     simError();
133     }
134    
135     map<string, RNEMDFluxType>::iterator j;
136     j = stringToFluxType_.find(fluxStr);
137     if (j != stringToFluxType_.end())
138     rnemdFluxType_ = j->second;
139     else {
140     sprintf(painCave.errMsg,
141     "RNEMD: The current fluxType,\n"
142     "\t\t%s\n"
143     "\tis not one of the recognized flux types.\n",
144     fluxStr.c_str());
145     painCave.isFatal = 1;
146     painCave.severity = OPENMD_ERROR;
147     simError();
148     }
149    
150     bool methodFluxMismatch = false;
151     bool hasCorrectFlux = false;
152     switch(rnemdMethod_) {
153     case rnemdSwap:
154     switch (rnemdFluxType_) {
155     case rnemdKE:
156     hasCorrectFlux = hasKineticFlux;
157     break;
158     case rnemdPx:
159     case rnemdPy:
160     case rnemdPz:
161     hasCorrectFlux = hasMomentumFlux;
162     break;
163     default :
164     methodFluxMismatch = true;
165     break;
166     }
167     break;
168     case rnemdNIVS:
169     switch (rnemdFluxType_) {
170     case rnemdKE:
171     case rnemdRotKE:
172     case rnemdFullKE:
173     hasCorrectFlux = hasKineticFlux;
174     break;
175     case rnemdPx:
176     case rnemdPy:
177     case rnemdPz:
178     hasCorrectFlux = hasMomentumFlux;
179     break;
180     case rnemdKePx:
181     case rnemdKePy:
182     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
183     break;
184     default:
185     methodFluxMismatch = true;
186     break;
187     }
188     break;
189     case rnemdVSS:
190     switch (rnemdFluxType_) {
191     case rnemdKE:
192     case rnemdRotKE:
193     case rnemdFullKE:
194     hasCorrectFlux = hasKineticFlux;
195     break;
196     case rnemdPx:
197     case rnemdPy:
198     case rnemdPz:
199     hasCorrectFlux = hasMomentumFlux;
200     break;
201     case rnemdPvector:
202     hasCorrectFlux = hasMomentumFluxVector;
203     case rnemdKePx:
204     case rnemdKePy:
205     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
206     break;
207     case rnemdKePvector:
208     hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
209     break;
210     default:
211     methodFluxMismatch = true;
212     break;
213     }
214     default:
215     break;
216     }
217    
218     if (methodFluxMismatch) {
219     sprintf(painCave.errMsg,
220     "RNEMD: The current method,\n"
221     "\t\t%s\n"
222     "\tcannot be used with the current flux type, %s\n",
223     methStr.c_str(), fluxStr.c_str());
224     painCave.isFatal = 1;
225     painCave.severity = OPENMD_ERROR;
226     simError();
227     }
228     if (!hasCorrectFlux) {
229     sprintf(painCave.errMsg,
230     "RNEMD: The current method,\n"
231     "\t%s, and flux type %s\n"
232     "\tdid not have the correct flux value specified. Options\n"
233     "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
234     methStr.c_str(), fluxStr.c_str());
235     painCave.isFatal = 1;
236     painCave.severity = OPENMD_ERROR;
237     simError();
238     }
239    
240     if (hasKineticFlux) {
241     kineticFlux_ = rnemdParams->getKineticFlux();
242     } else {
243     kineticFlux_ = 0.0;
244     }
245     if (hasMomentumFluxVector) {
246     momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
247     } else {
248     momentumFluxVector_ = V3Zero;
249     if (hasMomentumFlux) {
250     RealType momentumFlux = rnemdParams->getMomentumFlux();
251     switch (rnemdFluxType_) {
252     case rnemdPx:
253     momentumFluxVector_.x() = momentumFlux;
254     break;
255     case rnemdPy:
256     momentumFluxVector_.y() = momentumFlux;
257     break;
258     case rnemdPz:
259     momentumFluxVector_.z() = momentumFlux;
260     break;
261     case rnemdKePx:
262     momentumFluxVector_.x() = momentumFlux;
263     break;
264     case rnemdKePy:
265     momentumFluxVector_.y() = momentumFlux;
266     break;
267     default:
268     break;
269     }
270     }
271     }
272    
273 skuang 1341 // do some sanity checking
274    
275     int selectionCount = seleMan_.getSelectionCount();
276     int nIntegrable = info->getNGlobalIntegrableObjects();
277    
278     if (selectionCount > nIntegrable) {
279     sprintf(painCave.errMsg,
280 gezelter 1773 "RNEMD: The current objectSelection,\n"
281 skuang 1341 "\t\t%s\n"
282     "\thas resulted in %d selected objects. However,\n"
283     "\tthe total number of integrable objects in the system\n"
284     "\tis only %d. This is almost certainly not what you want\n"
285     "\tto do. A likely cause of this is forgetting the _RB_0\n"
286     "\tselector in the selection script!\n",
287     rnemdObjectSelection_.c_str(),
288     selectionCount, nIntegrable);
289     painCave.isFatal = 0;
290 gezelter 1629 painCave.severity = OPENMD_WARNING;
291 skuang 1341 simError();
292     }
293 skuang 1330
294 gezelter 1774 areaAccumulator_ = new Accumulator();
295    
296 gezelter 1773 nBins_ = rnemdParams->getOutputBins();
297 skuang 1330
298 gezelter 1773 data_.resize(RNEMD::ENDINDEX);
299     OutputData z;
300     z.units = "Angstroms";
301     z.title = "Z";
302     z.dataType = "RealType";
303     z.accumulator.reserve(nBins_);
304     for (unsigned int i = 0; i < nBins_; i++)
305     z.accumulator.push_back( new Accumulator() );
306     data_[Z] = z;
307     outputMap_["Z"] = Z;
308 skuang 1368
309 gezelter 1773 OutputData temperature;
310     temperature.units = "K";
311     temperature.title = "Temperature";
312     temperature.dataType = "RealType";
313     temperature.accumulator.reserve(nBins_);
314     for (unsigned int i = 0; i < nBins_; i++)
315     temperature.accumulator.push_back( new Accumulator() );
316     data_[TEMPERATURE] = temperature;
317     outputMap_["TEMPERATURE"] = TEMPERATURE;
318 gezelter 1722
319 gezelter 1773 OutputData velocity;
320     velocity.units = "amu/fs";
321     velocity.title = "Velocity";
322     velocity.dataType = "Vector3d";
323     velocity.accumulator.reserve(nBins_);
324     for (unsigned int i = 0; i < nBins_; i++)
325     velocity.accumulator.push_back( new VectorAccumulator() );
326     data_[VELOCITY] = velocity;
327     outputMap_["VELOCITY"] = VELOCITY;
328 skuang 1368
329 gezelter 1773 OutputData density;
330     density.units = "g cm^-3";
331     density.title = "Density";
332     density.dataType = "RealType";
333     density.accumulator.reserve(nBins_);
334     for (unsigned int i = 0; i < nBins_; i++)
335     density.accumulator.push_back( new Accumulator() );
336     data_[DENSITY] = density;
337     outputMap_["DENSITY"] = DENSITY;
338 skuang 1368
339 gezelter 1773 if (hasOutputFields) {
340     parseOutputFileFormat(rnemdParams->getOutputFields());
341     } else {
342     outputMask_.set(Z);
343     switch (rnemdFluxType_) {
344     case rnemdKE:
345     case rnemdRotKE:
346     case rnemdFullKE:
347     outputMask_.set(TEMPERATURE);
348     break;
349     case rnemdPx:
350     case rnemdPy:
351     outputMask_.set(VELOCITY);
352     break;
353     case rnemdPz:
354     case rnemdPvector:
355     outputMask_.set(VELOCITY);
356     outputMask_.set(DENSITY);
357     break;
358     case rnemdKePx:
359     case rnemdKePy:
360     outputMask_.set(TEMPERATURE);
361     outputMask_.set(VELOCITY);
362     break;
363     case rnemdKePvector:
364     outputMask_.set(TEMPERATURE);
365     outputMask_.set(VELOCITY);
366     outputMask_.set(DENSITY);
367     break;
368     default:
369     break;
370 gezelter 1629 }
371     }
372 gezelter 1773
373     if (hasOutputFileName) {
374     rnemdFileName_ = rnemdParams->getOutputFileName();
375 skuang 1368 } else {
376 gezelter 1773 rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
377     }
378 gezelter 1722
379 gezelter 1773 exchangeTime_ = rnemdParams->getExchangeTime();
380 skuang 1338
381 gezelter 1773 Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
382     Mat3x3d hmat = currentSnap_->getHmat();
383    
384     // Target exchange quantities (in each exchange) = 2 Lx Ly dt flux
385     // Lx, Ly = box dimensions in x & y
386     // dt = exchange time interval
387     // flux = target flux
388 skuang 1368
389 gezelter 1774 RealType area = currentSnap_->getXYarea();
390     kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
391     momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
392 gezelter 1773
393     // total exchange sums are zeroed out at the beginning:
394    
395     kineticExchange_ = 0.0;
396     momentumExchange_ = V3Zero;
397    
398     if (hasSlabWidth)
399     slabWidth_ = rnemdParams->getSlabWidth();
400     else
401     slabWidth_ = hmat(2,2) / 10.0;
402    
403     if (hasSlabACenter)
404     slabACenter_ = rnemdParams->getSlabACenter();
405     else
406     slabACenter_ = 0.0;
407    
408     if (hasSlabBCenter)
409     slabBCenter_ = rnemdParams->getSlabBCenter();
410     else
411     slabBCenter_ = hmat(2,2) / 2.0;
412    
413 gezelter 1329 }
414 gezelter 1773
415 gezelter 1329 RNEMD::~RNEMD() {
416 gezelter 1776 if (!doRNEMD_) return;
417 skuang 1368 #ifdef IS_MPI
418     if (worldRank == 0) {
419     #endif
420 gezelter 1722
421 gezelter 1773 writeOutputFile();
422    
423     rnemdFile_.close();
424 jmarr 1728
425 skuang 1368 #ifdef IS_MPI
426     }
427     #endif
428 gezelter 1329 }
429 gezelter 1773
430     bool RNEMD::inSlabA(Vector3d pos) {
431     return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
432     }
433     bool RNEMD::inSlabB(Vector3d pos) {
434     return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
435     }
436 skuang 1330
437 gezelter 1329 void RNEMD::doSwap() {
438 gezelter 1776 if (!doRNEMD_) return;
439 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
440     Mat3x3d hmat = currentSnap_->getHmat();
441    
442 gezelter 1331 seleMan_.setSelectionSet(evaluator_.evaluate());
443    
444 gezelter 1333 int selei;
445 gezelter 1331 StuntDouble* sd;
446 gezelter 1333 int idx;
447 gezelter 1331
448 skuang 1338 RealType min_val;
449     bool min_found = false;
450     StuntDouble* min_sd;
451    
452     RealType max_val;
453     bool max_found = false;
454     StuntDouble* max_sd;
455    
456 gezelter 1333 for (sd = seleMan_.beginSelected(selei); sd != NULL;
457     sd = seleMan_.nextSelected(selei)) {
458 gezelter 1332
459 gezelter 1333 idx = sd->getLocalIndex();
460    
461 gezelter 1331 Vector3d pos = sd->getPos();
462 gezelter 1332
463     // wrap the stuntdouble's position back into the box:
464    
465 gezelter 1331 if (usePeriodicBoundaryConditions_)
466 gezelter 1332 currentSnap_->wrapVector(pos);
467 gezelter 1773 bool inA = inSlabA(pos);
468     bool inB = inSlabB(pos);
469 gezelter 1332
470 gezelter 1773 if (inA || inB) {
471 gezelter 1332
472     RealType mass = sd->getMass();
473     Vector3d vel = sd->getVel();
474     RealType value;
475 gezelter 1773
476     switch(rnemdFluxType_) {
477     case rnemdKE :
478 gezelter 1332
479 gezelter 1722 value = mass * vel.lengthSquare();
480    
481     if (sd->isDirectional()) {
482 gezelter 1332 Vector3d angMom = sd->getJ();
483     Mat3x3d I = sd->getI();
484    
485     if (sd->isLinear()) {
486 gezelter 1722 int i = sd->linearAxis();
487     int j = (i + 1) % 3;
488     int k = (i + 2) % 3;
489     value += angMom[j] * angMom[j] / I(j, j) +
490     angMom[k] * angMom[k] / I(k, k);
491 gezelter 1332 } else {
492 gezelter 1722 value += angMom[0]*angMom[0]/I(0, 0)
493     + angMom[1]*angMom[1]/I(1, 1)
494     + angMom[2]*angMom[2]/I(2, 2);
495 gezelter 1332 }
496 gezelter 1722 } //angular momenta exchange enabled
497     //energyConvert temporarily disabled
498 gezelter 1773 //make kineticExchange_ comparable between swap & scale
499 gezelter 1390 //value = value * 0.5 / PhysicalConstants::energyConvert;
500 skuang 1368 value *= 0.5;
501 gezelter 1332 break;
502     case rnemdPx :
503     value = mass * vel[0];
504     break;
505     case rnemdPy :
506     value = mass * vel[1];
507     break;
508     case rnemdPz :
509     value = mass * vel[2];
510     break;
511     default :
512     break;
513     }
514    
515 gezelter 1773 if (inA == 0) {
516 skuang 1338 if (!min_found) {
517     min_val = value;
518     min_sd = sd;
519     min_found = true;
520     } else {
521     if (min_val > value) {
522     min_val = value;
523     min_sd = sd;
524     }
525     }
526 gezelter 1773 } else {
527 skuang 1338 if (!max_found) {
528     max_val = value;
529     max_sd = sd;
530     max_found = true;
531     } else {
532     if (max_val < value) {
533     max_val = value;
534     max_sd = sd;
535     }
536     }
537     }
538 gezelter 1332 }
539 gezelter 1331 }
540 gezelter 1773
541 gezelter 1350 #ifdef IS_MPI
542     int nProc, worldRank;
543 gezelter 1773
544 gezelter 1350 nProc = MPI::COMM_WORLD.Get_size();
545     worldRank = MPI::COMM_WORLD.Get_rank();
546    
547     bool my_min_found = min_found;
548     bool my_max_found = max_found;
549    
550     // Even if we didn't find a minimum, did someone else?
551 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
552 gezelter 1350 // Even if we didn't find a maximum, did someone else?
553 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
554 gezelter 1722 #endif
555    
556     if (max_found && min_found) {
557    
558     #ifdef IS_MPI
559     struct {
560     RealType val;
561     int rank;
562     } max_vals, min_vals;
563 jmarr 1728
564 gezelter 1722 if (my_min_found) {
565 gezelter 1350 min_vals.val = min_val;
566 gezelter 1722 } else {
567 gezelter 1350 min_vals.val = HONKING_LARGE_VALUE;
568 gezelter 1722 }
569 gezelter 1350 min_vals.rank = worldRank;
570    
571     // Who had the minimum?
572     MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
573     1, MPI::REALTYPE_INT, MPI::MINLOC);
574     min_val = min_vals.val;
575    
576 gezelter 1722 if (my_max_found) {
577 gezelter 1350 max_vals.val = max_val;
578 gezelter 1722 } else {
579 gezelter 1350 max_vals.val = -HONKING_LARGE_VALUE;
580 gezelter 1722 }
581 gezelter 1350 max_vals.rank = worldRank;
582    
583     // Who had the maximum?
584     MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
585     1, MPI::REALTYPE_INT, MPI::MAXLOC);
586     max_val = max_vals.val;
587     #endif
588 gezelter 1722
589 gezelter 1629 if (min_val < max_val) {
590 gezelter 1722
591 gezelter 1350 #ifdef IS_MPI
592     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
593     // I have both maximum and minimum, so proceed like a single
594     // processor version:
595     #endif
596 gezelter 1722
597 gezelter 1350 Vector3d min_vel = min_sd->getVel();
598     Vector3d max_vel = max_sd->getVel();
599     RealType temp_vel;
600    
601 gezelter 1773 switch(rnemdFluxType_) {
602     case rnemdKE :
603 gezelter 1350 min_sd->setVel(max_vel);
604     max_sd->setVel(min_vel);
605 gezelter 1722 if (min_sd->isDirectional() && max_sd->isDirectional()) {
606 gezelter 1350 Vector3d min_angMom = min_sd->getJ();
607     Vector3d max_angMom = max_sd->getJ();
608     min_sd->setJ(max_angMom);
609     max_sd->setJ(min_angMom);
610 gezelter 1722 }//angular momenta exchange enabled
611     //assumes same rigid body identity
612 gezelter 1350 break;
613     case rnemdPx :
614     temp_vel = min_vel.x();
615     min_vel.x() = max_vel.x();
616     max_vel.x() = temp_vel;
617     min_sd->setVel(min_vel);
618     max_sd->setVel(max_vel);
619     break;
620     case rnemdPy :
621     temp_vel = min_vel.y();
622     min_vel.y() = max_vel.y();
623     max_vel.y() = temp_vel;
624     min_sd->setVel(min_vel);
625     max_sd->setVel(max_vel);
626     break;
627     case rnemdPz :
628     temp_vel = min_vel.z();
629     min_vel.z() = max_vel.z();
630     max_vel.z() = temp_vel;
631     min_sd->setVel(min_vel);
632     max_sd->setVel(max_vel);
633     break;
634     default :
635     break;
636     }
637 gezelter 1722
638 gezelter 1350 #ifdef IS_MPI
639     // the rest of the cases only apply in parallel simulations:
640     } else if (max_vals.rank == worldRank) {
641     // I had the max, but not the minimum
642    
643     Vector3d min_vel;
644     Vector3d max_vel = max_sd->getVel();
645     MPI::Status status;
646 skuang 1341
647 gezelter 1350 // point-to-point swap of the velocity vector
648     MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
649     min_vals.rank, 0,
650     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
651     min_vals.rank, 0, status);
652    
653 gezelter 1773 switch(rnemdFluxType_) {
654     case rnemdKE :
655 gezelter 1350 max_sd->setVel(min_vel);
656 gezelter 1722 //angular momenta exchange enabled
657 gezelter 1350 if (max_sd->isDirectional()) {
658     Vector3d min_angMom;
659     Vector3d max_angMom = max_sd->getJ();
660 gezelter 1629
661 gezelter 1350 // point-to-point swap of the angular momentum vector
662     MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
663     MPI::REALTYPE, min_vals.rank, 1,
664     min_angMom.getArrayPointer(), 3,
665     MPI::REALTYPE, min_vals.rank, 1,
666     status);
667 gezelter 1629
668 gezelter 1350 max_sd->setJ(min_angMom);
669 gezelter 1722 }
670 gezelter 1350 break;
671     case rnemdPx :
672     max_vel.x() = min_vel.x();
673     max_sd->setVel(max_vel);
674     break;
675     case rnemdPy :
676     max_vel.y() = min_vel.y();
677     max_sd->setVel(max_vel);
678     break;
679     case rnemdPz :
680     max_vel.z() = min_vel.z();
681     max_sd->setVel(max_vel);
682     break;
683     default :
684     break;
685 skuang 1341 }
686 gezelter 1350 } else if (min_vals.rank == worldRank) {
687     // I had the minimum but not the maximum:
688    
689     Vector3d max_vel;
690     Vector3d min_vel = min_sd->getVel();
691     MPI::Status status;
692    
693     // point-to-point swap of the velocity vector
694     MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
695     max_vals.rank, 0,
696     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
697     max_vals.rank, 0, status);
698    
699 gezelter 1773 switch(rnemdFluxType_) {
700     case rnemdKE :
701 gezelter 1350 min_sd->setVel(max_vel);
702 gezelter 1722 //angular momenta exchange enabled
703 gezelter 1350 if (min_sd->isDirectional()) {
704     Vector3d min_angMom = min_sd->getJ();
705     Vector3d max_angMom;
706 gezelter 1629
707 gezelter 1350 // point-to-point swap of the angular momentum vector
708     MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
709     MPI::REALTYPE, max_vals.rank, 1,
710     max_angMom.getArrayPointer(), 3,
711     MPI::REALTYPE, max_vals.rank, 1,
712     status);
713 gezelter 1629
714 gezelter 1350 min_sd->setJ(max_angMom);
715     }
716     break;
717     case rnemdPx :
718     min_vel.x() = max_vel.x();
719     min_sd->setVel(min_vel);
720     break;
721     case rnemdPy :
722     min_vel.y() = max_vel.y();
723     min_sd->setVel(min_vel);
724     break;
725     case rnemdPz :
726     min_vel.z() = max_vel.z();
727     min_sd->setVel(min_vel);
728     break;
729     default :
730     break;
731     }
732     }
733     #endif
734 gezelter 1773
735     switch(rnemdFluxType_) {
736     case rnemdKE:
737     cerr << "KE\n";
738     kineticExchange_ += max_val - min_val;
739     break;
740     case rnemdPx:
741     momentumExchange_.x() += max_val - min_val;
742     break;
743     case rnemdPy:
744     momentumExchange_.y() += max_val - min_val;
745     break;
746     case rnemdPz:
747     momentumExchange_.z() += max_val - min_val;
748     break;
749     default:
750     cerr << "default\n";
751     break;
752     }
753 gezelter 1629 } else {
754     sprintf(painCave.errMsg,
755 gezelter 1773 "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
756 gezelter 1629 painCave.isFatal = 0;
757     painCave.severity = OPENMD_INFO;
758     simError();
759 skuang 1368 failTrialCount_++;
760 skuang 1338 }
761     } else {
762 gezelter 1629 sprintf(painCave.errMsg,
763 gezelter 1773 "RNEMD::doSwap exchange NOT performed because selected object\n"
764     "\twas not present in at least one of the two slabs.\n");
765 gezelter 1629 painCave.isFatal = 0;
766     painCave.severity = OPENMD_INFO;
767     simError();
768 skuang 1368 failTrialCount_++;
769 gezelter 1773 }
770 skuang 1338 }
771 gezelter 1350
772 gezelter 1773 void RNEMD::doNIVS() {
773 gezelter 1776 if (!doRNEMD_) return;
774 skuang 1338 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
775     Mat3x3d hmat = currentSnap_->getHmat();
776    
777     seleMan_.setSelectionSet(evaluator_.evaluate());
778    
779     int selei;
780     StuntDouble* sd;
781     int idx;
782    
783 gezelter 1629 vector<StuntDouble*> hotBin, coldBin;
784 gezelter 1350
785 skuang 1368 RealType Phx = 0.0;
786     RealType Phy = 0.0;
787     RealType Phz = 0.0;
788     RealType Khx = 0.0;
789     RealType Khy = 0.0;
790     RealType Khz = 0.0;
791 gezelter 1722 RealType Khw = 0.0;
792 skuang 1368 RealType Pcx = 0.0;
793     RealType Pcy = 0.0;
794     RealType Pcz = 0.0;
795     RealType Kcx = 0.0;
796     RealType Kcy = 0.0;
797     RealType Kcz = 0.0;
798 gezelter 1722 RealType Kcw = 0.0;
799 skuang 1368
800 skuang 1338 for (sd = seleMan_.beginSelected(selei); sd != NULL;
801     sd = seleMan_.nextSelected(selei)) {
802 skuang 1368
803     idx = sd->getLocalIndex();
804    
805     Vector3d pos = sd->getPos();
806    
807     // wrap the stuntdouble's position back into the box:
808    
809     if (usePeriodicBoundaryConditions_)
810     currentSnap_->wrapVector(pos);
811    
812     // which bin is this stuntdouble in?
813 gezelter 1773 bool inA = inSlabA(pos);
814     bool inB = inSlabB(pos);
815 skuang 1368
816 gezelter 1773 if (inA || inB) {
817    
818 skuang 1368 RealType mass = sd->getMass();
819     Vector3d vel = sd->getVel();
820    
821 gezelter 1773 if (inA) {
822 skuang 1368 hotBin.push_back(sd);
823     Phx += mass * vel.x();
824     Phy += mass * vel.y();
825     Phz += mass * vel.z();
826     Khx += mass * vel.x() * vel.x();
827     Khy += mass * vel.y() * vel.y();
828     Khz += mass * vel.z() * vel.z();
829 gezelter 1722 if (sd->isDirectional()) {
830     Vector3d angMom = sd->getJ();
831     Mat3x3d I = sd->getI();
832     if (sd->isLinear()) {
833     int i = sd->linearAxis();
834     int j = (i + 1) % 3;
835     int k = (i + 2) % 3;
836     Khw += angMom[j] * angMom[j] / I(j, j) +
837     angMom[k] * angMom[k] / I(k, k);
838     } else {
839     Khw += angMom[0]*angMom[0]/I(0, 0)
840     + angMom[1]*angMom[1]/I(1, 1)
841     + angMom[2]*angMom[2]/I(2, 2);
842     }
843     }
844 gezelter 1773 } else {
845 skuang 1368 coldBin.push_back(sd);
846     Pcx += mass * vel.x();
847     Pcy += mass * vel.y();
848     Pcz += mass * vel.z();
849     Kcx += mass * vel.x() * vel.x();
850     Kcy += mass * vel.y() * vel.y();
851     Kcz += mass * vel.z() * vel.z();
852 gezelter 1722 if (sd->isDirectional()) {
853     Vector3d angMom = sd->getJ();
854     Mat3x3d I = sd->getI();
855     if (sd->isLinear()) {
856     int i = sd->linearAxis();
857     int j = (i + 1) % 3;
858     int k = (i + 2) % 3;
859     Kcw += angMom[j] * angMom[j] / I(j, j) +
860     angMom[k] * angMom[k] / I(k, k);
861     } else {
862     Kcw += angMom[0]*angMom[0]/I(0, 0)
863     + angMom[1]*angMom[1]/I(1, 1)
864     + angMom[2]*angMom[2]/I(2, 2);
865     }
866     }
867 skuang 1368 }
868     }
869     }
870 gezelter 1722
871 skuang 1368 Khx *= 0.5;
872     Khy *= 0.5;
873     Khz *= 0.5;
874 gezelter 1722 Khw *= 0.5;
875 skuang 1368 Kcx *= 0.5;
876     Kcy *= 0.5;
877     Kcz *= 0.5;
878 gezelter 1722 Kcw *= 0.5;
879 skuang 1368
880     #ifdef IS_MPI
881     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
882     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
883     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
884     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
885     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
886     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
887    
888     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
889     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
890     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
891 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
892    
893 skuang 1368 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
894     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
895     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
896 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
897 skuang 1368 #endif
898    
899 gezelter 1722 //solve coldBin coeff's first
900 skuang 1368 RealType px = Pcx / Phx;
901     RealType py = Pcy / Phy;
902     RealType pz = Pcz / Phz;
903 gezelter 1722 RealType c, x, y, z;
904     bool successfulScale = false;
905 gezelter 1773 if ((rnemdFluxType_ == rnemdFullKE) ||
906     (rnemdFluxType_ == rnemdRotKE)) {
907 gezelter 1722 //may need sanity check Khw & Kcw > 0
908 skuang 1368
909 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
910     c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
911 gezelter 1722 } else {
912 gezelter 1773 c = 1.0 - kineticTarget_ / Kcw;
913 gezelter 1722 }
914 skuang 1368
915 gezelter 1722 if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
916     c = sqrt(c);
917 gezelter 1773 //std::cerr << "cold slab scaling coefficient: " << c << endl;
918 gezelter 1722 //now convert to hotBin coefficient
919     RealType w = 0.0;
920 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
921 gezelter 1722 x = 1.0 + px * (1.0 - c);
922     y = 1.0 + py * (1.0 - c);
923     z = 1.0 + pz * (1.0 - c);
924     /* more complicated way
925     w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
926     + Khx * px * px + Khy * py * py + Khz * pz * pz)
927     - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
928     + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
929     + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
930     - Kcx - Kcy - Kcz)) / Khw; the following is simpler
931     */
932     if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
933     (fabs(z - 1.0) < 0.1)) {
934 gezelter 1773 w = 1.0 + (kineticTarget_
935     + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
936 gezelter 1722 + Khz * (1.0 - z * z)) / Khw;
937     }//no need to calculate w if x, y or z is out of range
938     } else {
939 gezelter 1773 w = 1.0 + kineticTarget_ / Khw;
940 gezelter 1722 }
941     if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
942     //if w is in the right range, so should be x, y, z.
943     vector<StuntDouble*>::iterator sdi;
944     Vector3d vel;
945     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
946 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
947 gezelter 1722 vel = (*sdi)->getVel() * c;
948     (*sdi)->setVel(vel);
949     }
950     if ((*sdi)->isDirectional()) {
951     Vector3d angMom = (*sdi)->getJ() * c;
952     (*sdi)->setJ(angMom);
953     }
954     }
955     w = sqrt(w);
956 gezelter 1773 // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
957     // << "\twh= " << w << endl;
958 gezelter 1722 for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
959 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
960 gezelter 1722 vel = (*sdi)->getVel();
961     vel.x() *= x;
962     vel.y() *= y;
963     vel.z() *= z;
964     (*sdi)->setVel(vel);
965     }
966     if ((*sdi)->isDirectional()) {
967     Vector3d angMom = (*sdi)->getJ() * w;
968     (*sdi)->setJ(angMom);
969     }
970     }
971     successfulScale = true;
972 gezelter 1773 kineticExchange_ += kineticTarget_;
973 gezelter 1722 }
974 skuang 1368 }
975 gezelter 1722 } else {
976     RealType a000, a110, c0, a001, a111, b01, b11, c1;
977 gezelter 1773 switch(rnemdFluxType_) {
978     case rnemdKE :
979 gezelter 1722 /* used hotBin coeff's & only scale x & y dimensions
980     RealType px = Phx / Pcx;
981     RealType py = Phy / Pcy;
982     a110 = Khy;
983 gezelter 1773 c0 = - Khx - Khy - kineticTarget_;
984 gezelter 1722 a000 = Khx;
985     a111 = Kcy * py * py;
986     b11 = -2.0 * Kcy * py * (1.0 + py);
987 gezelter 1773 c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
988 gezelter 1722 b01 = -2.0 * Kcx * px * (1.0 + px);
989     a001 = Kcx * px * px;
990     */
991     //scale all three dimensions, let c_x = c_y
992     a000 = Kcx + Kcy;
993     a110 = Kcz;
994 gezelter 1773 c0 = kineticTarget_ - Kcx - Kcy - Kcz;
995 gezelter 1722 a001 = Khx * px * px + Khy * py * py;
996     a111 = Khz * pz * pz;
997     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
998     b11 = -2.0 * Khz * pz * (1.0 + pz);
999     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1000 gezelter 1773 + Khz * pz * (2.0 + pz) - kineticTarget_;
1001 gezelter 1722 break;
1002 gezelter 1773 case rnemdPx :
1003     c = 1 - momentumTarget_.x() / Pcx;
1004 gezelter 1722 a000 = Kcy;
1005     a110 = Kcz;
1006     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1007     a001 = py * py * Khy;
1008     a111 = pz * pz * Khz;
1009     b01 = -2.0 * Khy * py * (1.0 + py);
1010     b11 = -2.0 * Khz * pz * (1.0 + pz);
1011     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1012     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1013     break;
1014 gezelter 1773 case rnemdPy :
1015     c = 1 - momentumTarget_.y() / Pcy;
1016 gezelter 1722 a000 = Kcx;
1017     a110 = Kcz;
1018     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1019     a001 = px * px * Khx;
1020     a111 = pz * pz * Khz;
1021     b01 = -2.0 * Khx * px * (1.0 + px);
1022     b11 = -2.0 * Khz * pz * (1.0 + pz);
1023     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1024     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1025     break;
1026 gezelter 1773 case rnemdPz ://we don't really do this, do we?
1027     c = 1 - momentumTarget_.z() / Pcz;
1028 gezelter 1722 a000 = Kcx;
1029     a110 = Kcy;
1030     c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1031     a001 = px * px * Khx;
1032     a111 = py * py * Khy;
1033     b01 = -2.0 * Khx * px * (1.0 + px);
1034     b11 = -2.0 * Khy * py * (1.0 + py);
1035     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1036     + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1037     break;
1038     default :
1039     break;
1040 skuang 1368 }
1041 gezelter 1722
1042     RealType v1 = a000 * a111 - a001 * a110;
1043     RealType v2 = a000 * b01;
1044     RealType v3 = a000 * b11;
1045     RealType v4 = a000 * c1 - a001 * c0;
1046     RealType v8 = a110 * b01;
1047     RealType v10 = - b01 * c0;
1048    
1049     RealType u0 = v2 * v10 - v4 * v4;
1050     RealType u1 = -2.0 * v3 * v4;
1051     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1052     RealType u3 = -2.0 * v1 * v3;
1053     RealType u4 = - v1 * v1;
1054     //rescale coefficients
1055     RealType maxAbs = fabs(u0);
1056     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1057     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1058     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1059     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1060     u0 /= maxAbs;
1061     u1 /= maxAbs;
1062     u2 /= maxAbs;
1063     u3 /= maxAbs;
1064     u4 /= maxAbs;
1065     //max_element(start, end) is also available.
1066     Polynomial<RealType> poly; //same as DoublePolynomial poly;
1067     poly.setCoefficient(4, u4);
1068     poly.setCoefficient(3, u3);
1069     poly.setCoefficient(2, u2);
1070     poly.setCoefficient(1, u1);
1071     poly.setCoefficient(0, u0);
1072     vector<RealType> realRoots = poly.FindRealRoots();
1073    
1074     vector<RealType>::iterator ri;
1075     RealType r1, r2, alpha0;
1076     vector<pair<RealType,RealType> > rps;
1077     for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1078     r2 = *ri;
1079     //check if FindRealRoots() give the right answer
1080     if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1081     sprintf(painCave.errMsg,
1082     "RNEMD Warning: polynomial solve seems to have an error!");
1083     painCave.isFatal = 0;
1084     simError();
1085     failRootCount_++;
1086     }
1087     //might not be useful w/o rescaling coefficients
1088     alpha0 = -c0 - a110 * r2 * r2;
1089     if (alpha0 >= 0.0) {
1090     r1 = sqrt(alpha0 / a000);
1091     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1092     < 1e-6)
1093     { rps.push_back(make_pair(r1, r2)); }
1094     if (r1 > 1e-6) { //r1 non-negative
1095     r1 = -r1;
1096     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1097     < 1e-6)
1098     { rps.push_back(make_pair(r1, r2)); }
1099     }
1100     }
1101 skuang 1368 }
1102 gezelter 1722 // Consider combining together the solving pair part w/ the searching
1103     // best solution part so that we don't need the pairs vector
1104     if (!rps.empty()) {
1105     RealType smallestDiff = HONKING_LARGE_VALUE;
1106     RealType diff;
1107     pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1108     vector<pair<RealType,RealType> >::iterator rpi;
1109     for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1110     r1 = (*rpi).first;
1111     r2 = (*rpi).second;
1112 gezelter 1773 switch(rnemdFluxType_) {
1113     case rnemdKE :
1114 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1115     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1116     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1117     break;
1118 gezelter 1773 case rnemdPx :
1119 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1120     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1121     break;
1122 gezelter 1773 case rnemdPy :
1123 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1124     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1125     break;
1126 gezelter 1773 case rnemdPz :
1127 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1128     + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1129     default :
1130     break;
1131     }
1132     if (diff < smallestDiff) {
1133     smallestDiff = diff;
1134     bestPair = *rpi;
1135     }
1136     }
1137 skuang 1368 #ifdef IS_MPI
1138 gezelter 1722 if (worldRank == 0) {
1139 skuang 1368 #endif
1140 gezelter 1773 // sprintf(painCave.errMsg,
1141     // "RNEMD: roots r1= %lf\tr2 = %lf\n",
1142     // bestPair.first, bestPair.second);
1143     // painCave.isFatal = 0;
1144     // painCave.severity = OPENMD_INFO;
1145     // simError();
1146 skuang 1368 #ifdef IS_MPI
1147 gezelter 1722 }
1148 skuang 1368 #endif
1149 gezelter 1722
1150 gezelter 1773 switch(rnemdFluxType_) {
1151     case rnemdKE :
1152 gezelter 1722 x = bestPair.first;
1153     y = bestPair.first;
1154     z = bestPair.second;
1155     break;
1156 gezelter 1773 case rnemdPx :
1157 gezelter 1722 x = c;
1158     y = bestPair.first;
1159     z = bestPair.second;
1160     break;
1161 gezelter 1773 case rnemdPy :
1162 gezelter 1722 x = bestPair.first;
1163     y = c;
1164     z = bestPair.second;
1165     break;
1166 gezelter 1773 case rnemdPz :
1167 gezelter 1722 x = bestPair.first;
1168     y = bestPair.second;
1169     z = c;
1170     break;
1171     default :
1172     break;
1173     }
1174     vector<StuntDouble*>::iterator sdi;
1175     Vector3d vel;
1176     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1177     vel = (*sdi)->getVel();
1178     vel.x() *= x;
1179     vel.y() *= y;
1180     vel.z() *= z;
1181     (*sdi)->setVel(vel);
1182     }
1183     //convert to hotBin coefficient
1184     x = 1.0 + px * (1.0 - x);
1185     y = 1.0 + py * (1.0 - y);
1186     z = 1.0 + pz * (1.0 - z);
1187     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1188     vel = (*sdi)->getVel();
1189     vel.x() *= x;
1190     vel.y() *= y;
1191     vel.z() *= z;
1192     (*sdi)->setVel(vel);
1193     }
1194     successfulScale = true;
1195 gezelter 1773 switch(rnemdFluxType_) {
1196     case rnemdKE :
1197     kineticExchange_ += kineticTarget_;
1198     break;
1199     case rnemdPx :
1200     case rnemdPy :
1201     case rnemdPz :
1202     momentumExchange_ += momentumTarget_;
1203     break;
1204     default :
1205     break;
1206     }
1207 gezelter 1629 }
1208 gezelter 1722 }
1209     if (successfulScale != true) {
1210     sprintf(painCave.errMsg,
1211 gezelter 1773 "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1212     "\tthe constraint equations may not exist or there may be\n"
1213     "\tno selected objects in one or both slabs.\n");
1214 gezelter 1722 painCave.isFatal = 0;
1215     painCave.severity = OPENMD_INFO;
1216     simError();
1217     failTrialCount_++;
1218     }
1219     }
1220    
1221 gezelter 1773 void RNEMD::doVSS() {
1222 gezelter 1776 if (!doRNEMD_) return;
1223 gezelter 1722 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1224 jmarr 1728 RealType time = currentSnap_->getTime();
1225 gezelter 1722 Mat3x3d hmat = currentSnap_->getHmat();
1226    
1227     seleMan_.setSelectionSet(evaluator_.evaluate());
1228    
1229     int selei;
1230     StuntDouble* sd;
1231     int idx;
1232    
1233     vector<StuntDouble*> hotBin, coldBin;
1234    
1235     Vector3d Ph(V3Zero);
1236     RealType Mh = 0.0;
1237     RealType Kh = 0.0;
1238     Vector3d Pc(V3Zero);
1239     RealType Mc = 0.0;
1240     RealType Kc = 0.0;
1241 jmarr 1728
1242 gezelter 1722
1243     for (sd = seleMan_.beginSelected(selei); sd != NULL;
1244     sd = seleMan_.nextSelected(selei)) {
1245    
1246     idx = sd->getLocalIndex();
1247    
1248     Vector3d pos = sd->getPos();
1249    
1250     // wrap the stuntdouble's position back into the box:
1251    
1252     if (usePeriodicBoundaryConditions_)
1253     currentSnap_->wrapVector(pos);
1254    
1255     // which bin is this stuntdouble in?
1256 gezelter 1773 bool inA = inSlabA(pos);
1257     bool inB = inSlabB(pos);
1258    
1259     if (inA || inB) {
1260 gezelter 1722
1261     RealType mass = sd->getMass();
1262     Vector3d vel = sd->getVel();
1263    
1264 gezelter 1773 if (inA) {
1265 gezelter 1722 hotBin.push_back(sd);
1266     //std::cerr << "before, velocity = " << vel << endl;
1267     Ph += mass * vel;
1268     //std::cerr << "after, velocity = " << vel << endl;
1269     Mh += mass;
1270     Kh += mass * vel.lengthSquare();
1271 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1272 gezelter 1722 if (sd->isDirectional()) {
1273     Vector3d angMom = sd->getJ();
1274     Mat3x3d I = sd->getI();
1275     if (sd->isLinear()) {
1276     int i = sd->linearAxis();
1277     int j = (i + 1) % 3;
1278     int k = (i + 2) % 3;
1279     Kh += angMom[j] * angMom[j] / I(j, j) +
1280     angMom[k] * angMom[k] / I(k, k);
1281     } else {
1282     Kh += angMom[0] * angMom[0] / I(0, 0) +
1283     angMom[1] * angMom[1] / I(1, 1) +
1284     angMom[2] * angMom[2] / I(2, 2);
1285     }
1286     }
1287     }
1288     } else { //midBin_
1289     coldBin.push_back(sd);
1290     Pc += mass * vel;
1291     Mc += mass;
1292     Kc += mass * vel.lengthSquare();
1293 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1294 gezelter 1722 if (sd->isDirectional()) {
1295     Vector3d angMom = sd->getJ();
1296     Mat3x3d I = sd->getI();
1297     if (sd->isLinear()) {
1298     int i = sd->linearAxis();
1299     int j = (i + 1) % 3;
1300     int k = (i + 2) % 3;
1301     Kc += angMom[j] * angMom[j] / I(j, j) +
1302     angMom[k] * angMom[k] / I(k, k);
1303     } else {
1304     Kc += angMom[0] * angMom[0] / I(0, 0) +
1305     angMom[1] * angMom[1] / I(1, 1) +
1306     angMom[2] * angMom[2] / I(2, 2);
1307     }
1308     }
1309     }
1310     }
1311 skuang 1368 }
1312 gezelter 1722 }
1313    
1314     Kh *= 0.5;
1315     Kc *= 0.5;
1316    
1317 jmarr 1728 // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1318     // << "\tKc= " << Kc << endl;
1319     // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1320    
1321 gezelter 1722 #ifdef IS_MPI
1322     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1323     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1324     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1325     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1326     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1327     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1328     #endif
1329    
1330     bool successfulExchange = false;
1331     if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1332     Vector3d vc = Pc / Mc;
1333 gezelter 1773 Vector3d ac = -momentumTarget_ / Mc + vc;
1334     Vector3d acrec = -momentumTarget_ / Mc;
1335     RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1336 gezelter 1722 if (cNumerator > 0.0) {
1337     RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1338     if (cDenominator > 0.0) {
1339     RealType c = sqrt(cNumerator / cDenominator);
1340     if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1341     Vector3d vh = Ph / Mh;
1342 gezelter 1773 Vector3d ah = momentumTarget_ / Mh + vh;
1343     Vector3d ahrec = momentumTarget_ / Mh;
1344     RealType hNumerator = Kh + kineticTarget_
1345 gezelter 1722 - 0.5 * Mh * ah.lengthSquare();
1346     if (hNumerator > 0.0) {
1347     RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1348     if (hDenominator > 0.0) {
1349     RealType h = sqrt(hNumerator / hDenominator);
1350     if ((h > 0.9) && (h < 1.1)) {
1351 jmarr 1728 // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1352     // std::cerr << "hot slab scaling coefficient: " << h << "\n";
1353 gezelter 1722 vector<StuntDouble*>::iterator sdi;
1354     Vector3d vel;
1355     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1356     //vel = (*sdi)->getVel();
1357     vel = ((*sdi)->getVel() - vc) * c + ac;
1358     (*sdi)->setVel(vel);
1359 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1360 gezelter 1722 if ((*sdi)->isDirectional()) {
1361     Vector3d angMom = (*sdi)->getJ() * c;
1362     (*sdi)->setJ(angMom);
1363     }
1364     }
1365     }
1366     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1367     //vel = (*sdi)->getVel();
1368     vel = ((*sdi)->getVel() - vh) * h + ah;
1369     (*sdi)->setVel(vel);
1370 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1371 gezelter 1722 if ((*sdi)->isDirectional()) {
1372     Vector3d angMom = (*sdi)->getJ() * h;
1373     (*sdi)->setJ(angMom);
1374     }
1375     }
1376     }
1377     successfulExchange = true;
1378 gezelter 1773 kineticExchange_ += kineticTarget_;
1379     momentumExchange_ += momentumTarget_;
1380 gezelter 1722 }
1381     }
1382     }
1383     }
1384     }
1385 skuang 1368 }
1386 gezelter 1722 }
1387     if (successfulExchange != true) {
1388 gezelter 1773 sprintf(painCave.errMsg,
1389     "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1390     "\tthe constraint equations may not exist or there may be\n"
1391     "\tno selected objects in one or both slabs.\n");
1392     painCave.isFatal = 0;
1393     painCave.severity = OPENMD_INFO;
1394     simError();
1395 skuang 1368 failTrialCount_++;
1396     }
1397     }
1398    
1399     void RNEMD::doRNEMD() {
1400 gezelter 1776 if (!doRNEMD_) return;
1401 gezelter 1773 trialCount_++;
1402     switch(rnemdMethod_) {
1403     case rnemdSwap:
1404 skuang 1368 doSwap();
1405     break;
1406 gezelter 1773 case rnemdNIVS:
1407     doNIVS();
1408 gezelter 1722 break;
1409 gezelter 1773 case rnemdVSS:
1410     doVSS();
1411     break;
1412     case rnemdUnkownMethod:
1413 skuang 1368 default :
1414     break;
1415     }
1416     }
1417    
1418     void RNEMD::collectData() {
1419 gezelter 1776 if (!doRNEMD_) return;
1420 skuang 1368 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1421     Mat3x3d hmat = currentSnap_->getHmat();
1422    
1423 gezelter 1774 areaAccumulator_->add(currentSnap_->getXYarea());
1424    
1425 skuang 1368 seleMan_.setSelectionSet(evaluator_.evaluate());
1426    
1427     int selei;
1428     StuntDouble* sd;
1429     int idx;
1430    
1431 gezelter 1773 vector<RealType> binMass(nBins_, 0.0);
1432     vector<RealType> binPx(nBins_, 0.0);
1433     vector<RealType> binPy(nBins_, 0.0);
1434     vector<RealType> binPz(nBins_, 0.0);
1435     vector<RealType> binKE(nBins_, 0.0);
1436     vector<int> binDOF(nBins_, 0);
1437     vector<int> binCount(nBins_, 0);
1438 jmarr 1728
1439 gezelter 1629 // alternative approach, track all molecules instead of only those
1440     // selected for scaling/swapping:
1441     /*
1442     SimInfo::MoleculeIterator miter;
1443     vector<StuntDouble*>::iterator iiter;
1444     Molecule* mol;
1445 gezelter 1769 StuntDouble* sd;
1446 gezelter 1629 for (mol = info_->beginMolecule(miter); mol != NULL;
1447 jmarr 1728 mol = info_->nextMolecule(miter))
1448 gezelter 1769 sd is essentially sd
1449     for (sd = mol->beginIntegrableObject(iiter);
1450     sd != NULL;
1451     sd = mol->nextIntegrableObject(iiter))
1452 gezelter 1629 */
1453 skuang 1368 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1454     sd = seleMan_.nextSelected(selei)) {
1455 skuang 1338
1456     idx = sd->getLocalIndex();
1457    
1458     Vector3d pos = sd->getPos();
1459    
1460     // wrap the stuntdouble's position back into the box:
1461    
1462     if (usePeriodicBoundaryConditions_)
1463     currentSnap_->wrapVector(pos);
1464 gezelter 1773
1465 gezelter 1774
1466 skuang 1338 // which bin is this stuntdouble in?
1467     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1468 gezelter 1773 // Shift molecules by half a box to have bins start at 0
1469     // The modulo operator is used to wrap the case when we are
1470     // beyond the end of the bins back to the beginning.
1471     int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1472    
1473 skuang 1338 RealType mass = sd->getMass();
1474     Vector3d vel = sd->getVel();
1475    
1476 gezelter 1773 binCount[binNo]++;
1477     binMass[binNo] += mass;
1478     binPx[binNo] += mass*vel.x();
1479     binPy[binNo] += mass*vel.y();
1480     binPz[binNo] += mass*vel.z();
1481     binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1482     binDOF[binNo] += 3;
1483    
1484     if (sd->isDirectional()) {
1485     Vector3d angMom = sd->getJ();
1486     Mat3x3d I = sd->getI();
1487     if (sd->isLinear()) {
1488     int i = sd->linearAxis();
1489     int j = (i + 1) % 3;
1490     int k = (i + 2) % 3;
1491     binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1492     angMom[k] * angMom[k] / I(k, k));
1493     binDOF[binNo] += 2;
1494     } else {
1495     binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1496     angMom[1] * angMom[1] / I(1, 1) +
1497     angMom[2] * angMom[2] / I(2, 2));
1498     binDOF[binNo] += 3;
1499     }
1500 gezelter 1722 }
1501 gezelter 1773 }
1502    
1503 gezelter 1629
1504 gezelter 1773 #ifdef IS_MPI
1505     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1506     nBins_, MPI::INT, MPI::SUM);
1507     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1508     nBins_, MPI::REALTYPE, MPI::SUM);
1509     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1510     nBins_, MPI::REALTYPE, MPI::SUM);
1511     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1512     nBins_, MPI::REALTYPE, MPI::SUM);
1513     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1514     nBins_, MPI::REALTYPE, MPI::SUM);
1515     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1516     nBins_, MPI::REALTYPE, MPI::SUM);
1517     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1518     nBins_, MPI::INT, MPI::SUM);
1519     #endif
1520    
1521     Vector3d vel;
1522     RealType den;
1523     RealType temp;
1524     RealType z;
1525     for (int i = 0; i < nBins_; i++) {
1526     z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1527     vel.x() = binPx[i] / binMass[i];
1528     vel.y() = binPy[i] / binMass[i];
1529     vel.z() = binPz[i] / binMass[i];
1530 gezelter 1774 den = binCount[i] * nBins_ / currentSnap_->getVolume();
1531 gezelter 1773 temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1532     PhysicalConstants::energyConvert);
1533    
1534     for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1535     if(outputMask_[j]) {
1536     switch(j) {
1537     case Z:
1538     (data_[j].accumulator[i])->add(z);
1539     break;
1540     case TEMPERATURE:
1541     data_[j].accumulator[i]->add(temp);
1542     break;
1543     case VELOCITY:
1544     dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1545     break;
1546     case DENSITY:
1547     data_[j].accumulator[i]->add(den);
1548     break;
1549     }
1550     }
1551 gezelter 1629 }
1552 skuang 1338 }
1553 skuang 1368 }
1554    
1555     void RNEMD::getStarted() {
1556 gezelter 1776 if (!doRNEMD_) return;
1557 gezelter 1629 collectData();
1558 gezelter 1773 writeOutputFile();
1559 skuang 1368 }
1560    
1561 gezelter 1773 void RNEMD::parseOutputFileFormat(const std::string& format) {
1562 gezelter 1776 if (!doRNEMD_) return;
1563 gezelter 1773 StringTokenizer tokenizer(format, " ,;|\t\n\r");
1564    
1565     while(tokenizer.hasMoreTokens()) {
1566     std::string token(tokenizer.nextToken());
1567     toUpper(token);
1568     OutputMapType::iterator i = outputMap_.find(token);
1569     if (i != outputMap_.end()) {
1570     outputMask_.set(i->second);
1571     } else {
1572     sprintf( painCave.errMsg,
1573     "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1574     "\toutputFileFormat keyword.\n", token.c_str() );
1575     painCave.isFatal = 0;
1576     painCave.severity = OPENMD_ERROR;
1577     simError();
1578     }
1579     }
1580     }
1581    
1582     void RNEMD::writeOutputFile() {
1583 gezelter 1776 if (!doRNEMD_) return;
1584 gezelter 1773
1585 gezelter 1350 #ifdef IS_MPI
1586     // If we're the root node, should we print out the results
1587     int worldRank = MPI::COMM_WORLD.Get_rank();
1588     if (worldRank == 0) {
1589     #endif
1590 gezelter 1773 rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1591    
1592     if( !rnemdFile_ ){
1593     sprintf( painCave.errMsg,
1594     "Could not open \"%s\" for RNEMD output.\n",
1595     rnemdFileName_.c_str());
1596     painCave.isFatal = 1;
1597     simError();
1598     }
1599 gezelter 1722
1600 gezelter 1773 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1601    
1602     RealType time = currentSnap_->getTime();
1603 gezelter 1774 RealType avgArea;
1604     areaAccumulator_->getAverage(avgArea);
1605     RealType Jz = kineticExchange_ / (2.0 * time * avgArea);
1606     Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);
1607    
1608 gezelter 1773 rnemdFile_ << "#######################################################\n";
1609     rnemdFile_ << "# RNEMD {\n";
1610    
1611     map<string, RNEMDMethod>::iterator mi;
1612     for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1613     if ( (*mi).second == rnemdMethod_)
1614 gezelter 1774 rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n";
1615 skuang 1368 }
1616 gezelter 1773 map<string, RNEMDFluxType>::iterator fi;
1617     for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1618     if ( (*fi).second == rnemdFluxType_)
1619 gezelter 1774 rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n";
1620 gezelter 1722 }
1621 gezelter 1773
1622 gezelter 1775 rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n";
1623 gezelter 1773
1624     rnemdFile_ << "# objectSelection = \""
1625 gezelter 1774 << rnemdObjectSelection_ << "\";\n";
1626     rnemdFile_ << "# slabWidth = " << slabWidth_ << ";\n";
1627     rnemdFile_ << "# slabAcenter = " << slabACenter_ << ";\n";
1628     rnemdFile_ << "# slabBcenter = " << slabBCenter_ << ";\n";
1629 gezelter 1773 rnemdFile_ << "# }\n";
1630     rnemdFile_ << "#######################################################\n";
1631 gezelter 1774 rnemdFile_ << "# RNEMD report:\n";
1632     rnemdFile_ << "# running time = " << time << " fs\n";
1633     rnemdFile_ << "# target flux:\n";
1634     rnemdFile_ << "# kinetic = " << kineticFlux_ << "\n";
1635     rnemdFile_ << "# momentum = " << momentumFluxVector_ << "\n";
1636     rnemdFile_ << "# target one-time exchanges:\n";
1637     rnemdFile_ << "# kinetic = " << kineticTarget_ << "\n";
1638     rnemdFile_ << "# momentum = " << momentumTarget_ << "\n";
1639     rnemdFile_ << "# actual exchange totals:\n";
1640     rnemdFile_ << "# kinetic = " << kineticExchange_ << "\n";
1641     rnemdFile_ << "# momentum = " << momentumExchange_ << "\n";
1642     rnemdFile_ << "# actual flux:\n";
1643     rnemdFile_ << "# kinetic = " << Jz << "\n";
1644     rnemdFile_ << "# momentum = " << JzP << "\n";
1645     rnemdFile_ << "# exchange statistics:\n";
1646     rnemdFile_ << "# attempted = " << trialCount_ << "\n";
1647     rnemdFile_ << "# failed = " << failTrialCount_ << "\n";
1648 gezelter 1773 if (rnemdMethod_ == rnemdNIVS) {
1649 gezelter 1774 rnemdFile_ << "# NIVS root-check errors = "
1650     << failRootCount_ << "\n";
1651 gezelter 1722 }
1652 gezelter 1773 rnemdFile_ << "#######################################################\n";
1653    
1654    
1655    
1656     //write title
1657     rnemdFile_ << "#";
1658     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1659     if (outputMask_[i]) {
1660     rnemdFile_ << "\t" << data_[i].title <<
1661     "(" << data_[i].units << ")";
1662 skuang 1368 }
1663 gezelter 1773 }
1664     rnemdFile_ << std::endl;
1665    
1666     rnemdFile_.precision(8);
1667    
1668     for (unsigned int j = 0; j < nBins_; j++) {
1669    
1670     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1671     if (outputMask_[i]) {
1672     if (data_[i].dataType == "RealType")
1673     writeReal(i,j);
1674     else if (data_[i].dataType == "Vector3d")
1675     writeVector(i,j);
1676     else {
1677     sprintf( painCave.errMsg,
1678     "RNEMD found an unknown data type for: %s ",
1679     data_[i].title.c_str());
1680     painCave.isFatal = 1;
1681     simError();
1682     }
1683     }
1684 skuang 1368 }
1685 gezelter 1773 rnemdFile_ << std::endl;
1686    
1687     }
1688 gezelter 1774
1689     rnemdFile_ << "#######################################################\n";
1690     rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1691     rnemdFile_ << "#######################################################\n";
1692    
1693    
1694     for (unsigned int j = 0; j < nBins_; j++) {
1695     rnemdFile_ << "#";
1696     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1697     if (outputMask_[i]) {
1698     if (data_[i].dataType == "RealType")
1699     writeRealStdDev(i,j);
1700     else if (data_[i].dataType == "Vector3d")
1701     writeVectorStdDev(i,j);
1702     else {
1703     sprintf( painCave.errMsg,
1704     "RNEMD found an unknown data type for: %s ",
1705     data_[i].title.c_str());
1706     painCave.isFatal = 1;
1707     simError();
1708     }
1709     }
1710     }
1711     rnemdFile_ << std::endl;
1712    
1713     }
1714 gezelter 1773
1715     rnemdFile_.flush();
1716     rnemdFile_.close();
1717    
1718 gezelter 1350 #ifdef IS_MPI
1719 gezelter 1396 }
1720 gezelter 1350 #endif
1721 jmarr 1728
1722 gezelter 1334 }
1723 gezelter 1773
1724     void RNEMD::writeReal(int index, unsigned int bin) {
1725 gezelter 1776 if (!doRNEMD_) return;
1726 gezelter 1773 assert(index >=0 && index < ENDINDEX);
1727 gezelter 1774 assert(bin < nBins_);
1728 gezelter 1773 RealType s;
1729    
1730     data_[index].accumulator[bin]->getAverage(s);
1731    
1732     if (! isinf(s) && ! isnan(s)) {
1733     rnemdFile_ << "\t" << s;
1734     } else{
1735     sprintf( painCave.errMsg,
1736     "RNEMD detected a numerical error writing: %s for bin %d",
1737     data_[index].title.c_str(), bin);
1738     painCave.isFatal = 1;
1739     simError();
1740     }
1741     }
1742    
1743     void RNEMD::writeVector(int index, unsigned int bin) {
1744 gezelter 1776 if (!doRNEMD_) return;
1745 gezelter 1773 assert(index >=0 && index < ENDINDEX);
1746 gezelter 1774 assert(bin < nBins_);
1747 gezelter 1773 Vector3d s;
1748     dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1749     if (isinf(s[0]) || isnan(s[0]) ||
1750     isinf(s[1]) || isnan(s[1]) ||
1751     isinf(s[2]) || isnan(s[2]) ) {
1752     sprintf( painCave.errMsg,
1753     "RNEMD detected a numerical error writing: %s for bin %d",
1754     data_[index].title.c_str(), bin);
1755     painCave.isFatal = 1;
1756     simError();
1757     } else {
1758     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1759     }
1760     }
1761 gezelter 1774
1762     void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1763 gezelter 1776 if (!doRNEMD_) return;
1764 gezelter 1774 assert(index >=0 && index < ENDINDEX);
1765     assert(bin < nBins_);
1766     RealType s;
1767    
1768     data_[index].accumulator[bin]->getStdDev(s);
1769    
1770     if (! isinf(s) && ! isnan(s)) {
1771     rnemdFile_ << "\t" << s;
1772     } else{
1773     sprintf( painCave.errMsg,
1774     "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1775     data_[index].title.c_str(), bin);
1776     painCave.isFatal = 1;
1777     simError();
1778     }
1779     }
1780    
1781     void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1782 gezelter 1776 if (!doRNEMD_) return;
1783 gezelter 1774 assert(index >=0 && index < ENDINDEX);
1784     assert(bin < nBins_);
1785     Vector3d s;
1786     dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1787     if (isinf(s[0]) || isnan(s[0]) ||
1788     isinf(s[1]) || isnan(s[1]) ||
1789     isinf(s[2]) || isnan(s[2]) ) {
1790     sprintf( painCave.errMsg,
1791     "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1792     data_[index].title.c_str(), bin);
1793     painCave.isFatal = 1;
1794     simError();
1795     } else {
1796     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1797     }
1798     }
1799 skuang 1338 }
1800 gezelter 1722

Properties

Name Value
svn:keywords Author Id Revision Date