ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/rnemd/RNEMD.cpp
Revision: 1775
Committed: Wed Aug 8 18:45:52 2012 UTC (12 years, 8 months ago) by gezelter
File size: 56091 byte(s)
Log Message:
Tracking down a strange bug report.   Fixing some output. Fixing some samples.

File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1722 * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41    
42 skuang 1368 #include <cmath>
43 gezelter 1731 #include "rnemd/RNEMD.hpp"
44 gezelter 1332 #include "math/Vector3.hpp"
45 gezelter 1722 #include "math/Vector.hpp"
46 gezelter 1329 #include "math/SquareMatrix3.hpp"
47 skuang 1368 #include "math/Polynomial.hpp"
48 gezelter 1329 #include "primitives/Molecule.hpp"
49     #include "primitives/StuntDouble.hpp"
50 gezelter 1390 #include "utils/PhysicalConstants.hpp"
51 gezelter 1332 #include "utils/Tuple.hpp"
52 gezelter 1773 #ifdef IS_MPI
53 gezelter 1723 #include <mpi.h>
54 gezelter 1329 #endif
55    
56 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
57 gezelter 1329
58 gezelter 1629 using namespace std;
59 gezelter 1390 namespace OpenMD {
60 gezelter 1329
61 gezelter 1629 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
62     usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63 skuang 1368
64 gezelter 1773 trialCount_ = 0;
65 skuang 1368 failTrialCount_ = 0;
66     failRootCount_ = 0;
67    
68 gezelter 1329 int seedValue;
69     Globals * simParams = info->getSimParams();
70 gezelter 1731 RNEMDParameters* rnemdParams = simParams->getRNEMDParameters();
71 skuang 1330
72 gezelter 1773 stringToMethod_["Swap"] = rnemdSwap;
73     stringToMethod_["NIVS"] = rnemdNIVS;
74     stringToMethod_["VSS"] = rnemdVSS;
75 skuang 1330
76 gezelter 1773 stringToFluxType_["KE"] = rnemdKE;
77     stringToFluxType_["Px"] = rnemdPx;
78     stringToFluxType_["Py"] = rnemdPy;
79     stringToFluxType_["Pz"] = rnemdPz;
80     stringToFluxType_["KE+Px"] = rnemdKePx;
81     stringToFluxType_["KE+Py"] = rnemdKePy;
82     stringToFluxType_["KE+Pvector"] = rnemdKePvector;
83    
84 jmarr 1728 runTime_ = simParams->getRunTime();
85     statusTime_ = simParams->getStatusTime();
86    
87 gezelter 1731 rnemdObjectSelection_ = rnemdParams->getObjectSelection();
88 skuang 1341 evaluator_.loadScriptString(rnemdObjectSelection_);
89     seleMan_.setSelectionSet(evaluator_.evaluate());
90 gezelter 1331
91 gezelter 1773 const string methStr = rnemdParams->getMethod();
92     bool hasFluxType = rnemdParams->haveFluxType();
93    
94     string fluxStr;
95     if (hasFluxType) {
96     fluxStr = rnemdParams->getFluxType();
97     } else {
98     sprintf(painCave.errMsg,
99     "RNEMD: No fluxType was set in the md file. This parameter,\n"
100     "\twhich must be one of the following values:\n"
101     "\tKE, Px, Py, Pz, KE+Px, KE+Py, KE+Pvector, must be set to\n"
102     "\tuse RNEMD\n");
103     painCave.isFatal = 1;
104     painCave.severity = OPENMD_ERROR;
105     simError();
106     }
107    
108     bool hasKineticFlux = rnemdParams->haveKineticFlux();
109     bool hasMomentumFlux = rnemdParams->haveMomentumFlux();
110     bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector();
111     bool hasSlabWidth = rnemdParams->haveSlabWidth();
112     bool hasSlabACenter = rnemdParams->haveSlabACenter();
113     bool hasSlabBCenter = rnemdParams->haveSlabBCenter();
114     bool hasOutputFileName = rnemdParams->haveOutputFileName();
115     bool hasOutputFields = rnemdParams->haveOutputFields();
116    
117     map<string, RNEMDMethod>::iterator i;
118     i = stringToMethod_.find(methStr);
119     if (i != stringToMethod_.end())
120     rnemdMethod_ = i->second;
121     else {
122     sprintf(painCave.errMsg,
123     "RNEMD: The current method,\n"
124     "\t\t%s is not one of the recognized\n"
125     "\texchange methods: Swap, NIVS, or VSS\n",
126     methStr.c_str());
127     painCave.isFatal = 1;
128     painCave.severity = OPENMD_ERROR;
129     simError();
130     }
131    
132     map<string, RNEMDFluxType>::iterator j;
133     j = stringToFluxType_.find(fluxStr);
134     if (j != stringToFluxType_.end())
135     rnemdFluxType_ = j->second;
136     else {
137     sprintf(painCave.errMsg,
138     "RNEMD: The current fluxType,\n"
139     "\t\t%s\n"
140     "\tis not one of the recognized flux types.\n",
141     fluxStr.c_str());
142     painCave.isFatal = 1;
143     painCave.severity = OPENMD_ERROR;
144     simError();
145     }
146    
147     bool methodFluxMismatch = false;
148     bool hasCorrectFlux = false;
149     switch(rnemdMethod_) {
150     case rnemdSwap:
151     switch (rnemdFluxType_) {
152     case rnemdKE:
153     hasCorrectFlux = hasKineticFlux;
154     break;
155     case rnemdPx:
156     case rnemdPy:
157     case rnemdPz:
158     hasCorrectFlux = hasMomentumFlux;
159     break;
160     default :
161     methodFluxMismatch = true;
162     break;
163     }
164     break;
165     case rnemdNIVS:
166     switch (rnemdFluxType_) {
167     case rnemdKE:
168     case rnemdRotKE:
169     case rnemdFullKE:
170     hasCorrectFlux = hasKineticFlux;
171     break;
172     case rnemdPx:
173     case rnemdPy:
174     case rnemdPz:
175     hasCorrectFlux = hasMomentumFlux;
176     break;
177     case rnemdKePx:
178     case rnemdKePy:
179     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
180     break;
181     default:
182     methodFluxMismatch = true;
183     break;
184     }
185     break;
186     case rnemdVSS:
187     switch (rnemdFluxType_) {
188     case rnemdKE:
189     case rnemdRotKE:
190     case rnemdFullKE:
191     hasCorrectFlux = hasKineticFlux;
192     break;
193     case rnemdPx:
194     case rnemdPy:
195     case rnemdPz:
196     hasCorrectFlux = hasMomentumFlux;
197     break;
198     case rnemdPvector:
199     hasCorrectFlux = hasMomentumFluxVector;
200     case rnemdKePx:
201     case rnemdKePy:
202     hasCorrectFlux = hasMomentumFlux && hasKineticFlux;
203     break;
204     case rnemdKePvector:
205     hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux;
206     break;
207     default:
208     methodFluxMismatch = true;
209     break;
210     }
211     default:
212     break;
213     }
214    
215     if (methodFluxMismatch) {
216     sprintf(painCave.errMsg,
217     "RNEMD: The current method,\n"
218     "\t\t%s\n"
219     "\tcannot be used with the current flux type, %s\n",
220     methStr.c_str(), fluxStr.c_str());
221     painCave.isFatal = 1;
222     painCave.severity = OPENMD_ERROR;
223     simError();
224     }
225     if (!hasCorrectFlux) {
226     sprintf(painCave.errMsg,
227     "RNEMD: The current method,\n"
228     "\t%s, and flux type %s\n"
229     "\tdid not have the correct flux value specified. Options\n"
230     "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n",
231     methStr.c_str(), fluxStr.c_str());
232     painCave.isFatal = 1;
233     painCave.severity = OPENMD_ERROR;
234     simError();
235     }
236    
237     if (hasKineticFlux) {
238     kineticFlux_ = rnemdParams->getKineticFlux();
239     } else {
240     kineticFlux_ = 0.0;
241     }
242     if (hasMomentumFluxVector) {
243     momentumFluxVector_ = rnemdParams->getMomentumFluxVector();
244     } else {
245     momentumFluxVector_ = V3Zero;
246     if (hasMomentumFlux) {
247     RealType momentumFlux = rnemdParams->getMomentumFlux();
248     switch (rnemdFluxType_) {
249     case rnemdPx:
250     momentumFluxVector_.x() = momentumFlux;
251     break;
252     case rnemdPy:
253     momentumFluxVector_.y() = momentumFlux;
254     break;
255     case rnemdPz:
256     momentumFluxVector_.z() = momentumFlux;
257     break;
258     case rnemdKePx:
259     momentumFluxVector_.x() = momentumFlux;
260     break;
261     case rnemdKePy:
262     momentumFluxVector_.y() = momentumFlux;
263     break;
264     default:
265     break;
266     }
267     }
268     }
269    
270 skuang 1341 // do some sanity checking
271    
272     int selectionCount = seleMan_.getSelectionCount();
273     int nIntegrable = info->getNGlobalIntegrableObjects();
274    
275     if (selectionCount > nIntegrable) {
276     sprintf(painCave.errMsg,
277 gezelter 1773 "RNEMD: The current objectSelection,\n"
278 skuang 1341 "\t\t%s\n"
279     "\thas resulted in %d selected objects. However,\n"
280     "\tthe total number of integrable objects in the system\n"
281     "\tis only %d. This is almost certainly not what you want\n"
282     "\tto do. A likely cause of this is forgetting the _RB_0\n"
283     "\tselector in the selection script!\n",
284     rnemdObjectSelection_.c_str(),
285     selectionCount, nIntegrable);
286     painCave.isFatal = 0;
287 gezelter 1629 painCave.severity = OPENMD_WARNING;
288 skuang 1341 simError();
289     }
290 skuang 1330
291 gezelter 1774 areaAccumulator_ = new Accumulator();
292    
293 gezelter 1773 nBins_ = rnemdParams->getOutputBins();
294 skuang 1330
295 gezelter 1773 data_.resize(RNEMD::ENDINDEX);
296     OutputData z;
297     z.units = "Angstroms";
298     z.title = "Z";
299     z.dataType = "RealType";
300     z.accumulator.reserve(nBins_);
301     for (unsigned int i = 0; i < nBins_; i++)
302     z.accumulator.push_back( new Accumulator() );
303     data_[Z] = z;
304     outputMap_["Z"] = Z;
305 skuang 1368
306 gezelter 1773 OutputData temperature;
307     temperature.units = "K";
308     temperature.title = "Temperature";
309     temperature.dataType = "RealType";
310     temperature.accumulator.reserve(nBins_);
311     for (unsigned int i = 0; i < nBins_; i++)
312     temperature.accumulator.push_back( new Accumulator() );
313     data_[TEMPERATURE] = temperature;
314     outputMap_["TEMPERATURE"] = TEMPERATURE;
315 gezelter 1722
316 gezelter 1773 OutputData velocity;
317     velocity.units = "amu/fs";
318     velocity.title = "Velocity";
319     velocity.dataType = "Vector3d";
320     velocity.accumulator.reserve(nBins_);
321     for (unsigned int i = 0; i < nBins_; i++)
322     velocity.accumulator.push_back( new VectorAccumulator() );
323     data_[VELOCITY] = velocity;
324     outputMap_["VELOCITY"] = VELOCITY;
325 skuang 1368
326 gezelter 1773 OutputData density;
327     density.units = "g cm^-3";
328     density.title = "Density";
329     density.dataType = "RealType";
330     density.accumulator.reserve(nBins_);
331     for (unsigned int i = 0; i < nBins_; i++)
332     density.accumulator.push_back( new Accumulator() );
333     data_[DENSITY] = density;
334     outputMap_["DENSITY"] = DENSITY;
335 skuang 1368
336 gezelter 1773 if (hasOutputFields) {
337     parseOutputFileFormat(rnemdParams->getOutputFields());
338     } else {
339     outputMask_.set(Z);
340     switch (rnemdFluxType_) {
341     case rnemdKE:
342     case rnemdRotKE:
343     case rnemdFullKE:
344     outputMask_.set(TEMPERATURE);
345     break;
346     case rnemdPx:
347     case rnemdPy:
348     outputMask_.set(VELOCITY);
349     break;
350     case rnemdPz:
351     case rnemdPvector:
352     outputMask_.set(VELOCITY);
353     outputMask_.set(DENSITY);
354     break;
355     case rnemdKePx:
356     case rnemdKePy:
357     outputMask_.set(TEMPERATURE);
358     outputMask_.set(VELOCITY);
359     break;
360     case rnemdKePvector:
361     outputMask_.set(TEMPERATURE);
362     outputMask_.set(VELOCITY);
363     outputMask_.set(DENSITY);
364     break;
365     default:
366     break;
367 gezelter 1629 }
368     }
369 gezelter 1773
370     if (hasOutputFileName) {
371     rnemdFileName_ = rnemdParams->getOutputFileName();
372 skuang 1368 } else {
373 gezelter 1773 rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd";
374     }
375 gezelter 1722
376 gezelter 1773 exchangeTime_ = rnemdParams->getExchangeTime();
377 skuang 1338
378 gezelter 1773 Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot();
379     Mat3x3d hmat = currentSnap_->getHmat();
380    
381     // Target exchange quantities (in each exchange) = 2 Lx Ly dt flux
382     // Lx, Ly = box dimensions in x & y
383     // dt = exchange time interval
384     // flux = target flux
385 skuang 1368
386 gezelter 1774 RealType area = currentSnap_->getXYarea();
387     kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area;
388     momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area;
389 gezelter 1773
390     // total exchange sums are zeroed out at the beginning:
391    
392     kineticExchange_ = 0.0;
393     momentumExchange_ = V3Zero;
394    
395     if (hasSlabWidth)
396     slabWidth_ = rnemdParams->getSlabWidth();
397     else
398     slabWidth_ = hmat(2,2) / 10.0;
399    
400     if (hasSlabACenter)
401     slabACenter_ = rnemdParams->getSlabACenter();
402     else
403     slabACenter_ = 0.0;
404    
405     if (hasSlabBCenter)
406     slabBCenter_ = rnemdParams->getSlabBCenter();
407     else
408     slabBCenter_ = hmat(2,2) / 2.0;
409    
410 gezelter 1329 }
411 gezelter 1773
412 gezelter 1329 RNEMD::~RNEMD() {
413 gezelter 1396
414 skuang 1368 #ifdef IS_MPI
415     if (worldRank == 0) {
416     #endif
417 gezelter 1722
418 gezelter 1773 writeOutputFile();
419    
420     rnemdFile_.close();
421 jmarr 1728
422 skuang 1368 #ifdef IS_MPI
423     }
424     #endif
425 gezelter 1329 }
426 gezelter 1773
427     bool RNEMD::inSlabA(Vector3d pos) {
428     return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_);
429     }
430     bool RNEMD::inSlabB(Vector3d pos) {
431     return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_);
432     }
433 skuang 1330
434 gezelter 1329 void RNEMD::doSwap() {
435 gezelter 1331
436 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
437     Mat3x3d hmat = currentSnap_->getHmat();
438    
439 gezelter 1331 seleMan_.setSelectionSet(evaluator_.evaluate());
440    
441 gezelter 1333 int selei;
442 gezelter 1331 StuntDouble* sd;
443 gezelter 1333 int idx;
444 gezelter 1331
445 skuang 1338 RealType min_val;
446     bool min_found = false;
447     StuntDouble* min_sd;
448    
449     RealType max_val;
450     bool max_found = false;
451     StuntDouble* max_sd;
452    
453 gezelter 1333 for (sd = seleMan_.beginSelected(selei); sd != NULL;
454     sd = seleMan_.nextSelected(selei)) {
455 gezelter 1332
456 gezelter 1333 idx = sd->getLocalIndex();
457    
458 gezelter 1331 Vector3d pos = sd->getPos();
459 gezelter 1332
460     // wrap the stuntdouble's position back into the box:
461    
462 gezelter 1331 if (usePeriodicBoundaryConditions_)
463 gezelter 1332 currentSnap_->wrapVector(pos);
464 gezelter 1773 bool inA = inSlabA(pos);
465     bool inB = inSlabB(pos);
466 gezelter 1332
467 gezelter 1773 if (inA || inB) {
468 gezelter 1332
469     RealType mass = sd->getMass();
470     Vector3d vel = sd->getVel();
471     RealType value;
472 gezelter 1773
473     switch(rnemdFluxType_) {
474     case rnemdKE :
475 gezelter 1332
476 gezelter 1722 value = mass * vel.lengthSquare();
477    
478     if (sd->isDirectional()) {
479 gezelter 1332 Vector3d angMom = sd->getJ();
480     Mat3x3d I = sd->getI();
481    
482     if (sd->isLinear()) {
483 gezelter 1722 int i = sd->linearAxis();
484     int j = (i + 1) % 3;
485     int k = (i + 2) % 3;
486     value += angMom[j] * angMom[j] / I(j, j) +
487     angMom[k] * angMom[k] / I(k, k);
488 gezelter 1332 } else {
489 gezelter 1722 value += angMom[0]*angMom[0]/I(0, 0)
490     + angMom[1]*angMom[1]/I(1, 1)
491     + angMom[2]*angMom[2]/I(2, 2);
492 gezelter 1332 }
493 gezelter 1722 } //angular momenta exchange enabled
494     //energyConvert temporarily disabled
495 gezelter 1773 //make kineticExchange_ comparable between swap & scale
496 gezelter 1390 //value = value * 0.5 / PhysicalConstants::energyConvert;
497 skuang 1368 value *= 0.5;
498 gezelter 1332 break;
499     case rnemdPx :
500     value = mass * vel[0];
501     break;
502     case rnemdPy :
503     value = mass * vel[1];
504     break;
505     case rnemdPz :
506     value = mass * vel[2];
507     break;
508     default :
509     break;
510     }
511    
512 gezelter 1773 if (inA == 0) {
513 skuang 1338 if (!min_found) {
514     min_val = value;
515     min_sd = sd;
516     min_found = true;
517     } else {
518     if (min_val > value) {
519     min_val = value;
520     min_sd = sd;
521     }
522     }
523 gezelter 1773 } else {
524 skuang 1338 if (!max_found) {
525     max_val = value;
526     max_sd = sd;
527     max_found = true;
528     } else {
529     if (max_val < value) {
530     max_val = value;
531     max_sd = sd;
532     }
533     }
534     }
535 gezelter 1332 }
536 gezelter 1331 }
537 gezelter 1773
538 gezelter 1350 #ifdef IS_MPI
539     int nProc, worldRank;
540 gezelter 1773
541 gezelter 1350 nProc = MPI::COMM_WORLD.Get_size();
542     worldRank = MPI::COMM_WORLD.Get_rank();
543    
544     bool my_min_found = min_found;
545     bool my_max_found = max_found;
546    
547     // Even if we didn't find a minimum, did someone else?
548 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
549 gezelter 1350 // Even if we didn't find a maximum, did someone else?
550 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
551 gezelter 1722 #endif
552    
553     if (max_found && min_found) {
554    
555     #ifdef IS_MPI
556     struct {
557     RealType val;
558     int rank;
559     } max_vals, min_vals;
560 jmarr 1728
561 gezelter 1722 if (my_min_found) {
562 gezelter 1350 min_vals.val = min_val;
563 gezelter 1722 } else {
564 gezelter 1350 min_vals.val = HONKING_LARGE_VALUE;
565 gezelter 1722 }
566 gezelter 1350 min_vals.rank = worldRank;
567    
568     // Who had the minimum?
569     MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
570     1, MPI::REALTYPE_INT, MPI::MINLOC);
571     min_val = min_vals.val;
572    
573 gezelter 1722 if (my_max_found) {
574 gezelter 1350 max_vals.val = max_val;
575 gezelter 1722 } else {
576 gezelter 1350 max_vals.val = -HONKING_LARGE_VALUE;
577 gezelter 1722 }
578 gezelter 1350 max_vals.rank = worldRank;
579    
580     // Who had the maximum?
581     MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
582     1, MPI::REALTYPE_INT, MPI::MAXLOC);
583     max_val = max_vals.val;
584     #endif
585 gezelter 1722
586 gezelter 1629 if (min_val < max_val) {
587 gezelter 1722
588 gezelter 1350 #ifdef IS_MPI
589     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
590     // I have both maximum and minimum, so proceed like a single
591     // processor version:
592     #endif
593 gezelter 1722
594 gezelter 1350 Vector3d min_vel = min_sd->getVel();
595     Vector3d max_vel = max_sd->getVel();
596     RealType temp_vel;
597    
598 gezelter 1773 switch(rnemdFluxType_) {
599     case rnemdKE :
600 gezelter 1350 min_sd->setVel(max_vel);
601     max_sd->setVel(min_vel);
602 gezelter 1722 if (min_sd->isDirectional() && max_sd->isDirectional()) {
603 gezelter 1350 Vector3d min_angMom = min_sd->getJ();
604     Vector3d max_angMom = max_sd->getJ();
605     min_sd->setJ(max_angMom);
606     max_sd->setJ(min_angMom);
607 gezelter 1722 }//angular momenta exchange enabled
608     //assumes same rigid body identity
609 gezelter 1350 break;
610     case rnemdPx :
611     temp_vel = min_vel.x();
612     min_vel.x() = max_vel.x();
613     max_vel.x() = temp_vel;
614     min_sd->setVel(min_vel);
615     max_sd->setVel(max_vel);
616     break;
617     case rnemdPy :
618     temp_vel = min_vel.y();
619     min_vel.y() = max_vel.y();
620     max_vel.y() = temp_vel;
621     min_sd->setVel(min_vel);
622     max_sd->setVel(max_vel);
623     break;
624     case rnemdPz :
625     temp_vel = min_vel.z();
626     min_vel.z() = max_vel.z();
627     max_vel.z() = temp_vel;
628     min_sd->setVel(min_vel);
629     max_sd->setVel(max_vel);
630     break;
631     default :
632     break;
633     }
634 gezelter 1722
635 gezelter 1350 #ifdef IS_MPI
636     // the rest of the cases only apply in parallel simulations:
637     } else if (max_vals.rank == worldRank) {
638     // I had the max, but not the minimum
639    
640     Vector3d min_vel;
641     Vector3d max_vel = max_sd->getVel();
642     MPI::Status status;
643 skuang 1341
644 gezelter 1350 // point-to-point swap of the velocity vector
645     MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
646     min_vals.rank, 0,
647     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
648     min_vals.rank, 0, status);
649    
650 gezelter 1773 switch(rnemdFluxType_) {
651     case rnemdKE :
652 gezelter 1350 max_sd->setVel(min_vel);
653 gezelter 1722 //angular momenta exchange enabled
654 gezelter 1350 if (max_sd->isDirectional()) {
655     Vector3d min_angMom;
656     Vector3d max_angMom = max_sd->getJ();
657 gezelter 1629
658 gezelter 1350 // point-to-point swap of the angular momentum vector
659     MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
660     MPI::REALTYPE, min_vals.rank, 1,
661     min_angMom.getArrayPointer(), 3,
662     MPI::REALTYPE, min_vals.rank, 1,
663     status);
664 gezelter 1629
665 gezelter 1350 max_sd->setJ(min_angMom);
666 gezelter 1722 }
667 gezelter 1350 break;
668     case rnemdPx :
669     max_vel.x() = min_vel.x();
670     max_sd->setVel(max_vel);
671     break;
672     case rnemdPy :
673     max_vel.y() = min_vel.y();
674     max_sd->setVel(max_vel);
675     break;
676     case rnemdPz :
677     max_vel.z() = min_vel.z();
678     max_sd->setVel(max_vel);
679     break;
680     default :
681     break;
682 skuang 1341 }
683 gezelter 1350 } else if (min_vals.rank == worldRank) {
684     // I had the minimum but not the maximum:
685    
686     Vector3d max_vel;
687     Vector3d min_vel = min_sd->getVel();
688     MPI::Status status;
689    
690     // point-to-point swap of the velocity vector
691     MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
692     max_vals.rank, 0,
693     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
694     max_vals.rank, 0, status);
695    
696 gezelter 1773 switch(rnemdFluxType_) {
697     case rnemdKE :
698 gezelter 1350 min_sd->setVel(max_vel);
699 gezelter 1722 //angular momenta exchange enabled
700 gezelter 1350 if (min_sd->isDirectional()) {
701     Vector3d min_angMom = min_sd->getJ();
702     Vector3d max_angMom;
703 gezelter 1629
704 gezelter 1350 // point-to-point swap of the angular momentum vector
705     MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
706     MPI::REALTYPE, max_vals.rank, 1,
707     max_angMom.getArrayPointer(), 3,
708     MPI::REALTYPE, max_vals.rank, 1,
709     status);
710 gezelter 1629
711 gezelter 1350 min_sd->setJ(max_angMom);
712     }
713     break;
714     case rnemdPx :
715     min_vel.x() = max_vel.x();
716     min_sd->setVel(min_vel);
717     break;
718     case rnemdPy :
719     min_vel.y() = max_vel.y();
720     min_sd->setVel(min_vel);
721     break;
722     case rnemdPz :
723     min_vel.z() = max_vel.z();
724     min_sd->setVel(min_vel);
725     break;
726     default :
727     break;
728     }
729     }
730     #endif
731 gezelter 1773
732     switch(rnemdFluxType_) {
733     case rnemdKE:
734     cerr << "KE\n";
735     kineticExchange_ += max_val - min_val;
736     break;
737     case rnemdPx:
738     momentumExchange_.x() += max_val - min_val;
739     break;
740     case rnemdPy:
741     momentumExchange_.y() += max_val - min_val;
742     break;
743     case rnemdPz:
744     momentumExchange_.z() += max_val - min_val;
745     break;
746     default:
747     cerr << "default\n";
748     break;
749     }
750 gezelter 1629 } else {
751     sprintf(painCave.errMsg,
752 gezelter 1773 "RNEMD::doSwap exchange NOT performed because min_val > max_val\n");
753 gezelter 1629 painCave.isFatal = 0;
754     painCave.severity = OPENMD_INFO;
755     simError();
756 skuang 1368 failTrialCount_++;
757 skuang 1338 }
758     } else {
759 gezelter 1629 sprintf(painCave.errMsg,
760 gezelter 1773 "RNEMD::doSwap exchange NOT performed because selected object\n"
761     "\twas not present in at least one of the two slabs.\n");
762 gezelter 1629 painCave.isFatal = 0;
763     painCave.severity = OPENMD_INFO;
764     simError();
765 skuang 1368 failTrialCount_++;
766 gezelter 1773 }
767 skuang 1338 }
768 gezelter 1350
769 gezelter 1773 void RNEMD::doNIVS() {
770 skuang 1338
771     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
772     Mat3x3d hmat = currentSnap_->getHmat();
773    
774     seleMan_.setSelectionSet(evaluator_.evaluate());
775    
776     int selei;
777     StuntDouble* sd;
778     int idx;
779    
780 gezelter 1629 vector<StuntDouble*> hotBin, coldBin;
781 gezelter 1350
782 skuang 1368 RealType Phx = 0.0;
783     RealType Phy = 0.0;
784     RealType Phz = 0.0;
785     RealType Khx = 0.0;
786     RealType Khy = 0.0;
787     RealType Khz = 0.0;
788 gezelter 1722 RealType Khw = 0.0;
789 skuang 1368 RealType Pcx = 0.0;
790     RealType Pcy = 0.0;
791     RealType Pcz = 0.0;
792     RealType Kcx = 0.0;
793     RealType Kcy = 0.0;
794     RealType Kcz = 0.0;
795 gezelter 1722 RealType Kcw = 0.0;
796 skuang 1368
797 skuang 1338 for (sd = seleMan_.beginSelected(selei); sd != NULL;
798     sd = seleMan_.nextSelected(selei)) {
799 skuang 1368
800     idx = sd->getLocalIndex();
801    
802     Vector3d pos = sd->getPos();
803    
804     // wrap the stuntdouble's position back into the box:
805    
806     if (usePeriodicBoundaryConditions_)
807     currentSnap_->wrapVector(pos);
808    
809     // which bin is this stuntdouble in?
810 gezelter 1773 bool inA = inSlabA(pos);
811     bool inB = inSlabB(pos);
812 skuang 1368
813 gezelter 1773 if (inA || inB) {
814    
815 skuang 1368 RealType mass = sd->getMass();
816     Vector3d vel = sd->getVel();
817    
818 gezelter 1773 if (inA) {
819 skuang 1368 hotBin.push_back(sd);
820     Phx += mass * vel.x();
821     Phy += mass * vel.y();
822     Phz += mass * vel.z();
823     Khx += mass * vel.x() * vel.x();
824     Khy += mass * vel.y() * vel.y();
825     Khz += mass * vel.z() * vel.z();
826 gezelter 1722 if (sd->isDirectional()) {
827     Vector3d angMom = sd->getJ();
828     Mat3x3d I = sd->getI();
829     if (sd->isLinear()) {
830     int i = sd->linearAxis();
831     int j = (i + 1) % 3;
832     int k = (i + 2) % 3;
833     Khw += angMom[j] * angMom[j] / I(j, j) +
834     angMom[k] * angMom[k] / I(k, k);
835     } else {
836     Khw += angMom[0]*angMom[0]/I(0, 0)
837     + angMom[1]*angMom[1]/I(1, 1)
838     + angMom[2]*angMom[2]/I(2, 2);
839     }
840     }
841 gezelter 1773 } else {
842 skuang 1368 coldBin.push_back(sd);
843     Pcx += mass * vel.x();
844     Pcy += mass * vel.y();
845     Pcz += mass * vel.z();
846     Kcx += mass * vel.x() * vel.x();
847     Kcy += mass * vel.y() * vel.y();
848     Kcz += mass * vel.z() * vel.z();
849 gezelter 1722 if (sd->isDirectional()) {
850     Vector3d angMom = sd->getJ();
851     Mat3x3d I = sd->getI();
852     if (sd->isLinear()) {
853     int i = sd->linearAxis();
854     int j = (i + 1) % 3;
855     int k = (i + 2) % 3;
856     Kcw += angMom[j] * angMom[j] / I(j, j) +
857     angMom[k] * angMom[k] / I(k, k);
858     } else {
859     Kcw += angMom[0]*angMom[0]/I(0, 0)
860     + angMom[1]*angMom[1]/I(1, 1)
861     + angMom[2]*angMom[2]/I(2, 2);
862     }
863     }
864 skuang 1368 }
865     }
866     }
867 gezelter 1722
868 skuang 1368 Khx *= 0.5;
869     Khy *= 0.5;
870     Khz *= 0.5;
871 gezelter 1722 Khw *= 0.5;
872 skuang 1368 Kcx *= 0.5;
873     Kcy *= 0.5;
874     Kcz *= 0.5;
875 gezelter 1722 Kcw *= 0.5;
876 skuang 1368
877     #ifdef IS_MPI
878     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
879     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
880     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
881     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
882     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
883     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
884    
885     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
886     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
887     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
888 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
889    
890 skuang 1368 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
891     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
892     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
893 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
894 skuang 1368 #endif
895    
896 gezelter 1722 //solve coldBin coeff's first
897 skuang 1368 RealType px = Pcx / Phx;
898     RealType py = Pcy / Phy;
899     RealType pz = Pcz / Phz;
900 gezelter 1722 RealType c, x, y, z;
901     bool successfulScale = false;
902 gezelter 1773 if ((rnemdFluxType_ == rnemdFullKE) ||
903     (rnemdFluxType_ == rnemdRotKE)) {
904 gezelter 1722 //may need sanity check Khw & Kcw > 0
905 skuang 1368
906 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
907     c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw);
908 gezelter 1722 } else {
909 gezelter 1773 c = 1.0 - kineticTarget_ / Kcw;
910 gezelter 1722 }
911 skuang 1368
912 gezelter 1722 if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
913     c = sqrt(c);
914 gezelter 1773 //std::cerr << "cold slab scaling coefficient: " << c << endl;
915 gezelter 1722 //now convert to hotBin coefficient
916     RealType w = 0.0;
917 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
918 gezelter 1722 x = 1.0 + px * (1.0 - c);
919     y = 1.0 + py * (1.0 - c);
920     z = 1.0 + pz * (1.0 - c);
921     /* more complicated way
922     w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
923     + Khx * px * px + Khy * py * py + Khz * pz * pz)
924     - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
925     + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
926     + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
927     - Kcx - Kcy - Kcz)) / Khw; the following is simpler
928     */
929     if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
930     (fabs(z - 1.0) < 0.1)) {
931 gezelter 1773 w = 1.0 + (kineticTarget_
932     + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
933 gezelter 1722 + Khz * (1.0 - z * z)) / Khw;
934     }//no need to calculate w if x, y or z is out of range
935     } else {
936 gezelter 1773 w = 1.0 + kineticTarget_ / Khw;
937 gezelter 1722 }
938     if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
939     //if w is in the right range, so should be x, y, z.
940     vector<StuntDouble*>::iterator sdi;
941     Vector3d vel;
942     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
943 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
944 gezelter 1722 vel = (*sdi)->getVel() * c;
945     (*sdi)->setVel(vel);
946     }
947     if ((*sdi)->isDirectional()) {
948     Vector3d angMom = (*sdi)->getJ() * c;
949     (*sdi)->setJ(angMom);
950     }
951     }
952     w = sqrt(w);
953 gezelter 1773 // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
954     // << "\twh= " << w << endl;
955 gezelter 1722 for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
956 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
957 gezelter 1722 vel = (*sdi)->getVel();
958     vel.x() *= x;
959     vel.y() *= y;
960     vel.z() *= z;
961     (*sdi)->setVel(vel);
962     }
963     if ((*sdi)->isDirectional()) {
964     Vector3d angMom = (*sdi)->getJ() * w;
965     (*sdi)->setJ(angMom);
966     }
967     }
968     successfulScale = true;
969 gezelter 1773 kineticExchange_ += kineticTarget_;
970 gezelter 1722 }
971 skuang 1368 }
972 gezelter 1722 } else {
973     RealType a000, a110, c0, a001, a111, b01, b11, c1;
974 gezelter 1773 switch(rnemdFluxType_) {
975     case rnemdKE :
976 gezelter 1722 /* used hotBin coeff's & only scale x & y dimensions
977     RealType px = Phx / Pcx;
978     RealType py = Phy / Pcy;
979     a110 = Khy;
980 gezelter 1773 c0 = - Khx - Khy - kineticTarget_;
981 gezelter 1722 a000 = Khx;
982     a111 = Kcy * py * py;
983     b11 = -2.0 * Kcy * py * (1.0 + py);
984 gezelter 1773 c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_;
985 gezelter 1722 b01 = -2.0 * Kcx * px * (1.0 + px);
986     a001 = Kcx * px * px;
987     */
988     //scale all three dimensions, let c_x = c_y
989     a000 = Kcx + Kcy;
990     a110 = Kcz;
991 gezelter 1773 c0 = kineticTarget_ - Kcx - Kcy - Kcz;
992 gezelter 1722 a001 = Khx * px * px + Khy * py * py;
993     a111 = Khz * pz * pz;
994     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
995     b11 = -2.0 * Khz * pz * (1.0 + pz);
996     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
997 gezelter 1773 + Khz * pz * (2.0 + pz) - kineticTarget_;
998 gezelter 1722 break;
999 gezelter 1773 case rnemdPx :
1000     c = 1 - momentumTarget_.x() / Pcx;
1001 gezelter 1722 a000 = Kcy;
1002     a110 = Kcz;
1003     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
1004     a001 = py * py * Khy;
1005     a111 = pz * pz * Khz;
1006     b01 = -2.0 * Khy * py * (1.0 + py);
1007     b11 = -2.0 * Khz * pz * (1.0 + pz);
1008     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
1009     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
1010     break;
1011 gezelter 1773 case rnemdPy :
1012     c = 1 - momentumTarget_.y() / Pcy;
1013 gezelter 1722 a000 = Kcx;
1014     a110 = Kcz;
1015     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
1016     a001 = px * px * Khx;
1017     a111 = pz * pz * Khz;
1018     b01 = -2.0 * Khx * px * (1.0 + px);
1019     b11 = -2.0 * Khz * pz * (1.0 + pz);
1020     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
1021     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
1022     break;
1023 gezelter 1773 case rnemdPz ://we don't really do this, do we?
1024     c = 1 - momentumTarget_.z() / Pcz;
1025 gezelter 1722 a000 = Kcx;
1026     a110 = Kcy;
1027     c0 = Kcz * c * c - Kcx - Kcy - Kcz;
1028     a001 = px * px * Khx;
1029     a111 = py * py * Khy;
1030     b01 = -2.0 * Khx * px * (1.0 + px);
1031     b11 = -2.0 * Khy * py * (1.0 + py);
1032     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
1033     + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
1034     break;
1035     default :
1036     break;
1037 skuang 1368 }
1038 gezelter 1722
1039     RealType v1 = a000 * a111 - a001 * a110;
1040     RealType v2 = a000 * b01;
1041     RealType v3 = a000 * b11;
1042     RealType v4 = a000 * c1 - a001 * c0;
1043     RealType v8 = a110 * b01;
1044     RealType v10 = - b01 * c0;
1045    
1046     RealType u0 = v2 * v10 - v4 * v4;
1047     RealType u1 = -2.0 * v3 * v4;
1048     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
1049     RealType u3 = -2.0 * v1 * v3;
1050     RealType u4 = - v1 * v1;
1051     //rescale coefficients
1052     RealType maxAbs = fabs(u0);
1053     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
1054     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
1055     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
1056     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
1057     u0 /= maxAbs;
1058     u1 /= maxAbs;
1059     u2 /= maxAbs;
1060     u3 /= maxAbs;
1061     u4 /= maxAbs;
1062     //max_element(start, end) is also available.
1063     Polynomial<RealType> poly; //same as DoublePolynomial poly;
1064     poly.setCoefficient(4, u4);
1065     poly.setCoefficient(3, u3);
1066     poly.setCoefficient(2, u2);
1067     poly.setCoefficient(1, u1);
1068     poly.setCoefficient(0, u0);
1069     vector<RealType> realRoots = poly.FindRealRoots();
1070    
1071     vector<RealType>::iterator ri;
1072     RealType r1, r2, alpha0;
1073     vector<pair<RealType,RealType> > rps;
1074     for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
1075     r2 = *ri;
1076     //check if FindRealRoots() give the right answer
1077     if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
1078     sprintf(painCave.errMsg,
1079     "RNEMD Warning: polynomial solve seems to have an error!");
1080     painCave.isFatal = 0;
1081     simError();
1082     failRootCount_++;
1083     }
1084     //might not be useful w/o rescaling coefficients
1085     alpha0 = -c0 - a110 * r2 * r2;
1086     if (alpha0 >= 0.0) {
1087     r1 = sqrt(alpha0 / a000);
1088     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1089     < 1e-6)
1090     { rps.push_back(make_pair(r1, r2)); }
1091     if (r1 > 1e-6) { //r1 non-negative
1092     r1 = -r1;
1093     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
1094     < 1e-6)
1095     { rps.push_back(make_pair(r1, r2)); }
1096     }
1097     }
1098 skuang 1368 }
1099 gezelter 1722 // Consider combining together the solving pair part w/ the searching
1100     // best solution part so that we don't need the pairs vector
1101     if (!rps.empty()) {
1102     RealType smallestDiff = HONKING_LARGE_VALUE;
1103     RealType diff;
1104     pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1105     vector<pair<RealType,RealType> >::iterator rpi;
1106     for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1107     r1 = (*rpi).first;
1108     r2 = (*rpi).second;
1109 gezelter 1773 switch(rnemdFluxType_) {
1110     case rnemdKE :
1111 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1112     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1113     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1114     break;
1115 gezelter 1773 case rnemdPx :
1116 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1117     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1118     break;
1119 gezelter 1773 case rnemdPy :
1120 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1121     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1122     break;
1123 gezelter 1773 case rnemdPz :
1124 gezelter 1722 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1125     + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1126     default :
1127     break;
1128     }
1129     if (diff < smallestDiff) {
1130     smallestDiff = diff;
1131     bestPair = *rpi;
1132     }
1133     }
1134 skuang 1368 #ifdef IS_MPI
1135 gezelter 1722 if (worldRank == 0) {
1136 skuang 1368 #endif
1137 gezelter 1773 // sprintf(painCave.errMsg,
1138     // "RNEMD: roots r1= %lf\tr2 = %lf\n",
1139     // bestPair.first, bestPair.second);
1140     // painCave.isFatal = 0;
1141     // painCave.severity = OPENMD_INFO;
1142     // simError();
1143 skuang 1368 #ifdef IS_MPI
1144 gezelter 1722 }
1145 skuang 1368 #endif
1146 gezelter 1722
1147 gezelter 1773 switch(rnemdFluxType_) {
1148     case rnemdKE :
1149 gezelter 1722 x = bestPair.first;
1150     y = bestPair.first;
1151     z = bestPair.second;
1152     break;
1153 gezelter 1773 case rnemdPx :
1154 gezelter 1722 x = c;
1155     y = bestPair.first;
1156     z = bestPair.second;
1157     break;
1158 gezelter 1773 case rnemdPy :
1159 gezelter 1722 x = bestPair.first;
1160     y = c;
1161     z = bestPair.second;
1162     break;
1163 gezelter 1773 case rnemdPz :
1164 gezelter 1722 x = bestPair.first;
1165     y = bestPair.second;
1166     z = c;
1167     break;
1168     default :
1169     break;
1170     }
1171     vector<StuntDouble*>::iterator sdi;
1172     Vector3d vel;
1173     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1174     vel = (*sdi)->getVel();
1175     vel.x() *= x;
1176     vel.y() *= y;
1177     vel.z() *= z;
1178     (*sdi)->setVel(vel);
1179     }
1180     //convert to hotBin coefficient
1181     x = 1.0 + px * (1.0 - x);
1182     y = 1.0 + py * (1.0 - y);
1183     z = 1.0 + pz * (1.0 - z);
1184     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1185     vel = (*sdi)->getVel();
1186     vel.x() *= x;
1187     vel.y() *= y;
1188     vel.z() *= z;
1189     (*sdi)->setVel(vel);
1190     }
1191     successfulScale = true;
1192 gezelter 1773 switch(rnemdFluxType_) {
1193     case rnemdKE :
1194     kineticExchange_ += kineticTarget_;
1195     break;
1196     case rnemdPx :
1197     case rnemdPy :
1198     case rnemdPz :
1199     momentumExchange_ += momentumTarget_;
1200     break;
1201     default :
1202     break;
1203     }
1204 gezelter 1629 }
1205 gezelter 1722 }
1206     if (successfulScale != true) {
1207     sprintf(painCave.errMsg,
1208 gezelter 1773 "RNEMD::doNIVS exchange NOT performed - roots that solve\n"
1209     "\tthe constraint equations may not exist or there may be\n"
1210     "\tno selected objects in one or both slabs.\n");
1211 gezelter 1722 painCave.isFatal = 0;
1212     painCave.severity = OPENMD_INFO;
1213     simError();
1214     failTrialCount_++;
1215     }
1216     }
1217    
1218 gezelter 1773 void RNEMD::doVSS() {
1219 gezelter 1722
1220     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1221 jmarr 1728 RealType time = currentSnap_->getTime();
1222 gezelter 1722 Mat3x3d hmat = currentSnap_->getHmat();
1223    
1224     seleMan_.setSelectionSet(evaluator_.evaluate());
1225    
1226     int selei;
1227     StuntDouble* sd;
1228     int idx;
1229    
1230     vector<StuntDouble*> hotBin, coldBin;
1231    
1232     Vector3d Ph(V3Zero);
1233     RealType Mh = 0.0;
1234     RealType Kh = 0.0;
1235     Vector3d Pc(V3Zero);
1236     RealType Mc = 0.0;
1237     RealType Kc = 0.0;
1238 jmarr 1728
1239 gezelter 1722
1240     for (sd = seleMan_.beginSelected(selei); sd != NULL;
1241     sd = seleMan_.nextSelected(selei)) {
1242    
1243     idx = sd->getLocalIndex();
1244    
1245     Vector3d pos = sd->getPos();
1246    
1247     // wrap the stuntdouble's position back into the box:
1248    
1249     if (usePeriodicBoundaryConditions_)
1250     currentSnap_->wrapVector(pos);
1251    
1252     // which bin is this stuntdouble in?
1253 gezelter 1773 bool inA = inSlabA(pos);
1254     bool inB = inSlabB(pos);
1255    
1256     if (inA || inB) {
1257 gezelter 1722
1258     RealType mass = sd->getMass();
1259     Vector3d vel = sd->getVel();
1260    
1261 gezelter 1773 if (inA) {
1262 gezelter 1722 hotBin.push_back(sd);
1263     //std::cerr << "before, velocity = " << vel << endl;
1264     Ph += mass * vel;
1265     //std::cerr << "after, velocity = " << vel << endl;
1266     Mh += mass;
1267     Kh += mass * vel.lengthSquare();
1268 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1269 gezelter 1722 if (sd->isDirectional()) {
1270     Vector3d angMom = sd->getJ();
1271     Mat3x3d I = sd->getI();
1272     if (sd->isLinear()) {
1273     int i = sd->linearAxis();
1274     int j = (i + 1) % 3;
1275     int k = (i + 2) % 3;
1276     Kh += angMom[j] * angMom[j] / I(j, j) +
1277     angMom[k] * angMom[k] / I(k, k);
1278     } else {
1279     Kh += angMom[0] * angMom[0] / I(0, 0) +
1280     angMom[1] * angMom[1] / I(1, 1) +
1281     angMom[2] * angMom[2] / I(2, 2);
1282     }
1283     }
1284     }
1285     } else { //midBin_
1286     coldBin.push_back(sd);
1287     Pc += mass * vel;
1288     Mc += mass;
1289     Kc += mass * vel.lengthSquare();
1290 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1291 gezelter 1722 if (sd->isDirectional()) {
1292     Vector3d angMom = sd->getJ();
1293     Mat3x3d I = sd->getI();
1294     if (sd->isLinear()) {
1295     int i = sd->linearAxis();
1296     int j = (i + 1) % 3;
1297     int k = (i + 2) % 3;
1298     Kc += angMom[j] * angMom[j] / I(j, j) +
1299     angMom[k] * angMom[k] / I(k, k);
1300     } else {
1301     Kc += angMom[0] * angMom[0] / I(0, 0) +
1302     angMom[1] * angMom[1] / I(1, 1) +
1303     angMom[2] * angMom[2] / I(2, 2);
1304     }
1305     }
1306     }
1307     }
1308 skuang 1368 }
1309 gezelter 1722 }
1310    
1311     Kh *= 0.5;
1312     Kc *= 0.5;
1313    
1314 jmarr 1728 // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1315     // << "\tKc= " << Kc << endl;
1316     // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1317    
1318 gezelter 1722 #ifdef IS_MPI
1319     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1320     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1321     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1322     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1323     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1324     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1325     #endif
1326    
1327     bool successfulExchange = false;
1328     if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1329     Vector3d vc = Pc / Mc;
1330 gezelter 1773 Vector3d ac = -momentumTarget_ / Mc + vc;
1331     Vector3d acrec = -momentumTarget_ / Mc;
1332     RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare();
1333 gezelter 1722 if (cNumerator > 0.0) {
1334     RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1335     if (cDenominator > 0.0) {
1336     RealType c = sqrt(cNumerator / cDenominator);
1337     if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1338     Vector3d vh = Ph / Mh;
1339 gezelter 1773 Vector3d ah = momentumTarget_ / Mh + vh;
1340     Vector3d ahrec = momentumTarget_ / Mh;
1341     RealType hNumerator = Kh + kineticTarget_
1342 gezelter 1722 - 0.5 * Mh * ah.lengthSquare();
1343     if (hNumerator > 0.0) {
1344     RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1345     if (hDenominator > 0.0) {
1346     RealType h = sqrt(hNumerator / hDenominator);
1347     if ((h > 0.9) && (h < 1.1)) {
1348 jmarr 1728 // std::cerr << "cold slab scaling coefficient: " << c << "\n";
1349     // std::cerr << "hot slab scaling coefficient: " << h << "\n";
1350 gezelter 1722 vector<StuntDouble*>::iterator sdi;
1351     Vector3d vel;
1352     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1353     //vel = (*sdi)->getVel();
1354     vel = ((*sdi)->getVel() - vc) * c + ac;
1355     (*sdi)->setVel(vel);
1356 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1357 gezelter 1722 if ((*sdi)->isDirectional()) {
1358     Vector3d angMom = (*sdi)->getJ() * c;
1359     (*sdi)->setJ(angMom);
1360     }
1361     }
1362     }
1363     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1364     //vel = (*sdi)->getVel();
1365     vel = ((*sdi)->getVel() - vh) * h + ah;
1366     (*sdi)->setVel(vel);
1367 gezelter 1773 if (rnemdFluxType_ == rnemdFullKE) {
1368 gezelter 1722 if ((*sdi)->isDirectional()) {
1369     Vector3d angMom = (*sdi)->getJ() * h;
1370     (*sdi)->setJ(angMom);
1371     }
1372     }
1373     }
1374     successfulExchange = true;
1375 gezelter 1773 kineticExchange_ += kineticTarget_;
1376     momentumExchange_ += momentumTarget_;
1377 gezelter 1722 }
1378     }
1379     }
1380     }
1381     }
1382 skuang 1368 }
1383 gezelter 1722 }
1384     if (successfulExchange != true) {
1385 gezelter 1773 sprintf(painCave.errMsg,
1386     "RNEMD::doVSS exchange NOT performed - roots that solve\n"
1387     "\tthe constraint equations may not exist or there may be\n"
1388     "\tno selected objects in one or both slabs.\n");
1389     painCave.isFatal = 0;
1390     painCave.severity = OPENMD_INFO;
1391     simError();
1392 skuang 1368 failTrialCount_++;
1393     }
1394     }
1395    
1396     void RNEMD::doRNEMD() {
1397    
1398 gezelter 1773 trialCount_++;
1399     switch(rnemdMethod_) {
1400     case rnemdSwap:
1401 skuang 1368 doSwap();
1402     break;
1403 gezelter 1773 case rnemdNIVS:
1404     doNIVS();
1405 gezelter 1722 break;
1406 gezelter 1773 case rnemdVSS:
1407     doVSS();
1408     break;
1409     case rnemdUnkownMethod:
1410 skuang 1368 default :
1411     break;
1412     }
1413     }
1414    
1415     void RNEMD::collectData() {
1416    
1417     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1418     Mat3x3d hmat = currentSnap_->getHmat();
1419    
1420 gezelter 1774 areaAccumulator_->add(currentSnap_->getXYarea());
1421    
1422 skuang 1368 seleMan_.setSelectionSet(evaluator_.evaluate());
1423    
1424     int selei;
1425     StuntDouble* sd;
1426     int idx;
1427    
1428 gezelter 1773 vector<RealType> binMass(nBins_, 0.0);
1429     vector<RealType> binPx(nBins_, 0.0);
1430     vector<RealType> binPy(nBins_, 0.0);
1431     vector<RealType> binPz(nBins_, 0.0);
1432     vector<RealType> binKE(nBins_, 0.0);
1433     vector<int> binDOF(nBins_, 0);
1434     vector<int> binCount(nBins_, 0);
1435 jmarr 1728
1436 gezelter 1629 // alternative approach, track all molecules instead of only those
1437     // selected for scaling/swapping:
1438     /*
1439     SimInfo::MoleculeIterator miter;
1440     vector<StuntDouble*>::iterator iiter;
1441     Molecule* mol;
1442 gezelter 1769 StuntDouble* sd;
1443 gezelter 1629 for (mol = info_->beginMolecule(miter); mol != NULL;
1444 jmarr 1728 mol = info_->nextMolecule(miter))
1445 gezelter 1769 sd is essentially sd
1446     for (sd = mol->beginIntegrableObject(iiter);
1447     sd != NULL;
1448     sd = mol->nextIntegrableObject(iiter))
1449 gezelter 1629 */
1450 skuang 1368 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1451     sd = seleMan_.nextSelected(selei)) {
1452 skuang 1338
1453     idx = sd->getLocalIndex();
1454    
1455     Vector3d pos = sd->getPos();
1456    
1457     // wrap the stuntdouble's position back into the box:
1458    
1459     if (usePeriodicBoundaryConditions_)
1460     currentSnap_->wrapVector(pos);
1461 gezelter 1773
1462 gezelter 1774
1463 skuang 1338 // which bin is this stuntdouble in?
1464     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1465 gezelter 1773 // Shift molecules by half a box to have bins start at 0
1466     // The modulo operator is used to wrap the case when we are
1467     // beyond the end of the bins back to the beginning.
1468     int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
1469    
1470 skuang 1338 RealType mass = sd->getMass();
1471     Vector3d vel = sd->getVel();
1472    
1473 gezelter 1773 binCount[binNo]++;
1474     binMass[binNo] += mass;
1475     binPx[binNo] += mass*vel.x();
1476     binPy[binNo] += mass*vel.y();
1477     binPz[binNo] += mass*vel.z();
1478     binKE[binNo] += 0.5 * (mass * vel.lengthSquare());
1479     binDOF[binNo] += 3;
1480    
1481     if (sd->isDirectional()) {
1482     Vector3d angMom = sd->getJ();
1483     Mat3x3d I = sd->getI();
1484     if (sd->isLinear()) {
1485     int i = sd->linearAxis();
1486     int j = (i + 1) % 3;
1487     int k = (i + 2) % 3;
1488     binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) +
1489     angMom[k] * angMom[k] / I(k, k));
1490     binDOF[binNo] += 2;
1491     } else {
1492     binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) +
1493     angMom[1] * angMom[1] / I(1, 1) +
1494     angMom[2] * angMom[2] / I(2, 2));
1495     binDOF[binNo] += 3;
1496     }
1497 gezelter 1722 }
1498 gezelter 1773 }
1499    
1500 gezelter 1629
1501 gezelter 1773 #ifdef IS_MPI
1502     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0],
1503     nBins_, MPI::INT, MPI::SUM);
1504     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0],
1505     nBins_, MPI::REALTYPE, MPI::SUM);
1506     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0],
1507     nBins_, MPI::REALTYPE, MPI::SUM);
1508     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0],
1509     nBins_, MPI::REALTYPE, MPI::SUM);
1510     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0],
1511     nBins_, MPI::REALTYPE, MPI::SUM);
1512     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0],
1513     nBins_, MPI::REALTYPE, MPI::SUM);
1514     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0],
1515     nBins_, MPI::INT, MPI::SUM);
1516     #endif
1517    
1518     Vector3d vel;
1519     RealType den;
1520     RealType temp;
1521     RealType z;
1522     for (int i = 0; i < nBins_; i++) {
1523     z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2);
1524     vel.x() = binPx[i] / binMass[i];
1525     vel.y() = binPy[i] / binMass[i];
1526     vel.z() = binPz[i] / binMass[i];
1527 gezelter 1774 den = binCount[i] * nBins_ / currentSnap_->getVolume();
1528 gezelter 1773 temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb *
1529     PhysicalConstants::energyConvert);
1530    
1531     for (unsigned int j = 0; j < outputMask_.size(); ++j) {
1532     if(outputMask_[j]) {
1533     switch(j) {
1534     case Z:
1535     (data_[j].accumulator[i])->add(z);
1536     break;
1537     case TEMPERATURE:
1538     data_[j].accumulator[i]->add(temp);
1539     break;
1540     case VELOCITY:
1541     dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel);
1542     break;
1543     case DENSITY:
1544     data_[j].accumulator[i]->add(den);
1545     break;
1546     }
1547     }
1548 gezelter 1629 }
1549 skuang 1338 }
1550 skuang 1368 }
1551    
1552     void RNEMD::getStarted() {
1553 gezelter 1629 collectData();
1554 gezelter 1773 writeOutputFile();
1555 skuang 1368 }
1556    
1557 gezelter 1773 void RNEMD::parseOutputFileFormat(const std::string& format) {
1558     StringTokenizer tokenizer(format, " ,;|\t\n\r");
1559    
1560     while(tokenizer.hasMoreTokens()) {
1561     std::string token(tokenizer.nextToken());
1562     toUpper(token);
1563     OutputMapType::iterator i = outputMap_.find(token);
1564     if (i != outputMap_.end()) {
1565     outputMask_.set(i->second);
1566     } else {
1567     sprintf( painCave.errMsg,
1568     "RNEMD::parseOutputFileFormat: %s is not a recognized\n"
1569     "\toutputFileFormat keyword.\n", token.c_str() );
1570     painCave.isFatal = 0;
1571     painCave.severity = OPENMD_ERROR;
1572     simError();
1573     }
1574     }
1575     }
1576    
1577     void RNEMD::writeOutputFile() {
1578    
1579 gezelter 1350 #ifdef IS_MPI
1580     // If we're the root node, should we print out the results
1581     int worldRank = MPI::COMM_WORLD.Get_rank();
1582     if (worldRank == 0) {
1583     #endif
1584 gezelter 1773 rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc );
1585    
1586     if( !rnemdFile_ ){
1587     sprintf( painCave.errMsg,
1588     "Could not open \"%s\" for RNEMD output.\n",
1589     rnemdFileName_.c_str());
1590     painCave.isFatal = 1;
1591     simError();
1592     }
1593 gezelter 1722
1594 gezelter 1773 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1595    
1596     RealType time = currentSnap_->getTime();
1597 gezelter 1774 RealType avgArea;
1598     areaAccumulator_->getAverage(avgArea);
1599     RealType Jz = kineticExchange_ / (2.0 * time * avgArea);
1600     Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea);
1601    
1602 gezelter 1773 rnemdFile_ << "#######################################################\n";
1603     rnemdFile_ << "# RNEMD {\n";
1604    
1605     map<string, RNEMDMethod>::iterator mi;
1606     for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) {
1607     if ( (*mi).second == rnemdMethod_)
1608 gezelter 1774 rnemdFile_ << "# exchangeMethod = \"" << (*mi).first << "\";\n";
1609 skuang 1368 }
1610 gezelter 1773 map<string, RNEMDFluxType>::iterator fi;
1611     for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) {
1612     if ( (*fi).second == rnemdFluxType_)
1613 gezelter 1774 rnemdFile_ << "# fluxType = \"" << (*fi).first << "\";\n";
1614 gezelter 1722 }
1615 gezelter 1773
1616 gezelter 1775 rnemdFile_ << "# exchangeTime = " << exchangeTime_ << ";\n";
1617 gezelter 1773
1618     rnemdFile_ << "# objectSelection = \""
1619 gezelter 1774 << rnemdObjectSelection_ << "\";\n";
1620     rnemdFile_ << "# slabWidth = " << slabWidth_ << ";\n";
1621     rnemdFile_ << "# slabAcenter = " << slabACenter_ << ";\n";
1622     rnemdFile_ << "# slabBcenter = " << slabBCenter_ << ";\n";
1623 gezelter 1773 rnemdFile_ << "# }\n";
1624     rnemdFile_ << "#######################################################\n";
1625 gezelter 1774 rnemdFile_ << "# RNEMD report:\n";
1626     rnemdFile_ << "# running time = " << time << " fs\n";
1627     rnemdFile_ << "# target flux:\n";
1628     rnemdFile_ << "# kinetic = " << kineticFlux_ << "\n";
1629     rnemdFile_ << "# momentum = " << momentumFluxVector_ << "\n";
1630     rnemdFile_ << "# target one-time exchanges:\n";
1631     rnemdFile_ << "# kinetic = " << kineticTarget_ << "\n";
1632     rnemdFile_ << "# momentum = " << momentumTarget_ << "\n";
1633     rnemdFile_ << "# actual exchange totals:\n";
1634     rnemdFile_ << "# kinetic = " << kineticExchange_ << "\n";
1635     rnemdFile_ << "# momentum = " << momentumExchange_ << "\n";
1636     rnemdFile_ << "# actual flux:\n";
1637     rnemdFile_ << "# kinetic = " << Jz << "\n";
1638     rnemdFile_ << "# momentum = " << JzP << "\n";
1639     rnemdFile_ << "# exchange statistics:\n";
1640     rnemdFile_ << "# attempted = " << trialCount_ << "\n";
1641     rnemdFile_ << "# failed = " << failTrialCount_ << "\n";
1642 gezelter 1773 if (rnemdMethod_ == rnemdNIVS) {
1643 gezelter 1774 rnemdFile_ << "# NIVS root-check errors = "
1644     << failRootCount_ << "\n";
1645 gezelter 1722 }
1646 gezelter 1773 rnemdFile_ << "#######################################################\n";
1647    
1648    
1649    
1650     //write title
1651     rnemdFile_ << "#";
1652     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1653     if (outputMask_[i]) {
1654     rnemdFile_ << "\t" << data_[i].title <<
1655     "(" << data_[i].units << ")";
1656 skuang 1368 }
1657 gezelter 1773 }
1658     rnemdFile_ << std::endl;
1659    
1660     rnemdFile_.precision(8);
1661    
1662     for (unsigned int j = 0; j < nBins_; j++) {
1663    
1664     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1665     if (outputMask_[i]) {
1666     if (data_[i].dataType == "RealType")
1667     writeReal(i,j);
1668     else if (data_[i].dataType == "Vector3d")
1669     writeVector(i,j);
1670     else {
1671     sprintf( painCave.errMsg,
1672     "RNEMD found an unknown data type for: %s ",
1673     data_[i].title.c_str());
1674     painCave.isFatal = 1;
1675     simError();
1676     }
1677     }
1678 skuang 1368 }
1679 gezelter 1773 rnemdFile_ << std::endl;
1680    
1681     }
1682 gezelter 1774
1683     rnemdFile_ << "#######################################################\n";
1684     rnemdFile_ << "# Standard Deviations in those quantities follow:\n";
1685     rnemdFile_ << "#######################################################\n";
1686    
1687    
1688     for (unsigned int j = 0; j < nBins_; j++) {
1689     rnemdFile_ << "#";
1690     for (unsigned int i = 0; i < outputMask_.size(); ++i) {
1691     if (outputMask_[i]) {
1692     if (data_[i].dataType == "RealType")
1693     writeRealStdDev(i,j);
1694     else if (data_[i].dataType == "Vector3d")
1695     writeVectorStdDev(i,j);
1696     else {
1697     sprintf( painCave.errMsg,
1698     "RNEMD found an unknown data type for: %s ",
1699     data_[i].title.c_str());
1700     painCave.isFatal = 1;
1701     simError();
1702     }
1703     }
1704     }
1705     rnemdFile_ << std::endl;
1706    
1707     }
1708 gezelter 1773
1709     rnemdFile_.flush();
1710     rnemdFile_.close();
1711    
1712 gezelter 1350 #ifdef IS_MPI
1713 gezelter 1396 }
1714 gezelter 1350 #endif
1715 jmarr 1728
1716 gezelter 1334 }
1717 gezelter 1773
1718     void RNEMD::writeReal(int index, unsigned int bin) {
1719     assert(index >=0 && index < ENDINDEX);
1720 gezelter 1774 assert(bin < nBins_);
1721 gezelter 1773 RealType s;
1722    
1723     data_[index].accumulator[bin]->getAverage(s);
1724    
1725     if (! isinf(s) && ! isnan(s)) {
1726     rnemdFile_ << "\t" << s;
1727     } else{
1728     sprintf( painCave.errMsg,
1729     "RNEMD detected a numerical error writing: %s for bin %d",
1730     data_[index].title.c_str(), bin);
1731     painCave.isFatal = 1;
1732     simError();
1733     }
1734     }
1735    
1736     void RNEMD::writeVector(int index, unsigned int bin) {
1737     assert(index >=0 && index < ENDINDEX);
1738 gezelter 1774 assert(bin < nBins_);
1739 gezelter 1773 Vector3d s;
1740     dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s);
1741     if (isinf(s[0]) || isnan(s[0]) ||
1742     isinf(s[1]) || isnan(s[1]) ||
1743     isinf(s[2]) || isnan(s[2]) ) {
1744     sprintf( painCave.errMsg,
1745     "RNEMD detected a numerical error writing: %s for bin %d",
1746     data_[index].title.c_str(), bin);
1747     painCave.isFatal = 1;
1748     simError();
1749     } else {
1750     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1751     }
1752     }
1753 gezelter 1774
1754     void RNEMD::writeRealStdDev(int index, unsigned int bin) {
1755     assert(index >=0 && index < ENDINDEX);
1756     assert(bin < nBins_);
1757     RealType s;
1758    
1759     data_[index].accumulator[bin]->getStdDev(s);
1760    
1761     if (! isinf(s) && ! isnan(s)) {
1762     rnemdFile_ << "\t" << s;
1763     } else{
1764     sprintf( painCave.errMsg,
1765     "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1766     data_[index].title.c_str(), bin);
1767     painCave.isFatal = 1;
1768     simError();
1769     }
1770     }
1771    
1772     void RNEMD::writeVectorStdDev(int index, unsigned int bin) {
1773     assert(index >=0 && index < ENDINDEX);
1774     assert(bin < nBins_);
1775     Vector3d s;
1776     dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s);
1777     if (isinf(s[0]) || isnan(s[0]) ||
1778     isinf(s[1]) || isnan(s[1]) ||
1779     isinf(s[2]) || isnan(s[2]) ) {
1780     sprintf( painCave.errMsg,
1781     "RNEMD detected a numerical error writing: %s std. dev. for bin %d",
1782     data_[index].title.c_str(), bin);
1783     painCave.isFatal = 1;
1784     simError();
1785     } else {
1786     rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2];
1787     }
1788     }
1789 skuang 1338 }
1790 gezelter 1722

Properties

Name Value
svn:keywords Author Id Revision Date